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Abstract

Electric vehicle sharing systems have been introduced tovaer of cities around the world as a means of increasinglityobi
reducing congestion, and pollution. Electric vehicle sfasystems canfter one or two-way services. One-way systems provide
more flexibility to users since they can be droppéilab any stations; however their modeling involves a numbeoofiplexities
arising from the need to relocate vehicles accumulatedritinestations. The planning of one-way electric vehidiaring systems
involves a host of strongly interacting decisions regagdire number, size and location of stations, as well as fleet si

In this paper we develop and solve a multi-objective MILRviatation for planning one-way vehicle-sharing systemgiginto
account vehicle relocation and electric vehicle chargemuirements. For real world problems the size of the prolilesomes
intractable due to the extremely large number of relocataniables. In order to cope with this problem we introduceaggregate
model using the concept of the virtual hub. This transforomatllows the solution of the problem with a branch and bound
approach, while the error introduced is less than 2%.

The proposed solution generates tifigceent frontier and allows decision makers to examine théetrdf between operator’s
revenues and users’ net benefits. The capabilities of theopeal approach are demonstrated on a large scale real wobligm
with available data from Nice, France. Extensive sensjtighalysis was performed by varying demand and stationsaduitity
distance. The results provide useful insights regardiegdiicient planning of one-way electric vehicle sharing systems

Keywords: one-way car-sharing, multi-objective optimization, lhoa modeling, vehicle relocation

1. Introduction of the system. The level of service is influenced by the aécess
bility of vehicle stations by the potential users, i.e. figtdis-
Car-sharing (also known as shared-use vehicle) systenas hatance between user’s origin and destination from pick-ug an
attracted considerable attention with multiple implenagiohs  drop-df vehicle stations respectively, and (ii) the availabilify o
worldwide [1] due to their potential to improve mobility and vehicles at stations. On the other hand, station numberiaed s
sustainability[[2]. These systems provide benefits botheéirt as well as fleet size and availability of vehicles, at theHtig
users and the society as a whole . Reduced personal trassportime” at the “right station”, influence the cost of estabiigh
tion cost and mobility enhancement have been cited as the twand operating a car-sharing system.
most notable benefits to individual users. Societal beniefits The car-sharing systems can be classified into flexible “one-
clude the reduction of parking space requirements, coiogest way” and the more restricted “two-way” types, according to
reduction, provision offiordable mobility to economically dis- whether the users should return the rented vehicle affardi
advantaged groups|[3,11,/4, 2]. In cases of electric sharleid ve ent or at the location they picked it up. The problem of en-
cle (many examples in European cities) systems, they can alsuring vehicle availability becomes more prominent whem th
provide significant reductions in emissions. vehicles can be rented and used on a one-way basis. The one-
The attractiveness of car-sharing systems is determined byay operation of the vehicles coupled with the imbalance of
the level of service fiered and the cost associated with the usedemand for cars, both at the origin of the trip (pick-up stayi
and at the destination (drogfcstation), may result to a situa-
tion where the vehicles are accumulated to stations whese th
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high vehicle accumulation to stations where shortage iexp stations|[7] and car stations [8]. Although the focus of oorkv
enced, is a technique that has been proposed to improverthe pés on electrical car-sharing systems, we also review madtats
formance of one-way car-sharing systems (e.d./[5, 6]). &bl | address the station location of shared-use bicycles.

of efficient vehicle relocation coupled with the need to guaran- The problem of locating stations for shared-use bicycles ha
tee a given level of vehicle availability may lead to an uresec  been studied recently/[7]. This paper presents a model for de
sary increase of the fleet size and vehicle underutilizafidre ~ termining the number and location of bicycle stations ara th
efficient and cost{ective strategic planning, and the operationstructure of the network of bicycle paths that should be Heve
of one-way car-sharing systems require models that wikrdet oped to connect the bicycle stations. The problem is fortedla
mine the number and location of the service stations, thé fleeas a non-linear integer model. The objective function used e
size, and the dynamic allocation of vehicles to stations- opt presses the total yearly cost encountered by the operatdhan
mally. These models should assist decision makers to strike users. A small scale example was used to illustrate the model
optimum balance between the level of servi¢keed and the and a branch and bound algorithm was used to solve it. This
total cost (including vehicle relocation costs) for implemting ~ model does not consider the daily variation of demand and the

and operating the car-sharing system. problems arising from the dynamic accumulatgiortage of
However, the literature currently lacks a model that can conbicycles due to the variation of demand in time and space.
sider simultaneously decisions related to the deterntinaif The optimization of car depot locations and the definition of

station location, size and number, and fleet size, whilentaki the number of parking spaces (size of the depot) for eachtdepo
into account the dynamics of vehicle relocation and batemci has been also addressed [8]. The number of parking spaces at
Existing models|[7,.8] either look at station locations witlh  each depot is determined by the maximum number of cars that
due consideration to vehicle relocation decisians [7], @am-c  are allocated to each station throughout an operating datyi- V
sider station locations assuming that only the demand in thele relocation (and the associated relocation cost) isiderex
catchment area of opened stations needs to be servicedh[8]. bnly at the end of the entire operating period (i.e. day). sThu
the case where vehicle relocation is modeled [8], the rélmea  this model does not treat explicitly the imbalance created b
of the vehicles and the associated costs are consideredabnlythe one-way operation and therefore it does not rebalarece th
the end of the operating period (usually a day), and thegeforvehicles at the end of each operating sub-interval (e.gr)hou
they are influencing the fleet size. This model assumes that the vehicle imbalance problem is by-

The objective of this paper is twofold: (i) to develop and passed through the optimum depot location and size. The ob-
solve a mathematical model for determining the optimum fleejective function of the model seeks to maximize the profit of
size, and the number and location of the required stations dhe operating agency and takes into account the depragiatio
one-way car-sharing systems by taking into account the dymaintenance and relocation (at the end of the operatinggeri
namic repositioning (relocation) of vehicles, and (ii) fgply  costs of the vehicles, the maintenance cost of the depats, an
the proposed model for planning and operating a one-way ele¢he revenues generated by the system operations. This model
trical car-sharing system in the city of Nice, France. makes the assumption that only trips associated with oen st

The remainder of this paper is organized as follows. Sections need to be served. Thus, the demand (trips) that fatls o
tion[2 provides an overview of previous related work and fur-side the catchment area of open stations associated wisliethe
ther elaborates on the arguments justifying the need fgoithe  tions that are not open is ignored. As a consequence thislmode
posed model, Sectidd 3 presents the formulation and the sold@oes not consider the access and egress cost of the potential
tion approach of the proposed model, Secfibn 4 describes thesers tffrom the candidate station locations. A direct impli-
application of the proposed model for planning and opegatin cation of this assumption is that the proposed model cammot b
a one-way electrical car-sharing system in Nice, Franceewhi used to study the tradeffdetween station accessibility cost and
Sectior[ b discusses the research conclusions and proedes r system benefits. Finally, this model does not consider the dy
ommendations for future research. namic relocation of vehicles throughout the operatingqgkri
The proposed model was used to analyze a case study in Lis-
bon and an optimizer based on branch-and-cut algorithms was
used to solve the problem.

