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Kinetic theory of shot noise in nondegenerate diffusive conductors
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We investigate current fluctuations in nondegenerate semiconductors, on length scales intermediate between
the elastic and inelastic mean free paths. We present an exact solution of the nonlinear kinetic equations in the
regime of space-charge limited conduction, without resorting to the drift approximation of previous work. By
including the effects of a finite voltage and carrier density in the contact region, a quantitative agreement is
obtained with Monte Carlo simulations by Gonza´lez et al., for a model of an energy-independent elastic

scattering rate. The shot-noise powerP is suppressed below the Poisson valuePPoisson52e Ī ~at mean current

Ī ) by the Coulomb repulsion of the carriers. The exact suppression factor is close to 1/3 in a three-dimensional
system, in agreement with the simulations and with the drift approximation. Including an energy dependence
of the scattering rate has a small effect on the suppression factor for the case of short-range scattering by
uncharged impurities or quasielastic scattering by acoustic phonons. Long-range scattering by charged impu-
rities remains an open problem.@S0163-1829~99!02931-8#
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I. INTRODUCTION

The kinetic theory of nonequilibrium fluctuations in a
electron gas was pioneered by Kadomtsev in 1957~Ref. 1!
and fully developed ten years later.2,3 The theory has been
comprehensively reviewed by Kogan.4 In recent years there
has been a revival of interest in this field because of
discovery of fundamental effects on the mesoscopic len
scale.~See Ref. 5 for a recent review.! One of these effects is
the sub-Poissonian shot noise in degenerate electron gas
length scales intermediate between the mean free pathl for
elastic impurity scattering and the inelastic mean free pathl in
for electron-phonon or electron-electron scattering. The u
versal one-third suppression of the shot-noise power
dicted theoretically6,7 has been observed in experiments
semiconductor or metal wires of micrometer length.8–11

The electron density in these experiments is sufficien
high that the electron gas is degenerate. The reduction o
shot-noise power

P52E
2`

`

dt8dI ~ t !dI ~ t1t8! ~1.1!

@with dI (t) being the fluctuations of the current around t
mean currentĪ # below the Poisson valuePPoisson52e Ī is
then the result of correlations induced by the Pauli exclus
principle. When the electron density is reduced, the P
principle becomes ineffective. One enters then the regim
a nondegenerate electron gas, studied recently in Mo
Carlo simulations by Gonza´lez et al.12 In a model of energy-
independent three-dimensional elastic impurity scatter
these authors found the very same ratioP/PPoisson51/3 as in
PRB 600163-1829/99/60~8!/5839~12!/$15.00
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the degenerate case. The origin of the suppression is q
different, however, being due to correlations induced
long-range Coulomb repulsion—rather than by the Pa
principle. The one-third suppression of shot noise in
computer simulations required a large voltage and sh
screening length, but was found to be otherwise independ
of material parameters.

Subsequent analytical work by one of the authors13 ex-
plained this universality as a feature of the regime of spa
charge limited conduction. The kinetic equations in this
gime are highly nonlinear and could only be solved in t
approximation that the diffusion term is neglected compa
to the drift term. This is a questionable approximation: T
ratio of the two terms is 1/d, with d the dimensionality of the
density of states. The result of Ref. 13,

P/PPoisson5
12

5

3d2122d164

~d12!~3d14!~3d18!
, ~1.2!

becomes exact in the large-d limit, when P/PPoisson˜4/5d,
but has an error of unknown magnitude for the physica
relevant valued53.

The main purpose of the present paper is to report
exact solution of the kinetic equations in the space-cha
limited transport regime. We find that inclusion of the diffu
sion term has a pronounced effect on the spatial depend
of the electric field, although the ultimate effect on the no
power turns out to be relatively small: The exact suppress
factor differs from Eq.~1.2! by about 10% ford53. We find
5839 ©1999 The American Physical Society
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P/PPoisson5H 0.6857 for d51

0.4440 for d52

0.3097 for d53,

~1.3!

close to the values reported by Gonza´lez et al. ~although
their surmise thatP/PPoisson is a simple fraction 1/d for d
52, 3 is not borne out by this exact calculation!. By includ-
ing the effects of a finite temperature and screening len
we obtain excellent agreement with the electric-field profi
in the simulations~which could not be achieved in the dri
approximation of Ref. 13! and determine the conditions fo
space-charge limited conduction. We also go beyond pr
ous work by calculating to what extent the shot-noise s
pression factor varies with the energy dependence of
scattering rate.~This breakdown of universality was antic
pated in Refs. 13 and 14.!

The paper is organized as follows. The kinetic theory
introduced in Sec. II, where we summarize the basic eq
tions and emphasize the differences with the degenerate
In Sec. III we formulate the problem for the regime of spac
charge limited conduction. In Sec. IV we solve the kine
equations for the case of an energy-independent scatte
rate and compare with the Monte Carlo simulations.12 We
study separately the capacitance fluctuations. The effec
deviations from the conditions of space-charge limited c
duction is also investigated. Energy dependence in the s
tering rate is considered in Sec. V. We conclude in Sec.
with a discussion of the experimental observability in co
nection with electron-phonon scattering.

II. KINETIC THEORY

A. Boltzmann-Langevin equation

Our starting point is the same kinetic theory1–4 used to
study shot noise in degenerate conductors.5,7,15–21We sum-
marize the basic equations, emphasizing the difference
the nondegenerate case. The densityf (r ,p,t) of carriers at
position r and momentump5mv at time t ~wherem is the
effective mass andv is the velocity! satisfies the Boltzmann
Langevin equation

F ]

]t
1v•

]

]r
1eE~r ,t !

]

]pG f ~r ,p,t !5S1dJ. ~2.1!

