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Kinetic theory of shot noise in nondegenerate diffusive conductors
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We investigate current fluctuations in nondegenerate semiconductors, on length scales intermediate between
the elastic and inelastic mean free paths. We present an exact solution of the nonlinear kinetic equations in the
regime of space-charge limited conduction, without resorting to the drift approximation of previous work. By
including the effects of a finite voltage and carrier density in the contact region, a quantitative agreement is
obtained with Monte Carlo simulations by Gdteaet al, for a model of an energy-independent elastic
scattering rate. The shot-noise poviers suppressed below the Poisson vaRigisso 2el (at mean current
I_) by the Coulomb repulsion of the carriers. The exact suppression factor is close to 1/3 in a three-dimensional
system, in agreement with the simulations and with the drift approximation. Including an energy dependence
of the scattering rate has a small effect on the suppression factor for the case of short-range scattering by
uncharged impurities or quasielastic scattering by acoustic phonons. Long-range scattering by charged impu-
rities remains an open probleff£0163-18289)02931-9

[. INTRODUCTION the degenerate case. The origin of the suppression is quite
different, however, being due to correlations induced by
The kinetic theory of nonequilibrium fluctuations in an long-range Coulomb repulsion—rather than by the Pauli
electron gas was pioneered by Kadomtsev in 188&f. 1)  principle. The one-third suppression of shot noise in the
and fully developed ten years lafet.The theory has been computer simulations required a large voltage and short
comprehensively reviewed by Kogérin recent years there screening length, but was found to be otherwise independent
has been a revival of interest in this field because of thgyf material parameters.
discovery of fundamental effects_ on the mesoscopic Ie_ngth Subsequent analytical work by one of the authbe-
scale.(See Ref. 5 for a recent reviewOne of these effects is jained this universality as a feature of the regime of space-
the sub-Poissonian shot noise in degenerate electron gases Gf,ge Jimited conduction. The kinetic equations in this re-
length scales intermediate between the mean free Ipfath gime are highly nonlinear and could only be solved in the

?laStl'C |{npur|tr)]/ scattennglj a';'d thellneilastlc mgaf_‘ fre(_e”t]q@th .approximation that the diffusion term is neglected compared
or electron-phonon or electron-electron scattering. The Uniz, wq qrit term. This is a questionable approximation: The
versal one-third suppression of the shot-noise power pre-

dicted theoreticall/” has been observed in experiments Onratio .Of the two terms is 4, with d the dimensionality of the
semiconductor or metal wires of micrometer lengjth: density of states. The result of Ref. 13,
The electron density in these experiments is sufficiently
high that the electron gas is degenerate. The reduction of the 5
shot-noise power P/Po.. :1_2 3d°+22d+64 1.2
Poilsson 5 (d+2)(3d+4)(3d+8)’ ‘

P=2fm dt’ 81 (1) dl (t+t') (1.0

becomes exact in the largetimit, when P/Ppgissor4/5d,
[with 8I(t) being the fluctuations of the current around thebut has an error of unknown magnitude for the physically
mean currentl] below the Poisson valuPpssoi=2€! is  relevant valued=3.
then the result of correlations induced by the Pauli exclusion The main purpose of the present paper is to report the
principle. When the electron density is reduced, the Paulexact solution of the kinetic equations in the space-charge
principle becomes ineffective. One enters then the regime dfmited transport regime. We find that inclusion of the diffu-
a nondegenerate electron gas, studied recently in Montgion term has a pronounced effect on the spatial dependence
Carlo simulations by Goniee et al? In a model of energy-  of the electric field, although the ultimate effect on the noise
independent three-dimensional elastic impurity scatteringpower turns out to be relatively small: The exact suppression
these authors found the very same r&idpisso= 1/3 as in  factor differs from Eq(1.2) by about 10% fod=3. We find
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0.6857 ford=1 _The stochastic Langevin curredd vanishes on average,
P/Ppocey= | 0.4440 for d=2 (1.3 ©I=0,and has correlator
0.3097 ford=3, 8J(r,p,t)d3(r’,p’,t')
close to the values reported by Golezaet al. (although
their surmise thaP/PpgssoniS a simple fraction M for d =8(r—r")o(t—t")d(e—¢')—

v(e)

=2, 3 is not borne out by this exact calculatioBy includ-
ing the effects of a finite temperature and screening length,
we obtain excellent agreement with the electric-field profiles X
in the simulationgwhich could not be achieved in the drift
approximation of Ref. 18and determine the conditions for
space-charge limited conduction. We also go beyond previ-
ous work by calculating to what extent the shot-noise sup- _
pression factor varies with the energy dependence of thgetermined by the mean occupation numbeiWe abbrevi-
scattering rate(This breakdown of universality was antici- atedf’=f(r,p’,t) and analogously fof”.] The density of
pated in Refs. 13 and 14. states ind dimensions isv(g) =mQ(2me)¥?~1, where we
The paper is organized as follows. The kinetic theory isset Planck’s constamt=1.

