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Abstract

Electric vehicle sharing systems have been introduced to a number of cities around the world as a means of increasing mobility,
reducing congestion, and pollution. Electric vehicle sharing systems can offer one or two-way services. One-way systems provide
more flexibility to users since they can be dropped-off at any stations; however their modeling involves a number ofcomplexities
arising from the need to relocate vehicles accumulated at certain stations. The planning of one-way electric vehicle-sharing systems
involves a host of strongly interacting decisions regarding the number, size and location of stations, as well as fleet size.

In this paper we develop and solve a multi-objective MILP formulation for planning one-way vehicle-sharing systems taking into
account vehicle relocation and electric vehicle charging requirements. For real world problems the size of the problembecomes
intractable due to the extremely large number of relocationvariables. In order to cope with this problem we introduce anaggregate
model using the concept of the virtual hub. This transformation allows the solution of the problem with a branch and bound
approach, while the error introduced is less than 2%.

The proposed solution generates the efficient frontier and allows decision makers to examine the trade-off between operator’s
revenues and users’ net benefits. The capabilities of the proposed approach are demonstrated on a large scale real world problem
with available data from Nice, France. Extensive sensitivity analysis was performed by varying demand and station accessibility
distance. The results provide useful insights regarding the efficient planning of one-way electric vehicle sharing systems.
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1. Introduction

Car-sharing (also known as shared-use vehicle) systems have
attracted considerable attention with multiple implementations
worldwide [1] due to their potential to improve mobility and
sustainability [2]. These systems provide benefits both to their
users and the society as a whole . Reduced personal transporta-
tion cost and mobility enhancement have been cited as the two
most notable benefits to individual users. Societal benefitsin-
clude the reduction of parking space requirements, congestion
reduction, provision of affordable mobility to economically dis-
advantaged groups [3, 1, 4, 2]. In cases of electric shared vehi-
cle (many examples in European cities) systems, they can also
provide significant reductions in emissions.

The attractiveness of car-sharing systems is determined by
the level of service offered and the cost associated with the use
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of the system. The level of service is influenced by the accessi-
bility of vehicle stations by the potential users, i.e. (i) the dis-
tance between user’s origin and destination from pick-up and
drop-off vehicle stations respectively, and (ii) the availability of
vehicles at stations. On the other hand, station number and size,
as well as fleet size and availability of vehicles, at the “right
time” at the “right station”, influence the cost of establishing
and operating a car-sharing system.

The car-sharing systems can be classified into flexible “one-
way” and the more restricted “two-way” types, according to
whether the users should return the rented vehicle at a differ-
ent or at the location they picked it up. The problem of en-
suring vehicle availability becomes more prominent when the
vehicles can be rented and used on a one-way basis. The one-
way operation of the vehicles coupled with the imbalance of
demand for cars, both at the origin of the trip (pick-up station)
and at the destination (drop-off station), may result to a situa-
tion where the vehicles are accumulated to stations where they
are not needed, while at the same time there is vehicle shortage
at the stations where more vehicles are needed.

Vehicle relocation, i.e. transfer of vehicles from stations with
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high vehicle accumulation to stations where shortage is experi-
enced, is a technique that has been proposed to improve the per-
formance of one-way car-sharing systems (e.g. [5, 6]). The lack
of efficient vehicle relocation coupled with the need to guaran-
tee a given level of vehicle availability may lead to an unneces-
sary increase of the fleet size and vehicle underutilization. The
efficient and cost-effective strategic planning, and the operation
of one-way car-sharing systems require models that will deter-
mine the number and location of the service stations, the fleet
size, and the dynamic allocation of vehicles to stations opti-
mally. These models should assist decision makers to strikean
optimum balance between the level of service offered and the
total cost (including vehicle relocation costs) for implementing
and operating the car-sharing system.

However, the literature currently lacks a model that can con-
sider simultaneously decisions related to the determination of
station location, size and number, and fleet size, while taking
into account the dynamics of vehicle relocation and balancing.
Existing models [7, 8] either look at station locations without
due consideration to vehicle relocation decisions [7], or con-
sider station locations assuming that only the demand in the
catchment area of opened stations needs to be serviced [8]. In
the case where vehicle relocation is modeled [8], the relocation
of the vehicles and the associated costs are considered onlyat
the end of the operating period (usually a day), and therefore
they are influencing the fleet size.

The objective of this paper is twofold: (i) to develop and
solve a mathematical model for determining the optimum fleet
size, and the number and location of the required stations of
one-way car-sharing systems by taking into account the dy-
namic repositioning (relocation) of vehicles, and (ii) to apply
the proposed model for planning and operating a one-way elec-
trical car-sharing system in the city of Nice, France.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of previous related work and fur-
ther elaborates on the arguments justifying the need for thepro-
posed model, Section 3 presents the formulation and the solu-
tion approach of the proposed model, Section 4 describes the
application of the proposed model for planning and operating
a one-way electrical car-sharing system in Nice, France while
Section 5 discusses the research conclusions and provides rec-
ommendations for future research.

2. Previous Related Research

Models related to the planning and operation of car-sharing
systems can be classified into the following two broad cate-
gories: i) models addressing strategic planning decisions, and
ii) models supporting operational decisions.

2.1. Models for Strategic Planning Decisions

Strategic planning decisions seek to determine the number,
size and location of stations, and the number of the vehicles
that should be assigned to each station, in order to optimizea
measure or a combination of measures of system performance.
Station location models have been developed to locate bicycle

stations [7] and car stations [8]. Although the focus of our work
is on electrical car-sharing systems, we also review modelsthat
address the station location of shared-use bicycles.

The problem of locating stations for shared-use bicycles has
been studied recently [7]. This paper presents a model for de-
termining the number and location of bicycle stations and the
structure of the network of bicycle paths that should be devel-
oped to connect the bicycle stations. The problem is formulated
as a non-linear integer model. The objective function used ex-
presses the total yearly cost encountered by the operator and the
users. A small scale example was used to illustrate the model
and a branch and bound algorithm was used to solve it. This
model does not consider the daily variation of demand and the
problems arising from the dynamic accumulation/shortage of
bicycles due to the variation of demand in time and space.

The optimization of car depot locations and the definition of
the number of parking spaces (size of the depot) for each depot
has been also addressed [8]. The number of parking spaces at
each depot is determined by the maximum number of cars that
are allocated to each station throughout an operating day. Vehi-
cle relocation (and the associated relocation cost) is considered
only at the end of the entire operating period (i.e. day). Thus,
this model does not treat explicitly the imbalance created by
the one-way operation and therefore it does not rebalance the
vehicles at the end of each operating sub-interval (e.g. hour).
This model assumes that the vehicle imbalance problem is by-
passed through the optimum depot location and size. The ob-
jective function of the model seeks to maximize the profit of
the operating agency and takes into account the depreciation,
maintenance and relocation (at the end of the operating period)
costs of the vehicles, the maintenance cost of the depots, and
the revenues generated by the system operations. This model
makes the assumption that only trips associated with open sta-
tions need to be served. Thus, the demand (trips) that falls out-
side the catchment area of open stations associated with thesta-
tions that are not open is ignored. As a consequence this model
does not consider the access and egress cost of the potential
users to/from the candidate station locations. A direct impli-
cation of this assumption is that the proposed model cannot be
used to study the trade-off between station accessibility cost and
system benefits. Finally, this model does not consider the dy-
namic relocation of vehicles throughout the operating period.
The proposed model was used to analyze a case study in Lis-
bon and an optimizer based on branch-and-cut algorithms was
used to solve the problem.