. . . The dynamic allocation of vehicles among the stations of
Models related to the planning and operation of car-sharin . L : .
. . car-sharing system to maximize profit has been modeled in
systems can be classified into the following two broad cate:

T . . . . [4]. The fleet size, the location of stations, and the demand
gories: i) models addressing strategic planning decisiand

> . ; o for trips for a given planning horizon are known in advance.
if) models supporting operational decisions. ; . . i
Penalties associated with unserved trip requests are met co

sidered. A multistage stochastic linear model with receurs

has been proposed to address this problem. A stochastic op-
Strategic planning decisions seek to determine the numbetimization method based on Monte Carlo simulation was used

size and location of stations, and the number of the vehicleto solve the proposed model [4]. This model considers ordy th

that should be assigned to each station, in order to optimize vehicle relocation decisions. Furthermore, vehicle rafion is

measure or a combination of measures of system performangeerformed at the end of the day.

Station location models have been developed to locate leicyc The problem of determining the fleet size and the distribu-
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2. Previous Related Research

2.1. Models for Strategic Planning Decisions



tion of vehicles among the stations of a car-sharing systas w and there are users that are traveling as a group. Undeottis ¢
studied in relation to the Personal Intelligent City Acdeles  dition, the users are asked to use separate vehicles wherighe
Vehicles (PICAVs). This system uses a homogeneous fleet @& shortage of vehicles at their destination [12]. The toiipijg
eco-friendly vehicles and allows one-way trips [9]. Theistas  and the trip-splitting strategies have been analyzed uditg

are parking lots thatfer vehicle recharging services and are collected from a car-sharing system operated at a uniyersi
located at inter-modal transfer points and near majoraitna  through simulation. The results of the simulation modebmsy
sites within a pedestrian area. The number, location andceap that the need for vehicle relocations can be decreased by 42%
ity of stations are not determined by the model, hence constby using these strategies [12]. User based relocation can be
tute inputs to the simulated annealing process. To cope witpartially achieved by introducing flerent pricing policies for

the imbalance of vehicle accumulation of the one-way systemmovements that create high system imbalances [13].

this model introduces the concept of supervisor. The task of Shortest time, and inventory balancing strategies hava bee
the supervisor is to direct users that are flexible in renghe  used [5] for st&f based vehicle relocation. The shortest time
car to alternative stations, as to achieve a balanced déperat strategy relocates cars from other stations to minimizérével

and fulfill a maximum waiting time constraint. The objective time needed for a stamember from higer current location
function of this model includes the minimization of the gail to the station where the car is available plus the travel time
system and user costs subject to a maximum waiting time comeeded from the station that the car is available to theostati
straint. The value of the objective function of the model waswhere the car is needed. The inventory balancing stratégy re
estimated through micro-simulation. A simulated annegdip-  cates cars from stations with over-accumulated vehiclesato
proach was used for determining the fleet size and for aitogat tions that experience vehicle shortages. Both strategere w

vehicles among system stations. tested through a simulation model which was validated using
Models for evaluating the performance of a network of car-data from an operational car-sharing system [5].
sharing stations has been introduced in the literaturelI19, Chance constraint modeling has been used to study fleet re-

This problem arises when the demand for car-sharing servicedistribution [14]. This model assumes that system configura
changes (increases) and as a consequence the network of gian, current inventory of each station, costs and demaedcti
tions should be adapted to serve better the emerging demasthtion are known in advance. The model aims to find the min-
profile. In response to this need a decision support tool wasnum cost fleet redistribution plan for the demand expeated i
developed which allows decision makers to simulate alternathe near future. The chance constrained model with reliabil
tive strategies leading toftierent network configurations. Such ity p (CCM-p) is constructed and solved by utilizing a special
strategies include opening andclosing stations, and increas- technique involvingp-efficient points (PEPs) [15]. The model
ing the capacity of stations. This tool is based on discre¢ate  is applied on the Intelligent Community Vehicle System in-Si
simulation and seeks to maximize the satisfaction levehef t gapore, a one-way system with 14 stations, 202 parking space
users and to minimize the number of cars used [10]. This modeind 94 vehicles.

does not address vehicle relocation as it is based on a systemin the literature, there are also other types of problems tha
that does not allow one-way use of vehicles. Performance anashare common structures with the one-way car-sharing prob-
ysis for shared-use vehicles systems has been proposed in fiem. The multiple depot vehicle scheduling problem withdim
literature using a closed queuing network mode! [11]. Is thi windows (MDVSPTW) is one of the examplés|[16]. In the MD-
approach, both exact and approximate solution methods aMSPTW, each customer has a request of tight time windows
proposed to evaluate the bike sharing syste@tid/operating  with a precise start and end time of operations, and a fleet of
in Paris, France with over 20000 bicycles and 1500 locations vehicles serves these customers one at a time. Each veticle i
the fleet belongs to a depot and the vehicles have to return to
their depot at the end of the service. The objective of th&pro
lem is to minimize the number of vehicles and empty trips.

A major decision associated with the operation of one-way The literature review revealed that existing modelifigprs
car-sharing systems is how to relocate vehicles. The vehicl make a sharp separation between strategic and tactical deci
location problem arises from the imbalanced accumulation osions. This means that strategic decision-making modet®tio
vehicles at stations when the car-sharing system allowis theintegrate in their structure aspects of tactical and ojmrak
one-way use. Dferent strategies and models have been proeecisions (e.g. vehicle relocation, fleet size) that haviga s
posed in the literature to cope with the vehicle relocatimbp  nificant bearing on the cost and performance of the car+siari
lem. system. On the other hand, operational models are focused on

The relocation of shared vehicles can be realized by usinthe detailed modeling of ffierent types of relocation strategies,
operating st [5] or it can be user based [12]. Two user-basedassuming that the location, number, and station and fleet siz
relocation strategies namely, trip-joining and trip-8pig have  are exogenously defined.
been proposed [12]. The trip-joining strategy is used wien t In reality, strategic, tactical, and operational decisiare in-
users have common pick-up and drofi-stations and there is terweaved and therefore there is a strong interaction legtwe
a shortage of vehicles at the pick-up station. In this cdse, t the three decision making levels. Strategic decisions dre p
users are asked to share the ride. The trip-splitting styadte  marily related to the definition of the location, number, aim
used when there is a surplus of vehicles at the pick-up statioof stations and interact with the tactical decision of fldees
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2.2. Operational Decisions