introduced in Sec. Il, where we summarize the basic equa- A nondegenerate electron gas is characterizeﬁ@y. In
tions and emphasize the differences with the degenerate casgynirast to the degenerate case, the Pauli exclusion principle
In Sec. |1l we formulate the problem for the regime of space-g then of no effect. One consequence is that we may omit
charge limited conduction. In Sec. IV we solve the kinetic e terms quadratic iff in the correlator(2.3. A second

equations for the case of an energy-independent scatterir% ) - i
rate and compare with the Monte Carlo simulatibh§Ve hsequence is that deviations from equilibrium are no
study separately the capacitance fluctuations. The effect (%anger restricted to a narrow energy range around the Fermi

deviations from the conditions of space-charge limited con—evel' tl).ut_exttend over fa(kj)road &an?esof_otr:le ?annot':; therte- i
duction is also investigated. Energy dependence in the scaftgre’ eiminatée as an independent variable from the outset,

tering rate is considered in Sec. V. We conclude in Sec. vpsin the degenerate case.
with a discussion of the experimental observability in con-

5(ﬁ—ﬁ')f dn"W,(n-n")(f+f"—2f ")

: 2.3

—W,(n-n")(f+f —2f )

nection with electron-phonon scattering. B. Diffusion approximation
We assume that the elastic mean free path is short com-
Il. KINETIC THEORY pared to the dimensions of the conductor, so that we can

, . make the diffusion approximation. This consists in keeping
A. Boltzmann-Langevin equation only the two leading terms,
Our starting point is the same kinetic thebryused to

study shot noise in degenerate conductdr® ?*We sum- f(r,ny2me,t)=Fr,e,t) +n-f(r,e,t), (2.4
marize the basic equations, emphasizing the differences in .

the nondegenera’[e case. The deng("y,p,t) of carriers at of a muItipoIe expansion in the momentum directionWe
positionr and momentunp=mv at timet (wherem is the ~ substitute Eq(2.4) into the Boltzmann-Langevin equation
effective mass and is the velocity satisfies the Boltzmann- (2.1) and integrate oven to obtain the continuity equation,

LangeVin equatiO
P e,t —j g,t ek t _07'. e,t —O
(7 (?t (r, ’ ) ﬁr](r’ ! ) (r' )9 J(r! ] ) )

J

E+v-§+eE(r,t)% f(r,p,t)=8+68J. (2.2 2.5
Here E(r,t) is the electric fieldwe take the charge of the for the energy-resolved charge and current densities
carriers positivg S(r,p,t) is the collision integral, and

8J(r,p,t) is a fluctuating sourcéor “Langevin current”. p(r.e.t)=ev(e) F(r.e.b), 2.6
The collision integral describes the average effect of elastic 1
Impurity scattering, j(re,t)= aevv(s)f(l’,s,t), 2.7
S(r,pn,t)= J d_wwe(ﬁ,ﬁ’)[f(r,pﬁ’,t)_f(r'pﬁ,t)]_ with v=2&/m. In the zero-frequency limit we may omit
Q the time derivative in Eq(2.5).
(2.2 Multiplication by n followed by integration gives a sec-

~ H .22
The integral over the direction=p/p of the momentum ©nd relation betweep andj:

extends over the surface of the unit spherel idimensions, 3
with surface areaQ=27%4T(3d). The scattering rate j(re,)==D(e)=-p(r,e,0) = o(2)E(r,0)
W,(n-n') depends on the kinetic energy=p?/2m and on

the scattering anglé- n’. The effective mass is assumed

J
to be energy independent. Xﬁf(r’e’tH oJ(r,e.1), 28
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FIG. 1. Semiconducting slalgrey) between two metal contacts
(black) at x=0 andx=L. The (d—1)-dimensional cross-sectional
area isA. The current flows from left to right in response to a
voltageV applied between the contacts.

a combination of Fick’'s law and Ohm’s law with a fluctuat-
ing current source. The conductivity(e) =e?v(e)D(e) is

the product of the density of states and the diffusion constant

D(&)=v2r/d=(2e/md)7(e). The scattering rate is given
by

1 dn’ . . ..
mzfvws(n-n’)(l—n-n’). (2.9
The energy-resolved Langevin current
5J(r,s,t):er(s)w(s)f (:l—nﬁ&](r,ﬁ\/ﬂ,t)
(2.10

is correlated as

8Ji(r,e,t) 8y (r' e’ t")

=20(e)F(r,e,t) 8 d(r—r")o(t—t")s(e—g'),
(2.11)

where we have omitted terms quadraticfn
These kinetic equations should be solved together wit
the Poisson equation

Jd
k—E(

P (2.12

r,t)=p(r,t) = peg,
with p(r,t)=fde p(r,e,t) the integrated charge density,
the dielectric constant, angl,, the mean charge density in
equilibrium. The Langevin curreri] induces fluctuations in
p and hence irE. The need to take the fluctuations in the
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=A"1fdr, E,(r,t). The vectorr, of transverse coordinates
hasd—1 dimensions. The physically relevant caselis3,
but in computer simulations one can consider other values of
d. For example, in Ref. 12 the case=2 was also studied,
corresponding to a hypothetical “flatland® To compare
with the simulations, we will also consider arbitragty

For anyd the fluctuating Ohm-Fick law2.8) takes the
one-dimensional form

J
|(t)=—§—xj erJ'dsD(s)p(r,g,t)

d
+E(X,t)f drlJ dsf(r,s,t)ga(s)-i- 8J(x,1),

(2.13

where we used that the averages/ofand E depend orx
only and neglected terms quadratic in the fluctuations. The
Poisson equatiof2.12 becomes

d
KA E(XUD=p(X,1) = Apeq, (2.14

and the correlato(2.11) becomes

8J(X,1)8J(x',t")

:2A5(t—t')5(x—x’)f dea(e)F(x,e). (2.15

Our problem is to compute from EqR.13—(2.15 the shot-
noise power(1.1).

