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Abstract 

This paper considers the problem of finding a route and schedule for a vehicle 

starting from a depot, visiting a set of customers and returning to the depot, in a 

time-dependent network where the objective is to minimize the greenhouse gas 

emissions. In this formulation, the speeds of the vehicle as well as the routes chosen are 

decision variables subject to limits determined by the level of congestion on the roads at 

the time. Two methods are proposed to find the optimal strategy for a single route. One 

is a time-increment based Dynamic Programming method, and the other is a new 

heuristic approach. In addition, a case study is carried out, which compares the 

performance of these methods, as well as the least polluting routes with the shortest 

time routes between two customer nodes. 
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1. Introduction 

Current vehicle routing and scheduling software is designed to produce schedules for 

freight vehicles to minimize the relevant economic costs to the logistics service 

provider. Typically these are based on numbers of vehicles and drivers required and the 

distance travelled. Although the software may allow different speeds for vehicles on 

different types of roads, this is a rough approximation that does not take into account 

the different speeds on different roads at different times of day. This results in schedules 

where freight vehicles spend time in congested traffic, contributing to the congestion 

and associated environmental costs. Congestion in this paper is defined as a condition 

on a road network that occurs as use increases and results in lower speeds and longer 

journey times for the vehicles using the road network.  

Although some approaches claim to produce routes that minimize pollution, they often 

use constant speed models that do not properly account for the effects of changing road 

speeds at different times of day and variations of driving speed in traffic. Congestion 

due to different traffic volumes and features such as long-term road works can be 

predicted from past experience. Information is now available from many different 

providers to show how long it will take to travel along different roads at different times 

of day and different days of the week. The data can enable the development of new 

vehicle routing and scheduling systems to plan schedules for distribution operations 

that minimize environmental damage. 

This paper will focus on solving the fuel emissions optimization problem for visiting a 

sequence of customers in a road network with time-varying speeds. The network is 

made up of many short road sections, and the vehicle may travel with different speeds 

along different road sections, subject to maximum limits determined by the traffic 

congestion at different times. To our knowledge, this particular problem has not been 

studied in the literature. In a static network, the optimal cost for traveling along a single 

route, visiting several customers along the way, is the summation of the optimal travel 

costs between customers, which can be predetermined. However, the calculation in a 

time-varying network is more complicated. To obtain a least fuel emissions solution 

overall, it may be worthwhile having inferior solutions between some of the customers 
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in order to obtain more benefit later in the journey. This is a key complication in solving 

the problem. 

The structure of the paper is as follows. Section 2 contains a brief review of green 

logistics and time-varying VRPs. Then in Section 3, the method to estimate emissions 

from freight vehicles in terms of the Carbon Dioxide Equivalent (CO2e) is examined, 

which will be used in later calculations. Details of the problem along with some 

definitions will be described in Section 4. A time-increment based Dynamic 

Programming method and a new heuristic approach are introduced in Section 5 and 

Section 6. The results of a computational experiment in Section 7 compare the 

performances of these two methods, and provide an indication of the benefits from 

minimizing the fuel emissions. 

2. Literature Review 

Most of the research in VRPs is based on the assumption that attributes of the road 

network are constant; however, this may not be the case in the real world. The traffic 

volumes vary during the day especially in urban areas, hence the vehicle routing and 

scheduling obtained using a static model may be unreliable. This first part of this 

section will examine the VRP literature dealing with time-varying road networks and 

the references discussed are summarized in Table 1. 

Ziliaskopoulos and Mahmassani [1] Van Woensel et al. [9] 

Chabini [2] Fleischmann et al. [10] 

Dolinskaya [3] Maden et al. [11] 

Ahn and Shin [4] Kok et al. [12] 

Sung et al. [6] Kim et al. [13] 

Ichoua et al. [7] Kim et al. [14] 

Eglese et al. [8] Haghani and Jung [15] 

Table 1 – References for time-varying road networks 

The Dynamic programming (DP) method is widely used to find the optimal routes 

between customer nodes. Ziliaskopoulos and Mahmassani [1] applied a DP method to 

calculate the shortest paths from all nodes to a given destination node for each time 

http://en.wikipedia.org/wiki/Carbon_dioxide
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step over a time horizon in a time-varying network. The time-varying information is 

represented by the different travel times to pass the same arc in different periods of 

the day. This method is able to deal with networks where the cost is not necessarily 

travel time. Chabini [2] investigated the efficiency for the algorithm to compute the 

optimal paths between nodes in discrete dynamic networks, where the travel time is 

time-varying for a finite time interval, and static beyond the time horizon. A 

Decreasing Order of Time algorithm was proposed, where a DP recurrence is 

employed, to solve an “all-to-one all departure time intervals fastest/minimum cost 

path” problem. In this paper, it is proved that the shortest time path in a 

time-dependent network can be solved by using Dijkstra’s algorithm with the same 

computational efficiency as in a static network, when unlimited waiting at nodes is 

allowed. Dolinskaya [3] used a DP model to find the shortest-time path for vessels, 

where travel times between nodes depend on the direction, location and time. In this 

model, it is not allowed to wait at nodes until the optimal departure time, but a similar 

effect can be achieved by slowing the speeds down enough so as to arrive at nodes at 

the optimal departure time. 