The dynamic allocation of vehicles among the stations of
a car-sharing system to maximize profit has been modeled in
[4]. The fleet size, the location of stations, and the demand
for trips for a given planning horizon are known in advance.
Penalties associated with unserved trip requests are not con-
sidered. A multistage stochastic linear model with recourse
has been proposed to address this problem. A stochastic op-
timization method based on Monte Carlo simulation was used
to solve the proposed model [4]. This model considers only the
vehicle relocation decisions. Furthermore, vehicle relocation is
performed at the end of the day.

The problem of determining the fleet size and the distribu-
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tion of vehicles among the stations of a car-sharing system was
studied in relation to the Personal Intelligent City Accessible
Vehicles (PICAVs). This system uses a homogeneous fleet of
eco-friendly vehicles and allows one-way trips [9]. The stations
are parking lots that offer vehicle recharging services and are
located at inter-modal transfer points and near major attraction
sites within a pedestrian area. The number, location and capac-
ity of stations are not determined by the model, hence consti-
tute inputs to the simulated annealing process. To cope with
the imbalance of vehicle accumulation of the one-way system,
this model introduces the concept of supervisor. The task of
the supervisor is to direct users that are flexible in returning the
car to alternative stations, as to achieve a balanced operation
and fulfill a maximum waiting time constraint. The objective
function of this model includes the minimization of the daily
system and user costs subject to a maximum waiting time con-
straint. The value of the objective function of the model was
estimated through micro-simulation. A simulated annealing ap-
proach was used for determining the fleet size and for allocating
vehicles among system stations.

Models for evaluating the performance of a network of car-
sharing stations has been introduced in the literature [10,11].
This problem arises when the demand for car-sharing services
changes (increases) and as a consequence the network of sta-
tions should be adapted to serve better the emerging demand
profile. In response to this need a decision support tool was
developed which allows decision makers to simulate alterna-
tive strategies leading to different network configurations. Such
strategies include opening and/or closing stations, and increas-
ing the capacity of stations. This tool is based on discrete event
simulation and seeks to maximize the satisfaction level of the
users and to minimize the number of cars used [10]. This model
does not address vehicle relocation as it is based on a system
that does not allow one-way use of vehicles. Performance anal-
ysis for shared-use vehicles systems has been proposed in the
literature using a closed queuing network model [11]. In this
approach, both exact and approximate solution methods are
proposed to evaluate the bike sharing system Vélib operating
in Paris, France with over 20000 bicycles and 1500 locations.

2.2. Operational Decisions

A major decision associated with the operation of one-way
car-sharing systems is how to relocate vehicles. The vehicle re-
location problem arises from the imbalanced accumulation of
vehicles at stations when the car-sharing system allows their
one-way use. Different strategies and models have been pro-
posed in the literature to cope with the vehicle relocation prob-
lem.

The relocation of shared vehicles can be realized by using
operating staff [5] or it can be user based [12]. Two user-based
relocation strategies namely, trip-joining and trip-splitting have
been proposed [12]. The trip-joining strategy is used when two
users have common pick-up and drop-off stations and there is
a shortage of vehicles at the pick-up station. In this case, the
users are asked to share the ride. The trip-splitting strategy is
used when there is a surplus of vehicles at the pick-up station

and there are users that are traveling as a group. Under this con-
dition, the users are asked to use separate vehicles when there is
a shortage of vehicles at their destination [12]. The trip-joining
and the trip-splitting strategies have been analyzed usingdata
collected from a car-sharing system operated at a university and
through simulation. The results of the simulation model suggest
that the need for vehicle relocations can be decreased by 42%
by using these strategies [12]. User based relocation can be
partially achieved by introducing different pricing policies for
movements that create high system imbalances [13].

Shortest time, and inventory balancing strategies have been
used [5] for staff based vehicle relocation. The shortest time
strategy relocates cars from other stations to minimize thetravel
time needed for a staff member from his/her current location
to the station where the car is available plus the travel time
needed from the station that the car is available to the station
where the car is needed. The inventory balancing strategy relo-
cates cars from stations with over-accumulated vehicles tosta-
tions that experience vehicle shortages. Both strategies were
tested through a simulation model which was validated using
data from an operational car-sharing system [5].

Chance constraint modeling has been used to study fleet re-
distribution [14]. This model assumes that system configura-
tion, current inventory of each station, costs and demand ateach
station are known in advance. The model aims to find the min-
imum cost fleet redistribution plan for the demand expected in
the near future. The chance constrained model with reliabil-
ity p (CCM-p) is constructed and solved by utilizing a special
technique involvingp-efficient points (PEPs) [15]. The model
is applied on the Intelligent Community Vehicle System in Sin-
gapore, a one-way system with 14 stations, 202 parking spaces
and 94 vehicles.

In the literature, there are also other types of problems that
share common structures with the one-way car-sharing prob-
lem. The multiple depot vehicle scheduling problem with time
windows (MDVSPTW) is one of the examples [16]. In the MD-
VSPTW, each customer has a request of tight time windows
with a precise start and end time of operations, and a fleet of
vehicles serves these customers one at a time. Each vehicle in
the fleet belongs to a depot and the vehicles have to return to
their depot at the end of the service. The objective of the prob-
lem is to minimize the number of vehicles and empty trips.

The literature review revealed that existing modeling efforts
make a sharp separation between strategic and tactical deci-
sions. This means that strategic decision-making models donot
integrate in their structure aspects of tactical and operational
decisions (e.g. vehicle relocation, fleet size) that have a sig-
nificant bearing on the cost and performance of the car-sharing
system. On the other hand, operational models are focused on
the detailed modeling of different types of relocation strategies,
assuming that the location, number, and station and fleet size
are exogenously defined.

In reality, strategic, tactical, and operational decisions are in-
terweaved and therefore there is a strong interaction between
the three decision making levels. Strategic decisions are pri-
marily related to the definition of the location, number, andsize
of stations and interact with the tactical decision of fleet size
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STRATEGIC DECISIONS 

• Location 

• Number      of stations 

• Size 

OPERATIONAL  DECISIONS 

• Vehicle relocation 

• Pricing 

TACTICAL DECISIONS 

• Fleet size 

Figure 1: Relationship between strategic, tactical and operational decisions

determination. In turn the fleet size is affected by vehicle re-
location which is an operational decision. Here it is important
to stress the fact that both fleet size and vehicle relocationin-
fluence the strategic level decisions. The above discussionsug-
gests that there is a need for a model that will be able to address
the strategic and tactical decisions by taking into account(at
a macroscopic level) the impact of vehicle relocation. Figure
1 illustrates these interactions. The above discussion suggests
that there is a need for a model that will be able to address
the strategic and tactical decisions by taking into account(at a
macroscopic level) the impact of vehicle relocation. In what
follows we are presenting such a model.