Here E(r ,t) is the electric field~we take the charge of th
carriers positive!, S(r ,p,t) is the collision integral, and
dJ(r ,p,t) is a fluctuating source~or ‘‘Langevin current’’!.
The collision integral describes the average effect of ela
impurity scattering,

S~r ,pn̂,t !5E dn̂8

V
W«~ n̂•n̂8!@ f ~r ,pn̂8,t !2 f ~r ,pn̂,t !#.

~2.2!

The integral over the directionn̂5p/p of the momentum
extends over the surface of the unit sphere ind dimensions,

with surface areaV52pd/2/G( 1
2 d). The scattering rate

W«(n̂•n̂8) depends on the kinetic energy«5p2/2m and on
the scattering anglen̂•n̂8. The effective massm is assumed
to be energy independent.
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The stochastic Langevin currentdJ vanishes on average
d J̄50, and has correlator2

dJ~r ,p,t !dJ~r 8,p8,t8!

5d~r2r 8!d~ t2t8!d~«2«8!
1

n~«!

3Fd~ n̂2n̂8!E dn̂9W«~ n̂•n̂9!~ f̄ 1 f̄ 922 f̄ f̄ 9!

2W«~ n̂•n̂8!~ f̄ 1 f̄ 822 f̄ f̄ 8!G , ~2.3!

determined by the mean occupation numberf̄ . @We abbrevi-
ated f̄ 85 f̄ (r ,p8,t) and analogously forf̄ 9.# The density of
states ind dimensions isn(«)5mV(2m«)d/221, where we
set Planck’s constanth[1.

A nondegenerate electron gas is characterized byf̄ !1. In
contrast to the degenerate case, the Pauli exclusion princ
is then of no effect. One consequence is that we may o
the terms quadratic inf̄ in the correlator~2.3!. A second
consequence is that deviations from equilibrium are
longer restricted to a narrow energy range around the Fe
level, but extend over a broad range of«. One cannot, there
fore, eliminate« as an independent variable from the outs
as in the degenerate case.

B. Diffusion approximation

We assume that the elastic mean free path is short c
pared to the dimensions of the conductor, so that we
make the diffusion approximation. This consists in keep
only the two leading terms,

f ~r ,n̂A2m«,t !5F~r ,«,t !1n̂•f~r ,«,t !, ~2.4!

of a multipole expansion in the momentum directionn̂. We
substitute Eq.~2.4! into the Boltzmann-Langevin equatio
~2.1! and integrate overn̂ to obtain the continuity equation

]

]t
r~r ,«,t !1

]

]r
j ~r ,«,t !1eE~r ,t !

]

]«
j ~r ,«,t !50,

~2.5!

for the energy-resolved charge and current densities

r~r ,«,t !5en~«!F~r ,«,t !, ~2.6!

j ~r ,«,t !5
1

d
evn~«!f~r ,«,t !, ~2.7!

with v5A2«/m. In the zero-frequency limit we may omi
the time derivative in Eq.~2.5!.

Multiplication by n̂ followed by integration gives a sec
ond relation betweenr and j :22

j ~r ,«,t !52D~«!
]

]r
r~r ,«,t !2s~«!E~r ,t !

3
]

]«
F~r ,«,t !1dJ~r ,«,t !, ~2.8!
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a combination of Fick’s law and Ohm’s law with a fluctua
ing current source. The conductivitys(«)5e2n(«)D(«) is
the product of the density of states and the diffusion cons
D(«)5v2t/d5(2«/md)t(«). The scattering rate is give
by

1

t~«!
5E dn̂8

V
W«~ n̂•n̂8!~12n̂•n̂8!. ~2.9!

The energy-resolved Langevin current

dJ~r ,«,t !5et~«!vn~«!E dn̂

V
n̂dJ~r ,n̂A2m«,t !

~2.10!

is correlated as

dJl~r ,«,t !dJm~r 8,«8,t8!

52s~«!F̄~r ,«,t !d lmd~r2r 8!d~ t2t8!d~«2«8!,

~2.11!

where we have omitted terms quadratic inF̄.
These kinetic equations should be solved together w

the Poisson equation

k
]

]r
E~r ,t !5r~r ,t !2req, ~2.12!

with r(r ,t)5*d« r(r ,«,t) the integrated charge density,k
the dielectric constant, andreq the mean charge density i
equilibrium. The Langevin currentdJ induces fluctuations in
r and hence inE. The need to take the fluctuations in th
electric field into account self-consistently is a severe co
plication of the problem.

C. Slab geometry

We consider the slab geometry of Fig. 1, consisting o
semiconductor aligned along thex axis with uniform cross-
sectional areaA. A nonfluctuating potential differenceV is
maintained between the metal contacts atx50 and x5L,
with the current source atx50. The contacts are in equilib
rium at temperatureT. It is convenient to integrate over en
ergy and the coordinatesr' perpendicular to thex axis.
We define the linear charge densityr(x,t)5*dr'r(r ,t)
and the currentsI (t)5*dr'*d« j x(r ,«,t) and dJ(x,t)
5*dr'*d«dJx(r ,«,t). The currentI is x independent in the
zero-frequency limit because of the continuity equation~2.5!.
We also define the electric-field profileE(x,t)

FIG. 1. Semiconducting slab~grey! between two metal contact
~black! at x50 andx5L. The (d21)-dimensional cross-sectiona
area isA. The current flows from left to right in response to
voltageV applied between the contacts.
nt

h

-

a

5A21*dr' Ex(r ,t). The vectorr' of transverse coordinate
hasd21 dimensions. The physically relevant case isd53,
but in computer simulations one can consider other value
d. For example, in Ref. 12 the cased52 was also studied
corresponding to a hypothetical ‘‘flatland.’’23 To compare
with the simulations, we will also consider arbitraryd.

For any d the fluctuating Ohm-Fick law~2.8! takes the
one-dimensional form

I ~ t !52
]

]xE dr'E d«D~«!r~r ,«,t !