Travel time has to be modeled very carefully in order to find the shortest-time route in 

time-varying networks. Ahn and Shin [4] modified three basic vehicle routing 

heuristics to allow the travel time to maintain the “first-in-first-out”(FIFO) property, 

and derived efficient time feasibility check routines. The FIFO property states that a 

vehicle departing from node i at any time t will not arrive at node j at a later time than an 

identical vehicle starting from node i at time    using the same arc    , where      . 

Providing the FIFO property holds, Dijkstra’s algorithm can be adapted to find the 

shortest-time path between nodes efficiently [5]. Sung et al. [6] suggested a model for 

time-dependent networks, where the travel time was modified to satisfy the FIFO 

property. Therefore, an adapted Dijkstra's label-setting algorithm was able to solve the 

shortest paths problem. Ichoua et al. [7] proposed a model to solve a vehicle 

dispatching problem based on time-dependent travel speeds, with the travel time 

function following the FIFO property. A modified parallel tabu search algorithm is 

applied to solve the vehicle routing problem by minimizing the total travel times. 

Eglese et al. [8] model the travel time by using a similar method to that of Ichoua et al. 

[7], and apply Dijkstra’s algorithm to construct a Road Timetable
TM

, which includes 

the minimum time and the shortest-time path between locations at different starting 
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times. Van Woensel et al. [9] modeled VRPs with time-dependent travel times by 

using a queuing approach, which is needed when traffic volumes are available and not 

vehicle speeds. Moreover, it is able to deal with a large number of time slots, which 

improves the solution quality. 

Fleischmann et al. [10] presented a way of deriving time-varying travel time data 

from traffic information systems. Then a framework for the implementation of 

time-varying travel times in various vehicle routing algorithms is described. Results 

of computational tests indicated that the time-dependent data provide an excellent 

estimation of travel time, and improve the shortcomings of constant average travel 

times such as travel time underestimation and time window violation. A case study 

has been carried out by Maden et al. [11], and the results show that about 7% of CO2 

can be saved by considering the time-varying speeds when scheduling the vehicles 

and planning the routes. 

When scheduling and routing vehicles in a time-varying road network, the starting time 

is an important factor. Experimental results of Van Woensel et al. [9] indicated that the 

starting time would influence the solution quality. Kok et al. [12] has proposed an ILP 

formulation to minimize the total duty time of a complete route, which performed as a 

post-processor for a Vehicle Routing Problem with Time Windows. Travel time 

between two customer nodes is considered as deterministic but time-dependent, and 

the departure time at each customer in the complete route is the decision variable. 

Kim et al. [13] proposed decision-making procedures to determine the minimum cost 

policy which includes the driver attendance time, departure times and routes in a 

time-varying network based on a Markov decision process formulation. The results of 

a case study show that savings in costs and vehicle usage for just-in-time delivery 

were achieved compared to the static model. Furthermore, the historical traffic 

information made more contributions to the savings than the real-time traffic 

information. Kim et al. [14] also developed a two-phase process to reduce the state 

space by, so enabling the computational running time to be improved. Haghani and 

Jung [15] applied a genetic algorithm to solve VRPs with dynamic demands in 

time-dependent networks. It is concluded that the performance of the dynamic routing 

strategy became better with the increase in the uncertainty in the traffic data. 

The second part of this section considers literature concerned with climate change and 
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green vehicle routing. The articles discussed are summarized in Table 2. 

European Environment Agency Report [16]  Bektas and Laporte [21] 

Climate Change Committee Report [17] Ubeda [22] 

Dekker et al. [18] Erdoğan and Miller-Hooks [23] 

Paterson [19] Figliozzi [24] 

Hensher [20] Figliozzi [25] 

Table 2 – References for green vehicle routing 

The Climate change due to emissions of greenhouse gases caused by human activity 

has been recognized as a threat to the global environment, and some actions have been 

taken worldwide to deal with the challenge. In 2007, the European Union (EU) declared 

its intention to cut greenhouse gas emissions by 20% from the 1990 level by 2020 [16]. 

The 4
th

 carbon budget recommended by the UK Climate Change Committee [17] is to 

limit emissions of GHGs to 1950 MtCO2e over 2023-2027, amounting to an emission 

cut of 50% compared with 1990. This ambitious proposal was accepted by the UK 

Government in May 2011. 

However, it will not be possible to achieve the ambitious goals of GHG reduction 

without significant progress in the transport sector, where energy use and greenhouse 

gas emissions are still growing [16]. Decisions in the area of logistics need to take into 

account environmental considerations as well as economic costs, as demonstrated by 

the social responsibility policies of many companies. Dekker et al. [18] has reviewed 

the different aspects and issues in a supply chain, where OR models can be applied to 

improve the environmental costs. As one of the significant parts in a supply chain, there 

has been increasing interest and research in vehicle routing and scheduling with respect 

to the environment in recent years. 

Paterson [19] has developed a carbon footprint estimator, which enables carbon 

footprinting within the freight sector to be measured and examined. Furthermore, 

several fuel saving measures are recommended, and their effectiveness in improving 

CO2 emissions are evaluated. Hensher [20] has applied Transportation and 

Environment Strategy Impact Simulator (TRESIS) to evaluate the ability of 

instruments to reduce CO2 emissions. It is concluded that a mix of technology (i.e. 
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fuel efficiency improvements) and pricing through a carbon tax or a variable user 

charge is the way forward assuming continuing use of fossil fuels. 