3. Model Description

The proposed model is motivated from the planning of elec-
trical one-way car-sharing system. Shared-use electric cars are
used to serve trips within a given geographical area. The system
operates on the basis of reservations and therefore the origin-
destination matrix for the planning period is known in advance.
Stochastic and seasonal demand variations are also considered
in the optimization process. In what follows we provide a de-
scription of the system in terms of its demand and supply char-
acteristics.

3.1. System Characteristics
i. Vehicles: A homogeneous fleet of electric cars is used to

provide the services. Any type of trip request can be accommo-
dated by any available car.

ii. Stations: Vehicles are picked-up and dropped-off at des-
ignated stations. Stations have the necessary infrastructure for
parking and recharging the vehicles. Each station providesa
specific number of parking places which defines the station size.
Station size varies among stations and the size of each station
determines its capacity.

iii. Time Intervals: An operating day is divided into time
intervals (not necessarily equally long) and each operation (i.e.
rental, relocation, charging) starts at the beginning and ends at
the end of a time interval. The model assumes that demand
is cyclic and it repeats itself on a daily basis for a given time
horizon (e.g. season, day of the week) and the first time interval
of a given day starts after the last time interval of the previous
day (Figure 2).

start of t1
end of t|T|

start of t2
end of t1

t1

t2

t3

start of t1
end of t|T|

t|T|

t|T|-1

t|T|-2

start of t2
end of t1

start of t3
end of t2

start of t|T|-1
end of t|T|-2

start of t|T|
end of t|T|-1

t1

operations

start

operations

end

operations

start

operations

end

t2t|T|

Figure 2: The relationship between time intervals and operations

iv. Operations: The system involves three types of opera-
tions: rental, relocation and charging.

a. Rental: The system operates on the basis of reser-
vations and allows one-way rental of cars. Reservations are
made in advance of the pick-up time. Origin and destination
locations, and pick-up and drop-off times are also known.
Cars are picked-up/dropped-off from/at a station that is ac-
cessible to the initial origin/destination location of the re-
spective user at pre-specified (when reservation is made)
periods. It is assumed that each rental starts at the begin-
ning of a time interval and ends at the end of the same or a
subsequent time interval (Figure 2).

b. Relocation: The system allows one way rental of
cars. As a result, there might be accumulation and/or short-
age of cars at stations. Relocation is used to rebalance the
system resources, i.e. vehicles. Relocations can last more
than one time interval (Figure 2). During relocation, the ve-
hicle is not available with the exception of extremely closely
located stations (i.e. less than 2kms) in which case rental
and relocation can take place at the same time interval. The
total time spend for relocation operations during a time in-
terval cannot exceed the total available time of the staff as-
signed to a working shift.
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c. Charging: The system modeled in this paper uses
electric vehicles. In order to model the electric vehicles
charging period, it is assumed that after a vehicle is returned
from a rental operation, it has to stay in the station for a
fixed period of time which represents the charging period
of the vehicle.

v. Working Shift: A set of consecutive time intervals de-
fines a working shift. Working shifts are used to model the
personnel needed for relocation operations.

vi. Centers: In the model, centers represent demand points
that can be served by the same set of (candidate) stations. To
illustrate how the centers are defined we are using the example
shown in Figure 3. Figure 3a depicts the origin and destination
of demand and the station locations. Figure 3b shows the sta-
tions that are accessible by different origin and destination loca-
tions. Please note that more than one station may be accessible
from a given origin/destination point. The origin/destination
points that can access the same set of stations are clusteredto-
gether and constitute a center. Figure 3c illustrates two centers
(shaded areas) and trips (demand) associated with these centers.
The grouping of demand into centers decreases the number of
variables since the trips with the same origin and destination
centers are grouped together and allows the solution of larger
instances of problems. The distance between a center and a sta-
tion is the average of all distances defined by the demand points
of a given center and the associated station.

vii. Demand: Demand represents an aggregation of trip
reservations (orders) of rentals that are associated with the same
set of origin and destination centers and have common depar-
ture and arrival time intervals. In order to satisfy an “order” (i) a
vehicle from a station that is accessible from the origin location
(or equivalently center) at the beginning of the departure time
interval, and (ii) a parking space at a station that is accessible
from the destination location (or equivalently center) at the end
of the arrival time interval have to be available. Note that,“or-
ders” do not have to be assigned to the closest stations but to
accessible ones.

viii. Atoms: An atom represents a small geographical area
with known population. The atoms are used to model the pop-
ulation coverage of the car-sharing system. In our model, we
assume that there is a maximum distance that determines if an
atom is covered. Thus, if there is an open station closer than
the predefined maximum value (coverage distance), the atom is
covered.

ix. Costs and Revenues: The model includes two objec-
tive functions expressing the objectives of the users and the op-
erator. The operator’s benefits include vehicle rental revenues
and subsidies, while costs include maintenance, operationand
relocation of vehicles, and station opening costs. Users’ net
benefit is calculated as the difference between the utility gain
in terms of monetary value, and the sum of vehicle rental and
accessibility costs. In what follows (see items a to h below)we
define all these terms.

a

b

Trip 1

Trip 2 c

(candidate) station and

its catchment area

origin or destination of

a demand

demand

center
path from center to station

trip from station to station

LEGEND

Figure 3: (a) Location of stations and historical trips generated between ori-
gins and destinations; (b) Origins and destinations are grouped according to the
set of accessible (candidate) stations; (c) Based on this aggregation, a specific
demand can be served in two different ways (trip 1 and 2)

a. Vehicle Rental Cost: The amount paid by the users
to the operator to rent a vehicle expressed ine/unit time

b. Subsidy: It represents money paid directly to the op-
erator, by public agencies, to cover revenue deficits per
rental ine/unit time.

c. Fixed Vehicle Cost: The cost encountered by the
operator expressed ine/day (e.g. depreciation, insurance)
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Figure 4: Atoms used in population coverage

d. Variable Vehicle Cost: The cost of the operator per
km vehicle rented (e.g. cost of energy, maintenance cost
due to wear-and-tear).

e. Vehicle Relocation Cost: The cost related to the re-
location operations of the vehicles. It has two components:
the relocation personnel cost (per shift) and the cost for
driving vehicles between stations.

f. Station Operating Cost: The cost of operating a sta-
tion. It is a function of the number of operating parking
spaces.

g. User Utility: The monetary value of the utility
gained by the users by each satisfied trip expressed ine/unit
time.

h. Accessibility Cost: The monetary value of time of
the users required to reach a station from their origin and
from stations to their destination expressed ine/unit time.

x. Scenarios: Alternative scenarios are defined by varying
the input parameters of the model (e.g. weekdays, weekends).
Scenarios are used to obtain a more representative average sys-
tem performance.

xi. Scenario Groups: The set of scenarios which ad-
dresses the same strategic decisions and parameters (e.g. num-
ber of vehicles, relocation personnel cost) belongs to the same
scenario group. In order to account for daily variation within
the same season (e.g. summer, autumn, winter), each season is

set as a scenario group and more than one scenarios is generated
according to day of the week (e.g. weekdays, weekends).