D. Energy-independent scattering time

The Ohm-Fick law(2.13 simplifies in the model of an
ignergy—independent scattering timée)=r. Then the de-
rivative of the conductivitydo/de =euv(e) is proportional
to the density of states and contains the energy-independent
mobility u=er/m. Equation(2.13 becomes

Jd
I(t):_ﬁf erJ'ds D(g)p(r,e,t)

+w p(X,DE(X,t) + 8I(X,1). (2.1

The drift term now has the same forapE as for inelastic

electric field into account self-consistently is a severe comscattering?® This simple form does not hold for the more

plication of the problem.

C. Slab geometry

We consider the slab geometry of Fig. 1, consisting of a

semiconductor aligned along thxeaxis with uniform cross-
sectional areaA. A nonfluctuating potential differenc¥ is
maintained between the metal contactsxatO0 andx=L,
with the current source at=0. The contacts are in equilib-
rium at temperaturd. It is convenient to integrate over en-
ergy and the coordinatess, perpendicular to thex axis.
We define the linear charge densip(x,t)=fdr, p(r,t)
and the currentsl(t)=fdr, f[dej,(r,e,t) and 8J(x,t)
=[dr, fde5J,(r,e,t). The current is x independent in the
zero-frequency limit because of the continuity equati®.).
We also define the electric-field profileE(x,t)

general case of energy-dependent elastic scattering.

Ill. SPACE-CHARGE LIMITED CONDUCTION

For a large voltage droy between the two metal contacts
and a high carrier density; in the contacts, the charge in-
jected into the semiconductor is much higher than the equi-
librium chargepe,, Which can then be neglected. For suffi-
ciently highV andp., the system enters the regime of space-
charge limited conductiof, defined by the boundary
condition

E(x,t)=0 at x=0. (3.1

Equation(3.1) states that the space chaiQe- fgp(x)dx in
the semiconductor is precisely balanced by the surface
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charge at the current drain. The accuracy of this boundary

condition at finiteV andp. is examined in Sec. IV E. At the
drain we have the absorbing boundary condition

p(x,t)=0 at x=L. (3.2

This is the diffusion approximation to the condition of zero
flux incident from the current drain. Here we neglect the
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IV. ENERGY-INDEPENDENT SCATTERING TIME
A. Average profiles

For =0 the averaged equatiai3.3) can be integrated
once to obtain the second-order differential equation

=

4_d’¢ 21

- a(ﬁﬁz mx (41)

small thermal contribution to the noise from carriers that are

injected and collected at the drain at kinetic energidsT,
as well as the negligible fraction exp(—eVIKT) of carriers

injected from the drain that can overcome the potential bar

rier.

To determine the electric field inside the semiconductor

we proceed as follows. The potential gaire¢(x,t) (with
E=—0d¢/dx) dominates over the initial thermal excitation
energy of orderkT (with Boltzmann’s constank) almost
throughout the whole semiconductor; only close to the cu
rent sourcein a thin boundary layeithis is not the case. We
can therefore approximate the kinetic energy-—edg¢
and introduce this intdD(e) and do/de. We assume a
power-law energy dependence of the scattering time
=108 . Then D(g)=(279/md)e* 1~ —(2u,/d)
(—e)*¢*"! and do/de=(2a+d)(ro/md)e®c®v(e)~
—(2a+d)(ue/ d)(—e)* 1p*v(e), where we have defined
o= €eTy/m. Substituting into Eq(2.13 and using the Pois-
son equation- kAd? ¢/ Ix>= p, we find the third-order, non-
linear, inhomogeneous differential equation

AR A )
(2a+d)¢ 5 W) —45((# lﬁ)
2 [1(t)=683(x,1)] (3.3
=——[I(t)— 8I(x, :
(—€)pmokA

for the potential profilep(x,t).
Since the potential differencé between source and drain
does not fluctuate, we have the two boundary conditions:

d(x,t)=0 at x=0, (3.9

d(x,t)=—V at x=L. (3.5
Equations(3.1) and (3.2 imply two additional boundary

conditions:

a—iq&(x,t)zo at x=0, (3.6
pr:
ﬁgﬁ(x,t)zo at x=L. (3.7

We will now solve this boundary value problem fer

=$+ ¢, first for the mean and then for the fluctuations, in

both cases neglecting terms quadraticdih. The casea

for the mean potentialp(x). In this case of an energy-
independent scattering timg(e)=7, we may identify uq
with the mobility x=es/m introduced in Sec. Il D. No inte-
gration constant appears in E@l.1), since only then the
boundary condition$3.4) and (3.6) at x=0 can be fulfilled
simultaneously. In Ref. 13 the second term on the left-hand
side of Eq.(4.1) (the diffusion term was neglected relative
to the first term(the drift term. This approximation is rigor-
r'ously justified only in the formal limitd—~. It has the
drawback of reducing the order of the equation by one, so
that no longer can all boundary conditions be fulfilled. Al-
though the solution in Ref. 13 violates the absorbing bound-
ary condition(3.7), the final result for the shot-noise power
turns out to be close to the exact result obtained here.
Before solving this nonlinear differential equation ex-
actly, we discuss two scaling properties that help us along

the way. Note first that the currehtcan be scaled away by
the substitution

1/2

_ 21
b00=—|&] X 4.2
Second, each solutiop(x) of
dy\? 4 d?
(& e “3

[the rescaled Eq4.1)] generates a one-parameter family of
solutions\ ¥y (x/\). Thus, if we find a solution that fulfills
the three boundary conditiong(0)=0, x'(0)=0, x"(1)
=0 (primes denoting differentiation with respectxp, then
the potential