1E~x,t !E dr'E d«F~r ,«,t !
d

d«
s~«!1dJ~x,t !,

~2.13!

where we used that the averages ofF and E depend onx
only and neglected terms quadratic in the fluctuations. T
Poisson equation~2.12! becomes

kA
]

]x
E~x,t !5r~x,t !2Areq, ~2.14!

and the correlator~2.11! becomes

dJ~x,t !dJ~x8,t8!

52Ad~ t2t8!d~x2x8!E d«s~«!F̄~x,«!. ~2.15!

Our problem is to compute from Eqs.~2.13!–~2.15! the shot-
noise power~1.1!.

D. Energy-independent scattering time

The Ohm-Fick law~2.13! simplifies in the model of an
energy-independent scattering timet(«)[t. Then the de-
rivative of the conductivityds/d«5emn(«) is proportional
to the density of states and contains the energy-indepen
mobility m5et/m. Equation~2.13! becomes

I ~ t !52
]

]xE dr'E d« D~«!r~r ,«,t !

1m r~x,t !E~x,t !1dJ~x,t !. ~2.16!

The drift term now has the same formmrE as for inelastic
scattering.24 This simple form does not hold for the mor
general case of energy-dependent elastic scattering.

III. SPACE-CHARGE LIMITED CONDUCTION

For a large voltage dropV between the two metal contac
and a high carrier densityrc in the contacts, the charge in
jected into the semiconductor is much higher than the eq
librium chargereq, which can then be neglected. For suf
ciently highV andrc, the system enters the regime of spac
charge limited conduction,25 defined by the boundary
condition

E~x,t !50 at x50. ~3.1!

Equation~3.1! states that the space chargeQ5*0
Lr(x)dx in

the semiconductor is precisely balanced by the surf
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charge at the current drain. The accuracy of this bound
condition at finiteV andrc is examined in Sec. IV E. At the
drain we have the absorbing boundary condition

r~x,t !50 at x5L. ~3.2!

This is the diffusion approximation to the condition of ze
flux incident from the current drain. Here we neglect t
small thermal contribution to the noise from carriers that
injected and collected at the drain at kinetic energies;kT,
as well as the negligible fraction;exp(2eV/kT) of carriers
injected from the drain that can overcome the potential b
rier.

To determine the electric field inside the semiconduc
we proceed as follows. The potential gain2ef(x,t) ~with
E52]f/]x) dominates over the initial thermal excitatio
energy of orderkT ~with Boltzmann’s constantk) almost
throughout the whole semiconductor; only close to the c
rent source~in a thin boundary layer! this is not the case. We
can therefore approximate the kinetic energy«'2ef
and introduce this intoD(«) and ds/d«. We assume a
power-law energy dependence of the scattering timet
5t0«a. Then D(«)5(2t0 /md)«a11'2(2m0 /d)
(2e)afa11 and ds/d«5(2a1d)(t0 /md)e2«an(«)'
2(2a1d)(m0 / d)(2e)a11fan(«), where we have defined
m05et0 /m. Substituting into Eq.~2.13! and using the Pois
son equation2kA]2f/]x25r, we find the third-order, non
linear, inhomogeneous differential equation

~2a1d!fa
]

]x S ]f

]x D 2

24
]

]x S fa11
]2f

]x2 D
5

2d

~2e!am0kA
@ I ~ t !2dJ~x,t !# ~3.3!

for the potential profilef(x,t).
Since the potential differenceV between source and drai

does not fluctuate, we have the two boundary conditions

f~x,t !50 at x50, ~3.4!

f~x,t !52V at x5L. ~3.5!

Equations~3.1! and ~3.2! imply two additional boundary
conditions:

]

]x
f~x,t !50 at x50, ~3.6!

]2

]x2
f~x,t !50 at x5L. ~3.7!

We will now solve this boundary value problem forf

5f̄1df, first for the mean and then for the fluctuations,
both cases neglecting terms quadratic indf. The casea
50 of an energy-independent scattering time is conside
first, in Sec. IV. The more complicated case of nonzeroa is
treated in Sec. V.
ry

e

r-

r,

r-

d

IV. ENERGY-INDEPENDENT SCATTERING TIME

A. Average profiles

For a50 the averaged equation~3.3! can be integrated
once to obtain the second-order differential equation

S df̄

dx
D 2

2
4

d
f̄

d2f̄

dx2
5

2 Ī

mkA
x ~4.1!

for the mean potentialf̄(x). In this case of an energy
independent scattering timet(«)[t, we may identifym0
with the mobilitym5et/m introduced in Sec. II D. No inte-
gration constant appears in Eq.~4.1!, since only then the
boundary conditions~3.4! and ~3.6! at x50 can be fulfilled
simultaneously. In Ref. 13 the second term on the left-ha
side of Eq.~4.1! ~the diffusion term! was neglected relative
to the first term~the drift term!. This approximation is rigor-
ously justified only in the formal limitd˜`. It has the
drawback of reducing the order of the equation by one,
that no longer can all boundary conditions be fulfilled. A
though the solution in Ref. 13 violates the absorbing bou
ary condition~3.7!, the final result for the shot-noise powe
turns out to be close to the exact result obtained here.

Before solving this nonlinear differential equation e
actly, we discuss two scaling properties that help us alo
the way. Note first that the currentĪ can be scaled away b
the substitution

f̄~x!52S 2 Ī

mkA
D 1/2

x~x!. ~4.2!

Second, each solutionx(x) of

S dx

dxD 2

2
4

d
x

d2x

dx2
5x ~4.3!

@the rescaled Eq.~4.1!# generates a one-parameter family
solutionsl3/2x(x/l). Thus, if we find a solution that fulfills
the three boundary conditionsx(0)50, x8(0)50, x9(1)
50 ~primes denoting differentiation with respect tox), then
the potential

f̄~x!52S 2 Ī L3

mkA
D 1/2

x~x/L ! ~4.4!

solves Eq.~4.1! with boundary conditions~3.4!, ~3.6!, and
~3.7!. The remaining boundary condition~3.5! determines
the current-voltage characteristic

Ī ~V!5
mkA

2L3 S V

x~1! D
2

. ~4.5!