3.2. Mathematical Model

In this part, we represent the mathematical structure of the
proposed model. We first define the sets and indices used to
describe the model as well as the functions, variables and pa-
rameters in Section 3.2.1. In Section 3.2.2, the detailed multi-
objective mathematical model is given and its objective func-
tions and constraints are described in details. The aggregate
model and the rational for to have an aggregate model are pre-
sented in Section 3.2.3.

3.2.1. Inputs
Sets and Indices:

i, k ∈ I : center indices

j, l ∈ J: (candidate) station indices

t,u,w ∈ T: time interval indices

f ∈ F: working shift index

a ∈ A: atom index

s ∈ S: scenario index

g ∈ G: scenario group index

Functions:

next(t,#): time interval that is # intervals after time intervalt

cover(a): set of stations that are accessible from atoma

btwn(t,u): set of time intervals fromt to u

close ( j): set of stations that relocation with stationj is possible
during the same time interval

Parameters:

SOC j: cost for establishing stationj

PSC j: cost per parking space available at stationj

VFCg: fixed vehicle cost per vehicle-day in scenario groupg

VOCstu
jl : operating cost of a vehicle rented at time intervalt

from station j to reach stationl at time intervalu in sce-
narios

VRCgt
jl : relocation cost of moving a vehicle from stationj to l
starting at time intervalt in scenario groupg

ACgt
i j /AC

gt
i j : accessing/egressing cost from/to regioni to/from

station j at time intervalt in scenario groupg

RPCg
f : cost of relocation personnel for working shiftf in sce-
nario groupg
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RCgtu
jl /SAgtu

jl : rental charge/subsidy when a vehicle is rented at
time intervalt from stationj to reach stationl at time time
intervalu in scenario groupg

UGstu
jl : user utility when a vehicle is rented at time intervalt
from station j to reach stationl at time time intervalu in
scenarios

CAP j: maximum number of available parking spaces for sta-
tion j

COV: minimum percentage of population need to be covered
by open stations

PRa: percent of population inhabiting in atoma

ODstu
ik : number of orders starting at the beginning of time in-
terval t from centerj ending at the end of time intervalu
at centerk for scenarios

RIgt
jl : time intervals needed to relocate a vehicle from stationj

to l starting at the beginning of time intervalt in scenario
groupg

LRIgt
jl : last time interval of relocation if a vehicle is relocated
from station j to l starting at the beginning time intervalt
in scenario groupg

SIg
f : time intervals included in working shiftf in scenario

groupg

RTgt
jl : time spend to relocate a vehicle from stationj to l at the
beginning of time intervalt in scenario groupg

WHgt: total available working hours for a shift operating dur-
ing time intervalt in scenario groupg

SWs: weight of the net benefit of scenarios in the objective
function

CTstu
jl : charging periods of vehicles rented at time intervalt
from station j to reach stationl at time intervalu in sce-
narios

N: maximum number of open stations

S (g): scenarios belonging to scenario groupg

G (s): scenario group of scenarios

Variables:

x j: binary variable showing if (candidate) stationj is open or
not

n⋆j : number of parking spaces operating in stationj

nst
j : number of available vehicles in stationj at the beginning

of time intervalt in scenarios

ystu
ik jl : number of trip orders satisfied from centeri renting vehi-

cle from stationj to make a trip at the beginning of time
interval t to reach centerk through stationl at the end of
time intervalu in scenarios

zstu
jl : number of vehicles rented from stationj at the beginning

of time intervalt to reach stationl at the end of time inter-
val u in scenarios

mstu
ik : number of unserved orders of ODstu

ik

vg: number of vehicles used in scenario groupg

ca: binary variable showing if atoma is covered by a station or
not

pst
i j /p

st
i j : number of cars rented/left from/to station j at the be-
ginning/end of time intervalt to/from centeri in scenario
s

qst
j /q

st
j : number of vehicles rented/left from/to station j at the
beginning/end of time intervalt in scenarios

hg
f : number of relocation personnel needed during shiftf in

scenario groupg

bs
t : number of vehicles rented before time intervalt which are

still rented during time intervalt in scenarios

es
t : number of vehicles being relocated during time intervalt

for which their relocation started beforet in scenarios

r st
jl : number of vehicles relocated from stationj to l starting

from the beginning of time intervalt in scenarios

3.2.2. Detailed Model
The problem formulation is described in equations 1-18. In

order to facilitate the explanation of the model we introduced
the following notation:

i. D
(

it → ku [s]
)

: The demand starting at the beginning of
time interval t from centeri to centerk ending at the end of
time intervalu in scenarios.

ii. T
(

jt → lu [s]
)

: The trip starting from stationj to station
l from the beginning of time intervalt to time intervalu in sce-
narios.

iii. S
(

itj → ku
l [s]
)

: The demand that is assigned to a trip
starting from centeri at the beginning of time intervalt by a
vehicle from stationj, ending at the end of time intervalu in
centerk through stationl in scenarios.

iv. R
(

jt → l [s]
)

: The relocation starting from stationj at
time intervalt to stationl in scenarios.

The first objective function (Equation 1) expresses the maxi-
mization of the net revenue for the operator. Net revenue is cal-
culated as the difference between the sum of total rental revenue
and subsidy minus station, vehicle and relocation costs. Note
that all of the values in both objective functions except station
opening cost are weighted analogous to the number of days (e.g.
two for weekdays, five for weekends) of each scenario (SWs).
This is due to the fact that the location of the stations and the
number of parking spaces are regarded as strategic decisions
and therefore have to be the same in all scenarios. However the
rest of the parameters are scenario (e.g. the number of vehicles)
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max
∑

(s, j,l,t)

SWs





rental charge+ subsidy - vh. operating costs
︷                                      ︸︸                                      ︷
∑

u

(

RCstu
jl + SAstu

jl − VOCstu
jl

)

zstu
jl −

vh. relocation cost
︷       ︸︸       ︷

VRCG(s)t
jl r st

jl





−
∑

g

∑

s∈S(g)

SWs





personnel cost
︷        ︸︸        ︷
∑

f

RPCg
f h

g
f +

vehicle
maintenance cost
︷   ︸︸   ︷

VFCgvg





−

st. operating and parking costs
︷                        ︸︸                        ︷
∑

j

(

SOCj x j + PSCjn
∗
j

)

(1)

max
∑

s

SWs





utility - rental charge
︷                          ︸︸                          ︷
∑

( j,l,t,u)

(

UGstu
jl − RCstu

jl

)

zstu
jl −

accessibility cost
︷                                ︸︸                                ︷
∑

(i, j,t)

(

ACG(s)t
i j pst

i j + AC
G(s)t
i j pst

i j

)





(2)

s.t. n⋆j ≤ CAPj x j (a) nst
j ≤ n⋆j (b)