1/2
X(X/L)

21L3

MKA

(4.9

$(x>=—(

solves Eq.(4.1) with boundary condition$3.4), (3.6), and
(3.7). The remaining boundary conditiof8.5 determines
the current-voltage characteristic

)2

|

The quadratic dependenceEbn V is the Mott-Gurney law
of space-charge limited conductiéh.
We now construct a solutiog(x). One obvious solution

\%

x(1)

_ MKA
2L3

(V) (4.5

=0 of an energy-independent scattering time is considered

first, in Sec. IV. The more complicated case of nonzeris
treated in Sec. V.

2
a0=§

4

3d

is xo(X) =agx®?, with
—-1/2
(1— ) . (4.6)



PRB 60

This solution satisfies the boundary conditionsxatO, but
Xo(X)#0 for any finitex. Close to the singular point=0
any solution will approachyy(x) provided thatd>4/3. Let
us discuss first this range af, containing the physically
relevant dimensiomnl=3.

We substitute into Eq4.3) the ansatz

(4.7

X(X):E axP 32,
=0

consisting of xo(x) times a power series i®?, with 8 a

positive power to be determined. This ansatz proves fruitful ey

since both terms on the left-hand side of E4.3) give the
same powers of, starting with ordex! in coincidence with
the right-hand side. Power matching gives E46) for a,,

and forl=1 it gives the conditions

|
> bmand-m=0, (4.9
m=0

b —————+(3——)mﬁ—(lﬂL—)mzﬁermIB2
mT4 d d d '
4.9

The relation withl =1 is special: It determines the powgr

3\ 3 9
B+ B 2= zd|+5 - gd=0, (4.10

but leaves the coefficiemt; as a free parametéio be deter-
mined by demanding that”"(1)=0]. The positive solution
of Eq.(4.10 is

—3d 1+ 1\/9d2+24d 32
F=gi 1'g B

We find 8= (/13— 1)/4 ford=2 andB=3/2 for d=3. For
=2 we solve fora, to obtain the recursion relation

(4.11

-1
2 bImamalfm
m=1

(4.12

& (by +byo)ag
Interestingly enough, the power series terminates dor
=12/5, and the solution for this dimension jgx)=x%?
—£x52, For arbitrary dimensiomi>4/3, the coefficients,
fall off with I, the more rapidly so the largeris. We find
numerically that the solution withy”(1)=0 has a;
=0.3261 ford=2 anda;=0.1166 ford=3.
For d<4/3 we substitute into Eq4.3) the ansatz

)

Xwi;qﬂmﬂﬁ (4.13

with y=(4—-3d)/(4—d). Now the coefficientc, is free.
Power matching gives, further,
d

RV PRI

(4.19

and the recursion relation
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FIG. 2. Profile of the mean electrical potenti@l[in units of
(21L3 ukA)¥?), the electric fieldE [in units of (21L/uxA)Y?],
and the charge density [in units of (2 x/uLA)¥?], following
from Eq. (4.1 for different values ofl. The drift approximation of
Ref. 13 corresponds to the cade  in this plot.

-1

2 dImCmclfm
¢ (dy+dpg)co @
3—y 4
dim={ ym+ —— [ y(l—m)—Zym|,  (4.16

for coefficients with1=2. For d=1 the solution with
Xx"(1)=0 hasc,=1.3628.

In Fig. 2 the profiles of the potentia;ocx, the electric

field Exy’, and the charge densifyx y" are plotted ford
=1, 2, and 3. We also show the result fde=c, corre-
sponding to the drift approximation of Ref. 13. The coeffi-
cient y(1) appearing in the current-voltage characteristic
(4.5 can be read off from this plot. We fingl(1)=8/9 for
d=1, x(1)=0.8180 ford=2, andy(1)=0.7796 ford=3.
The limiting value ford=o is y(1)=2/3.

B. Fluctuations

For the fluctuations it is again convenient to work with the
rescaled mean potentiéd.2). We rescale the fluctuations in
the same way:

-1/2

P(X,t).

irA (4.17

Sp(x,t)=—
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We linearize Eq.(3.3 with =0 around the mean values
and integrate once to obtain the second-order inhomoge-

neous linear differential equation

4 \o*y dy\dy |4 d%y
E[*”]:‘(EX)aT*(de)ax d@)
5J(x t)

(4.18

[l

The integration constant vanishes as a consequence of the

boundary condition
Y(x,t)=0 at x=0 (4.19

and the requirement that the fluctuating electric field ox

stays finite atx=0. [The latter condition actually implies

dyl 9x=0 atx=0.] We will solve Eq.(4.18 with the addi-
tional condition of a nonfluctuating voltage,

H(x,1)=0 at x=L. (4.20
The remaining constraint

[?2

—zz,b(x,t):O at x=L (4.21)

IX

(the absorbing boundary conditipwill be used later to re-
late &1 to 8J.

