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Abstract. We investigate broken rational tori consisting of a chain of four (rather than two) periodic
orbits. The normal form that describes this configuration is identified and used to construct a uniform
semiclassical approximation, which can be utilized to improve trace formulae. An accuracy gain can be
achieved even for the situation when two of the four orbits are ghosts. This is illustrated for a model
system, the kicked top.
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1 Introduction

Periodic orbits provide the skeleton of the dynamics of
classical Hamiltonian systems. Generic dynamical systems
display a mixed phase space, consisting of islands of stabil-
ity residing in chaotic seas. The periodic orbits are neither
grouped in families, like in integrable systems, nor are they
well isolated and all unstable, as for chaotic systems. One
rather finds also stable periodic orbits surrounded by is-
lands of regular behaviour. These islands of stability look
locally like an almost integrable system, altogether with a
KAM structure of invariant tori and chains of periodic or-
bits, remnants of rational tori of a supposedly contiguous
integrable situation [1].

In a semiclassical treatment of the corresponding quan-
tum system, clusters of proximate orbits display a col-
lective behaviour. The bifurcations at the centre of the
island and their semiclassical treatment have been ad-
dressed in a number of recent works, both for the generic
variants [2–6] as well as for classically non-generic, but
semiclassically still relevant cases [7,8].

In [9] the class of near-integrable systems has been
addressed, and a uniform semiclassical approximation for
the most frequently encountered broken rational tori (con-
sisting of a stable and an unstable periodic orbit) was
presented. We will call these tori the “simple” tori. Inter-
estingly, the semiclassical approximation works reasonably
well even beyond the point where the stable orbit becomes
unstable [10]. The same configuration of a stable and an
unstable orbit is also typical close (in parameter space) to
most types of period-n-tupling bifurcations at the centre
of a stability island. For bifurcation number n ≥ 5, for
the island-chain scenario with n = 4, and also (as a con-
sequence of a more complicated bifurcation scenario) for
n = 3, two satellite orbits are expelled from the centre. At
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a certain distance from the bifurcation the satellite orbits
can be treated as isolated from the central orbit; however,
a collective semiclassical treatment of the two satellites is
often still necessary, and this can be achieved by using the
abovementioned approximation for the simple torus.

Although encountered less frequently, there are situa-
tions where a broken torus consists not of two, but a higher
number of periodic orbits. In the islands of stability tori of
this type appear especially at larger distance from a bifur-
cation. In this work we study the twofold-broken rational
torus, consisting of two stable and two unstable periodic
orbits. It is described by a normal form which is obtained
from the normal form of the simple torus by including the
second harmonic in an angular coordinate. From the nor-
mal form we construct a uniform approximation that can
be used to improve semiclassical trace formulae. Indeed,
the relevance of this configuration is much enhanced in the
semiclassical context: here one has to consider also “ghost”
orbits with complex coordinates [11], and even a simple
broken torus can be affected by nearby ghosts, making a
treatment as a “pre-formed” twofold-broken torus advis-
able. This is illustrated in a model system, a periodically
driven angular momentum vector (the kicked top), where
we find a configuration of four period-three orbits which
can be regarded as a twofold-broken rational torus. A re-
duction of the error of the trace formula by a factor of
about 2–3 is found even when two of these satellites are
ghosts. An even higher accuracy gain is attained for so-
called “inverse-~ spectroscopy”.

2 Normal forms and uniform approximations

We restrict the analysis to two-dimensional area-
preserving maps. (The results are also applicable to au-
tonomous Hamiltonian systems with two degrees of free-
dom.) The quantum version of the map is generated
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by the unitary Floquet operator F which acts on the vec-
tors of a Hilbert space, mapping the space onto itself. The
semiclassical trace formula relates the traces trFn to the
classical periodic orbits. Isolated orbits of primitive period
n0 give an additive contribution [12–15]

C = A exp
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with amplitude

A = n0|2− trM |−1/2 (2)

to all traces trFn with n = n0r and integer repetition
number r. Besides the primitive period, three classical
quantities of the (rth return of the) periodic orbit enter,
the action S, the trace of the linearized n-step map M ,
and the Maslov index µ.

The expression (1) is derived by a stationary-phase ap-
proximation and becomes inaccurate when orbits lie close
together. Then a collective treatment of the region Ω in-
habited by the proximate orbits becomes necessary. This
can be achieved by introducing normal forms for a phase
function Φ and an amplitude function Ψ into the more
general expression [2–4]
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Here I, ϕ are canonical polar (or cylinder) coordinates,
and ν is the Morse index.

