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Quantum-limited linewidth of a chaotic laser cavity
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A random-matrix theory is presented for the linewidth of a laser cavity in which the radiation is scattered
chaotically. The linewidth is enhanced above the Schawlow-Townes value by the Petermann factorK, due to
the nonorthogonality of the cavity modes. The factorK is expressed in terms of a non-Hermitian random
matrix, and its distribution is calculated exactly for the case in which the cavity is coupled to the outside via
a small opening. The average ofK is found to depend nonanalytically on the area of the opening, and to greatly
exceed the most probable value.

PACS number~s!: 42.65.Sf, 05.45.Mt, 42.50.Lc, 42.60.Da
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I. INTRODUCTION

It has been known since the conception of the laser@1#
that vacuum fluctuations of the electromagnetic field u
mately limit the narrowing of the emission spectrum by la
action. This quantum-limited linewidth, or Schawlow
Townes linewidth,

dv5 1
2 G2/I , ~1!

is proportional to the square of the decay rateG of the lasing
cavity mode@2#, and inversely proportional to the outpu
power I ~in units of photons/s!. Many years later it was re
alized @3,4# that the fundamental limit is larger than Eq.~1!
by a factorK that characterises the nonorthogonality of t
cavity modes. This excess noise factor, or Petermann fa
has generated an extensive literature~see recent paper
@5–9#, and references therein!, both because of its fundamen
tal significance and because of its practical importance.

Theories of the enhanced linewidth usually factorizeK
5KlKr into longitudinal and transverse factors, assum
that the cavity mode is separable into longitudinal and tra
verse modes. Since a longitudinal or transverse mode is
sentially one dimensional, that is a major simplificatio
Separability breaks down if the cavity has an irregular sh
or contains randomly placed scatterers. In the languag
dynamical systems, one crosses over from integrable to
otic dynamics @10#. Chaotic laser cavities have attracte
much interest recently@11#, but not in connection with the
quantum-limited linewidth.

In this paper we present a general theory for the Pe
mann factor in a system with chaotic dynamics, and appl
to the simplest case of a chaotic cavity radiating throug
small opening. Chaotic systems require a statistical tr
ment, so we compute the probability distribution ofK in an
ensemble of cavities with small variations in shape and s
We find that the average ofK21 dependsnonanalytically
}T ln T21 on the transmission probabilityT through the
opening, so that it is beyond the reach of simple perturba
theory. The most probable value ofK21 is }T; hence it is
parametrically smaller than the average.
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II. RANDOM-MATRIX FORMULATION

The spectral statistics of chaotic systems is described
random-matrix theory@10,12#. We begin by reformulating
the existing theories for the Petermann factor@8,9# in the
framework of random-matrix theory. Modes of a closed ca
ity, in the absence of absorption or amplification, are eig
values of a Hermitian operatorH0. For a chaotic cavity,H0
can be modeled by anM3M Hermitian matrix with inde-
pendent Gaussian-distributed elements.~The limit M→` at
fixed spacingD of the modes is taken at the end of th
calculation.! The matrix elements are real because of tim
reversal symmetry.~This is the Gaussian orthogonal e
semble@12#.! A small opening in the cavity is described by
real, nonrandomM3N coupling matrixW, with N the num-
ber of wave channels transmitted through the opening.~For
an opening of areaA, N.2pA/l2 at wavelengthl.!
Modes of the open cavity are complex eigenvalues~with a
negative imaginary part! of the non-Hermitian matrixH
5H02 ipWWT. The scattering matrixS at frequencyv is
related toH by @13#

S5122p iWT~v2H !21W. ~2!

It is a unitary and symmetric, randomN3N matrix, with
poles at the eigenvalues ofH.

We now assume that the cavity is filled with a homog
neous amplifying medium~amplification rate 1/ta). This
adds a termi /2ta to the eigenvalues, shifting them upward
toward the real axis. The lasing mode is the eigenvalueV
2 iG/2 closest to the real axis, and the laser threshold
reached when the decay rateG of this mode equals the am
plification rate 1/ta @14#. Near the laser threshold we need
retain only the contribution from the lasing mode~say mode
numberl ) to the scattering matrix~2!,

Snm522p i ~WTU !nl~v2V1 iG/22 i /2ta!21~U21W! lm ,
~3!

whereU is the matrix of eigenvectors ofH. BecauseH is a
real symmetric matrix, we can chooseU such thatU21

5UT, and write Eq.~3! in the form

Snm5snsm~v2V1 iG/22 i /2ta!21, ~4!
©2000 The American Physical Society10-1
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wheresn5(22p i )1/2(WTU)nl is the complex coupling con
stant of the lasing model to thenth wave channel.