The quadratic dependence ofĪ on V is the Mott-Gurney law
of space-charge limited conduction.26

We now construct a solutionx(x). One obvious solution
is x0(x)5a0x3/2, with

a05
2

3 S 12
4

3dD 21/2

. ~4.6!
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This solution satisfies the boundary conditions atx50, but
x09(x)Þ0 for any finitex. Close to the singular pointx50
any solution will approachx0(x) provided thatd.4/3. Let
us discuss first this range ofd, containing the physically
relevant dimensiond53.

We substitute into Eq.~4.3! the ansatz

x~x!5(
l 50

`

alx
b l 13/2, ~4.7!

consisting ofx0(x) times a power series inxb, with b a
positive power to be determined. This ansatz proves frui
since both terms on the left-hand side of Eq.~4.3! give the
same powers ofx, starting with orderx1 in coincidence with
the right-hand side. Power matching gives Eq.~4.6! for a0,
and for l>1 it gives the conditions

(
m50

l

blmamal 2m50, ~4.8!

blm5
9

4
2

3

d
1S 32

8

dDmb2S 11
4

dDm2b21mlb2.

~4.9!

The relation withl 51 is special: It determines the powerb,

b21bS 22
3

4
dD1

3

2
2

9

8
d50, ~4.10!

but leaves the coefficienta1 as a free parameter@to be deter-
mined by demanding thatx9(1)50#. The positive solution
of Eq. ~4.10! is

b5
3

8
d211

1

8
A9d2124d232. ~4.11!

We find b5(A1321)/4 for d52 andb53/2 for d53. For
l>2 we solve foral to obtain the recursion relation

al52

(
m51

l 21

blmamal 2m

~bll 1bl0!a0
. ~4.12!

Interestingly enough, the power series terminates ford
512/5, and the solution for this dimension isx(x)5x3/2

2 1
5 x5/2. For arbitrary dimensiond.4/3, the coefficientsal

fall off with l, the more rapidly so the largerd is. We find
numerically that the solution withx9(1)50 has a1
50.3261 ford52 anda150.1166 ford53.

For d,4/3 we substitute into Eq.~4.3! the ansatz

x~x!5(
l 50

`

clx
g l 1(32g)/2, ~4.13!

with g5(423d)/(42d). Now the coefficientc0 is free.
Power matching gives, further,

c152
d

4g~g11!
, ~4.14!

and the recursion relation
l

cl52

(
m51

l 21

dlmcmcl 2m

~dll 1dl0!c0
, ~4.15!

dlm5S gm1
32g

2 D Fg~ l 2m!2
4

d
gmG , ~4.16!

for coefficients with l>2. For d51 the solution with
x9(1)50 hasc051.3628.

In Fig. 2 the profiles of the potentialf̄}x, the electric
field Ē}x8, and the charge densityr̄}x9 are plotted ford
51, 2, and 3. We also show the result ford5`, corre-
sponding to the drift approximation of Ref. 13. The coef
cient x(1) appearing in the current-voltage characteris
~4.5! can be read off from this plot. We findx(1)58/9 for
d51, x(1)50.8180 ford52, andx(1)50.7796 ford53.
The limiting value ford5` is x(1)52/3.

B. Fluctuations

For the fluctuations it is again convenient to work with t
rescaled mean potential~4.2!. We rescale the fluctuations i
the same way:

df~x,t !52S 2 Ī

mkA
D 21/2

c~x,t !. ~4.17!

FIG. 2. Profile of the mean electrical potentialf̄ @in units of

(2 Ī L3/mkA)1/2#, the electric fieldĒ @in units of (2Ī L/mkA)1/2#,

and the charge densityr̄ @in units of (2Ī k/mLA)1/2#, following
from Eq. ~4.1! for different values ofd. The drift approximation of
Ref. 13 corresponds to the cased5` in this plot.
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We linearize Eq.~3.3! with a50 around the mean value
and integrate once to obtain the second-order inhomo
neous linear differential equation

L@c#52S 4

d
x D ]2c

]x2
1S 2

dx

dxD ]c

]x
2S 4

d

d2x

dx2 D c

5E
0

x

dx8
dI ~ t !2dJ~x8,t !

Ī
. ~4.18!

The integration constant vanishes as a consequence o
boundary condition

c~x,t !50 at x50 ~4.19!

and the requirement that the fluctuating electric field]c/]x
stays finite atx50. @The latter condition actually implies
]c/]x50 at x50.# We will solve Eq.~4.18! with the addi-
tional condition of a nonfluctuating voltage,

c~x,t !50 at x5L. ~4.20!

The remaining constraint

]2

]x2
c~x,t !50 at x5L ~4.21!

~the absorbing boundary condition! will be used later to re-
late dI to dJ.

We need the Green functionG(x,x8), satisfying for each
x8 the equationL@G(x,x8)#5d(x2x8). In view of Eq.~4.3!
for the mean potential one recognizes

c1~x!53x~x!22x
d

dx
x~x! ~4.22!

as a solutionL@c1#50, which already satisfies Eq.~4.19!.
Using a standard prescription,27 we find from c1(x) a sec-
ond, independent, homogeneous solution

c2~x!5c1~x!E
x

L

dx8
xd/2~x8!

c1
2~x8!

, ~4.23!

which fulfills Eq. ~4.20!. The Wronskian is

c1~x!
d

dx
c2~x!2c2~x!

d

dx
c1~x!52xd/2~x!. ~4.24!

The Green function also contains the factor24x/d that ap-
pears in Eq.~4.18! in front of the second-order derivative o
c. We find

G~x,x8!5
d

4xd/211~x8!
@Q~x2x8!c2~x!c1~x8!