Bektas and Laporte [21] have proposed a Pollution-Routing Problem (PRP) which 

takes the weight of the loads, greenhouse gas emissions, fuel, travel times, their costs as 

well as travel distance into account. The trade-off among the total distance, driver costs 

and fuel costs was studied, and the results reveal that PRP offers the potential to save 

costs. Ubeda [22] describes a case study concerning the environmental costs in a 

vehicle routing problem with backhauls. By introducing backhauls, empty-running 

which wastes fuel, has been avoided. The fuel emissions are evaluated based on the 

distance, but load factors are also considered. Erdoğan and Miller-Hooks [23] have 

investigated a problem that they have called a green vehicle routing problem, which 

involves a fleet of electric vehicles with limited battery life. Not only total distance 

but also recharging arrangements have to be considered when vehicle routes are 

scheduled. 

All of the ‘Green’ VRPs mentioned so far have been restricted in static networks, and 

most of the time-varying VRP research reviewed above has focused on minimizing 

time related cost. However, Figliozzi [24] presents an emission minimizing VRP in a 

time-varying road network. The CO2 emissions are calculated based on a 

speed-dependent function. The total working time is partitioned into intervals and for 

each arc of the network, a set of speeds are assigned corresponding to each interval. 

Vehicles are assumed to travel at the specified constant speeds depending on the time 

of departure from the starting node of the arc and the time intervals through which the 

vehicle passes before reaching the end of the arc. Thus the emissions depend on the 

arcs selected for the routes and the departure times. Computational tests are carried 

out under three settings of congestion: uncongested, somewhat congested and 

congested. Figliozzi [24] shows that his approach can produce significant reductions 

in emission levels with relatively small increases in distance traveled or fleet size. A 

case study is described in Figliozzi [25] where the model is used for a distribution 

application in Portland, Oregon. The study examines how the total emissions can be 

influenced by congestion, speed limits set for the roads and depot location. The model 

assumed that a vehicle will travel at the limit of the uncongested speed. In particular, 

uncongested traffic speeds generally lead to lower emissions, but if free flow travel 
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speeds are higher than the optimal emissions travel speed on some roads, then 

uncongested travel speeds can lead to increased emissions.  

The goal of this paper is to explore the fuel emissions optimization problem for visiting 

a sequence of customers in a road network with time-varying speeds, where speeds as 

well as the routes are considered as decision variables.  

3. Carbon Dioxide Equivalent Estimation 

The research addressed in this paper is to control the fuel emissions by taking vehicle 

speeds and routes into account rather than improving the engine technologies. Carbon 

Dioxide Equivalent (CO2e), which evaluates various GHGs in terms of the functionally 

equivalent concentration of CO2, is used to provide an estimation of the pollution 

caused by Heavy Goods Vehicles (HGVs). In order to calculate CO2e, the 

speed-emission coefficients should be applied first to estimate the fuel consumption. A 

database of vehicle speed-emission factors for fuel consumption has been reported by 

the Department for Transport in ‘Road Vehicle Emission Factors 2009’ [26]. The 

general format of the vehicle fuel consumption function is presented as: 

                                             (1) 

where   is the speed in km/h and       is the fuel consumption in litres/100km. 

Such functions are based on the average emission factor for a certain pollutant and a 

given type of vehicle. To calculate fuel consumption for different types of vehicles with 

different standards, there are different coefficients. These coefficients are measured 

over a range of driving cycles. Taking Euro V diesel rigid HGVs with gross weight 

greater than 32 tonnes as an example, the fuel consumption for every 100 kilometres 

travelled is given by: 

                                                                         (2) 

where   is the speed in km/h and       is the fuel consumption in litres/100km. 

This formula is only valid when speed is between 6km/h and 90km/h, as the form of 

the relationship is different at very low or very high speeds. 

http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Carbon_dioxide


9 
 

GHG conversion factors have been proposed by the Department for Environment Food 

and Rural Affairs (DEFRA) [27]. The conversion factor used in this paper is to 

calculate CO2e from the consumption of fuel, and it mainly considers the impact of 

CO2, CH4 and N2O. The conversion factor for diesel is 3.1787kg CO2e per unit (litres) 

consumed, which considers both direct and indirect emissions from the combustion of 

the diesel by the HGVs. Indirect emissions are associated with the extraction and 

transport of primary fuels as well as the refining, distribution, storage and retail of 

finished fuels. As a result, the formula converting diesel consumption to CO2e is 

CE(v)= 3.1787*FC(v).                       (3) 

The calculation of (2) and (3) only takes the direct emissions of the HGVs into account. 

On a congested road, it can be argued that the presence of the HGV increases 

congestion and so has an adverse effect on the CO2e emissions from other vehicles on 

that road, but we have not attempted to estimate these additional indirect emissions. In 

many places, HGVs form a relatively small proportion of the road traffic compared to 

private cars. Consequently, it is assumed that the routes and schedule chosen by HGVs 

will not affect the attributes of the road networks in this model, and any changes in the 

emissions from other traffic in the network are not included. 

4. Problem Description 

The problem can be presented on a directed graph        , where 

               is the vertex set and                   is the arc set. The 

length of arc     is       . Let         , if there is no arc from node i to node j. 

Suppose the time horizon is divided into m time slots           , and the upper 

bound of time slot    is denoted as       . The maximum speed allowed on arc     in 

time slot    is denoted          . 