The Petermann factorK is given by

AK5
1

G (
n51

N

usnu25~U†U ! l l . ~5!

The second equality follows from the definition ofsn @15#,
and is the matrix analogon of Siegman’s nonorthogo
mode expression@4#. The first equality follows from the defi
nition of K as the factor multiplying the Schawlow-Towne
linewidth @16#. One verifies thatK>1 because (U†U) l l
>(UTU) l l 51.

III. SINGLE-CHANNEL CAVITY

Relation~5! serves as the starting point for a calculati
of the statistics of the Petermann factor in an ensemble
chaotic cavities. Here we restrict ourselves to the caseN
51 of a single-wave channel, leaving the multichannel c
for future investigation. ForN51 the coupling matrixW

reduces to a vectoraW 5(W11,W21, . . . ,WM1). Its magnitude
uaW u25(MD/p2)w, wherewP@0,1# is related to the trans
mission probability T of the single-wave channel byT
54w(11w)22. We assume a basis in whichH0 is diagonal
~eigenvaluesvq).

If the opening is much smaller than a wavelength, the
perturbation theory inaW seems a natural starting point. T
leading order one finds

K511~2pa l !
2(

qÞ l

aq
2

~v l2vq!2
. ~6!

The frequencyV and decay rateG of the lasing mode are
given byv l and 2pa l

2 , respectively, to leading order inaW .
We seek the average^K&V,G of K for a given value ofV and
G @17#. The probability to find an eigenvalue atvq , given
that there is an eigenvalue atv l , vanisheslinearly for small
uvq2v l u, as a consequence of eigenvalue repulsion c
strained by time-reversal symmetry. Since expression~6! for
K divergesquadratically for small uvq2v l u, we conclude
that ^K&V,G does not exist in perturbation theory. This s
verely complicates the problem.

We have succeeded in obtaining a finite answer for
average Petermann factor by starting from the exact rela

Uqlzl5vqUql2 ipaq(
p

apUpl ~7!

between the complex eigenvalueszq of H and the real eigen
valuesvq of H0. Distinguishing betweenq5 l andqÞ l , and
definingdq5Uql /Ull , we obtain two recursion relations

zl5v l2 ipa l
22 ipa l(

qÞ l
aqdq , ~8a!
02381
l
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n

idq5
paq

zl2vq
S a l1(

pÞ l
apdpD . ~8b!

The Petermann factor of the lasing model follows from

AK5S 11(
qÞ l

udqu2D U11(
qÞ l

dq
2U21

. ~9!

We now use the fact thatzl is the eigenvalue closest to th
real axis. We may therefore assume thatzl is close to the
unperturbed valuev l , and replace the denominatorzl2vq
in Eq. ~8b! by v l2vq . That decouples the two recursio
relations, which may then be solved in closed forms:

zl5v l2 ipa l
2~11 ipA!21, ~10a!

idq5
paqa l

v l2vq
~11 ipA!21. ~10b!

We have definedA5(qÞ laq
2(v l2vq)21. The decay rate of

the lasing mode is

G522 Imzl52pa l
2~11p2A2!21. ~11!

Since the lasing mode is close to the real axis, we may
earize expression~9! for K with respect toG,

K5114(
qÞ l

~ Im dq!2511
~2pG/D!B

11p2A2
, ~12!

with B5D(qÞ laq
2(v l2vq)22.

The conditional average ofK at givenG and V can be
written as the ratio of two unconditional averages:

^K&V,G511~2pG/D!^B~11p2A2!21Z&/^Z&, ~13a!

Z5d~V2v l !d„G22pa l
2~11p2A2!21

…. ~13b!

In principle one should also require that the decay rates
modesqÞ l are larger thanG, but this extra condition be-
comes irrelevant forG→0. ForM→` the distribution ofaq

is Gaussian} exp(21
2baq

2p2/wD) @12# with b51. The aver-
age ofZ over a l yields a factor (11p2A2)1/2,

^K&V,G511~2pG/D!
^B~11p2A2!21/2&

^~11p2A2!1/2&
, ~14!

where only the averages overaq and vq(qÞ l ) remain, at
fixed v l5V.

