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Quantum-limited linewidth of a chaotic laser cavity
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A random-matrix theory is presented for the linewidth of a laser cavity in which the radiation is scattered
chaotically. The linewidth is enhanced above the Schawlow-Townes value by the PetermanK falterto
the nonorthogonality of the cavity modes. The fackoiis expressed in terms of a non-Hermitian random
matrix, and its distribution is calculated exactly for the case in which the cavity is coupled to the outside via
a small opening. The averagekfis found to depend nonanalytically on the area of the opening, and to greatly
exceed the most probable value.

PACS numbgs): 42.65.Sf, 05.45.Mt, 42.50.Lc, 42.60.Da

I. INTRODUCTION II. RANDOM-MATRIX FORMULATION

. . The spectral statistics of chaotic systems is described by
It has been "”OWF‘ since the conception of Fhe_la[iér . random-matrix theonf10,12. We begin by reformulating
that vacuum fluctuat|o_ns of the el_ect_romagnetlc field UIt"the existing theories for the Petermann fadi®9] in the
mately limit the narrowing of the emission spectrum by laseftramework of random-matrix theory. Modes of a closed cav-
action. This quantum-limited linewidth, or Schawlow- i “in the absence of absorption or amplification, are eigen-
Townes linewidth, values of a Hermitian operatdt,. For a chaotic cavityH,
can be modeled by aM XM Hermitian matrix with inde-
I pendent Gaussian-distributed elemefthe limit M —o at
dw=7;T"/l, (1) fixed spacingA of the modes is taken at the end of the
calculation) The matrix elements are real because of time-
reversal symmetry(This is the Gaussian orthogonal en-
is proportional to the square of the decay rEtef the lasing  semble[12].) A small opening in the cavity is described by a
cavity mode[2], and inversely proportional to the output real, nonrandonM X N coupling matrixw, with N the num-
power | (in units of photons/s Many years later it was re- ber of wave channels transmitted through the openifRgr
alized([3,4] that the fundamental limit is larger than EQ) an opening of aread, N=2x.A/\? at wavelength\.)
by a factorK that characterises the nonorthogonality of theModes of the open cavity are complex eigenvalGgih a
cavity modes. This excess noise factor, or Petermann factonegative imaginary partof the non-Hermitian matrixH
has generated an extensive literatys=e recent papers =Ho—i7WW'. The scattering matri¥§ at frequencyw is
[5-9], and references thergjrboth because of its fundamen- related toH by [13]
tal significance and because of its practical importance.
Theories of the enhanced linewidth usually factori¢e S=1-27iW"(w—H) 'W. 2
=K,K, into longitudinal and transverse factors, assuming
that the cavity mode is separable into longitudinal and transl is a unitary and symmetric, randof XN matrix, with
verse modes. Since a longitudinal or transverse mode is efoles at the eigenvalues bf. o .
sentially one dimensional, that is a major simplification. We now assume that the cavity is filled with a homoge-
Separability breaks down if the cavity has an irregular shap&€ous amplifying mediunfamplification rate ;). This
or contains randomly placed scatterers. In the language @dds a term/27, to the eigenvalues, shifting them upwards
dynamical systems, one crosses over from integrable to ch&oward the real axis. The lasing mode is the eigenvélue
otic dynamics[10]. Chaotic laser cavities have attracted —il'/2 closest to the real axis, and the laser threshold is
much interest recentlj11], but not in connection with the reached when the decay rdteof this mode equals the am-
quantum-limited linewidth. plification rate 1#, [14]. Near the laser threshold we need to
In this paper we present a general theory for the Petertetain only the contribution from the lasing mo¢say mode
mann factor in a system with chaotic dynamics, and apply iftumberl) to the scattering matrix2),
to the simplest case of a chaotic cavity radiating through a
small opening. Chaotic systems require a statistical treat-Shm=—2mi(W'U),(0—Q+iT12—i/27,) "1 (U W),
ment, so we compute the probability distributionkofin an 3
ensemble of cavities with small variations in shape and size.
We find that the average ¢ —1 dependsonanalytically —whereU is the matrix of eigenvectors di. BecauseH is a
«TInT~! on the transmission probabilitf through the real symmetric matrix, we can choo$¢ such thatU !
opening, so that it is beyond the reach of simple perturbatior UT, and write Eq.(3) in the form
theory. The most probable value Kf—1 is «T; hence it is
parametrically smaller than the average. Sim=0nom(w—Q+il/2—i/27,) "1, (4)
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whereo,,=(—2i)Y(W'U),, is the complex coupling con- _ o
stant of the lasing modeto thenth wave channel. idg=
The Petermann factdf is given by