iii. TimeIntervals: An operating day is divided into time

STRATEGIC DECISIONS . . )
. L . intervals (not necessarily equally long) and each operdtie.
ocation ) rental, relocation, charging) starts at the beginning arts et
* Number [ of stations the end of a time interval. The model assumes that demand
* Size is cyclic and it repeats itself on a daily basis for a givenetim
horizon (e.g. season, day of the week) and the first timevaker
of a given day starts after the last time interval of the presi
i day (Figurd ).
TACTICAL DECISIONS
S R start of t;
2 » Fleet size end of i
| ;.
start of tj f start of £,
end of {7 end of t;
\ 4
OPERATIONAL DECISIONS tims ty
— ¢ Vehicle relocation
* Pricing start of 74 , start of t;
end of {72 end of t,
Figure 1: Relationship between strategic, tactical andaifmnal decisions fin2
. .
determination. In turn the fleet size ifected by vehicle re-
location which is an operational decision. Here it is impatt a9
to stress the fact that both fleet size and vehicle relocation . .
fluence the strategic level decisions. The above discussign S
gests that there is a need for a model that will be able to addre n b fe
the strategic and tactical decisions by taking into accgant operations °Pefa“°”3‘ ‘Opefa"ons operations
. . . . i end start end start
a macroscopic level) the impact of vehicle relocation. Fegu startof t; start of £,
(I illustrates these interactions. The above discussiogesig end of end of t;

that there is a need for a model that will be able to address

the strategic and tactical decisions by taking into acc¢aina
macroscopic level) the impact of vehicle relocation. In tvha
follows we are presenting such a model.

Figure 2: The relationship between time intervals and ofmerst

iv. Operations: The system involves three types of opera-

tions: rental, relocation and charging.

3. Model Description

The proposed model is motivated from the planning of elec-
trical one-way car-sharing system. Shared-use electrcara
used to serve trips within a given geographical area. Thiesys
operates on the basis of reservations and therefore thia-orig
destination matrix for the planning period is known in acs@n
Stochastic and seasonal demand variations are also cretside
in the optimization process. In what follows we provide a de-
scription of the system in terms of its demand and supply-char
acteristics.

3.1. System Characteristics

i. Vehicles: A homogeneous fleet of electric cars is used to
provide the services. Any type of trip request can be accommo
dated by any available car.

ii. Stations. Vehicles are picked-up and droppefi-at des-
ignated stations. Stations have the necessary infrasteufar
parking and recharging the vehicles. Each station provides
specific number of parking places which defines the statim si
Station size varies among stations and the size of eacbrstati
determines its capacity.

a. Rental: The system operates on the basis of reser-
vations and allows one-way rental of cars. Reservations are
made in advance of the pick-up time. Origin and destination
locations, and pick-up and drogEdimes are also known.
Cars are picked-ygropped-d fronyat a station that is ac-
cessible to the initial origjfdestination location of the re-
spective user at pre-specified (when reservation is made)
periods. It is assumed that each rental starts at the begin-
ning of a time interval and ends at the end of the same or a
subsequent time interval (Figurk 2).

b. Relocation: The system allows one way rental of
cars. As a result, there might be accumulatioryanshort-
age of cars at stations. Relocation is used to rebalance the
system resources, i.e. vehicles. Relocations can last more
than one time interval (Figufé 2). During relocation, the ve
hicle is not available with the exception of extremely clgse
located stations (i.e. less than 2kms) in which case rental
and relocation can take place at the same time interval. The
total time spend for relocation operations during a time in-
terval cannot exceed the total available time of thé sts
signed to a working shift.



c. Charging: The system modeled in this paper uses
electric vehicles. In order to model the electric vehicles
charging period, it is assumed that after a vehicle is retirn
from a rental operation, it has to stay in the station for a
fixed period of time which represents the charging period
of the vehicle.

v. Working Shift: A set of consecutive time intervals de-
fines a working shift. Working shifts are used to model the
personnel needed for relocation operations.

vi. Centers: Inthe model, centers represent demand points
that can be served by the same set of (candidate) stations. Ti
illustrate how the centers are defined we are using the exampl
shown in Figuré3. Figurlg 3a depicts the origin and destinati

of demand and the station locations. Figlure 3b shows the stas
tions that are accessible byfidirent origin and destination loca-
tions. Please note that more than one station may be adeessib
from a given origirdestination point. The origidestination
points that can access the same set of stations are clugtered
gether and constitute a center. Figlre 3c illustrates twtece
(shaded areas) and trips (demand) associated with thetsexen
The grouping of demand into centers decreases the number o
variables since the trips with the same origin and destinati
centers are grouped together and allows the solution oétarg
instances of problems. The distance between a center aad a st
tion is the average of all distances defined by the demandspoin
of a given center and the associated station.

vii. Demand: Demand represents an aggregation of trip
reservations (orders) of rentals that are associated ndthdame
set of origin and destination centers and have common depar
ture and arrival time intervals. In order to satisfy an “ofd@ a
vehicle from a station that is accessible from the origiratamn
(or equivalently center) at the beginning of the departume t
interval, and (ii) a parking space at a station that is adlokess
from the destination location (or equivalently center)at ¢nd
of the arrival time interval have to be available. Note that;
ders” do not have to be assigned to the closest stations but tg
accessible ones.

viii. Atoms. An atom represents a small geographical area
with known population. The atoms are used to model the pop-
ulation coverage of the car-sharing system. In our model, we

Trip 2

LEGEND

/\ (candidate) station and

\!/ its catchment area
origin or destination of

a demand

(~ demand

() center

\. path from center to station
. trip from station to station

me that there is a maximum distance th rmines if ar ) ) )
assume that there Is a ma um distance that dete es Efﬁlﬂgure 3: (a) Location of stations and historical trips geied between ori-

atom is quered- T_hus, if there is an open_ station closer tha{j\ns and destinations; (b) Origins and destinations arefgd according to the
the predefined maximum value (coverage distance), the &om set of accessible (candidate) stations; (c) Based on thieggtion, a specific

covered. d

iX. Costsand Revenues. The model includes two objec-
tive functions expressing the objectives of the users aadth
erator. The operator's benefits include vehicle rentalmaes
and subsidies, while costs include maintenance, operatidn
relocation of vehicles, and station opening costs. Usegt’ n
benefit is calculated as thefidirence between the utility gain
in terms of monetary value, and the sum of vehicle rental and
accessibility costs. In what follows (see items a to h below)
define all these terms.

emand can be served in twdigrent ways (trip 1 and 2)

a. Vehicle Rental Cost: The amount paid by the users
to the operator to rent a vehicle expresse&janit time

b. Subsidy: It represents money paid directly to the op-
erator, by public agencies, to cover revenue deficits per
rental in€/unit time.

c. Fixed Vehicle Cost: The cost encountered by the
operator expressed #/day (e.g. depreciation, insurance)
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Figure 4: Atoms used in population coverage

d. Variable Vehicle Cost: The cost of the operator per

set as a scenario group and more than one scenarios is geherat
according to day of the week (e.g. weekdays, weekends).

3.2. Mathematical Model

In this part, we represent the mathematical structure of the
proposed model. We first define the sets and indices used to
describe the model as well as the functions, variables and pa
rameters in Sectidn 3.2.1. In Section 312.2, the detailelti-nu
objective mathematical model is given and its objectivecfun
tions and constraints are described in details. The aggrega
model and the rational for to have an aggregate model are pre-
sented in Section 3.2.3.