The problem is now reduced to a calculation of the jo
probability distribution P(A,B). This is a technical chal-
lenge, similar to the level curvature problem of rando
matrix theory@18,19#. The calculation is given in the Appen
dix, with the result

P~A,B!5
1

6
A p

2w

p2A21w2

B7/2
expF2

w

2B S p2A2

w2
11D G .

~15!
0-2



o

n
.
e
l-

ann

nd

nu-
g a

qs.

ing
ted
he
an-
to

fac-
for
the
ns
re-
udy
nts

-
e

nd
l

tor

-

QUANTUM-LIMITED LINEWIDTH OF A CHAOTI C . . . PHYSICAL REVIEW A 61 023810
Together with Eq.~14!, this gives the mean Petermann fact

^K&V,G512
G

D

2p

3

G22
22S w2U 0 0

2 1
2 2 1

2
D

G22
22S w2U2 1

2
1
2

21 0
D , ~16!

in terms of the ratio of two MeijerG functions. We have
plotted the result in Fig. 1, as a function ofT54w(1
1w)22.

The non-analytic dependence of the averageK on T ~and
hence on the area of the opening@20#! is a striking feature of
our result. ForT!1, the average reduces to

^K&V,G511
p

6

TG

D
ln

16

T
. ~17!

The nonanalyticity results from the relatively weak eige
value repulsion in the presence of time-reversal symmetry
time-reversal symmetry is broken by a magneto-optical
fect ~as in Refs.@21,22#!, then the stronger quadratic repu
sion is sufficient to overcome thev22 divergence of pertur-
bation theory, and the averageK becomes an analytic
function ofT. For this case, we find, instead of Eq.~14!, the
simpler expression

^K&V,G511~2pG/D!
^B&

^11p2A2&
. ~18!

Using the joint probability distribution~see the Appendix!

P~A,B!5
~p2A21w2!2

3wB5
expF2

w

B S p2A2

w2
11D G , ~19!

we find the meanK,

FIG. 1. Average Petermann factorK for a chaotic cavity having
an opening with transmission probabilityT. The average is per
formed at a fixed decay rateG of the lasing mode, assumed to b
much smaller than the mean modal spacingD. The solid curve is
the result@Eq. ~16!# in the presence of time-reversal symmetry, a
the dashed curve is the result@Eq. ~20!# for broken time-reversa
symmetry. For smallT, the solid curve diverges} ln T21, while the
dashed curve has the finite limit ofp/3. ForT51 both curves reach
the value 2p/3.
02381
r

-
If
f-

^K&V,G511
G

D

4pw

3~11w2!
, ~20!

shown by the dashed line in Fig. 1. It is equal to^K&V,G
511 1

3 pTG/D for T!1.
So far we have concentrated on the average Peterm

factor, but from Eqs.~11!, ~12!, and~15! we can compute the
entire probability distribution ofK at fixed G. We definek
5(K21)D/GT. A simple result forP(k) follows for T51,

P~k!5
4p2

3
k27/2exp~2p/k!, ~21!

and, forT!1,

P~k!5
p

12k2 S 11
p

2k Dexp~2p/4k!, kT&1. ~22!

As shown in Fig. 2, both distributions are very broad a
asymmetric, with a long tail toward largek @23#. The most
probable~or modal! value ofK21.TG/D is parametrically
smaller than the mean value@Eq. ~17!# for T!1.

To check our analytical results, we have also done a
merical simulation of the random-matrix model, generatin
large number of random matricesH0 and computingK from
Eq. ~5!. As one can see from Fig. 2, the agreement with E
~21! and ~22! is flawless.

IV. CONCLUSIONS

In conclusion, we have shown that chaotic scatter
causes large statistical fluctuations in the quantum-limi
linewidth of a laser cavity. We have examined in detail t
case that the coupling to the cavity is via a single-wave ch
nel, but our random-matrix model applies more generally
coupling via an arbitrary numberN of wave channels. We
have computed exactly the distribution of the Petermann
tor for N51. It remains an open problem to do the same
N.1. This problem is related to several recent studies of
statistics of eigenfunctions of non-Hermitian Hamiltonia
@24,25#, but is complicated by the constraint that the cor
sponding eigenvalue is the closest to the real axis. Our st
of a system with a fully chaotic phase space compleme