Let                        be a sequence of nodes, where       . The 

          are customer nodes, and    is the depot to start from. To distinguish the 

original node and destination,      instead of    is used as the finishing node of the 

complete route, and all of the attributes of      are the same as   . Each customer 

        is associated with a time window              , where       and       are 
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the lower and upper bound of the time window respectively (with       the earliest 

start time and         the latest finish time of the journey). The service time for 

customer    is      . It is assumed that the total demand of the customers in set      

will not exceed the vehicle capacity; moreover, a feasible solution always exists for the 

sequence of customers in set      with respect to the time windows.  

The goal is to find the least polluting strategy for a vehicle departing from the depot   , 

and going to customers      ,…   in order, then going back to     . The strategy 

must specify the path for the vehicle as well as the speed for the vehicle on each arc of 

the path and any waiting time which is only allowed at customer nodes. The speed to 

travel along arc     which is denoted         is allowed to be lower than the associated 

speed limit, and this is another attribute of the problem presented in the paper that 

distinguishes it from others. 

The optimization problem can be summarized formally as follows: 

Determine a sequence of arcs, z
k
, and associated speeds s(z

k
), k = 1…N, where z

k
 ϵ A, 

and waiting times at customers w(cr), r = 1…p. The objective is to minimize F, the total 

CO2e, 

               
 

   

         

such that the sequence of arcs, z
k
, k = 1…N form a path from the depot   , going to 

customers      ,…   in order, then going back to     . In addition, for any arc, z
k’

, on 

the subpath linking customers r – 1 to r (r = 1…p+1) then the time taken to travel from 

   to the end of z
k’

 is tk’ and is given by  

           
  

   

                       

   

   

   

If tk’ ϵ Tq (q = 1…m), then s(z
k’

) ≤ v(a
k’

, Tq). 
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When z
k’

 is the arc on the subpath that has an end node at customer r (r = 1…p+1), then 

tk’ corresponds to the arrival time at customer r and the time window constraints imply 

that e(cr) ≤ tk’ ≤ l(cr).  

The waiting time limit can be expressed as w(cr) ≤ W (r = 1…p+1) 

5. Time-Increment Based Dynamic Programming 

In this section, a dynamic programming (DP) method is used to solve the fuel emission 

optimization, where the time horizon is discretized into small segments. Hashimoto et 

al. [28] have used a DP to determine the optimal start times of services at customers 

with a fixed order in a complete route. Travel time cost functions have been introduced 

to relax the time window and travel time constraints. The idea of the time-increment 

based DP is quite similar to the approach in [28]. However, rather than a piecewise 

linear cost function, the cost in terms of fuel emissions in a time-varying network is 

more complex. 

5.1 Assumptions 

The assumptions on which this model is based are listed as follows. 

 Time is discrete, and every time increment is of length  . 

 Waiting is only allowed at customer nodes, but the maximum waiting time at each 

customer cannot exceed  . 

 The time spent travelling along any arc is within a range       , where   is an 

integer. 

 The speed limit will not change until a vehicle arrives at the next arc. In other 

words, traffic conditions will not change quickly enough to affect the speed of the 

vehicle along an arc once it has started. The traffic data used in the experiment is 

made up of relatively short arcs which do not take a long time to traverse so this is 

a reasonable assumption for our data. However this means that the FIFO property 

will not always hold for this model. 

 Each vehicle travels at a constant speed along each arc. 

 

http://en.wikipedia.org/wiki/Carbon_dioxide
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5.2 DP Recurrence 

The optimization problem for a given sequence of customers is solved in two stages, 

and one DP recurrence is involved in each stage. Firstly, the optimal fuel emissions for 

     to   , where             , with different starting times and finishing times are 

computed. Secondly, the optimal fuel emissions for the complete route through all the 

customers are calculated. 

5.2.1 DP Recurrence for Stage One 

Define                       as the optimal fuel emissions of travelling from customer 

    at time        and arriving at customer    at        . For each adjacent customer 

pair             , the optimal fuel emissions with all possible starting and finishing 

times have to be calculated, which are used in the second step. Define 

                     and        as the earliest arrival time, earliest departure time, 

latest arrival time and latest departure time at customer node    respectively, whose 

values can be calculated according to the time windows. Therefore, the set of possible 

departure times for customer    is                              , and the set of 

possible arrival times for customer    is                              . 

Define        ) as the minimum fuel emissions from the start node to node i with the 

associated arrival time being   . Let               be the fuel emissions along arc     

when the departure time from node i and arrival time at node j are    and    

respectively. According to the last assumption in 5.1, the constant speed along arc     

can be calculated as 

                                               (4) 

The maximum speed for arc     varies with time. When the starting time is in one time 

slot and finishing is in another, the finishing time of the arc is considered as the 

determining factor in this model. In other words,                 , where 

                  . For arcs remaining in one time slot, using starting time or 

finishing time makes no difference. The formula to compute               is 
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                               , if                 ;     (5) 

  , otherwise,                            (6) 

                         , and         is the CO2e emission function defined 

in Section 3. 

The following DP recurrence will be used to update          via iterations. The value of 

         can be considered as the upper bound of the minimum fuel emissions from the 

start node to node j with the arrival time being   . The iterations will stop when the 

value of          cannot be reduced anymore. 

                                        
                           .     (7) 

With the original node being      and the starting time being       , the value of 

                     can be obtained as 

                                   .                  (8) 

5.2.2 DP Recurrence for Stage Two 

Define                as the optimal fuel emissions from the depot to customer    with 

the arrival time at    being        . The following DP recurrence will be utilised to 

calculate the optimal fuel emissions for the complete route. 