3.2.1. Inputs
Setsand Indices:

i,k el: centerindices

j,1 € J: (candidate) station indices
t,u,we T: time interval indices

f € F: working shift index

ae A atom index

se S: scenario index

g € G: scenario group index

Functions:

km vehicle rented (e.g. cost of energy, maintenance costext(t,#): time interval that is # intervals after time interval

due to wear-and-tear).
e. Vehicle Relocation Cost: The cost related to the re-

cover(a): set of stations that are accessible from atom

location operations of the vehicles. It has two componentsptwn(t, u): set of time intervals fronito u
the relocation personnel cost (per shift) and the cost for

driving vehicles between stations.
f. Station Operating Cost: The cost of operating a sta-

close(j): set of stations that relocation with statipis possible
during the same time interval

tion. It is a function of the number of operating parking Parameters:

spaces.

g. User Utility: The monetary value of the utility
gained by the users by each satisfied trip express€dlinit
time.

h. Accessibility Cost: The monetary value of time of

SOC;: cost for establishing station
PSC;: cost per parking space available at statjon

VFC?Y: fixed vehicle cost per vehicle-day in scenario grgup

the users required to reach a station from their origin and

from stations to their destination expresse&junit time.

X. Scenarios: Alternative scenarios are defined by varying

VOCS“‘. operating cost of a vehicle rented at time interval
from stationj to reach statiot at time intervalu in sce-
narios

the input parameters of the model (e.g. weekdays, weekends)
Scenarios are used to obtain a more representative aveisge sVRCgt relocation cost of moving a vehicle from statipto |

tem performance.

Xi. Scenario Groups. The set of scenarios which ad-

dresses the same strategic decisions and parametersuymg. n

ber of vehicles, relocation personnel cost) belongs to dinees
scenario group. In order to account for daily variation wvith

startlng at time intervalin scenario groug

ACgt/AC accessingggressing cost frofto regioni to/from
statlonj at time intervatk in scenario groug

RPC?: cost of relocation personnel for working shifin sce-

the same season (e.g. summer, autumn, winter), each ssasoni nario groupg

6



RC?f”/SA?‘lt”: rental chargésubsidy when a vehicle is rented at
time intervalt from stationj to reach statiohat time time
intervalu in scenario groupg

UG?”: user utility when a vehicle is rented at time interval
from stationj to reach statioth at time time interval in
scenarios

CAP;: maximum number of available parking spaces for sta-

tion j

COV: minimum percentage of population need to be covered]

by open stations
PRa: percent of population inhabiting in atoan

OD;": number of orders starting at the beginning of time in-
tervalt from centerj ending at the end of time interval
at centek for scenarios

RI‘J."‘: time intervals needed to relocate a vehicle from station
to | starting at the beginning of time interviain scenario

groupg

LRI?It: last time interval of relocation if a vehicle is relocated
from stationj to | starting at the beginning time intenal
in scenario groupy

SI?: time intervals included in working shiff in scenario
groupg

RT?lt: time spend to relocate a vehicle from statioio | at the
beginning of time interval in scenario grouy

WH?Y: total available working hours for a shift operating dur-
ing time intervalt in scenario groupgy

SW*: weight of the net benefit of scenar®in the objective
function

CTJ-Sf“: charging periods of vehicles rented at time interval
from stationj to reach station at time intervalu in sce-
narios

N: maximum number of open stations

S(g): scenarios belonging to scenario graup
G(s): scenario group of scenarf

Variables:

Xj: binary variable showing if (candidate) statigis open or
not

ny:

J number of parking spaces operating in statjon

nJ.St: number of available vehicles in statigrat the beginning
of time intervalt in scenarios

yiskt}f: number of trip orders satisfied from centeenting vehi-
cle from stationj to make a trip at the beginning of time
intervalt to reach centek through statiorl at the end of
time intervalu in scenarics

zﬁt“: number of vehicles rented from statigrat the beginning
of time intervalt to reach statiohat the end of time inter-
val uin scenarios

ms: number of unserved orders of G
v: number of vehicles used in scenario graup

Ca: binary variable showing if atorais covered by a station or
not

St/Taisjt: number of cars rentgéft from/to stationj at the be-
ginningend of time intervat to/from center in scenario
S

qjs‘/af“: number of vehicles rentddft from/to stationj at the
beginningend of time intervat in scenarios

>
—Q

: number of relocation personnel needed during shifh
scenario groug

bf: number of vehicles rented before time intervathich are

still rented during time intervalin scenarios

number of vehicles being relocated during time intetval
for which their relocation started beforén scenarios

e

rst

K number of vehicles relocated from statigrto | starting

from the beginning of time intervalin scenarios

3.2.2. Detailed Model

The problem formulation is described in equatibfis 11-18. In
order to facilitate the explanation of the model we introgtlic
the following notation:

i. D(it — kU[s]): The demand starting at the beginning of
time intervalt from centeri to centerk ending at the end of
time intervalu in scenarics.

i. T(j* = 1Y[g]): The trip starting from statiof to station
| from the beginning of time intervalto time intervalu in sce-
narios.

iii. S(ﬁJ - klu[s]): The demand that is assigned to a trip
starting from center at the beginning of time intervadlby a
vehicle from stationj, ending at the end of time intervalin
centerk through station in scenarics.

iv. R(j* = I[9]): The relocation starting from statiopat
time intervalt to stationl in scenarics.

The first objective function (Equatid 1) expresses the maxi
mization of the net revenue for the operator. Net revenualis ¢
culated as the tlierence between the sum of total rental revenue
and subsidy minus station, vehicle and relocation costde No
that all of the values in both objective functions exceptista
opening cost are weighted analogous to the number of days (e.
two for weekdays, five for weekends) of each scenario JSW
This is due to the fact that the location of the stations awd th
number of parking spaces are regarded as strategic dexision
and therefore have to be the same in all scenarios. Howewer th
rest of the parameters are scenario (e.g. the number ofleghic



rental charge- subsidy - vh. operating costs vh. relocation co

max Z SwWe Z(RCﬁ‘HSAﬁ‘“—

——
vocsY) zt~ VRCTO'rs!