1Q~x82x!c1~x!c2~x8!#, ~4.25!

whereQ(x)51 for x.0 andQ(x)50 for x,0.
The solution of the inhomogeneous equation~4.18! with

boundary conditions~4.19!, ~4.20! is then
e-

the

c~x,t !5E
0

L

dx8G~x,x8!E
0

x8
dx9

dI ~ t !2dJ~x9,t !

Ī
.

~4.26!

From the extra condition~4.21! we find

dI ~ t !5C21E
0

L

dxdJ~x,t !G~x!, ~4.27!

with the definitions

C5S 3

2
x~L !2L3/2D1

d

4

xd/2~L !

AL
E

0

L

dx
xc1~x!

xd/211~x!
,

~4.28!

G~x!5S 3x~L !

2L
2AL D1

d

4

xd/2~L !

AL
E

x

L

dx8
c1~x8!

xd/211~x8!
.

~4.29!

Equation~4.27! is the relation between the fluctuating tot
currentdI and the Langevin currentdJ that we need to com-
pute the shot-noise power.

C. Shot-noise power

The shot-noise power is found by substituting Eq.~4.27!
into Eq. ~1.1! and invoking the correlator~2.15! for the
Langevin current. This results in

P52E
0

L

dxS G~x!

C D 2

H~x!, ~4.30!

H~x!52AE d«s~«!F̄~x,«!. ~4.31!

In order to determine the mean occupation numberF̄(x,«)
out of equilibrium, it is convenient to change variables fro
kinetic energy« to total energyu5«1ef̄(x,t). In the new
variablesx andu we find from the kinetic equations~2.5! and
~2.8!,

]

]x
j̄ ~x,u!50, ~4.32!

j̄ ~x,u!52
1

e
s@u2ef̄~x!#

]

]x
F̄~x,u!. ~4.33!

The derivatives with respect tox are taken at constantu. The
solution is

F̄~x,u!5e j̄~u!E
x

L dx8

s@u2ef̄~x8!#
, ~4.34!

where we used the absorbing boundary condition~3.7!
@which impliesF̄(L,u)50#.

As before@in the derivation of Eq.~3.3! from Eq. ~2.13!#
we approximateu2ef̄(x)'2ef̄(x) in the argument ofs.
~This is justified because 0,u&kT!eV.! ThenF̄(x,u) fac-
torizes into a function ofx times a function ofu, and Eq.
~4.31! gives
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H~x!52e Īxd/2~x8!E
x

L

dx8x2d/2~x8!, ~4.35!

where we expressed the result in terms of the rescaled
tential x. In this equation we recognize the Poissonian sh
noise powerPPoisson52e Ī.

The integrals in the expressions~4.28!, ~4.29!, and~4.35!
for C, G, andH can be performed with the help of the fa
that x solves the differential equation~4.3!. In view of this
equation,

x2d/252
4

d

d

dx
~x12d/2x9!, ~4.36!

xx8

xd/211
52

2

d

d

dx
~x2d/2x82!, ~4.37!

xc1

xd/211
5

4

d

d

dx
@~xx822xx82xxx9!x2d/2#, ~4.38!

resulting in

C5 1
2 x~L !, ~4.39!

H~x!5PPoisson

4

d
x~x!x9~x!, ~4.40!

G~x!5
1

AL
@3x~x!x9~x!2x82~x!#S x~L !

x~x! D
d/2

1
3x~L !

2L
.

~4.41!

Our final expression for the shot-noise power is

P5PPoisson

32

d

1

x2~L !
E

0

L

dxG 2~x!x~x!
d2

dx2
x~x!.

~4.42!

The scaling properties ofx imply that this result does no
depend on the lengthL. For d51, 2, and 3 it evaluates to

FIG. 3. Shot-noise powerP for an energy-independent scatte
ing rate as a function ofd. The exact result~solid curve! is com-
pared with the approximate result~1.2! ~dashed curve!. Both curves
approach 4/5d for d˜`. The data points are the results of nume
cal simulations~Ref. 12!.
o-
t-

P/PPoisson5H 0.6857 for d51

0.4440 for d52

0.3097 for d53.

~4.43!

In Fig. 3 we plot Eq.~4.42! as a function of the dimensiond
and compare it with the approximate formula~1.2!, obtained
in Ref. 13 by neglecting the diffusion term in Eq.~4.1!. The
exact result~4.42! is smaller than the approximate resu
~1.2! by about 10%, 15%, and 25% ford53, 2, and 1,
respectively. Ford˜`, the drift approximation that leads t
Eq. ~1.2! becomes strictly justified, andP/PPoisson ap-
proaches 4/5d. The data points in Fig. 3 are the result of th
numerical simulation.12 The agreement with the theory pre
sented here is quite satisfactory, although our findings do
support the conclusion of Ref. 12 thatP5 1

3 PPoissonin three
dimensions.

D. Capacitance fluctuations

The fluctuationsdI (t) in the currentI (t) are due in part to
fluctuations in the total chargeQ(t)5*dx r(x,t) in the
semiconductor. The contribution from this source to the c
rent fluctuations isdI Q5(dQ/Q̄) Ī . Fluctuations in the car-
rier velocities account for the remaining current fluctuatio
dI V5dI 2dI Q . Since the fluctuations inQ could be mea-
sured capacitatively, it is of interest to compute their mag
tude separately. Because we have assumed that there
charge present in equilibrium in the semiconductor,Q(t)
5C(t)V is directly proportional to the applied voltageV.
The proportionality constantC(t) is the fluctuating capaci-
tance of the semiconductor.~The voltage does not fluctuate!

With the Poisson equation~2.14! and the boundary con
dition ~3.1! we have

C~ t !5
kA

V
E~L,t !. ~4.44!