a+ 2 apdp) . (8h)
The Petermann factor of the lasing mdd®llows from

JK=

-1

1 N
_ - 2t
VK= 2 Jonl?=(UTU)y. (5) ©

1+ |dgl?
q#l

1+ d?
g+l

The second equality follows from the definition af, [15],
and is the matrix analogon of Siegman’s nonorthogonal
mode expressiof#]. The first equality follows from the defi-
nition of K as the factor multiplying the Schawlow-Townes
linewidth [16]. One verifies thatk=1 because Y'U),

We now use the fact that is the eigenvalue closest to the
eal axis. We may therefore assume thais close to the
unperturbed value;, and replace the denominatgr- g
in Eq. (80b) by w;—w,. That decouples the two recursion
relations, which may then be solved in closed forms:

=(UTU), =1.
z=w—imaf(1+imA) "4, (108
I1l. SINGLE-CHANNEL CAVITY
T
Relation(5) serves as the starting point for a calculation idg= _q : (1+imA)~ L. (10b)
of the statistics of the Petermann factor in an ensemble of @I @q

chaotic cavities. Here we restrict ourselves to the ddse
=1 of a single-wave channel, leaving the multichannel cas
for future investigation. FoN=1 the coupling matrixXw
reduces to a vectar=(Wy;,W,y, ... Wy,). Its magnitude '=-2Imz= 27Ta|2(1+ m2A%) L, (1)
|a|?=(MA/m?)w, wherewe[0,1] is related to the trans- _ . _ _
mission probability T of the single-wave channel by Sln_ce the Iasm_g mode is cl_ose to the real axis, we may lin-
=4w(1+w) 2. We assume a basis in whiely, is diagonal ~ €arize expressiof®) for K with respect tal",
(eigenvaluesy).

If the opening is much smaller than a wavelength, then a
perturbation theory inr seems a natural starting point. To
leading order one finds

We have defined\== . a4(w,— wg) "*. The decay rate of
$he lasing mode is

(27T/A)B
K=1+4 Imd,)2=1+ ———, 12
qz‘l( / 1+ A2 12

with B=AS 50— 0g) 2
o2 The conditional average df at givenI” and () can be
K= 1+(27m')22¢| ﬁ. (6) written as the ratio of two unconditional averages:
q W —w
! (Kygr=1+2aT/A)(B(1+7°A?)~1Z)/(Z), (139
The frequency) and decay ratd’ of the lasing mode are
given by w, and 2ra?, respectively, to leading order im. Z=5(Q— w) 8 —2maf(1+7°A*) Y. (13D

We seek the averadi )q,r 0f K for a given value of) and In principle one should also require that the decay rates of

I' [17]. The probability to find an eigenvalue aft;, given i s
that there is an eigenvalue af, vanishedinearly for small ?O(ﬁgsqjea;en:?g%er t(?algl; ,rIaUt i"fh:)((jt'rir%or:qolzoor} be-
lwq— ||, as a consequence of eigenvalue repulsion conZ o> IMEIEV - - ISIHDUTON Olerg

strained by time-reversal symmetry. Since expres&orfor Is Gaussiarx exp - %ﬁang/wA) [12] "ZV"Q '18,2:1' The aver-

K divergesquadratically for small |w,— w|, we conclude 29€ 0fZ over a; yields a factor (& 7°A%)™

that (K)o r does not exist in perturbation theory. This se-

verely complicates the problem. (Kygr=1+(27T/A) ,
We have succeeded in obtaining a finite answer for the ' ((1+m2A?)Y2)

average Petermann factor by starting from the exact relation )
where only the averages ovef; and wq(q#1) remain, at