(sj.l.t) u
vehicle i i (1)
personnel cost . st. operating and parking costs
N maintenance cogt
=37 > swe| Y RPChI+ VFCHE |- (SOGX; +PSGn)
g sS(9) f i
utility - rental charge accessibility cost
G(9t A~C
max ) SWE| Y (UGS~ RCI) 7~ " (ACS™'pit+ AC, B @)
s (5.1, t.u) @i.19

s.t.nf < CAPjx; €) nt<nt (b) Z x; <N © Vjandvs, j,t (3)
i
N > x; @) >imstxx (b) Vi (4)
(st)
< . X @) > PRica > COV (b) va (5)
jecovel(a) a
Dy 4+ mi = ODgM Vsiktu (6)
(D
Dy =7 Vs iLtu (7)
(i,%)
Dy =t @ D yv=py (b) vsijt (8)
(k,1,u) (k,I,u)
tu st ut =St .
>y =q (a) >yt =g (b) Vs it (9)
(kLu) (KTu)
gt < nf' - Z rﬁ‘+ Z rlsjt ¥s, j,t (10)
| leclosdj)
N — o'+ ' - Z rt+ Z rv = nf”ex(t*l) Vs, j,t (11)
| (Lu):
LRI§® =t
>oFw=bt (@ > r=et () Vst (12)
(jl,uw): (jl,u):
tebtwn(uw)\u tebtwn(u,LRIle(s)‘)\u
Z njst bt 4 &St < (OO ¥st (13)
j
D RTFOTS < WHEOHEO vs f,te SI°O (14)
(j,LLu):
teRISO
ri<ny (@) re<ny (b) Vs, j,1,t (15)
et > Z Zw Vs, j,t (16)
(sj,l,u,w):teCTﬁ“W
Xj’ Ca € {0’ 1} v]? a (17)
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specific. The net revenue fo(jf — 1Y[s]) of given type equals type servec(zjsltu).

the rental charge per tri(RCﬁt”) plus subsidy(SAﬁ“’) minus The relocation cost has two components: (i) The vehicle cost

operating Cos(vocﬁtu) times the number of trips of the same related to the total_ km driven to relocate and (ii) the persbn
cost associated with the labor cost of the personnel usestto r
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locate the vehicles. The total vehicle relocation cost isaétp  tionship between the variablgsandz, p (p) andq () respec-
the expenses of all the relocations. The vehicle relocatimt  tively. Please note that, variablegexpress car assignments in-
for R(j' — I[9]) is equal to the sum per reIocatiéVRCﬁ(S)t) dependent of the center to which origiryated their movement,
variablesp andp indicate customer movements from centers to
tstations and from stations to centers respectively, anidhlas

g andq, signify the number of vehicles rented from and left to
station respectively.

times the number of relocatioﬁs?l‘). Similarly, the relocation
personnel cost equals the sum of all personnel costs. Tale to
personnel cost for shiff in scenario grou equals the unit

ersonnel costRPC ) times the number of sfiahired for this h . .
P S(t C?) Constraint§_T0 require that the number of cars leaving a sta-

Shift(h?)- tion (due to rental and relocation) at the beginning of weét
The fixed vehicle cost depends on the total number of vehicannot exceed the number of vehicles available at thabetati
cles operating in the system. For scenaithis cost is equalto  at the same time interval. Constraifit3 11 are the “car coaser
the product of the unit fixed vehicle ca®FC?) and the num-  tion” constraints for each station.
ber of vehicles in the systeifw?) in scenario groum. Note Constraint§ 112 are used to establish the functional relatio
that, for scenarios belonging to the same (scenario) gthep, ship between variables, e, andz, r respectively. Variableb
number of vehicles is the same, since we regard the number ghde are used in Constrainfs]13 to determine the total number
vehicles as a tactical decision. of cars (fleet size) of the system. Constraints 14 are intredu
The station operating and parking space costs are the costs ensure the per shift availability of the workforce neeted
dedicated to station operations. There is a fixed cost forabpe perform car relocations.
ing astatior(SOQ) and a variable coséPsq) for each parking Constraint§ T5a arid [15b set an upper bound to relocation to
space(n]f) operating at given statioj from and relocation to of every station respectively. This u

The second objective (Equatith 2) expresses the maximize" bound equals to the number of operating parking spaces in
; , : - related station. For a station which is not open, the number o
tion of the users’ net benefit. Ufﬁ- can be defined as the : _ _ P ;
monetary value (i.e.€) of the utility gain for each realized relocations from and to this station are set to zero with #mees
T(jt = 1¥[9]) of the same type. Similarly, the rental fee is the constramtg respectively. . . ) )
money paid to the operator for the rental of vehicles by tleesis ~ COnstraint§ I6 are restrictions specific to electric-taring

REV_sItu) and total rental charge equals the sum of them Theystems. These constraints force the vehicles to stay and be
J . . . .
accessibility cost is the cost associated with the accesgress c_harged afte.r each rental opergtlons by_keeplng them irtahe s

of a station from a center. tion they arrived. The constraints requires that the nunolber

Constraint&B413b restrict the number of parking spacas (Stvehicles in thg station should pe greater than or equal to the
. . . . .~ number of vehicles need charging.
tion capacity constraint), and the number of available cleki
for each time interval and station. If a station is not opea in
candidate station location, the station capacity is seeto.zif ~ 3.2.3. Aggregate Model
the station is open then there is an upper bound (GAd? its In real life instances, the model described by equafiding 1-1
capacity. Constraimi 3c limits the total number of opeigsta-  may result in problem sizes that are not possible tofeiently
tions. Constraintsl4a afd 4b require that if a station is ppen solved. Although for most of the variables, we only generate
least one parking space and an operation (i.e. rental,aébog  those that have positive values and construct the correspon
from this station should be assigned as well. These consdrai ing constraints accordingly, we do not have this opporyuioit
are essential in order to guarantee the coverage of the demathe relocation variablelsﬁt. As the relocations can happen be-
by an open station that has at least a capacity of one parkingyeen any station pairs, we need to genefd&s||T| number
space. Constraints 5a dnd 5b are the atom coverage cotsstrairbf variables which renders the case of Nice, France imptessib
i.e. if an atom is covered or not, and population coverage conyo solve. An instance of 142 candidate stations, 12 scemario
straints, i.e. the car-sharing system is accessible byemgier-  and 15 time intervals needs more than 3.6 millions variables
centage of the population, respectively. Constrdifts @irens of type rst only. In order to cope with this issue, we assume
that the total number of orders is equal to the sum of the-satighat the relocated vehicles are firstly accumulated in amima
fied demand and unserved (lost) orders. nary hub and then distributed from that hub to the stations. F
ConstraintE]7 postulate that the total number(tb‘]fSe K [s]) this issue, two new variables:! and?jSt are defined as that the
over origindestination center pairs(i,k), is equal to number of vehicles relocatedjfrqim stationj starting from the
T(j* — 1Y[s]). Constraint§18a indicate that the total number ofbeginningfinishing at the end of time intervalin scenarios.
S(itj - K [s]) from stationj is equal to the number of vehicles With this change, the number of variables of typdecreases
rented from statior) at the beginning of time intervalto serve  to 2J||S||T| which means 51120 variables instead of over 3.6
demand from centers Constraint§18b do the same as con-millions.
straintd 8a for the cars originating from cenitéeft at station; In addition, we substitute the constraints [0, [11, 12b[afnd 14
at the end of period. Constraint§9a arld 9b are equivalent toand[I%, with the following constrainis121328. Moreover, the
Constraint§18a arid 8b and ensure respectively the same-conglehicle relocation cost part of the operator's objectiviection
tions for the cars that are renfift from/to a stationj. Thus, (Equatioril) is replaced with Equatipn]20. Note that, parame
Constraint§ 17184, 8bJ] 9a ahl 9b establish the functiona rel ters LRﬁ’t, VRC']?’t and R'I?t shows the last time interval, the ve-
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Equation$ 2-[9,[12a[ 1B 1618 (19)

new vh. relocation cost

max ) SWe [Z (RCS+ SASM - vOCs) z;tu] — > SWAVRCTE! (rst + 75)
u

(G (s (20)
-3 swe [Z RPCHY + Vchvg] - > (s0Gx; + PsGni)
9 sS(g) f i
qjstS njst_rjst+ Z et Vs, j,t (21)
leclosdj)
qjst + Z ot < njst+ Z net vs, j,t (22)
leclos€j) leclosej)
U R UL ekt @
(j.u):t=LRICEY
rjsu _ Zr?t Vs, j,t (24)
(Iu):t=LRIS®" i
rjsu + T]SU — est Vst (26)
(j,u):tebtwn(u,Lle(s)‘)\u
R-I-?(s)t (rjsu " Tlsu) < WHG(s)th(fB(S) Vs f,te SI?(S) (27)