The correlator of the capacitance fluctuations,

PC52E
2`

`

dtdC~0!dC~ t !, ~4.45!

is related to the correlator ofdI Q ,

PQ52E
2`

`

dtdI Q~0!dI Q~ t !, ~4.46!

by PQ5(m Ī V2/2kAL)PC . We also define the correlators

PV52E
2`

`

dtdI V~0!dI V~ t !, ~4.47!

PQV54E
2`

`

dtdI Q~0!dI V~ t !, ~4.48!

such thatP5PQ1PV1PQV .
In view of Eqs.~3.3!, ~4.18! and the boundary condition

~3.5!, ~3.7!, one obtainsĒ(L) anddE(L,t) as a function of
dI anddJ, and hence
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dI N~ t !5
1

2 S dI ~ t !2E
0

L dx

L
dJ~x,t ! D , ~4.49!

dI V~ t !5
1

2 S dI ~ t !1E
0

L dx

L
dJ~x,t ! D . ~4.50!

With the help of Eq.~4.27! we find

PC5 1
4 ~P1PJ22PIJ!, ~4.51!

PV5 1
4 ~P1PJ12PIJ!, ~4.52!

PCV5 1
2 ~P2PJ!, ~4.53!

PIJ5
16

dx~L !
PPoissonE

0

L dx

L
G~x!x~x!

d2

dx2
x~x!, ~4.54!

PJ5
8

d
PPoissonE

0

L dx

L2
x~x!

d2

dx2
x~x!. ~4.55!

The integrals can be evaluated by using thatx(x) solves Eq.
~4.3!, with the result

PIJ54
48L23/2x~L !2d236

~d14!~125d!
PPoisson, ~4.56!

PJ54
2L23/2x~L !21

d14
PPoisson. ~4.57!

In Fig. 4 the correlator of the capacitance fluctuations
plotted as a function ofd. For d53 we find PC
50.0284ekAL/mV2. The corresponding contributionPQ
50.0071PPoisson is relatively small, being less than 3% o
the contribution from the velocity fluctuationsPV
50.3076PPoisson. ~Incidentally, we find that charge and ve
locity fluctuations are anticorrelated, PQV5
20.0049PPoisson.! Our calculation thus confirms the numer
cal finding of Ref. 12, that the charge fluctuations a
strongly suppressed as a result of Coulomb repulsion. H
ever, we do not find the exact cancellation ofPQ and PQV
surmised in that paper.

E. Effects of a finite voltage and carrier density

For comparison with realistic systems and with compu
simulations, one has to account for a finite voltageV and a

FIG. 4. ContributionPQ from charge fluctuations to the sho
noise powerP. The correlatorPC of the capacitance fluctuations
related toPQ by PC5(4ekAL/mV2)PQ /PPoisson.
s

-

r

finite carrier densityrc in the metal contacts. The densityrc
is the charge density at the semiconducting side of the in
face with the metal contact. It depends on temperature
cording to26 rc.2e(mkT/2p\2)3/2exp(2W/kT), whereW is
the work function of the interface. The relevant paramet
are the ratiosLc /L and Ls /L, with Lc5(kkT/erc)

1/2 the
Debye screening length in the contact andLs5(kV/rc)

1/2

the screening length in the semiconductor. The theory
space-charge limited conduction applies to the regimeL
@Ls@Lc ~or kT!eV and rc@kV/L2—the combination
kV/L2 characterizing the mean charge density in the se
conductor!. In this section we will show that, within this
regime, the effects of a finite voltage and carrier density
restricted to a narrow boundary layer near the current sou
We will examine the deviations from the boundary conditi
~3.1! and compare with the numerical simulations.12

To investigate the accuracy of the boundary condit
~3.1!, we start from the more fundamental condition of the
mal equilibrium,

r̄~x,«!5
Arcn~«!exp~2«/kT!

E
0

`

d«8n~«8!exp~2«8/kT!

at x50.

~4.58!

We keep the absorbing boundary conditionr̄(L,«)50 at the
current drain, since thermally excited carriers injected fro
the contact atx5L make only a small contribution to th
current wheneV@kT. To simplify the problem, we assum
that all carriers at the current source have the same kin
energy 1

2 dkT, in essence replacing the Boltzmann fact
exp(2«/kT) in Eq. ~4.58! by a delta function at«5(d/2)kT.
We restrict ourselves to the physically relevant cased53
and substitute«5 3

2 kT2ef̄(x) in the argument ofD(«) in
Eq. ~2.16!. Repeating the steps that resulted in Eq.~4.1!, we
arrive at the differential equation

S df̄

dx
D 2

2S 4

3
f̄22

kT

e Dd2f̄

dx2
5

2 Ī

mkA
~x2j!. ~4.59!

In comparison to Eq.~4.1!, an integration constantj appears
now on the right-hand side. This constant and the currenĪ
have to be determined from the four boundary conditio
f̄(0)50, kf̄9(0)52rc , f̄(L)52V, andf̄9(L)50.

We have integrated Eq.~4.59! numerically. In Fig. 5 we
show the electric field ford53 and parameters as in th
simulations of Ref. 12, corresponding toL/Lc548.9 and
(Ls /Lc)

25eV/kT ranging between 40 and 300. We find e
cellent agreement, the better so the largereV/kT is, without
any adjustable parameter.

The boundary condition~3.1! of zero electric field at the
current source assumes that the surface charge in the cu
drain is fully screened by the space charge in the semic
ductor. With increasingeV/kT for fixed L/Lc one observes
in Fig. 5 a transition from overscreening (Ē50 at a point
inside the semiconductor! to underscreening (Ē extrapolates
to zero at a point inside the metal contact!. We can approxi-
mateĒ(x)52f̄08(x2j), wheref̄0 solves Eq.~4.1! with the
boundary conditions of space-charge limited conducti
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This is an excellent approximation foreV/kT5200 (j/L
50.02) andeV/kT5300 (j/L520.004), practically indis-
tinguishable from the curves in Fig. 5~top panel!.