The famous Poincaré-Birkhoff theorem states that a
perturbation of an integrable system causes tori with ra-
tional winding number to break into chains of alternating
stable and unstable periodic points. However, it does not
give a quantitative criterion for the number of distinct
orbits that lie on this chain. The simple broken torus is
described by the normal form

S(I, ϕ′) = S0 + Iϕ′ − aI2 − b cosϕ′ (4)

for the generating function S, with constants S0, a, and
b. The corresponding map (I, ϕ) → (I ′, ϕ′), implicitly
given by

ϕ =
∂S

∂I
, I ′ =

∂S

∂ϕ′
, (5)

is the well-known standard map. This normal form has
been used in [9] to obtain a uniform semiclassical approx-
imation for the simple broken torus, smoothly interpolat-
ing between the two non-commuting classical and inte-
grable limits (~→ 0 and b→ 0, respectively).

A more complete picture can be obtained when one
includes the second harmonic in the angular variable ϕ′
and works with the extended normal form

S(I, ϕ′) = S0 + Iϕ′ − aI2 − b cosϕ′ − c cos(2ϕ′ + 2ϕ0).
(6)

The strategy of including higher-order terms in normal
forms has been pursued before, with two different incen-
tives. Firstly, the inclusion of higher orders is a tool to
equip a normal form with a sufficient number of inde-
pendent parameters. This can be necessary to account
for all classical properties (stabilities and actions) of the
periodic orbits described by the normal form. Secondly,
the higher orders describe additional periodic orbits, and
hence more complicated configurations than the usual nor-
mal forms [7,8,16–18]. A semiclassical description often
succeeds only when all orbits of an extended normal form
are treated collectively. Presently we aim at the inclusion
of additional periodic orbits.

The periodic orbits satisfy the fixed point conditions

I =
∂S

∂ϕ′
= I + b sinϕ′ + 2c sin(2ϕ′ + 2ϕ0), (7)

ϕ′ =
∂S

∂I
= ϕ′ − 2aI, (8)

resulting in I = 0 and

b sinϕ′ + 2c sin(2ϕ′ + 2ϕ0) = 0. (9)

This condition amounts to finding the roots of a fourth-
order polynomial in sinϕ′. Depending on the parameters
b, c, and ϕ0 there are either four real solutions or two real
and two complex solutions. For |b| < 2|c| there are always
four real solutions. For |b| > |c| only two real solutions are
found. When |b/c| is fixed in the range (1, 2) and ϕ0 is var-
ied one finds tangent bifurcations with two real solutions
on one side of the bifurcation and four real solutions on the
other side. The real solutions correspond to conventional
periodic orbits while the complex solutions are “ghosts”.
They are of no consequence for the classical dynamics but
can be important for the semiclassical description of the
quantum system, as has been shown in [11] and as we shall
see once more below.

The joint contribution of the orbits on the twofold-
broken torus is found by introducing into equation (3) the
normal form

Φ = S0 − aI2 − b cosϕ′ − c cos(2ϕ′ + 2ϕ0) (10)

(cf. Eq. (6)) for the phase function and

Ψ = 1 + d cos(ϕ′ + ϕ1) + e cos(2ϕ′ + 2ϕ0) (11)

for the amplitude function. The stationary-phase limit of
equation (3) is a sum of four additive contributions of
form (1), each representing one orbit. The four parameters
S0, b, c, ϕ0 are determined by matching the phases of each
contribution to the actions S of the periodic orbits. The
parameters a, d, e, and ϕ1 are fixed by the stability ampli-
tudes A. This strategy works also when two of the orbits
are ghosts: phases and amplitudes become then complex,
but are related by complex conjugation, and the number
of real independent parameters remains unchanged.

Equations (3, 10, 11) represent a uniform approxima-
tion of the joint contribution of the twofold-broken torus.
The integration over I is readily carried out, which leaves
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us with a one-dimensional strongly oscillating integral over
the coordinate ϕ′. Numerically it is most conveniently
evaluated by the method of steepest descent, for which the
integration contour is deformed into the complex plane.
On the new contour the integrand decreases exponentially.
The new contour can also visit stationary points with com-
plex coordinates, i.e., ghost orbits.

3 Numerical results

We shall illustrate our findings, and especially the rele-
vance of ghosts, for a situation encountered in a model
system, the dynamics of a periodically driven angular mo-
mentum vector J (the kicked top [19]). The components
of J obey the usual commutation rules [Jx, Jy] = iJz
(and cyclic permutations). The total angular momentum
J2 = j(j + 1) is conserved, restricting the dynamics to
the irreducible representations of the angular-momentum
algebra. The Hilbert space dimension is 2j + 1. The ef-
fective Planck’s constant is 1/(j + 1/2) and the classical
limit is attained for j →∞. We work here with a Floquet
operator of the explicit form

F = exp
[
−ikz

J2
z

2j + 1
− ipzJz

]
exp [−ipyJy]

× exp
[
−ikx

J2
x

2j + 1
− ipxJx

]
. (12)

The dynamics consists of a sequence of linear rotations by
angles pi alternating with torsions of strength ki. We hold
the pi fixed (px = 0.3, py = 1.0, pz = 0.8) while varying
the control parameter k ≡ kz = 10kx. Complete semi-
classical spectra of this system throughout the full tran-
sition from integrable (k = 0) to well-developed chaotic
behaviour (k ≈ 10) have been presented in [20]. The sys-
tem has also been used to illustrate uniform semiclassical
approximations for various kinds of bifurcations [5–7].