                                          
                     

 
                   (9) 

Waiting is allowed at customer nodes, therefore the departure time at customer i-1 

denoted as       does not necessary equal the arrival time plus the service time; 

nevertheless, waiting more than   is prohibited. 

5.3 Complexity of the Algorithm 

The efficiency of the algorithm depends on the number of time intervals, the number of 

customer nodes and the number of calculations with formula (7). Ziliaskopoulos and 

Mahmassani [1] have proved that for any specified        , the upper bound of the total 
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iteration number for calculating                      for all    and         is      
  

 
  , 

where     is the total number of nodes in the network and    is the total length of the 

time horizon. Nevertheless, the number of time intervals used in the iterations in stage 

one with a specified starting time        equals                    , which is smaller 

than 
  

 
.                      has to be calculated for all            , which has an 

upper bound of 
  

 
. Thus, the upper bound of the number of iterations performed to find 

optimal solutions between two customer nodes with all combinations of starting time 

and finishing time is      
  

 
  . There are p customers plus one depot on the path, hence 

the upper bound of the total iterations in stage one is      
  

 
       . However, in 

stage one, not only                      is calculated, but also a      
  

 
   

  

 
  

dimensional matrix of the optimal fuel emissions from customer node      to all the 

other nodes with specified starting and finishing time is obtained. This information can 

be stored and used for other paths with the same customers but in a different sequence. 

In stage two, the DP recurrence will be performed for each customer plus the depot for 

every time interval, so the upper bound of the number of iterations in the second stage is 

  

 
     . With the time window constraint, the number of feasible finishing times for 

each customer node may be much smaller than 
  

 
. 

According to the analysis, the complexity of the algorithm depends largely on the 

number of time intervals. An increase in the length of the time increment will reduce 

the number of time intervals over the same time horizon. However, this would reduce 

the quality of the selectable speeds, especially for short arcs. Going through an arc     

whose length is       , with allowed times           respectively, the corresponding 

speeds would be                               . These speeds may be low and not 

environmentally friendly with small        but relatively big  . 

For example, the possible speeds to travel along an arc of length 50 meters are 36km/h, 

18km/h, 12km/h or 9km/h, when the time increment is 5s. The average emission-saving 

speed is around 65km/h, which in this case is not available. In the real road network, 

there are lots of arcs whose distance is less than 50m, thus the number of selectable 

speeds for those arcs would be even fewer, and the fuel emissions would be 
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overestimated. The speed 60 km/h will become an available option when the time 

increment is reduced to 3s. However, the number of time intervals over an hour would 

increase from 720 to 1200. Actually, 5s is already a small time increment, considering a 

planning horizon which may be several hours. Consequently, the length of time 

increment should be determined very carefully in practice. 

6. New Heuristic Method 

In the time increment based DP algorithm, the optimal fuel emissions from the original 

node to every other node is computed, and many of them turn out to be irrelevant to the 

final solution, and hence lots of computational time is wasted. Consequently, a heuristic 

method is developed, which contains a Route Selection (RS) process and a Speed 

Adjustment (SA) process. For each route proposed by the RS process, the SA process 

will be applied to modify the speeds of the associated arcs, and the route and speeds 

lead to the minimum fuel emissions will be considered as the final solution. 

6.1 Assumptions 

The assumptions on which this model is based are listed as follows. 

 Speed limit will not be changed within a time slot. 

 Waiting is only allowed at customer nodes, but the maximum waiting time at each 

customer cannot exceed  . 

 Vehicle travels with a constant speed along an arc until the time slot is changed, 

which allows the First In First Out (FIFO) property to be held. This is different 

from the model developed in Section 5, and is more consistent with the real traffic 

situation. 

6.2 Route Selection Process 

The real road network is very complicated, and there are a large number of possible 

routes that go through a set of customer nodes. It takes too long to evaluate the fuel 

emissions of all the routes, so which ones should be selected as candidates? Should the 

criterion be the shortest distance route, the shortest time route or some other route? An 

approach called the Adaptive Searching (AS) method is developed to look for 

promising routes to be candidates. 

http://en.wikipedia.org/wiki/Carbon_dioxide
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6.2.1 Basic Ideas of the AS method 

The idea of the AS method is to generate a set of possible routes which are good 

candidates for one that will minimize fuel emissions when different speeds are allowed 

on each arc in the path. This is done by finding the shortest route paths in terms of time 

when different arcs are assigned different artificial speed limits and it is assumed that 

the vehicle travels at the artificial speed limits. The process tends to generate paths that 

are not very long in distance or highly congested and so make suitable potential 

candidates. 

The following example shows how different routes can be obtained by selecting the 

shortest time route, based on different artificial speed limits. A network shown as in Fig. 

1 is made up of six arcs, and the length of each arc is 1. Speed limits for AB and BC are 

1/2, for AC is 1/6 and AD, DE and CE are 1. The shortest time route from A to C is 

A-D-E-C, the shortest distance route is A-C. The fuel emissions at speeds of 1/6, 1/2 

and 1 are taken to be 2.5, 1 and 1 respectively per unit of distance travelled. So the least 

polluting route is A-B-C, which is neither the shortest time route nor the shortest 

distance route. One way to make A-B-C become a candidate route is to search for the 

shortest time route with the restriction that the maximum speed for all of the arcs should 

be no more than 1/2. Thus, the travel time along A-D-E-C is 6 time units, while the 

travel time along A-B-C is 4 time units. Consequently, the fastest route becomes A-B-C. 