FIG. 2. Probability distribution of the rescaled Petermann fac
k5(K21)D/GT for T51 andT!1. The solid curves follow from
Eqs.~21! and ~22!. The data points follow from a numerical simu
lation of the random-matrix model.
0-3
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previous theoretical work on systems with an integrable
namics. Chaotic laser cavities of recent experimental inte
@26# have a phase space that includes both integrable
chaotic regions. The study of the quantum-limited linewid
of such mixed systems is a challenging problem for fut
research.
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APPENDIX: CALCULATION OF P„A,B…

The joint probability distribution of the eigenvalueswq of
H0 is given by the Gaussian ensemble of random-ma
theory:

P~$vq%!})
i , j

uv i2v j ubexpF2
bp2

4M (
k

vk
2G . ~A1!

The level spacing in the center of the semicircle has been
to unity. We assume that the lasing level is atv l50 ~other
choices just renormalize the level spacing!. The eigenvalue
distribution~A1! of theM-dimensional matrixH then factor-
izes into the distribution of a (M21)-dimensional matrixH8
and the product)qÞ l uvqub5udetH8ub.

The joint probability distribution ofA andB,

P~A,B!5K dS A2(
qÞ l

aq
2

vq
D dS B2(

qÞ l

aq
2

vq
2D L

$aq ,vq%

,

~A2!

is obtained by averaging over the variablesaq and vq ,q
Þ l . Fourier transformation of Eq.~A2! with respect toA and
B gives

P̃~x,y!}K detH82b

det@H8212iw~xH81y!/p2b#b/2L
H8

, ~A3!

after averaging over$aq%. The remaining average is over th
Gaussian ensemble ofH8 matrices. The determinant in th
denominator can be expressed as a Gaussian integral,

P̃~x,y!}E
2`

`

dzE dH8 detH82bexpF2
bp2

4M
tr H822z†

3S H821
2iw

bp2
~xH81y!D zG , ~A4!

where theM21 dimensional vectorz is real ~complex! for
b51 ~2!.

We now decompose the matrixH8 as

H85S H9 h

h† g D . ~A5!
02381
-
st
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e
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x
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The (M22)3(M22) matrixH9 is distributed according to
the Gaussian orthogonal ensemble,g is a scalar, and the
(M22)-dimensional vectorh consists of Gaussian random
variables with variance

h2[^uhi u2&5
1

p2

1

B/w11/M
'

w

p2B
S 12

w

MBD . ~A6!

We can always choose a basis in whichz points in the di-
rection of the last basis vector, so thatz†H8z5uzu2g. Going
back from Eq.~A4! to P(A,B) by Fourier transformation,
two d functions appear, allowing to integrate overg andh.
The result can be expressed as an average overH9 andh:

P~A,B!}QbBb/222expF2
bw

2B S 11
p2A2

w2 D G , ~A7!

Qb5 K detH92bS A

B
2h†V21hD 2bL

h,H9

. ~A8!

For b51 one has now to consider

Q15K detH92FA2

B2
1h4$~ tr H921!212trH922%G L

H9

,

~A9!

where only the even terms inH9 have been kept. The ratio o
coefficients in this polynomial inA/B can be calculated from
the autocorrelator@27#

G1~E,E8!5
^ det~H91E!~H91E8!&

^ detH92&

52
3

p2x

d

dx

sinpx

px U
x5E2E8

~A10!

of the secular polynomial of Gaussian distributed real ma
cesH9. This is achieved by expressing the products of tra
and determinants through secular coefficients, and these
as derivatives of the secular determinant. Equations~A6! and
~A10! yield

Q1}
A2

B2
1

w2

p2B2
. ~A11!

Insertion into Eq.~A7! and restoration of the normalizatio
constant gives result~15!.

For b52 we have, after averaging overh, the expression

Q2}
A4

B4
1q1h4

A2

B2
1q2h8, ~A12a!

q156^ detH94@~ tr H921!21tr H922#&H9 , ~A12b!
0-4
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q25^ detH94@~ tr H9!2416trH922~ tr H921!2

18trH921tr H92316trH92413~ tr H922!2#&H9 .

~A12c!

The coefficients can now be computed from the four-po
correlator of the Gaussian unitary ensemble@28#, yielding
e
ion

e

ys

02381
t

q152p2 andq25p2; thus

Q2}Q1
2 . ~A13!

Combining the results and restoring the normalization c
stant, we arrive at Eq.~19!.
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