We need the Green functida(x,x’), satisfying for each
x" the equationZ[ G(x,x")]= 8(x—x"). In view of Eq.(4.3
for the mean potential one recognizes

d
110 =3x(¥) = 2X - x(X) (4.22

as a solutionZ[ #,]=0, which already satisfies E¢4.19.
Using a standard prescriptiShwe find from y(x) a sec-
ond, independent, homogeneous solution

dIZX)

Ya(x')
which fulfills Eq. (4.20. The Wronskian is

Ua(X) = a(x) f dx’ 4.23

d d dr
#1(X) dx (X)) — hra(X) dx P1(X)=—x"4(x). (4.24

The Green function also contains the facto# y/d that ap-

pears in Eq(4.18 in front of the second-order derivative of

. We find

G(x,x")= [O(X=X") 2(X) ¢he(X")

4Xd/2+l(xl)
FOX =X) 1 (X) ¢ha(X")],

where®(x)=1 for x>0 and®(x)=0 for x<0.
The solution of the inhomogeneous equat{@dn 8 with
boundary condition$4.19), (4.20 is then

(4.295
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(., o [x 0N ()= 8d(X",)
zp(x,t)—J’0 dx' G(x,Xx )jo dx —I_ .
(4.26
From the extra conditiof4.21) we find
L
5|(t):c—1J0 dxdJ(x,t)G(x), (4.27
with the definitions
x¥(L) Xip1(X)
/
(2X(L) L32) f Ty
(4.28
d xd’z(L) , Pa(x)
g(x)= \/_) \/— X Xd/2+l(xr)'
(4.29

Equation(4.27) is the relation between the fluctuating total
currentsl and the Langevin currerd] that we need to com-
pute the shot-noise power.

C. Shot-noise power

The shot-noise power is found by substituting E427)
into Eqg. (1.1 and invoking the correlatof2.15 for the
Langevin current. This results in

P= 2fd(g(c)) H(x),

H(x)=2Af dea(e)F(x,e).

(4.30

(4.30

In order to determine the mean occupation numf(a(,a)
out of equilibrium, it is convenient to change variables from
kinetic energye to total energyu=e +e¢(x,t). In the new

variables< andu we find from the kinetic equation&.5) and
(2.8,

9
5j(x,u)=0, (4.32

- 1 Yy Jd—

j(xu)=— Ea[u—eq&(x)]&}‘(x,u). (4.33

The derivatives with respect toare taken at constant The
solution is

L dx’
x olu—ep(x)]’
where we use_d the absorbing boundary conditi@n7)
[which implies F(L,u)=0].

As before[in the d_erivation o_f Eq(3.3 from Eq.(2.13)]
we approximatel—e¢(x)~ —e¢d(Xx) in the argument ofr.

(This is justified because<Qu<kT<eV.) ThenF(x,u) fac-
torizes into a function ok times a function ofu, and Eq.
(4.3)) gives

]?(x,u) =eT(u) (4.39
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FIG. 3. Shot-noise poweP for an energy-independent scatter-
ing rate as a function od. The exact resulfsolid curve is com-
pared with the approximate resii.2) (dashed curve Both curves

approach 4/8 for d—<. The data points are the results of numeri-

cal simulationgRef. 12.

H(x)=2eTXd/2(x’)dex’X—d/Z(x'), (4.35

0.6857 ford=1

P/Ppgissor=§ 0-4440 ford=2 (4.43
0.3097 ford=3.

In Fig. 3 we plot Eq(4.42 as a function of the dimensiah
and compare it with the approximate formyla2), obtained

in Ref. 13 by neglecting the diffusion term in E@.1). The
exact result(4.42 is smaller than the approximate result
(1.2 by about 10%, 15%, and 25% fat=3, 2, and 1,
respectively. Fod—oo, the drift approximation that leads to
Eq. (1.2 becomes strictly justified, andP/Ppgisson ap-
proaches 4/8. The data points in Fig. 3 are the result of the
numerical simulatiot? The agreement with the theory pre-
sented here is quite satisfactory, although our findings do not
support the conclusion of Ref. 12 thAt= 5 Ppyissonin three
dimensions.

D. Capacitance fluctuations

The fluctuationssl (t) in the current (t) are due in part to
fluctuations in the total charg®(t)=[dxp(x,t) in the

where we expressed the result in terms of the rescaled PQemiconductor. The contribution from this source to the cur-

tential y. In this equation we recognize the Poissonian shot-

noise PowWerP pyissor= 2€ 1.
The integrals in the expressiof%.28), (4.29, and(4.35

rent fluctuations is8l o= (8Q/Q)I. Fluctuations in the car-
rier velocities account for the remaining current fluctuations
oly=01—6lg. Since the fluctuations iQ could be mea-

for C, G, and’H can be performed with the help of the fact g req capacitatively, it is of interest to compute their magni-

that y solves the differential equatiof.3). In view of this
equation,

4 d
—d2_ _* 9 idr s
X dax X X, (4.39
XX' 2d 4
Xd/2+l:_ad_x()( X5, (4.37
Xy, 4 d

21 d (xx"2=xx"—xxx")x~ ¥, (4.39

resulting in
C=3x(L), (4.39
4
H(x)= PPoissorHX(X)XH(X)v (4.40
1 ) , x(L)\ ¥ 3x(L)
Gx) =[x 00x" 00~ Z(X”(w)) oL

(4.4
Our final expression for the shot-noise power is

1 JL gz ) ) |2 )
i dx X X)——= x(X).
Po|ssond X2( ) 0 ( X( X(

2
(4.42

The scaling properties of imply that this result does not
depend on the length. Ford=1, 2, and 3 it evaluates to

tude separately. Because we have assumed that there is no

charge present in equilibrium in the semiconduciQt)

=C(t)V is directly proportional to the applied voltagé

The proportionality constant(t) is the fluctuating capaci-

tance of the semiconductdiThe voltage does not fluctuae.
With the Poisson equatio¢?2.14) and the boundary con-

dition (3.1) we have

kA
C(t)ZVE(L,t). (4.49

The correlator of the capacitance fluctuations,

PC=2JOC dtsC(0)5C(1), (4.45

is related to the correlator ofl o,
by PQ:(/.LTVZ/ZKAL)PC. We also define the correlators

PVZZf dtsl(0) 8l (1), (4.47)

Pov=4 f ldtb‘l o(0) Sl y(t), (4.48

such thatP=Pq+ Py+ Pgy.