( j,I,u):teRI‘js(s)“

>0 T'>0 Vs, j,t (28)

hicle relocation cost and time spent when a vehicle is rédota in each scenario.
from/to stationj to/from hub starting in time intervdlin sce-

nario groupg respectively. The aggregate model is expressed o
by equation§ 19-28. 4. Model Application

Ctorllsttratlgtﬁl ?FF?Z reglace %onslturs 10. Ci%nstEIhts 2 The model presented in Sectibn 3]2.3 was applied to plan
postulate that the total number of [T - I“[s]) cannot be more a one-way electrical car sharing system in Nice, France. The

than the number of available vehicles at the beginning of th%tudy area is 294.19Kand has a population 327188 inhabi-
time intervalt; minus the number of relocations from statipn tants between agés 15-64 with a density 1112 peﬂmﬁsThe
plus the number of relocations from the stations that argeclo area under consideration consists of 210 regions. The gopul

enloucg:h totstgt:g;o h?ve relocatlgns :Zt:he samhe :'T.e Inter'tion of each region was obtained from 2009 census data. We
val. Lonstrain Set an upper bound for each stalion groupq me that the population is uniformly distributed insige
close enough to have relocations to the same station. Fbr ea

. . ﬁions and calculate the population of each atom accordingly
set o;_statlorls,fthf ?tal numbe{ gf trips stta;]rtedt;‘]rorp tthlteeeo bThe atoms and their population can be seen in Figure 4.
shonding set of stations cannot be more than the total NUMBET o \yhole model is implemented in C# .NET environment.

of available vehicles at these stations. IBM ILOG Cplex Version 12.2 with Concert Technology is
Constraint§ 23 replace constraint$ 11 of the first model-Conysed for solving MILPs. To cope with the enormous number
straints 2# require that the total number of relocationsifeta-  of relocation variables, the aggregate model (Sedfior8pig.
tions to the imaginary hub ending in time inter¢ahould be  ysed. For each station, half of the average distance ofstlose
equal to the number of relocations to the stations from thegim  stations is calculated and regarded as the distance of the sa
inary hub starting in time interval This is applicable for each gtation to the imaginary hub. This way, we tried to generate
time interval and scenario. values that are close to real relocation distances. Toduith
Constraintd_25a and P5b replace constrdinis 15a[ahd 15bkestigate the performance of the approximation, a sinonati
They set the number of relocations to the number of operatingnvironment that compares average real and hub relocaten d
parking spaces. Constraiis] 26 27 work the same as cotance for 1000 case is generated witffetientn parameters. In
straintd IPb and 14 respectively. The former constrairtsiea Figure[, the error for diierentn values with the number of re-
late the number of vehicles under relocation whereas terlat locations from five to 20 is compared. We decided to use 20 for
constraints decide on the manpower need for each time aitervthe value ofn since it has on average minimum error. In other
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words, when distance for relocation is calculated, theadist  and users benefit respectively. The tesuperiorandinferior
from a station to the hub is assumed half of the average diaised in finding candidate station section refers to supgrior
tance of 20 closest (candidate) stations. Note that a rédmca and inferiority in coverage respectively. If a candidaitisn
is composed of two legs in aggregate model: relocating \eehic covers one more origin or destination location in addition t
from its old station to the imaginary hub and to its new desti-another candidate station’s covered locations, the fooaedi-
nation from the hub. A similar approach is used for the secondlate station is superior to the latter and latter is infetiothe
leg. The number of relocations per personnel has values béarmer.
tween seven and 15 which results in error not more than 0.7km The current system operating in Nice is a two-way car-
per relocation. Since distance per relocation observesisna  sharing system (no need for relocation operations). Howeve
4kms and the total cost of relocation is not more than 10% ofhe proposed model deals with the case of one-way car-gharin
the objective function value of each case (see in figures 9 amgthich makes the implementation more demanding. Therefore,
[Z0), this relaxation might not create an error more than 2%. | there was a need to convert the existing two-way car-sharing
order to deal with the extremely large size of the problem, wedata into one-way. This conversion was achieved by looking a
take advantage of the sparsity of the matrices of the vasabl the current database and creating one-way data by splitieng
and we do not generate the variables that have zero valug. Thirips into more one-way legs when the idle time of the rented v
decreases the number of variables of aggregate model frem ovhicle at the same location was exceeding one hour. We use the
7.6 x 10 to less than B x 10P. origin and destination locations of the real demand in twepst
First, we solve anaximal set covering probleft7] to identify

1.2 the candidate locations for the aggregate model. For each lo
cation, the locations that are accessible (the distanceceet
nearest 15 . . . -~ .
1.1 two points is less than the maximum accessibility distaace)
:E: ——nearest 19 found. Then a maximal set covering problem is solved. In ad-
T 1 dition to existing 42 stations, the model was forced to cboos
2 ——nearest 20 100 new candidate locations for the stations. Second, w&gro
§ 0.9 | nearest 21 the Iocgtlpns into cen_ters. Thls_groupmg was done :_accgrmnn
< the (existing or candidate) stations that are accessiltiecin.
q:) ——nearest 25 The locations with the same accessible stations were asbign
208 to the same centers. The accessibility distance betweanterce
g and a station is calculated by taking the average of thertista
v 0.7 between the elements of the center and the station (Higure 3)
§ ' The graph showing the locations of the origin and destinmatio
° of the trips (crosses), the operating (blue) and candidat (
206 gray and black) stations’ locations (dots) and their catetim
s areas (circles with the same colors) can be seen in Figure 7 in
g 05 which x-axis shows the longitude arygaxis shows the latitude
= values. Note that, the covered origin and destination ionat
04 Eave dark gray color and each grid is a square with sides of 1
m.
After solving set covering problems, the set of candidate lo
03 cations for the aggregate model defined in Se¢fion13.2.3is pr
56 7 8 91011121314151617 181920 duced. The aggregate model is solved witffetent weights