We concentrate on a particular configuration of period-
three orbits which suggests a treatment as a twofold-
broken torus. The configuration comes about in a sequence
of three bifurcations: at k = 1.9715 a pair of period-three
satellites is born in close vicinity to a period-one orbit in
the centre of a stability island. At k = 1.9753 a period-
tripling bifurcation takes place where the stable satellite
collides with the central orbit. On the other side of the bi-
furcation the satellites form a simple broken torus around
the centre. This sequence of bifurcations can be described
by extended normal forms [7,8], and the close neighbour-
hood of the two bifurcations is not exceptional (see e.g.
[21]). As the control parameter k is increased further the
satellites move away from the centre. At k = 3.7856 an-
other pair of period-three satellites appears in a tangent
bifurcation. For k < 5 the four satellites form a config-
uration that resembles a twofold-broken torus. Figure 1
displays a phase space portrait for k = 4, and Figure 2
shows steepest-descent contours in the complex ϕ′-plane
on both sides of the final bifurcation.

We evaluated trF 3 at k = 3.0 with the quantum num-
ber j ranging from 1 to 50. At the given value of the
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Fig. 1. Phase space portrait of the kicked top with k = 4.0.
The phase space is the unit sphere, parameterized here with
the azimuthal angle q and the z-component p (in conventional
spherical coordinates, q = φ and p = cos θ). The circle indi-
cates the central period-one orbit, the other symbols indicate
the positions of the four period-three satellites (all orbits are
unstable).
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Fig. 2. Integration contours in the complex ϕ′-plane on both
sides of the tangent bifurcation in the kicked top at k = 3.7856.
For each k the normal-form coefficients of the phase function Φ
have been determined from the actions of the periodic orbits.
The contours pass through the saddle points of the normal
form (circles) and proceed in the direction of steepest descent
(constant phase of Φ).

control parameter only one of the pairs of satellites men-
tioned above has real coordinates, and its distance to the
centre of the stability island is already quite large. The
other two satellites are still ghosts, but their bifurcation
is not far away. This leaves us with the choice between
two semiclassical approximations: (i) we can group the
two real satellites together with the central orbit and treat
the ghosts separately, or (ii) we can group the four satel-
lites as a twofold-broken torus and treat the central or-
bit separately. (In principle, we could complicate matters
even more and group all the orbits together, but this is
rather impractical and beyond the scope of the present
work.) The semiclassical evaluation of the trace involves
also five other orbits. The error of the two approxima-
tions is shown in Figure 3. The error of approximation (ii)
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Fig. 3. Semiclassical error of tr F 3 for the kicked top (k = 3.0)
as a function of j in the two approximations (i) and (ii) which
are explained in the text.
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Fig. 4. Collective peak of the four satellites and the central
orbit in the action spectrum |T (S)|2 for k = 3.0. The semiclas-
sical approximations (i) and (ii) (see text) are compared to the
result of an exact quantum-mechanical computation.

is about a factor 2–3 smaller than that of approxima-
tion (i). Although the accuracy gain is not dramatic, this
result favours clearly a treatment of the satellites as a pre-
formed twofold-broken torus.

A somewhat more demanding test is aided by “inverse-
~ spectroscopy” [9,22]. We consider the discrete truncated
Fourier analysis

T (S) =
1
32

32∑
j=1

trF 3(j) exp[−i(j +
1
2

)S] (13)

of the trace with respect to the quantum number j. The
“action spectrum” |T (S)|2 displays peaks at the actions
of the periodic orbits that contribute to trF 3. Since acci-
dental action degeneracies do not occur in the present ex-
ample, the quality of the semiclassical approximations (i)
and (ii) can now be assessed directly, without interfer-
ence of the remaining orbits. Figure 4 shows the collective
peak of the four satellites and the central orbit. Approxi-
mation (ii) agrees almost perfectly with the exact result,
while approximation (i) overestimates the peak-height dis-
tinctively.

Of course, the uniform approximation presented here
is not restricted to the situation where two of the orbits are

ghosts, but is valid for four real orbits on the broken torus
as well. Indeed we find an improvement in the semiclassical
accuracy of trF 3 over the full range 2.8 < k < 5.

4 Conclusion

In this paper a uniform approximation for a broken ratio-
nal torus consisting of four periodic orbits has been pre-
sented. The approximation was tested in a model system
where the phase space is mixed, and the tori are grouped
around (but not too close to) a central orbit. It can be
expected that the approximation will be even more useful
in studies of globally near-integrable systems.

This work was supported by the DFG (Sonderforschungsbe-
reich 237) and the European Community (Program for the
Training and Mobility of Researchers).
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