In view of Egs.(3.3), (4.18 and the boundary conditions
(3.5, (3.7), one obtain€E(L) and SE(L,t) as a function of
Sl and 8J, and hence
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FIG. 4. ContributionP4 from charge fluctuations to the shot-
noise powelP. The correlatoP. of the capacitance fluctuations is

related toPq by Pc= (4exAL/uV?)Pq/Ppoisson

1 Ldx
Sln(t) = 5( Sl (t)— fo T&J(x,t)), (4.49

1 L dx
5IV(t)=—(5l(t)+f —5J(x,t)). (4.50
2 o L
With the help of Eq(4.27) we find
Pc=2(P+P;—2Py,), (4.5))
Py=3(P+P;+2P;), (4.52
Pcev=3(P—Py), (4.53

16 L dx d?
PIJ_mpPoissonfo Tg(X)X(X)&X(X)' (4.54

8 Ldx d?
PJ:aPPoissonfo FX(X)&X(X)- (4.59

The integrals can be evaluated by using thét) solves Eg.

(4.3), with the result

48L 32y (L)—~d—36

P;=4 (d+4)(1-5d) Poisson (4.56
2L %2 (L)—1
P;= 4T Ppoisson (4.57)
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finite carrier density,. in the metal contacts. The densjy
is the charge density at the semiconducting side of the inter-
face with the metal contact. It depends on temperature ac-
cording td® p.=2e(mkT/27#2) %2 exp(—WIKT), whereW is
the work function of the interface. The relevant parameters
are the ratiosL./L and Ls/L, with L= (xkT/epy)*? the
Debye screening length in the contact ang=(«V/p.)Y?
the screening length in the semiconductor. The theory of
space-charge limited conduction applies to the regime
>L>L, (or kT<eV and p.>«V/L?>—the combination
kVIL? characterizing the mean charge density in the semi-
conductoy. In this section we will show that, within this
regime, the effects of a finite voltage and carrier density are
restricted to a narrow boundary layer near the current source.
We will examine the deviations from the boundary condition
(3.1) and compare with the numerical simulatidfis.

To investigate the accuracy of the boundary condition
(3.1, we start from the more fundamental condition of ther-
mal equilibrium,

— Apcv(e)exp(—elkT)
p(X,e)= at

— x=0.
J' de’v(e")exp(—&'/KT)
0

(4.58

We keep the absorbing boundary conditjgh,e) =0 at the
current drain, since thermally excited carriers injected from
the contact ak=L make only a small contribution to the
current wheneVV>kT. To simplify the problem, we assume
that all carriers at the current source have the same kinetic
energy 3dkT, in essence replacing the Boltzmann factor
exp(—e&/kT) in Eq. (4.58 by a delta function at = (d/2)kT.

We restrict ourselves to the physically relevant cdse3
and substitute: =3k T—eg(x) in the argument oD (&) in

Eqg. (2.16). Repeating the steps that resulted in Eql), we
arrive at the differential equation

5 _ _
do 4_  KkT\d’¢ 2l
& |3t 2e e = A
dx 3 e/dx?: mxA

In comparison to Eq(4.1), an integration constatappears

now on the right-hand side. This constant and the current
have to be determined from the four boundary conditions

(4.59

In Fig. 4 the correlator of the capacitance fluctuations is¢(0)=0, k¢"(0)=—p., ¢(L)=—V, and¢"(L)=0.

plotted as a function ofd. For d=3 we find P¢
=0.0284«AL/wV?. The corresponding contributiol? o

We have integrated Eq4.59 numerically. In Fig. 5 we
show the electric field fod=3 and parameters as in the

=0.007PpyissonisS relatively small, being less than 3% of simulations of Ref. 12, corresponding tdL.=48.9 and

the contribution from the velocity fluctuationsP,,

(Ls/L)%2=eVIKT ranging between 40 and 300. We find ex-

=0.3076poisson (INcidentally, we find that charge and ve- cellent agreement, the better so the larg®tkT is, without

locity fluctuations are anticorrelated, Pgy=

—0.004%Ppisson) Our calculation thus confirms the numeri-

any adjustable parameter
The boundary conditioii3.1) of zero electric field at the

cal finding of Ref. 12, that the charge fluctuations arecurrent source assumes that the surface charge in the current
strongly suppressed as a result of Coulomb repulsion. Howdrain is fully screened by the space charge in the semicon-

ever, we do not find the exact cancellationRy§ and Py
surmised in that paper.