Furthermore, the shortest time route would be the shortest distance route A-C, if the 

artificial speed limit is made 1/6 for all of the arcs. 

 

Fig.1 Constructed Network with Six Arcs 

  

B 
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6.2.2 Application of the AS method 

The algorithm utilized in the route selection process is analogous to the one developed 

by Eglese et al. [8] to produce the Road Timetable
TM

. Define                  

as a set of artificial speed restrictions, which are not necessarily ordered in magnitude. 

When      is applied, the maximum speed allowed to travel along arc     in time 

slot    will be modified to   , if              . With any specified   , AS is applied 

from the starting node    (depot) with the given departure time    to search for the 

shortest-time route for each adjacent customer pair        , for          . This 

method produces up to q potential routes to be used. 

6.3 Speed Adjustment Process 

One of the differences between time-varying VRPs for fuel emission optimization and 

conventional VRPs is that speed as well as the route has to be taken into account. 

Dynamic programming is a useful way to calculate the optimal speed travelling along a 

route, but the large number of iterations leads to a long running time. Therefore, an 

Approximate Dynamic Programming (ADP) algorithm is developed in the Speed 

Adjustment (SA) process to modify the speeds along the candidate route found by the 

route selection process. 

6.3.1 Basic Ideas of the ADP method 

The general idea of the ADP algorithm is to move arcs on a path between time slots. An 

arc is said to belong to a time slot if the starting time of the arc is within the time slot. 

Since the average speed limit for a specific arc is assumed to be the same within a time 

slot, it is necessary to move an arc from a time slot with low maximum speed to one 

with higher maximum speed in order to avoid congestion on the arc. Arcs are moved 

from one time slot to another via speed-control of a series of predecessors. 

As illustrated in Fig. 2, the horizontal axis represents time rather than distance. Along 

with the change of speed, the time to travel along an arc is changed, which is reflected 

by the length of the arc in the horizontal axis. Since the length of time slots is fixed, 

increasing the length of an arc may ‘push’ later arcs to the next time slot. For instance, 

there are two strategies to pass the same path. With the first strategy, arcs 1, 2, 3, 4 are 
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put into the first time slot, arcs 5, 6, 7 are put into the second time slot, and arcs 8, 9 are 

put into the third time slot. With the second strategy, where the speeds are lower than 

the first one for arcs 1, 2 and 3, the lengths of arcs 1, 2, 3 are increased; as a result, arc 4 

is pushed to the second time slot. Moreover, the fourth time slot is needed to include arc 

9, where the speed limit for arc 9 becomes higher, and so the time to travel along arc 9 is 

reduced. 

 

Fig. 2 The same path with different speed strategies 

6.3.2 Process of ADP method 

In the following explanation, length of an arc means the time to travel along the arc 

rather than the distance. Besides, the customer nodes are treated as customer arcs with 

length being service time plus waiting time. The ADP method starts from applying two 

strategies to find the minimum and maximum number of time slots required for the 

given path, one is travelling as fast as possible, and the other is travelling as slowly as 

possible, where   is considered as an acceptable minimum speed. Speeds of vehicles 

travelling on arcs across time slots are modified to maintain the FIFO property, thus the 

number of time slots required under the travelling as fast as possible scenario is a lower 

bound for the specified route, denoted as   , and waiting is not allowed in this case. 

When travelling as slowly as possible, the speed of each arc is reduced to  , and waiting 

time at each customer is  . The number of the total time slots required in this case is an 

upper bound denoted as   . 

Let                        be the set of time slots covered when a vehicle 

travels as slowly as possible along a given path                for starting time   . 

The superscripts of the last arc in each time slot by applying the ‘fast’ and ‘slow’ 

strategies are recorded separately. Define               and              as the 

index of the last arc in time slot    by travelling as fast as possible and as slowly as 
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possible respectively. Iterations start from the initial state, where travelling as fast as 

possible is followed. In order to improve fuel emissions, the speed will be slowed down, 

which will push some arcs from the current time slot to the next one. This process will 

be performed iteratively from the first time slot occupied, until the index of the last arc 

remaining in the current time slot    equals             , and then arcs in the next 

time slot will be dealt with. 

6.3.3 DP Recurrence 

Define             as the optimal fuel emission from the start to the end of time slot 

  , when        arcs are moved out of  time slot   . For           ,   

                                . The index of the last arc remaining in time 

slot    is                    , when        arcs are removed, thus in other 

words,             is the optimal fuel emissions from the start to the end of arc with 

index                    , when the starting time of this arc and the next arc are in 

   and      respectively. 

For           , the following DP recurrence is used to calculate            , and 

        . We have that 

                                                     ,      (10) 

where                                         ,                   

          , and                       . The quantity           is defined as 

the fuel emissions from arc    to arc   . It is calculated according to the speeds along 

arcs in time slot   , which are determined by a heuristic method explained in Section 

6.3.4. 

Let    be the optimal fuel emissions for a complete route p. For        , 

              , which is the index of the last arc in the path; and        is the 

optimal fuel emissions of the complete path with the finishing time at time slot   . 