∑

j

x j ≤ N (c) ∀ j and∀s, j, t (3)

n⋆j ≥ x j (a)
∑

(s,t)

nst
j ≥ x j (b) ∀ j (4)

ca ≤
∑

j∈cover(a)

x j (a)
∑

a

PRaca ≥ COV (b) ∀a (5)

∑

( j,l)

ystu
ik jl +mstu

ik = ODstu
ik ∀s, i, k, t,u (6)

∑

(i,k)

ystu
ik jl = zstu

jl ∀s, j, l, t,u (7)

∑

(k,l,u)

ystu
ik jl = pst

i j (a)
∑

(k,l,u)

ysut
kil j = pst

i j (b) ∀s, i, j, t (8)

∑

(i,k,l,u)

ystu
ik jl = qst

j (a)
∑

(i,k,l,u)

ysut
ikl j = qst

j (b) ∀s, j, t (9)

qst
j ≤ nst

j −
∑

l

r st
jl +

∑

l∈close( j)

r st
l j ∀s, j, t (10)

nst
j − qst

j + qst
j −
∑

l

r st
jl +

∑

(l,u):
LRIG(s)u

jl =t

r su
jl = nsnext(t,1)

j ∀s, j, t (11)

∑

( j,l,u,w):
t∈btwn(u,w)\u

zsuw
jl = bst (a)

∑

( j,l,u):
t∈btwn

(

u,LRIG(s)t
jl

)

\u

r su
jl = est (b) ∀s, t (12)

∑

j

nst
j + bst + est ≤ vG(s) ∀s, t (13)

∑

( j,l,u):
t∈RIG(s)u

jl

RTG(s)t
jl r su

jl ≤WHG(s)thG(s)
f ∀s, f , t ∈ SIG(s)

f (14)

r st
jl ≤ n⋆j (a) r st

l j ≤ n⋆j (b) ∀s, j, l, t (15)

nst
j ≥

∑

(s, j,l,u,w):t∈CTsuw
l j

zsuw
l j ∀s, j, t (16)

x j , ca ∈ {0,1} ∀ j,a (17)

nst
j ,n
⋆
j , p

st
i j , p

st
i j , r

st
jl ,m

stu
ik , z

stu
jl , y

stu
ik jl ,q

st
j ,q

st
j ,b

st,est, vs,hg
f ∈ N ∀s, i, k, j, l, t,u,g, f (18)

specific. The net revenue for T
(

jt → lu [s]
)

of given type equals
the rental charge per trip

(

RCstu
jl

)

plus subsidy
(

SAstu
jl

)

minus

operating cost
(

VOCstu
jl

)

times the number of trips of the same

type served
(

zstu
jl

)

.
The relocation cost has two components: (i) The vehicle cost

related to the total km driven to relocate and (ii) the personnel
cost associated with the labor cost of the personnel used to re-
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locate the vehicles. The total vehicle relocation cost is equal to
the expenses of all the relocations. The vehicle relocationcost
for R

(

jt → l [s]
)

is equal to the sum per relocation
(

VRCG(s)t
jl

)

times the number of relocations
(

r st
jl

)

. Similarly, the relocation
personnel cost equals the sum of all personnel costs. The total
personnel cost for shiftf in scenario groupg equals the unit
personnel cost

(

RPCg
f

)

times the number of staff hired for this

shift
(

hg
f

)

.
The fixed vehicle cost depends on the total number of vehi-

cles operating in the system. For scenarios, this cost is equal to
the product of the unit fixed vehicle cost(VFCg) and the num-
ber of vehicles in the system(vg) in scenario groupg. Note
that, for scenarios belonging to the same (scenario) group,the
number of vehicles is the same, since we regard the number of
vehicles as a tactical decision.

The station operating and parking space costs are the costs
dedicated to station operations. There is a fixed cost for operat-
ing a station

(

SOCj

)

and a variable cost
(

PSCj

)

for each parking

space
(

n∗j
)

operating at given stationj.
The second objective (Equation 2) expresses the maximiza-

tion of the users’ net benefit. UGstu
jl can be defined as the

monetary value (i.e.e) of the utility gain for each realized
T
(

jt → lu [s]
)

of the same type. Similarly, the rental fee is the
money paid to the operator for the rental of vehicles by the users
(

REVstu
jl

)

and total rental charge equals the sum of them. The
accessibility cost is the cost associated with the access oregress
of a station from a center.

Constraints 3a, 3b restrict the number of parking spaces (sta-
tion capacity constraint), and the number of available vehicles
for each time interval and station. If a station is not open ina
candidate station location, the station capacity is set to zero. If
the station is open then there is an upper bound (CAPj) for its
capacity. Constraint 3c limits the total number of operating sta-
tions. Constraints 4a and 4b require that if a station is open, at
least one parking space and an operation (i.e. rental, relocation)
from this station should be assigned as well. These constraints
are essential in order to guarantee the coverage of the demand
by an open station that has at least a capacity of one parking
space. Constraints 5a and 5b are the atom coverage constraints,
i.e. if an atom is covered or not, and population coverage con-
straints, i.e. the car-sharing system is accessible by a given per-
centage of the population, respectively. Constraints 6 ensure
that the total number of orders is equal to the sum of the satis-
fied demand and unserved (lost) orders.

Constraints 7 postulate that the total number of S
(

itj → ku
l [s]
)

over origin/destination center pairs(i, k), is equal to
T
(

jt → lu [s]
)

. Constraints 8a indicate that the total number of
S
(

itj → ku
l [s]
)

from station j is equal to the number of vehicles
rented from stationj at the beginning of time intervalt to serve
demand from centersi. Constraints 8b do the same as con-
straints 8a for the cars originating from centeri left at stationj
at the end of periodt. Constraints 9a and 9b are equivalent to
Constraints 8a and 8b and ensure respectively the same condi-
tions for the cars that are rented/left from/to a stationj. Thus,
Constraints 7, 8a, 8b, 9a and 9b establish the functional rela-

tionship between the variablesy, andz, p (p) andq (q) respec-
tively. Please note that, variablesz express car assignments in-
dependent of the center to which originate/end their movement,
variablesp andp indicate customer movements from centers to
stations and from stations to centers respectively, and variables
q andq, signify the number of vehicles rented from and left to
station respectively.

Constraints 10 require that the number of cars leaving a sta-
tion (due to rental and relocation) at the beginning of interval t
cannot exceed the number of vehicles available at that stations
at the same time interval. Constraints 11 are the “car conserva-
tion” constraints for each station.

Constraints 12 are used to establish the functional relation-
ship between variablesb, e, andz, r respectively. Variablesb
ande are used in Constraints 13 to determine the total number
of cars (fleet size) of the system. Constraints 14 are introduced
to ensure the per shift availability of the workforce neededto
perform car relocations.

Constraints 15a and 15b set an upper bound to relocation to
from and relocation to of every station respectively. This up-
per bound equals to the number of operating parking spaces in
related station. For a station which is not open, the number of
relocations from and to this station are set to zero with the same
constraints respectively.

Constraints 16 are restrictions specific to electric-car-sharing
systems. These constraints force the vehicles to stay and be
charged after each rental operations by keeping them in the sta-
tion they arrived. The constraints requires that the numberof
vehicles in the station should be greater than or equal to the
number of vehicles need charging.