To demonstrate analytically that space-charge limi
conduction is characterized by the conditionsL@Ls@Lc ,
we will now compute the width of the boundary layer a
show that it becomes!L in this regime. We need to distin
guish between two length scalesj andj8 to fully character-
ize the boundary layer. The lengthj determines the shift in
the asymptotic solution

f̄asym~x!5f̄0~x2j!13kT/2e, ~4.60!

while the sizej8 characterizes the range 0<x&j8 where the
exact solutionf̄(x) deviates substantially fromf̄asym(x).

The values ofj andj8 are found by comparing Eq.~4.60!
with the Taylor series

f̄~x!52E0x2
rc

k

x2

2
1f3

x3

6
1O~x4!. ~4.61!

The coefficients in the Taylor series are determined from
~4.59!,

E0
222

kT

e

rc

k
52j

2 Ī

mkA
, ~4.62!

2

3
E0

rc

k
12

kT

e
f35

2 Ī

mkA
, ~4.63!

where 2Ī /mkA'V2/L3 up to a coefficient of order unity@cf.
Eq. ~4.5!#.

We match the two functions~4.60! and ~4.61! at x5j8,
demanding that potential and electric field are continuou
x5j8. These two conditions determinej andj8. Within the
regime L@Ls@Lc we find two subregimes, depending o

FIG. 5. Electric-field profiles foreV/kT540, 60, 80, 100, 200,
and 300, at parameter valuesd53, T5300 K, rc /e51024 m23,
L5200 nm, andk511.7k0 ~with k0 the dielectric constant o
vacuum!. The solid curves follow from Eq.~4.59!. The data points
are the result of numerical simulations~Ref. 28!. There are no fit-
ting parameters in this comparison.
d

q.

at

the relative magnitude ofLc /L and (Ls /L)4. Overscreening
occurs whenLc /L@(Ls /L)4. Then E0'2(2kTrc /ek)1/2,
f3'(2e/9kT)1/2(rc /k)3/2, and j'j85O(Lc). The differ-
ence j82j5O(Ls

4/L3)!j. At the matching point, f̄

5O(kT/e), Ē5O(V2k/rcL
3), and r̄5O(rc). Under-

screening occurs when Lc /L!(Ls /L)4. Then E0

5O(V2k/rL3)!V/L, f35O(rc
3L3/k3V2), j5

2O(Ls
4/L3), and j85O(Ls

4/L3). At the matching point,f̄

5O(V4k3/rc
3L6), Ē5O(E0), and r̄5O(rc). In between

these two subregimes, whenLs
4/L3Lc is of order unity,j8

vanishes andf̄asym(x) becomes an exact solution of Eq
~4.59!, which also fulfills all boundary conditions. In th
same range,j changes sign from positive to negative value

We conclude that the width of the boundary layer is
order max(Lc ,Ls

4/L3). At the matching point,Ē!V/L. The
boundary condition~3.1!, used to calculate the shot-nois
power P, ignores the boundary layer. This is justified b
causeP is a bulk property. We estimate the contribution
P/PPoisson coming from the boundary layer to be of ord
max„Lc /L,(Ls /L)4

… ~possibly to some positive power!,
hence to be!1 in the regime of space-charge limited co
duction.

V. ENERGY-DEPENDENT SCATTERING TIME

We consider now an energy-dependent scattering ti
We restrict ourselves tod53 and assume a power-law de
pendencet(«)5t0«a. The energy-dependence of the ra
1/t is governed by the product of the scattering cross sec
and the density of states. For short-range impurity scatte
the cross section is energy independent, hencea521/2.
This applies to uncharged impurities in semiconductors.
scattering by a Coulomb potential, the cross section is}«22,
hencea53/2. This applies to scattering by charged impu
ties in semiconductors.29 The casea50 considered so far
lies between these two extremes.30 We have found an exac
analytical solution for the case of short-range scattering
be presented below. The case of long-range impurity sca
ing remains an open problem, as discussed at the end of
section.

For short-range impurity scattering, the technical steps
similar to those of Sec. IV. We first determine the me
potential f̄(x). The scaling properties of Eq.~3.3! are ex-
ploited by introducing the rescaled potentialx(x), with

f̄~x!52S 3e1/2L3 Ī

2m0kA
D 2/3

x~x/L !. ~5.1!

In this way we eliminate the dependence on the currentĪ and
the length of the conductorL. The rescaled potential fulfills
the differential equation

1

2
x21/2

dx

dx

d2x

dx2
2x1/2

d3x

dx3
51, ~5.2!

with boundary conditionsx(0)50, x8(0)50, and x9(1)
50.

We substitute
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x~x!5(
l 50

`

glx
h l 12 ~5.3!

into Eq. ~5.2!. Power matching gives in the first orderg0
5222/3. The second order leavesg1 as a free coefficient, bu
fixes the powerh5(A1321)/2. The coefficientsgl for l
>2 are then determined recursively as a function ofg1.
From the conditionx9(1)50, we obtaing1520.1808. The
resulting series expansion converges rapidly, with the co
ficient g12 already of order 10212.

The averaged potential and its first and second deriva
are plotted in Fig. 6. The electric field}x8(x) increases now
linearly at the current source, hence the charge den
}x9(x) remains finite there. The current-voltage charact
istic is

Ī 5
2m0kA

3e1/2L3 S V

x~1! D
3/2

, ~5.4!

with x(1)50.4559. This is a slower increase ofI with V than
the quadratic increase~4.5! in systems with energy
independent scattering.

The rescaled fluctuationsc(x,t), introduced by

df~x,t !52S 3e1/2L3 Ī

2m0kA
D 2/3

c~x/L,t !, ~5.5!

fulfill the linear differential equation

L@c#52x1/2
]3c

]x3
1

1

2

x8

x1/2

]2c

]x2
1

1

2

x9

x1/2

]c

]x

2
1

4 S x8x9

x3/2
12

x-

x1/2D c

5
dI ~ t !2dJ~x,t !