number of relocations

(of users’ and operator’s benefit) in order to generateféin e
Figure 5: Average absolute error of imaginary hub usage ocegion for dif cient frontier for the given case. A total of 12figirent scenar-
fe?ent nu.mber ogf relocations. Mérentn vgluesyare compgared in order to find ios of three seasons (Summer’ autumn, Wmter) for tvii@akint
the most suitable value for our case. day groups (weekdays, weekends) were selected. It was also
assumed that the number of operating vehicles and relocatio
To guarantee generation of feasible solutions in reasenabbersonnel for the same season is the same. This is because the
time, extra cuts are generated with CPLEX. The runs are takeffeet and crew size decisions are considered tactical andtdo n
on a computer with 3.00 Ghz Intel Core 2 Quad CPU and &hange within the same season. Each scenario was condtructe
GB of RAM working with Microsoft Windows 7 environment. by using two days of the real demand of the same day group in
All runs are realized as single threaded programs and euery r the same season. The capacity of each station was set to five
is terminated when either they reach 2% optimality gap or Yehicles and the model was asked to choose 28 more stations
hours run time. Most of the runs that are represented here we(from a set of 100 candidates) in addition to already opegati
terminated in less than three hours and all of the runs had a4 stations. Each day was divided into 15 time intervals with
optimality gap less than 8%. approximately the same demand (“orders”). Each vehicle has
The pseudocode for the entire algorithm can be seen in Figo be charged for two hours after rental. The values for some
ure[6 wherewgperatorand Wysers Stands for weights of operator of the other parameters applied in the model are presented in
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1. Datareading and parameter creation e Add candidate locations found in the solu-
tion to|J|

(a) Read population data and create atoms .
e Seti—i+1

(b) Read historical demand data
(c) Conversion from two-way demand data to one-way 3. Mathematical model

I For each historical demand datum (a) Select predefined number of days from historical de-

A. If waiting time is greater than predefined mand and create scenarios
value
e Split the historical demand and create two (b) Setvalues ohoperator> 0 aNdWisers> 0
new demands (c) Variable creation
(d) Time Interval Selection . Create variables,, xj, nj, ny andb?
i. Setworking shifts ii. Foreach Ot — kU[s])
ii. Find time intervals consistent with working e Create (or increment upper bound if already
shifts that minimizes the variation of demand created) variabl ktﬁ nﬁ(tu andzjslt“

count in each time interval e Create (or increment upper bound if already

2. Finding candidate locations created) variablep, B}, of' andgj'
; st wst S (i
(&) Finding all candidate locations for set covering lii. Create variablesj, Ty andey (if # 0)
model iv. Create variablek} andv?
i. lterate over all demand origin and destination (d) Constraint creation
locations :

i. For eachj € J: Create constrainfs 3d, 4a ddd 4b
ii. Foreach(s, j,t): Create constraifi 3b
iii. For eacha e A: Create constraini 5a

A. If current location issuperiorto any previ-
ously added location

e Remove previously addedferior solution

B. If current location is not inferior to any pre- iv. Create constrain 3c ahtl 5b
viously added location v. For each @' — k'[g]): Create constrainfs[6-9
e Add current location to locations for can- vi. Foreach(st): Create constrainis114a,]13 26
didate locations for set covering model vii. For each(s, j,t): Create constrainfs 116,171125
(b) Finding candidate locations for aggregate model (e) Create objective function with the multiplication of
i. Seti=N WoperatoraNdWysers and 20 andl2 respectively
ii. While |J| < maximum number of stations

(f) Solve the model and, calculate net users’ and opera-
e Run maximal set covering problerflL7] tor's benefit

with number of sets i

Figure 6: Pseudocode of the entire algorithm with the weaiglperatorandwysersfor the users’ and operator’s benefit respectively

Table[d. more than 88.6% of the whole demand. This value climbed
Using the parameters presented in Tdhle 1, we solved thi® 89.8% if the station locations are selected with a maximal
model and we generated théieient frontier provided in Fig- coverage problem over the entire set of origins and degtimsit
urel8. The selected candidate stations can also be seeniireFig For instance, there is an accumulation of demand around the
[7. The candidate stations shown with red color are the candioordinates 43.73N-7.187E and the model selects to oparate
dates that are not selected, the ones with gray and blackere tstation there in all icient solutions.
stations selected at least once. The intensity of the caleng As expected, the operator should sacrifice some of its net
to the selected candidate stations increases as the fiegaén revenue in order to improve total users’ benefit and viceazers
their appearance in théfeient frontier increases. For instance, Although the revenue and subsidy from the served demand is
black means the candidate station appears in all fheient  higher when more demand is served, the rate of increase of the
solutions whereas the lightest gray suggests that it apdeéar operational costs (e.g. vehicle operating cost, relonatimst)
only one of them. is higher than the rate of increase of the associated benefits
As it can be seen in Figufé 8, although the part of the dat#oth the number of vehicles in the system and the increase of
used to create theficient frontier composed of 24 of the 244 relocation operations decrease the utilization of thealebi
days, selected candidate stations manage to cover on averag Another interesting result is associated with the selaabio
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Figure 7: The origin and destinations of the divided tripg, dperating (blue) and candidate (gray, black and redpstaand their catchment areas

fix vehicle cost €/day): 20 Since there is no conflict in station locations, these 28ostat
vehicle operating cos§/km): 0.01 are assumed to be operating stations in addition to alrepdy o
average number of trips per scenario: 79,25 erating 42 stations in the further analysis.
average trip length (km): 30 After deciding about the number and location of the stations
max accessibility distance (km): 0.5 (strategic decision), we perform further analysis in ondesx-
minimum coverage- 20% plore if different demand levels andidirent coverage distances
subsidization €/int): _ 5 influence the solution.
revenue per time interval(int): 8 . ) . . .
accessibility cost€/km): 5 Firstly, we examine theff“ect of demand kfy using five dif-
utility (€/time int.): 20 fergnt _Ievels and equal weight for the users’ and the oplma.to
relocation speed (kth): 30 bjectl\{es. The results of these runs are demonstratedjimd-i
relocation personnel cosE(hour): 16 @. In Figurel®, there are two sets of bar chart; for each level
of demand. These bar charts correspond ftedint number
Table 1: Some values of the parameters used in the model of available vehicles, fixed vs. relaxed. Fixed is referred t

the number of vehicles identified in the baseline scenaritewh

in the relaxed case this constraint is not applicable angmor
common stations in determining théieient frontier. It is ob-  Moving from left to right we generate for both cases (fixed and
served that (in addition to 42 already operating statiomis) arelaxed), alternative demand levels by increasing theliqase
eight eficient solutions select stations among a set of 36 candeémand by 50% up to the level of 200%. Please note, in order
didate locations. More specifically, 19 of these statiorseap to eliminate bias, dferent days are considered in determining
in all solutions, five in seven solutions and four in six sigos. ~ the demand. In the bottom of the graph, the total numberpf tri
This result suggests that from station location point ofwitie requests, the number of unsatisfied demand and their percent
efficient station locations are not in conflict when considering®d€ can also be seen for the related cases.
the user and the operator objectives and the solution isstobu  For the relaxed case, the operator’s benefits are increasing
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70 Efficient Frontier for The Case of Nice
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1191.76 | 697.47 1375.94 | 695.37 |[ 1395.61 | 693.57