3.2.3. Aggregate Model
In real life instances, the model described by equations 1-18

may result in problem sizes that are not possible to be efficiently
solved. Although for most of the variables, we only generate
those that have positive values and construct the correspond-
ing constraints accordingly, we do not have this opportunity for
the relocation variablesr st

jl . As the relocations can happen be-

tween any station pairs, we need to generate|J|2|S||T | number
of variables which renders the case of Nice, France impossible
to solve. An instance of 142 candidate stations, 12 scenarios
and 15 time intervals needs more than 3.6 millions variables
of type r st

jl only. In order to cope with this issue, we assume
that the relocated vehicles are firstly accumulated in an imagi-
nary hub and then distributed from that hub to the stations. For
this issue, two new variables,r st

j andr st
j are defined as that the

number of vehicles relocated from/to stationj starting from the
beginning/finishing at the end of time intervalt in scenarios.
With this change, the number of variables of typer decreases
to 2|J||S||T | which means 51120 variables instead of over 3.6
millions.

In addition, we substitute the constraints 10, 11, 12b and 14
and 15, with the following constraints 21-28. Moreover, the
vehicle relocation cost part of the operator’s objective function
(Equation 1) is replaced with Equation 20. Note that, parame-
ters LRIgt

j , VRCgt
j and RTgt

j shows the last time interval, the ve-
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Equations 2− 9, 12a, 13, 16− 18 (19)

max
∑

(s, j,l,t)

SWs





∑

u

(

RCstu
jl + SAstu

jl − VOCstu
jl

)

zstu
jl



 −

new vh. relocation cost
︷                              ︸︸                              ︷
∑

(s, j,t)

SWsVRCG(s)t
j

(

r st
j + r st

j

)

−
∑

g

∑

s∈S(g)

SWs





∑

f

RPCg
f h

g
f + VFCgvg




−
∑

j

(

SOCj x j + PSCjn
∗
j

)

(20)

qst
j ≤ nst

j − r st
j +

∑

l∈close( j)

r st
l ∀s, j, t (21)

qst
j +

∑

l∈close( j)

qst
l ≤ nst

j +
∑

l∈close( j)

nst
l ∀s, j, t (22)

nst
j − qst

j + qst
j − r st

j +
∑

( j,u):t=LRIG(s)u
j

r su
j = nsnext(t,1)

j ∀s, j, t (23)

∑

( j,u):t=LRIG(s)u
jl

r su
j =
∑

j

r st
j ∀s, j, t (24)

r st
j ≤ n⋆j (a) r st

j ≤ n⋆j (b) ∀s, j, t (25)
∑

( j,u):t∈btwn
(

u,LRIG(s)t
j

)

\u

r su
j + r su

j = est ∀s, t (26)

∑

( j,l,u):t∈RIG(s)u
j

RTG(s)t
j

(

r su
j + r su

j

)

≤WHG(s)thG(s)
f ∀s, f , t ∈ SIG(s)

f (27)

r st
j ≥ 0 r st

j ≥ 0 ∀s, j, t (28)

hicle relocation cost and time spent when a vehicle is relocated
from/to station j to/from hub starting in time intervalt in sce-
nario groupg respectively. The aggregate model is expressed
by equations 19-28.

Constraints 21 and 22 replace constraints 10. Constraints 21
postulate that the total number of T

(

jt → lu [s]
)

cannot be more
than the number of available vehicles at the beginning of the
time intervalt; minus the number of relocations from stationj;
plus the number of relocations from the stations that are close
enough to stationj to have relocations at the same time inter-
val. Constraints 22 set an upper bound for each station group
close enough to have relocations to the same station. For each
set of stations, the total number of trips started from the corre-
sponding set of stations cannot be more than the total number
of available vehicles at these stations.

Constraints 23 replace constraints 11 of the first model. Con-
straints 24 require that the total number of relocations from sta-
tions to the imaginary hub ending in time intervalt should be
equal to the number of relocations to the stations from the imag-
inary hub starting in time intervalt. This is applicable for each
time interval and scenario.

Constraints 25a and 25b replace constraints 15a and 15b.
They set the number of relocations to the number of operating
parking spaces. Constraints 26 and 27 work the same as con-
straints 12b and 14 respectively. The former constraints calcu-
late the number of vehicles under relocation whereas the latter
constraints decide on the manpower need for each time interval

in each scenario.

4. Model Application

The model presented in Section 3.2.3 was applied to plan
a one-way electrical car sharing system in Nice, France. The
study area is 294.19km2 and has a population 327188 inhabi-
tants between ages 15-64 with a density 1112 persons/km2. The
area under consideration consists of 210 regions. The popula-
tion of each region was obtained from 2009 census data. We
assume that the population is uniformly distributed insidere-
gions and calculate the population of each atom accordingly.
The atoms and their population can be seen in Figure 4.

The whole model is implemented in C# .NET environment.
IBM ILOG Cplex Version 12.2 with Concert Technology is
used for solving MILPs. To cope with the enormous number
of relocation variables, the aggregate model (Section 3.2.3) is
used. For each station, half of the average distance of closest n
stations is calculated and regarded as the distance of the same
station to the imaginary hub. This way, we tried to generate
values that are close to real relocation distances. To further in-
vestigate the performance of the approximation, a simulation
environment that compares average real and hub relocation dis-
tance for 1000 case is generated with differentn parameters. In
Figure 5, the error for differentn values with the number of re-
locations from five to 20 is compared. We decided to use 20 for
the value ofn since it has on average minimum error. In other
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words, when distance for relocation is calculated, the distance
from a station to the hub is assumed half of the average dis-
tance of 20 closest (candidate) stations. Note that a relocation
is composed of two legs in aggregate model: relocating vehicle
from its old station to the imaginary hub and to its new desti-
nation from the hub. A similar approach is used for the second
leg. The number of relocations per personnel has values be-
tween seven and 15 which results in error not more than 0.7km
per relocation. Since distance per relocation observed is around
4kms and the total cost of relocation is not more than 10% of
the objective function value of each case (see in figures 9 and
10), this relaxation might not create an error more than 2%. In
order to deal with the extremely large size of the problem, we
take advantage of the sparsity of the matrices of the variables
and we do not generate the variables that have zero value. This
decreases the number of variables of aggregate model from over
7.6× 1010 to less than 3.8× 105.
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Figure 5: Average absolute error of imaginary hub usage in relocation for dif-
ferent number of relocations. Differentn values are compared in order to find
the most suitable value for our case.

To guarantee generation of feasible solutions in reasonable
time, extra cuts are generated with CPLEX. The runs are taken
on a computer with 3.00 Ghz Intel Core 2 Quad CPU and 8
GB of RAM working with Microsoft Windows 7 environment.
All runs are realized as single threaded programs and every run
is terminated when either they reach 2% optimality gap or 9
hours run time. Most of the runs that are represented here were
terminated in less than three hours and all of the runs had an
optimality gap less than 8%.