E. Effects of a finite voltage and carrier density

ductor. With increasingV/kT for fixed L/L. one observes
in Fig. 5 a transition from overscreenin@ﬁo at a point

inside the semiconductpto underscreeningg extrapolates
to zero at a point inside the metal contadt/e can approxi-

For comparison with realistic systems and with computemateE (x) = — ¢4(x— &), whereg, solves Eq(4.1) with the

simulations, one has to account for a finite voltagand a

boundary conditions of space-charge limited conduction.
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FIG. 5. Electric-field profiles foeV/kT=40, 60, 80, 100, 200,
and 300, at parameter valuds=3, T=300 K, p./e=10*m~3,
L=200 nm, andx=11.7«, (with ko the dielectric constant of
vacuun). The solid curves follow from Eq4.59. The data points
are the result of numerical simulatiofRef. 28. There are no fit-
ting parameters in this comparison.

This is an excellent approximation farV/kT=200 (¢/L
=0.02) andeV/kT=2300 ((/L=—0.004), practically indis-
tinguishable from the curves in Fig.(fop panel.
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the relative magnitude df./L and (L/L)*. Overscreening
occurs whenlL./L>(L¢/L)*. Then Eq~—(2kTp./ex)?,
d3~(2el9kT)Y%(p./k)%? and é=~¢' =0(L,). The differ-
ence &' —£=0(L2/L%<¢. At the matching point, ¢
=0(kT/e), E=0(V?k/p.L®, and p=0O(p.). Under-
screening occurs  whenL./L<(Ls/L)* Then E,
=0(V2klpL3)<VIL, #3=0(p3L3% K3V?), é=
—O(LY/L3), and ¢’ =0O(LZ/L3%). At the matching pointg
=0(V4k%Ip3L®), E=0(Ey), and p=0(p.). In between
these two subregimes, whex\;rf/L3LC is of order unity,&’
vanishes andp.g,{X) becomes an exact solution of Eqg.
(4.59, which also fulfills all boundary conditions. In the
same rangeé changes sign from positive to negative values.

We conclude that the width of the boundary layer is of
order max(_C,L‘S‘/L?’). At the matching pointE<V/L. The
boundary condition(3.1), used to calculate the shot-noise
power P, ignores the boundary layer. This is justified be-
causeP is a bulk property. We estimate the contribution to
P/PpoissoncOming from the boundary layer to be of order
max(L./L,(Ls/L)* (possibly to some positive power
hence to be<1 in the regime of space-charge limited con-
duction.

V. ENERGY-DEPENDENT SCATTERING TIME

We consider now an energy-dependent scattering time.

To demonstrate analytically that space-charge limited/Ve restrict ourselves td=3 and assume a power-law de-

conduction is characterized by the conditions-L>L,

pendencer(e)= 19e®. The energy-dependence of the rate

we will now compute the width of the boundary layer and 1/7 is governed by the product of the scattering cross section
show that it become<L in this regime. We need to distin- and the density of states. For short-range impurity scattering
guish between two length scalésand ¢’ to fully character- the cross section is energy independent, hemee— 1/2.

ize the boundary layer. The lengghdetermines the shift in This applies to uncharged impurities in semiconductors. For

the asymptotic solution

Pasynf X) = bo(x— £) + 3KT/2e, (4.60

while the sizet’ characterizes the rangex=< ¢' where the

scattering by a Coulomb potential, the cross sectionss ?,
hencea=3/2. This applies to scattering by charged impuri-
ties in semiconductors. The casea=0 considered so far
lies between these two extrem@3dNe have found an exact
analytical solution for the case of short-range scattering, to

be presented below. The case of long-range impurity scatter-
ing remains an open problem, as discussed at the end of this
section.

For short-range impurity scattering, the technical steps are
similar to those of Sec. IV. We first determine the mean

potentialg(x). The scaling properties of E@3.3) are ex-

- . _ . ploited by introducing the rescaled potentjglx), with
The coefficients in the Taylor series are determined from Eq.

(4.59,

exact solutiong(x) deviates substantially frorgasyn(x).
The values of and¢’ are found by comparing E¢4.60
with the Taylor series

XS

4
3 +0O(x%).

2
e e (@61

2/3

. <3e1/2L3T)
— X)=—| 5— x/L). 5.1
ke 7 $00==| 2| XL (5.0
EG—2——=—-¢&——, (4.62
e kK mKA . L —
In this way we eliminate the dependence on the curremtd
5 KT 5T the length of the conductdr. The rescaled potential fulfills
S Pe oty (4.63 the differential equation
3 0« e "3 LKA’ '
3/ 21 3 " ; 1 dy d? d®
where 2/uxA~V?/L3 up to a coefficient of order unithcf. S wIXTX X (5.2
Eq (45)] 2 dx dX2 dX3 ’

We match the two function$4.60 and (4.61) at x=¢’,
demanding that potential and electric field are continuous atvith boundary conditionsy(0)=0, x’(0)=0, and x"(1)
x=¢’. These two conditions determigeand ¢’'. Withinthe  =0.
regimeL>L>L. we find two subregimes, depending on  We substitute
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R T T T T X d
L | Pa(X)=x(X) =~ 5 G x(X), (5.8
- L XM (X))
h3(X) = h1(X) L dx W
LX) (X))
— (%) L dx T (5.9