(B(1+m?A%) 12

(14)

fixed w,= ().
Uq|z,=quq,—iquZ apUyp) (7) The problem is now reduced to a calculation of the joint
P probability distributionP(A,B). This is a technical chal-

lenge, similar to the level curvature problem of random-
between the complex eigenvalugsof H and the real eigen- matrix theory[18,19. The calculation is given in the Appen-
valuesw, of Hy. Distinguishing betweeg=1 andq#1, and  dix, with the result

definingdq=Ug /U;, we obtain two recursion relations
P(AB _1 T A%+ W w
ABI=ENaw g 28
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FIG. 1. Average Petermann factrfor a chaotic cavity having FIG. 2. Probability distribution of the rescaled Petermann factor
an opening with transmission probabilifyy The average is per- x=(K—1)A/T'T for T=1 andT<1. The solid curves follow from

formed at a fixed decay rate of the lasing mode, assumed to be gqq (21) and(22). The data points follow from a numerical simu-
much smaller than the mean modal spacingThe solid curve is  |5tion of the random-matrix model.

the resulfEqg. (16)] in the presence of time-reversal symmetry, and

the dashed curve is the res{iEq. (20)] for broken time-reversal

symmetry. For small, the solid curve diverges In T~2, while the (K)o r=1+ E Amw
dashed curve has the finite limit @f/3. ForT=1 both curves reach @.r A3(1+w?)’
the value 2r/3.

(20

shown by the dashed line in Fig. 1. It is equal (i) 1
Together with Eq(14), this gives the mean Petermann factor =1+ 37 TI'/A for T<1.
So far we have concentrated on the average Petermann

0 0 factor, but from Eqs(11), (12), and(15) we can compute the
GH W entire probability distribution oK at fixedI". We definex
. I' 2o T2 T2 =(K—=21)A/T'T. A simple result forP(«) follows for T=1,
(Khar=1-3 > — (16
22 2 -2 2 4 2
G22(W -1 O) P(K)=TWK_7/2€XFX—W/K), (21

in terms of the ratio of two MeijeiG functions. We have and, forT<1,
plotted the result in Fig. 1, as a function df=4w(1

+w) 2, ™ ™
The non-analytic dependence of the averigen T (and P(x)= 1242 1+ 25 exp(—m/4x), «kT=1. (22
hence on the area of the openir&]) is a striking feature of
our result. FoIT<1, the average reduces to As shown in Fig. 2, both distributions are very broad and
asymmetric, with a long tail toward large [23]. The most
(Kygr=1+ ™ EInE 17 probable(or moda) value ofK—1=TI/A is parametrically
a.r 6 A T smaller than the mean val§igq. (17)] for T<1.

To check our analytical results, we have also done a nu-

The nonanalyticity results from the relatively weak eigen-merical simulation of the random-matrix model, generating a
value repulsion in the presence of time-reversal symmetry. If2rge number of random matricét, and computink from
time-reversal symmetry is broken by a magneto-optical efEd. (5). As one can see from Fig. 2, the agreement with Egs.
fect (as in Refs[21,22), then the stronger quadratic repul- (21) and(22) is flawless.
sion is sufficient to overcome the™ 2 divergence of pertur-
bation theory, and the averagé becomes an analytic IV. CONCLUSIONS
function of T. For this case, we find, instead of EG4), the

. . In conclusion, we have shown that chaotic scattering
simpler expression

causes large statistical fluctuations in the quantum-limited

linewidth of a laser cavity. We have examined in detail the

(B) _ (18 case that the coupling to the cavity is via a single-wave chan-

(1+ w2A2?) nel, but our random-matrix model applies more generally to
coupling via an arbitrary numbeX of wave channels. We

Using the joint probability distributiorisee the Appendix have computed exactly the distribution of the Petermann fac-
tor for N=1. It remains an open problem to do the same for

<K>Q’1":l+(2’7T].—‘/A)