The pseudocode for the entire algorithm can be seen in Fig-
ure 6 wherewoperatorandwusersstands for weights of operator

and users benefit respectively. The termssuperiorandinferior
used in finding candidate station section refers to superiority
and inferiority in coverage respectively. If a candidate station
covers one more origin or destination location in addition to
another candidate station’s covered locations, the formercandi-
date station is superior to the latter and latter is inferiorto the
former.

The current system operating in Nice is a two-way car-
sharing system (no need for relocation operations). However,
the proposed model deals with the case of one-way car-sharing,
which makes the implementation more demanding. Therefore,
there was a need to convert the existing two-way car-sharing
data into one-way. This conversion was achieved by looking at
the current database and creating one-way data by splittingthe
trips into more one-way legs when the idle time of the rented ve-
hicle at the same location was exceeding one hour. We use the
origin and destination locations of the real demand in two steps.
First, we solve amaximal set covering problem[17] to identify
the candidate locations for the aggregate model. For each lo-
cation, the locations that are accessible (the distance between
two points is less than the maximum accessibility distance)are
found. Then a maximal set covering problem is solved. In ad-
dition to existing 42 stations, the model was forced to choose
100 new candidate locations for the stations. Second, we group
the locations into centers. This grouping was done according to
the (existing or candidate) stations that are accessible tothem.
The locations with the same accessible stations were assigned
to the same centers. The accessibility distance between a center
and a station is calculated by taking the average of the distance
between the elements of the center and the station (Figure 3).
The graph showing the locations of the origin and destination
of the trips (crosses), the operating (blue) and candidate (red,
gray and black) stations’ locations (dots) and their catchment
areas (circles with the same colors) can be seen in Figure 7 in
which x-axis shows the longitude andy-axis shows the latitude
values. Note that, the covered origin and destination locations
have dark gray color and each grid is a square with sides of 1
km.

After solving set covering problems, the set of candidate lo-
cations for the aggregate model defined in Section 3.2.3 is pro-
duced. The aggregate model is solved with different weights
(of users’ and operator’s benefit) in order to generate an effi-
cient frontier for the given case. A total of 12 different scenar-
ios of three seasons (summer, autumn, winter) for two different
day groups (weekdays, weekends) were selected. It was also
assumed that the number of operating vehicles and relocation
personnel for the same season is the same. This is because the
fleet and crew size decisions are considered tactical and do not
change within the same season. Each scenario was constructed
by using two days of the real demand of the same day group in
the same season. The capacity of each station was set to five
vehicles and the model was asked to choose 28 more stations
(from a set of 100 candidates) in addition to already operating
42 stations. Each day was divided into 15 time intervals with
approximately the same demand (“orders”). Each vehicle has
to be charged for two hours after rental. The values for some
of the other parameters applied in the model are presented in
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1. Data reading and parameter creation

(a) Read population data and create atoms

(b) Read historical demand data

(c) Conversion from two-way demand data to one-way

i. For each historical demand datum
A. If waiting time is greater than predefined

value
• Split the historical demand and create two

new demands

(d) Time Interval Selection

i. Set working shifts
ii. Find time intervals consistent with working

shifts that minimizes the variation of demand
count in each time interval

2. Finding candidate locations

(a) Finding all candidate locations for set covering
model

i. Iterate over all demand origin and destination
locations
A. If current location issuperiorto any previ-

ously added location
• Remove previously addedinferior solution

B. If current location is not inferior to any pre-
viously added location
• Add current location to locations for can-

didate locations for set covering model

(b) Finding candidate locations for aggregate model

i. Seti = N
ii. While |J| < maximum number of stations

• Run maximal set covering problem[17]
with number of sets= i

• Add candidate locations found in the solu-
tion to |J|

• Seti ← i + 1

3. Mathematical model

(a) Select predefined number of days from historical de-
mand and create scenarios

(b) Set values ofwoperator> 0 andwusers> 0

(c) Variable creation

i. Create variablesca, x j , n j , n⋆j andbs
t

ii. For each D
(

it → ku [s]
)

• Create (or increment upper bound if already
created) variablesystu

ik jl , mstu
ik andzstu

jl

• Create (or increment upper bound if already
created) variablespst

i j , pst
i j , qst

j andqst
j

iii. Create variablesr st
jl , r st

jl andes
t (if , 0)

iv. Create variableshg
f andvg

(d) Constraint creation

i. For eachj ∈ J: Create constraints 3a, 4a and 4b

ii. For each(s, j, t): Create constraint 3b

iii. For eacha ∈ A: Create constraint 5a

iv. Create constraints 3c and 5b

v. For each D
(

it → ku [s]
)

: Create constraints 6-9

vi. For each(s, t): Create constraints 12a, 13 and 26

vii. For each(s, j, t): Create constraints 16, 21-25

(e) Create objective function with the multiplication of
woperatorandwusers, and 20 and 2 respectively

(f) Solve the model and, calculate net users’ and opera-
tor’s benefit

Figure 6: Pseudocode of the entire algorithm with the weights woperatorandwusersfor the users’ and operator’s benefit respectively

Table 1.
Using the parameters presented in Table 1, we solved the

model and we generated the efficient frontier provided in Fig-
ure 8. The selected candidate stations can also be seen in Figure
7. The candidate stations shown with red color are the candi-
dates that are not selected, the ones with gray and black are the
stations selected at least once. The intensity of the color given
to the selected candidate stations increases as the frequency of
their appearance in the efficient frontier increases. For instance,
black means the candidate station appears in all the efficient
solutions whereas the lightest gray suggests that it appeared in
only one of them.

As it can be seen in Figure 8, although the part of the data
used to create the efficient frontier composed of 24 of the 244
days, selected candidate stations manage to cover on average

more than 88.6% of the whole demand. This value climbed
to 89.8% if the station locations are selected with a maximal
coverage problem over the entire set of origins and destinations.
For instance, there is an accumulation of demand around the
coordinates 43.73N-7.187E and the model selects to operatea
station there in all efficient solutions.

As expected, the operator should sacrifice some of its net
revenue in order to improve total users’ benefit and vice versa.
Although the revenue and subsidy from the served demand is
higher when more demand is served, the rate of increase of the
operational costs (e.g. vehicle operating cost, relocation cost)
is higher than the rate of increase of the associated benefits.
Both the number of vehicles in the system and the increase of
relocation operations decrease the utilization of the vehicles.

Another interesting result is associated with the selection of
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Figure 7: The origin and destinations of the divided trips, the operating (blue) and candidate (gray, black and red) stations and their catchment areas

fix vehicle cost (e/day): 20
vehicle operating cost (e/km): 0.01
average number of trips per scenario: 79.25
average trip length (km): 30
max accessibility distance (km): 0.5
minimum coverage: 20%
subsidization (e/int): 5
revenue per time interval (e/int): 8
accessibility cost (e/km): 5
utility (e/time int.): 20
relocation speed (km/h): 30
relocation personnel cost (e/hour): 16

Table 1: Some values of the parameters used in the model

common stations in determining the efficient frontier. It is ob-
served that (in addition to 42 already operating stations) all
eight efficient solutions select stations among a set of 36 can-
didate locations. More specifically, 19 of these stations appear
in all solutions, five in seven solutions and four in six solutions.
This result suggests that from station location point of view, the
efficient station locations are not in conflict when considering
the user and the operator objectives and the solution is robust.