Therefore, the value of    can be obtained by 

                     .                       (11) 
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6.3.4 Heuristic Method for Covering Time Slack 

In the Time-Increment Based Dynamic Program algorithm, we have to compare all the 

different options of speeds for each arc, which is quite time consuming; therefore, a 

heuristic method is proposed to modify the speed so as to ‘push’ some arcs to the next 

time slot, and it will be called as a procedure in the ADP method. 

Time slack is defined as the time between the starting of an arc and the upper bound of 

the time slot it belongs to. Let                  be the time slack between arc    and 

the upper bound of time slot it belonged to, when        arcs are moved out of time 

slot  . Once             is obtained,                  for                

       in the next time slot      will be calculated. It is additionally assumed that the 

starting time of the arc will exactly equal the lower bound of that time slot, when an arc 

is pushed to a time slot. Hence, pushing the arc      to time slot      is equivalent to 

extending the length from arc    to arc    to cover the time slack 

                       . Define     as the remaining time slack to cover, and 

initially,                             . 

There are two ways to cover    . One is slowing speeds, and the other is waiting at 

customer nodes. The rules applied in this model are: 

 Reduce the speeds to the optimal speed under free flow first. 

 If the time slack cannot be covered, then wait at customer nodes subject to the 

maximum waiting time constraint. 

 If the time slack cannot be covered, then further reduce the speeds. 

6.3.4.1 Speed Reduction 

In order to make the vehicle travel smoothly, several segments are set up according to 

the shape of the speed-fuel curve. Let                be a set of critical speeds, 

where    is the optimal speed under free flow. Since the shape of the speed-fuel 

consumption curve, illustrated in what follows, is flat near the optimal speed, and 

becomes steep along with the decrease of speed, the difference between    and      
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will be increased along with the decrease of i. For instance, the critical speeds can be set 

as                 according to Fig. 3. 

 

Fig. 3 Speed-Fuel Consumption curve for Euro V diesel rigids HGVs >32 tones 

Define       as the speed along arc   . Initially,               , for      . 

Then, the value of       will be updated following a speed reduction process with 

critical speed   . Only these arcs with speeds exceeding    will be considered. Define 

  as the new speed required for arc    to cover    , and 

                       .                  (12) 

By solving (12), 

  
 

                 
.                          (13) 

Since the critical speed is a barrier to prevent speed being reduced too quickly, speed 

can only be slowed down to   . If     , then        . Thus, it is enough to cover 

the time slack, and the speed reduction process will stop. Otherwise, the speed of arc    

can only be reduced to   , and the remaining time slack can be updated as follows: 

                                            (14) 

and then 
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        .                                (15) 

Therefore, the process will be repeated for next arc with speed greater than    until the 

time slack is covered. If the time slack still cannot be covered after all of the arcs in time 

slot    have been checked, the process will be repeated from arc    again with critical 

speed being     . 

The following example demonstrates how the speed reduction process works for a path 

with 7 arcs shown in Fig. 4. 

 

Fig. 4 Example for speed slowing down process 

The speed limits for arcs 1, 2 and 3 are 54km/h, 72km/h and 90km/h respectively, and 

the corresponding distances are 0.6km, 1.8km and 1km. The time slack of arc 7 is 20s, 

which is going to be covered by slowing down the speeds of arcs 1 to 6. The critical 

speeds are set as 65, 45, 35 and 30 km/h. Without the critical speeds, the time slack will 

be covered by reducing the speed of arc 1 to 36km/h. However, with the critical speeds, 

arc 2 is the first arc to be considered, because the speed of arc 1 is lower than 65km/h. 

The starting time of arc 7 will be postponed for 10s by slowing the speed of arc 2 to 

65km/h, Another 10s is required to be covered, so the speed of arc 3 will be reduced to 

72km/h. Thus, the time slack is covered with a smoother strategy, compared to the 

strategy that only reduces the speed of arc 1 to 36km/h. 

6.3.4.2 Waiting 

If the time slack cannot be covered by reducing the speeds to   , waiting at a customer 

will be considered provided there is a customer arc in the current time slot   . Covering 

time slack by waiting at customer nodes is more straightforward than reducing speeds. 

Define        as the waiting time at customer arc   . Initially,          for   

   . Then, for a customer arc   ,           , if      . Hence the time slack is 
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covered, i.e.      . Otherwise,          and                . The time 

slack has not yet been covered, thus the process will be repeated for the next customer 

arc if there is any; or the speed reduction process will be repeated from arc    again 

with critical speed being   . 

7. Computational Experiments with Real Traffic Data 

7.1 Introduction 

A study is carried out, which is based on 14 customers and a depot located around 

Bristol. In this section, the new heuristic approach (NHA) is compared with the 

time-increment based DP (TIBDP). Moreover, the least polluting routes are compared 

with the fastest route retrieved from the Road Timetable
TM

. All the results are generated 

in the form similar to the Road Timetable
TM

, which are the optimal strategies between a 

depot and a customer or between two customers, thus there are 210 routes evaluated. 

The time-varying speed limit data is also the same as that used by the Road 

Timetable
TM

. There are 15 time slots to cover a 24 h period. Midnight and 8am are 

used as the starting times to represent off-peak time and peak time. 

7.2 Result Analysis 

7.2.1 NHA compared with TIBDP 

The main parameters for the two methods are as follows. 

Time-Increment Based DP:  

Time increment is 5s; time spent on an arc is between 5s and 10min; and time spent 

on whole journey should be within 1.5h. 