2A21 2\2 2A2 N>1. This problem is related to several recent studies of the
(mA“+w?) w [ mA . . ) o o
P(AB)=————exg — = +1]], (19 statistics of eigenfunctions of non-Hermitian Hamiltonians
wB® B z [24,25, but is complicated by the constraint that the corre-
sponding eigenvalue is the closest to the real axis. Our study
we find the meark, of a system with a fully chaotic phase space complements
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previous theoretical work on systems with an integrable dy-The (M —2)X (M —2) matrixH" is distributed according to

namics. Chaotic laser cavities of recent experimental intereshe Gaussian orthogonal ensembiejs a scalar, and the

[26] have a phase space that includes both integrable and —2)-dimensional vectoh consists of Gaussian random
chaotic regions. The study of the quantum-limited linewidthvariables with variance

of such mixed systems is a challenging problem for future

research. W

1
2= .2 = — ~ _—
he=(hl% -2 BIw+1/M WZB(l MB)' (A6)
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The result can be expressed as an average ldVemndh:
APPENDIX: CALCULATION OF P(A,B)

T.he jpint probability distri.bution of the eigenvaluesg, of ' P(A,B)mQBBB’Z‘Zex;{ . B_W( . WZAz) A
Ho is given by the Gaussian ensemble of random-matrix 2B w2
theory:
pm’ —< d tH"ZB(A hTV‘lh)2ﬁ> A8
P({wq})millj |wi—wj|ﬁexl{— o ; wi . (A1) Qs € B h,H". (A8)
The level spacing in the center of the semicircle has been set For =1 one has now to consider
to unity. We assume that the lasing level isuat=0 (other
choices just renormalize the level spagin§he eigenvalue A2
distribution (A1) of the M-dimensional matrix{ then factor- Q1:< detH"?| — +h*{(trH"~ %)%+ 2trH”‘2}1 > ,
izes into the distribution of a\] — 1)-dimensional matri¥’ B o
and the productl . |wq|#=|detH’|. (A9)

The joint probability distribution oA andB,
where only the even terms k" have been kept. The ratio of

aﬁ aé coefficients in this polynomial id\/B can be calculated from
P(AB)=( 8l A-> |5 B-2 — , the autocorrelatof27]
q#l Wq q#l wy ’ \
aq,wq
(A2) de(H"+E)(H"+E’
| | | | oy (EEr) = L0et )(2 )
is obtained by averaging over the variableg and wg,q (detH"*)
# . Fourier transformation of E§A2) with respect toA and )
B gives 3 d sinmwx
=—— — (A10)
772)( dx X —E-E
~ detH'2# .
P(x,y)e , : (A3) : o .
defH' 2+ 2iw(xH’ +y)/ 7%3]P"2 H, of the secular polynomial of Gaussian distributed real matri-

cesH”. This is achieved by expressing the products of traces
after averaging ovefraq}. The remaining average is over the and determinants through secular coefficients, and these then
Gaussian ensemble &f' matrices. The determinant in the as derivatives of the secular determinant. Equatiés and
denominator can be expressed as a Gaussian integral,  (A10) yield

2

~ ” B A% w?
’ 128 _ 12__ St
P(X’y)ocf,xdzf dH’ detH ex% am trH' -2z Qloc§+ 2 (A11)

' (A4) Insertion into Eq.(A7) and restoration of the normalization
constant gives resufil5).
For B=2 we have, after averaging oviey the expression

o 2IW ,
x| H +P(XH +y) |z
aa

where theM —1 dimensional vector is real (complex for

We now decompose the matrik’ as Q,x E+q1h4§+q2h8, (A12a)
H” h
HI:(hT g ) (AS) q,=6( detH" [ (trH""H2+trH" 2]),», (A12b)
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0= ( detH"*[(trH") "+ 6trH" " %(trH"~1)?
+8trH” T MrH" 3+ 6trH" 4 3(trH"~?)?]) 0.
(A120)
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q,=2m? andq,= 7; thus

Qu* Q3. (A13)

The coefficients can now be computed from the four-pointCombining the results and restoring the normalization con-

correlator of the Gaussian unitary ensemf#g], yielding

stant, we arrive at Eq19).
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