Ī
. ~5.6!

The solution of the inhomogeneous equation is found w
the help of the three independent solutions of the homo
neous equationL@c#50,

c1~x!5
d

dx
x~x!, ~5.7!

FIG. 6. Profile of the mean electrical potentialf̄ @in units of

L2(3e1/2Ī /2m0kA)2/3#, the electric field Ē @in units of

L(3e1/2Ī /2m0kA)2/3#, and the charge densityr̄ @in units of

(3e1/2Ī k1/2/2m0A)2/3# for a three-dimensional conductor with shor
range impurity scattering, computed from Eq.~5.2!.
f-

e

ity
r-

h
e-

c2~x!5x~x!2
x

2

d

dx
x~x!, ~5.8!

c3~x!5c1~x!E
x

1

dx8
x1/2~x8!c2~x8!

W 2~x8!

2c2~x!E
x

1

dx8
x1/2~x8!c1~x8!

W 2~x8!
, ~5.9!

where we have defined

W~x!5c1~x!c28~x!2c18~x!c2~x!. ~5.10!

The special solution which fulfillsc(0,t)5c8(0,t)5c(1,t)
50 is

c~x,t !5E
0

1

dx8
x1/2~x8!

W 2~x8!
FQ~x2x8!c1~x!c2~x8!

1Q~x82x!c1~x8!c2~x!2
c1~1!

c2~1!
c2~x!c2~x8!G

3E
0

x8
dx9

dI ~ t !2dJ~x9,t !

Ī

W~x9!

x~x9!
. ~5.11!

The conditionc9(1,t)50 relates the fluctuating curren
dI to the Langevin currentdJ. The resulting expression i
again of the form~4.27!, with now

C5E
0

1

dxG~x!, ~5.12!

G~x!5
W~x!

x~x! S 21
x82~1!

c2~1!
E

x

1

dx8
x1/2~x8!c2~x8!

W 2~x8!
D .

~5.13!

The shot-noise power is given by Eq.~4.30! with H(x) as
defined in Eq.~4.31! and the mean occupation numberF̄ still
given by Eq.~4.34!. Instead of Eq.~4.35! we now have

H~x!52e Īx~x!E
x

1

dx8
1

x~x8!

5PPoissonx
1/2~x!x9~x!, ~5.14!

where we integrated with the help of Eq.~5.2! and used
x9(1)50.

Collecting results, we obtain the shot-noise suppress
factor

P/PPoisson50.3777, ~5.15!

which is about 20% larger than the result obtained in Sec
for an energy-independent scattering time in three dim
sions. Equation ~5.15! can be compared with the
a-dependent result in the drift approximation

P/PPoisson5
6~a21!~a12!~16a2136a2157!

5~2a25!~8a217!~1318a!
.

~5.16!
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For a521/2 the drift approximation gives P
50.4071PPoisson, about 10% larger than the exact res
~5.15!.

We now turn briefly to the case of long-range impur
scattering. The kinetic equation~3.3!, on which our analysis
is based, predicts a logarithmically diverging electric fie
}2 ln1/3x at the current source fora51. In the rangea
.1, which includes the casea53/2 of scattering by charge
impurities, we could not determine the low-x behavior.@A
behaviorf}Cxb is ruled out because Eq.~3.3! cannot be
satisfied with a real coefficientC.# In the drift approximation,
the shot-noise power~5.16! vanishes asa˜1. Presumably, a
nonzero answer forP would follow for a>1 if the nonzero
thermal energy and finite charge density at the current so
is accounted for. This remains an open problem.

VI. DISCUSSION

We have computed the shot-noise power in a nondeg
erate diffusive semiconductor, in the regime of space-cha
limited conduction, for two types of elastic impurity scatte
ing. In three-dimensional systems the shot-noise suppres
factor P/PPoisson is close to 1/3 both for the case of a
energy-independent scattering rate (P/PPoisson50.3097) and
for the case of short-range scattering by uncharged impur
(P/PPoisson50.3777).~The latter case also applies to qua
elastic scattering by acoustic phonons, discussed below.! Our
results are in good agreement with the numerical simulati
for energy-independent scattering by Gonza´lez et al.12 The
results in the drift approximation13 are about 10% larger. We
found that capacitance fluctuations are strongly suppre
by the long-range Coulomb interaction. We discussed
effects of a nonzero thermal excitation energy and a fin
carrier density in the current source and determined the
gime L@Ls@Lc for space-charge limited conduction (Ls
andLc being the screening lengths in the semiconductor
ies
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current source, respectively!. Two subregimes of overscreen
ing and underscreening were identified, again in quantita
agreement with the numerical simulations.12

Let us discuss the conditions for experimental observa
ity. We have neglected inelastic-scattering events. Th
drive the gas of charge carriers towards local thermal eq
librium and result in a suppression of the shot noise down
thermal noise,P58kTd Ī/dV.13 Inelastic scattering by opti-
cal phonons can be neglected for voltagesV,kTD /e, with
TD the Debye temperature. Scattering by acoustic phonon
quasielastic as long as the sound velocityvs is much smaller
than the typical electron velocityv'(eV/m)1/2. For large
enough temperaturesT@mvvs /k, the elastic-scattering time
t}e21/2 depends on energy in the same way as for sh
range impurity scattering.31

All requirements appear to be realistic for a semicondu
ing sample with a sufficiently low carrier density: The ele
tron gas is degenerate even at quite low temperatures~a few
Kelvin!. Short-range electron-electron scattering is rare d
to the diluteness of the carriers. Scattering by phonon
predominantly elastic. If the dopant~charged impurities! is
sufficiently dilute, the impurity scattering is predominant
short ranged. Under these conditions we would expect
shot-noise power to be about one-third of the Poisson va
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