Since there is no conflict in station locations, these 28 stations
are assumed to be operating stations in addition to already op-
erating 42 stations in the further analysis.

After deciding about the number and location of the stations
(strategic decision), we perform further analysis in orderto ex-
plore if different demand levels and different coverage distances
influence the solution.

Firstly, we examine the effect of demand by using five dif-
ferent levels and equal weight for the users’ and the operator’s
objectives. The results of these runs are demonstrated in Figure
9. In Figure 9, there are two sets of bar charts for each level
of demand. These bar charts correspond to different number
of available vehicles, fixed vs. relaxed. Fixed is referred to
the number of vehicles identified in the baseline scenario while
in the relaxed case this constraint is not applicable anymore.
Moving from left to right we generate for both cases (fixed and
relaxed), alternative demand levels by increasing the baseline
demand by 50% up to the level of 200%. Please note, in order
to eliminate bias, different days are considered in determining
the demand. In the bottom of the graph, the total number of trip
requests, the number of unsatisfied demand and their percent-
age can also be seen for the related cases.

For the relaxed case, the operator’s benefits are increasing
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Figure 8: The efficient frontier for the case of Nice, France.

faster than the users’ benefits for increasing levels of demand.
In the fixed case we observe the same pattern as well. As the
demand increases net benefits are increasing as the model can
select to serve the most profitable customers to serve from a
larger pool of candidate customers. In the fixed case, the slope
of users’ and operator’s benefits curves decreases as the demand
increases. This is because of the limitation on the number of
vehicles.

This is an expected result since the model does not penalizes
unsatisfied demand while at the same time increases the value
of the objective function from the satisfied demand. The in-
crease of demand lets the model to choose from a larger set and
both the fixed and relaxed models benefit from it and increase
their objectives. Note that, this increase of demand results to
a higher density of demand, a fact that gives more flexibility
to the model to select customers leading to improved objective
function values. For the 50% increased demand, the benefit lost
for both the operator and the users are almost impreceptible.
However, the difference between the relaxed and fixed cases
becomes significant with a demand increase of 100%.

Another important finding is the relationship of costs, bene-
fits and revenues. Since the rental fee is a cost for the users and a
benefit for the operator, it has no effect in our objective function

since equal weights are used for the users’ and the operator’s
objectives. The subsidy and the users utility are the only two
values contributing to the increase of the value of the objective
function and force the model to serve more orders. The most
significant cost is the fixed vehicle cost. The rest of the costs
(fuel cost, relocation personnel cost and accessibility cost) are
almost insignificant as compared to fixed vehicle cost. The fuel
cost is low because the system is operating with electric vehi-
cles and the cost of fuel is 0.01e/km. In the calculation of the
relocation personnel count, it is observed that it is also insignif-
icant to the net income of the operator. In the most congested
system not more than three relocation personnels (equivalent to
24 hours of relocation personnel) are used which makes a cost
of e384. This finding shows that relocation is not an operation
significantly increasing the cost of operators in reality. The ac-
cessibility cost is not significant because both the accessibility
cost per km (5e/km) and maximum accessibility distance (0.5
km) are insignificant compared to other costs (e.g. utility:20
e/time int., relocation personnel cost: 16e/hour).

Another important finding related to the change in the per-
centage of unserved requests. Although the number of unsatis-
fied demand is increasing with the increase of the total number
of trips as expected, in the “relaxed” cases the percentage of lost
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Figure 9: The costs, benefits and revenues with the increaseddemand

demand is decreasing. This may be due to the fact that the cost
of unserved demand due to shortage of vehicles is less than the
cost of acquiring extra vehicles to serve the lost demand. From
a detailed observation of the results, it can be inferred that the
concentration of demand during specific intervals at specific ge-
ographical locations is high. During these intervals the model
prefers not to serve additional “orders”, since the cost is more
than the benefit.

The effect of maximum accessibility distance was also in-
vestigated for two different levels of demand (e.g. base and
+200%). Six different accessibility distances from 500 to
1000m in every 100m intervals were tested. The graph showing
the components of the objective function value can be seen in
Figure 10.

In both graphs, it can be seen that the maximum accessibility
distance does not affect the net users’ benefit while operator’s
revenue is improved 1-4% for each distance increment defining
the accessibility. There is also a slight increase both in the total
satisfied demand and the ratio of the satisfied demand to total
demand. The former is because of the increase in the covered
demand while the latter is the consequence of the flexibilityin-

troduced to the system. The average number of serving stations
for the covered origin or destination points increases from2.306
to 6.329. This results to an expanded feasible region for the
model and consequently leads to an improvement of the objec-
tive function value. The same argument holds for the decrease
of the unserved demand.

A detailed look to the effect of accessibility distance shows
the importance of the accessibility to the stations. In our model,
the effect of other public transportation systems to accessibility
distance is not taken into consideration. It is assumed thatthe
users can reach stations that are close enough to walk. However,
the increase in the accessibility distance tremendously increase
the flexibility and efficiency in the system. It is obvious that ac-
cessibility highly affects the service quality and efficiency of the
system. This underlines the nature of the car sharing systems
that work as systems complimentary to public transportation,
which contribute to the increase of the overall mobility.
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Figure 10: The costs, benefits, revenues and demand for different maximum accessibility distances

5. Concluding Remarks

A multi-objective model for supporting strategic and tactical
planning decisions for car-sharing systems with a model that
maximizes the users’ and the operators benefits separately was
developed and tested in a large scale real world setting. The
model considers simultaneously the net benefits of both the op-
erator and the users. The proposed model closes a gap in the
existing literature by considering simultaneously decisions as-
sociated with the allocation of strategic assets, i.e. stations and
vehicles of car-sharing systems and the allocation of personnel
for relocation operations (tactical decision). The model pro-
vides the decision makers with ample opportunities to perform
sensitivity analysis for the relevant model parameters, a feature
particularly useful for cost values that are difficult to establish
empirically (e.g. utility gain of satisfied customers, population
coverage, station accessibility cost). Furthermore, the multi-
objective nature of the model allows the decision maker to ex-
amine the trade-off between operator’s profit and users’ level of
service. This last feature is of particular importance if wecon-
sider that car-sharing systems are subsidized with public funds.
The results obtained from the application of the model to a case
resembling real world decision making requirements, provides
the decision maker with useful information regarding the sys-

tem performance.
Although the model provides satisfactory results for the case

under consideration, it should be pointed out that the results are
dependent on the model parameters used and cannot be directly
generalized. The value of the research presented herein stems
from the innovative model proposed and its use for supporting
strategic and tactical decision for car sharing systems.

Research work under way involves the integration of the
proposed model with a simulation model that will provide a
more realistic representation of the relocation operationcosts
by looking on operational decisions. Modeling the operational
problem and assigning the vehicle rosters while taking their
electrical charge level into consideration is another future work
directions. A field implementation of the proposed framework
for one-way car sharing is under preparation.
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