New Heuristic Approach: 

Artificial speed restrictions for the routes selection process (km/h): 120, 110, 100, 90, 

80, 70, 60, 50, 40, 30, 20, 10; and critical speeds for the speeds adjustment process 

(km/h): 65, 45, 35, 30. 
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 Midnight 8 am 

Running time for TIBDP 12h33m47s 12h34m31s 

Running time for NHA 1m17s 5m25s 

No. of  Same  Routes 201 145 

No. of Routes NHA Better Than TIBDP 210 175 

Mean emissions for TIBDP 4459.8 g 4666.4 g 

Mean emissions for NHA 4380.4 g 4623.0 g 

Table 3 Results obtained by NHA and TIBDP 

As shown in Table 3, the running time presented in each cell is the total 

computational time for generating the 210 routes with a specified starting time. The 

running time for the time-increment based DP is more than 12 hours. However, for 

the new heuristic method, it is only several minutes.  

The quality of solution from the new heuristic method is better than the TIBDP, even 

though it takes much less computing time. Among the 210 routes, 201 routes obtained 

by these two methods are the same when the starting time is midnight, and all of the 

solutions proposed by the new heuristic method are better than that of the 

time-increment based DP, which is on the average 1.81% less in terms of the 

objective value. In the case of starting at 8am, the fuel emissions obtained by the 

NHA are 0.94% less than those obtained by the TIBDP on average. However, 35 

solutions from the new heuristic method are inferior to that from time-increment 

based DP with the worst case being 3.69%. 

Although there is a difference in the assumptions dealing with speeds for arcs 

crossing time slots for the two models, each route in the case study will only cross up 

to about 3 time slots, thus differences caused by such assumptions will be small. From 

the theoretical point of view, the TIBDP should get solutions closer to the optimal 

solution than the NHA. Especially when the time increment is quite small, TIBDP can 

be considered an exact method. However, there are 37.35% arcs shorter than 50m in 

practice, and the fuel emissions for those short arcs may be overestimated by TIBDP. 

This is the main reason why the new heuristic approach provides solutions with 
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higher quality than the time-increment based DP in this test. 

7.2.2 Least Polluting Routes compared with Fastest Routes 

The least fuel emission routes obtained by NHA are compared with the shortest-time 

route obtained by the Road Timetable
TM

 in terms of fuel emissions, time and distance. 

Midnight and 8am again are used to represent the different starting times. The values 

in the table show the ratio of the quantity measured in each row when minimizing fuel 

emissions compared to that quantity when minimizing travel time. 

  Midnight 8 am 

No. of Same Routes  102 93 

Fuel Emission 

Average 0.9354 0.9463 

Extreme Case 0.6707 0.6655 

Travel Time 

Average 1.1033 1.0854 

Extreme Case 1.3089 1.4842 

Distance 

Average 0.9534 0.9315 

Extreme Case 0.6915 0.6173 

Table 4 Comparison of least-polluting routes to shortest time routes 

As shown in Table 4, even with different objectives, nearly half of the routes are 

exactly the same. The differences with regard to the total fuel emissions, travel time 

and distance for time optimization solution and emission optimization solution are 

presented. In addition to the average difference, extreme cases are examined as well. 

On average, about 6-7% savings in fuel emissions can be achieved by the least 

polluting model, on top of the 7% of CO2 saving made by taking the time-varying 

speeds into account in the shortest time model [11]. However, in terms of the average 

travel time, the least polluting model requires about 9-10% more trip time than the 

shortest-time model. Besides, the trip distance proposed by the least polluting model 
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is also about 5-6% shorter than that of the shortest-time model. In some extreme cases, 

the fuel emissions can be reduced up to 33%. But the time to complete the trip may 

increase by 48% on some occasions. 

8. Conclusions 

In this paper, a least polluting problem for a single route in a network with 

time-varying speeds is addressed, which consider speeds as well as routes as decision 

variables. Two methods are developed to solve the problem, and both of them involve 

DP recurrences. One is called time-increment based dynamic programming, and the 

other is a new heuristic approach. Compared with the time-increment based DP, the 

new heuristic approach is competitive in both solution quality and running time. A 

primary cause of poor quality solution of the time-increment based DP is that the 

traffic data used in the experiment is made up of relatively short arcs. The results 

indicated that a DP algorithm, which has also been studied by other researchers, might 

not be an efficient method to solve the fuel emission optimization problem in 

networks with short arcs. As the single route solving technique has to be embedded 

into a heuristic method framework to solve the full VRP, the new heuristic approach 

is more appropriate.  

Provided time-dependent speeds, customers’ sequence and other network information 

are known in advance, such a single route solving technique is able to suggest a least 

polluting vehicle scheduling plan, including which routes to choose, what are the 

proper speeds to travel and how long to wait at customer nodes if necessary. A test 

with the Bristol Data set has indicated further savings in fuel emissions can be 

achieved in the model, on top of the savings made by using variable travel time 

information in the time optimization model [11]. 

As part of the VRP solving algorithm, the new heuristic approach can be utilized in 

two ways. One is to be embedded into a heuristic method framework, such as a 

column generation based tabu search algorithm, to solve the full VRP. For each new 

sequence of customers (column) generated, the corresponding cost can be calculated 

by the new heuristic method. The second is for the new heuristic method to be used as 

a post-process to calculate the optimal fuel emissions for a pre-determined sequence 

of customers in a complete route. In a real-world scheduling environment, this single 
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route solving technique can be applied to improve the fuel emissions based on the 

current customer sequences. 
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