37 [26.39%]72.10
35 [27.20%[71.29(34.67]27.56 %] 71.17
Lol 2.02] 2.71 [48.83][2.04] 2.73 [47.98|[ 1428.04 | 686.78

700 o — 32.33[29.47 %[70.21
2.17] 2.90 [47.57

1453.65 | 676.90
675 32 [29.42 %[69.26
2.16| 2.89 | a4

1468.79 | 667.16
31.33]29.86 %[68.86
650 219[ 2.92 | 41

1491.73 | 642.10
30 [31.05 %[67.60
625 225 3 [37.76

total users' benefit (€/day)

600
LEGEND
net operator [net user benefit]
revenue
575 vehicle [ vehicle | rental
count | utilization | count 1503.02 | 557.08
# of rental # of charg. | reloc. 29 [31.85 %|66.43
/car |period / car] count l 2.28| 3.05 [32.95
550 -
1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

net operator revenue (€/day)

Figure 8: The #icient frontier for the case of Nice, France.

faster than the users’ benefits for increasing levels of deima since equal weights are used for the users’ and the operator’
In the fixed case we observe the same pattern as well. As thebjectives. The subsidy and the users utility are the only tw
demand increases net benefits are increasing as the model calues contributing to the increase of the value of the dbjec
select to serve the most profitable customers to serve from fanction and force the model to serve more orders. The most
larger pool of candidate customers. In the fixed case, thpeslo significant cost is the fixed vehicle cost. The rest of thesost
of users’ and operator’s benefits curves decreases as ttmdem (fuel cost, relocation personnel cost and accessibilist)care
increases. This is because of the limitation on the number adlmost insignificant as compared to fixed vehicle cost. Tieé fu
vehicles. cost is low because the system is operating with electri¢- veh

This is an expected result since the model does not penaliz&4s and the cost of fuel is 0.@/km. In the calculation of the
unsatisfied demand while at the same time increases the valfi@location personnel count, itis observed that it is alsegimif-
of the objective function from the satisfied demand. The in-icant to the net income of the operator. In the most congested
crease of demand lets the model to choose from a larger set ag¥stem not more than three relocation personnels (equivale
both the fixed and relaxed models benefit from it and increasé4 hours of relocation personnel) are used which makes a cost
their objectives. Note that, this increase of demand regalt of €384. This finding shows that relocation is not an operation
a higher density of demand, a fact that gives more flexibilitySignificantly increasing the cost of operators in realitgec-
to the model to select customers leading to improved ojecti cessibility cost is not significant because both the acbitisgi
function values. For the 50% increased demand, the bensfit loCOSt per km (€/km) and maximum accessibility distance (0.5
for both the operator and the users are almost impreceptibl&m) are insignificant compared to other costs (e.g. util2g:
However, the dference between the relaxed and fixed case&/time int., relocation personnel cost: hour).

becomes significant with a demand increase of 100%. Another important finding related to the change in the per-
Another important finding is the relationship of costs, bene centage of unserved requests. Although the number of gasati

fits and revenues. Since the rental fee is a cost for the uséis a fied demand is increasing with the increase of the total numbe

benefit for the operator, it has nffect in our objective function of trips as expected, in the “relaxed” cases the percentdgsto
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Figure 9: The costs, benefits and revenues with the incretesednd

demand is decreasing. This may be due to the fact that the casbduced to the system. The average number of servingssatio
of unserved demand due to shortage of vehicles is less tlkan tfor the covered origin or destination points increases 2306
cost of acquiring extra vehicles to serve the lost demanoinFr to 6.329. This results to an expanded feasible region for the
a detailed observation of the results, it can be inferretitttee = model and consequently leads to an improvement of the objec-
concentration of demand during specific intervals at spegéft  tive function value. The same argument holds for the deereas
ographical locations is high. During these intervals theleto of the unserved demand.
prefers not to serve additional “orders”, since the costdsen
than the benefit.

The dfect of maximum accessibility distance was also in-
vestigated for two dferent levels of demand (e.g. base and
+200%). Six diferent accessibility distances from 500 to A detailed look to the fect of accessibility distance shows
1000m in every 100m intervals were tested. The graph showinthe importance of the accessibility to the stations. In oadet,
the components of the objective function value can be seen itihe dfect of other public transportation systems to accessibilit
Figure[10. distance is not taken into consideration. It is assumedthiat

In both graphs, it can be seen that the maximum accessibilitysers can reach stations that are close enough to walk. ldowev
distance does noffi@ct the net users’ benefit while operator’s the increase in the accessibility distance tremendoushgase
revenue is improved 1-4% for each distance increment defininthe flexibility and dficiency in the system. It is obvious that ac-
the accessibility. There is also a slight increase bothertakal  cessibility highly dfects the service quality anéheiency of the
satisfied demand and the ratio of the satisfied demand to totalstem. This underlines the nature of the car sharing sgstem
demand. The former is because of the increase in the covere¢dat work as systems complimentary to public transponmatio
demand while the latter is the consequence of the flexibility =~ which contribute to the increase of the overall mobility.
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Figure 10: The costs, benefits, revenues and demandfferatit maximum accessibility distances

5. Concluding Remarks tem performance.
Although the model provides satisfactory results for theeca
under consideration, it should be pointed out that the tesué

A multi-objective model for supporting strategic and teati .
planning decisions for car-sharing systems with a moddl thadependgnt on the model parameters used and cannot bgijectl
eneralized. The value of the research presented herens ste

maximizes the users’ and the operators benefits separatsly wld . . . .
developed and tested in a large scale real world setting. Thfn{\Om th.e |nnovat|ye mode_l p roposed and |.ts use for suppgrtin
model considers simultaneously the net benefits of bothphe o strategic and tactical decision fgr car sharlng SVS‘e”?S-

erator and the users. The proposed model closes a gap in theResearch work gnder way |r_1volves the mtegratlon (.)f the
existing literature by considering simultaneously dewisi as- proposed_m.odel with a S|_mulat|on model that will prpwde a
sociated with the allocation of strategic assets, i.eicstatand more rgahstlc repres_entatlon .OT the relocat_lon operatiosts
vehicles of car-sharing systems and the allocation of persio by looking on opgrat!onal demspns. Modeling the opgnnlo .
for relocation operations (tactical decision). The model-p problem and assigning the vehicle rosters while takingrthei

vides the decision makers with ample opportunities to parfo g!ectr!cal Ch: :cgelée'vel Ilnto cons'ldera]ttlzn IS anothe(;r:mtuo;l;v
sensitivity analysis for the relevant model parametersatiire ¢ Irections. A fie hlm_p er_nentgtlon of the proposed framewor
particularly useful for cost values that ardfidiult to establish Orone-way car sharing Is under preparation.

empirically (e.g. utility gain of satisfied customers, ptation

coverage, station accessibility cost). Furthermore, todtim References
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