FIG. 6. Profile of the mean electrical potenti@l[in units of ~ Where we have defined
L2(3eY2/12uokA)?3], the electric field E [in units of , ,
L(3eYA/2uokA)??], and the charge density [in units of WX) = §1(X) th(X) = #1(X) (). (5.10
(3e"4 kM%1210A)?7] for a three-dimensional conductor with short- The special solution which fulfillgs(0,t) = ¢’ (0,t) = (1)

range impurity scattering, computed from E§.2). =0 is
*® 1/2( r

x0=3 g2 53 woon- [ 2 S | &(x—x" () d(x')
into Eq. (5.2). Power matching gives in the first ordgp (1)
=272 The second order leaves as a free coefficient, but FO X" =X)h1(X") tha(X) — PAE) Pa(X) ha(X")
fixes the powery=(\/13—1)/2. The coefficientg, for |
=2 are then determined recursively as a functiongef Sl (t)— 5J(X" t) W(X")
From the conditiony”(1)=0, we obtaing;= —0.1808. The J dx’ : (5.1
resulting series expansion converges rapidly, with the coef- X(X7)

] 12
ficient g,, already of order 10 The conditiony”(1t)=0 relates the fluctuating current

The averaged potential and its first and second derlvat|v%| t0 the Langevin currensd. The resulting expression is
are plotted in Fig. 6. The electric fiekdy' (x) increases now again of the form(4.27), with ﬁow

linearly at the current source, hence the charge density
«x"(x) remains finite there. The current-voltage character-

1
istic is C=f dxg(x), (5.12
0
- ZMOKA( Vv )3/2 54 ) »
et 2 X)) | G(x)= W((X)) (2+ t ((11)) e )>'
X(X Wa(x'
with x(1)=0.4559. This is a slower increaselokith V than ? " (x7) (5.13
the quadratic increasg4.5 in systems with energy-
independent scattering. The shot-noise power is given by E@.30 with H(l) as
The rescaled fluctuationg(x,t), introduced by defined in Eq(4.31) and the mean occupation numbestill

3 given by Eq.(4.39). Instead of Eq(4.35 we now have
3e'3
dp(X,t)= —(ﬁ) P(XIL 1), (5.5

_ 1 1
H(X)=2elx(x) J; dx’X

fulfill the linear differential equation (x")
i// 1y &21/, 1 " 9y :PPoissoer/Z(X)X”(X)- (5.149
Llyl=—x" (?x3 +§XT/2(97+§X_1/25 where we integrated with the help of E¢.2) and used
x"(1)=0.
1()(')(" X"') Collecting results, we obtain the shot-noise suppression
—7 | ¥ factor
4 X3/2 X1/2
P/Ppgissor= 0.3777, (5.19

Sl (t)—8I(x,t)
- T (5-8  \yhich is about 20% larger than the result obtained in Sec. IV
for an energy-independent scattering time in three dimen-
The solution of the inhomogeneous equation is found withsions. Equation (5.15 can be compared with the
the help of the three independent solutions of the homogea-dependent result in the drift approximation
neous equatio[ ¢]=0,
6(a—1)(a+2)(16a*+36a—157)

P/Ppoissori= 5(2a—5)(8a—17)(13+8a)

d
P100= g x (%), (5.7 (5.16
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For a=-1/2 the drift approximation gives P  current source, respectivglyTwo subregimes of overscreen-
=0.407Ppyisso, about 10% larger than the exact resulting and underscreening were identified, again in quantitative
(5.15. agreement with the numerical simulatiofis.

We now turn briefly to the case of long-range impurity  Let us discuss the conditions for experimental observabil-
scattering. The kinetic equatidB3.3), on which our analysis ity. We have neglected inelastic-scattering events. These
is based, predicts a logarithmically diverging electric fielddrive the gas of charge carriers towards local thermal equi-
«—InY3x at the current source for=1. In the rangea librium and result in a suppression of the shot noise down to
>1, which includes the case=3/2 of scattering by charged thermal noiseP=8kTdI/dV.'® Inelastic scattering by opti-
impurities, we could not determine the lowbehavior.[A cal phonons can be neglected for voltayeskTy /e, with
behavior p<Cx# is ruled out because E@3.3) cannot be T, the Debye temperature. Scattering by acoustic phonons is
satisfied with a real coefficiei@.] In the drift approximation, quasielastic as long as the sound velowigjs much smaller
the shot-noise poweb.16 vanishes ag— 1. Presumably, a than the typical electron velocity~(eV/m)*2 For large
nonzero answer foP would follow for a=1 if the nonzero  enough temperaturée>mvv,/k, the elastic-scattering time
thermal energy and finite charge density at the current SOourcex 671/2 depends on energy in the same way as for short-

is accounted for. This remains an open problem. range impurity scattering-
All requirements appear to be realistic for a semiconduct-
VI. DISCUSSION ing sample with a sufficiently low carrier density: The elec-

. . tron gas is degenerate even at quite low temperafarésw
We have computed the shot-noise power in a nondegerk g g d peral

e . . . Zelvin). Short-range electron-electron scattering is rare due
erate diffusive semiconductor, in the regime of space—chargﬁ) the diluteness of the carriers. Scattering by phonons is
limited conduction, for two types of elastic impurity scatter-

: . . X . predominantly elastic. If the dopaftharged impuritiesis
ing. In three-dimensional systems the shot-noise suppressnﬁw o ; ; ; L -

; ufficiently dilute, the impurity scattering is predominantl
factor P/Ppgisson iS close to 1/3 both for the case of an y purty gisp y

. . short ranged. Under these conditions we would expect the
energy-independent scattering rai®y Ppgjssoi= 0.3097) and g " we would exp

) ‘ ... shot-noise power to be about one-third of the Poisson value.
for the case of short-range scattering by uncharged impurities

(P/Ppyissor=0.3777).(The latter case also applies to quasi-
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