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Abstract We present a model for the friction and effective mass of an oscillating
superfluid 3He A–B interface due to orbital viscosity in the B-phase texture close
to the interface. The model is applied to an experiment in which the A–B interface
was stabilised in a magnetic field gradient at the transition field Bc = 340 mT at 0
bar pressure and at a very low temperature T ≈ 0.155 mK. The interface was then
oscillated by applying a small additional field at frequencies in the range 0.1–100 Hz.
The response of the interface is governed by friction and by its effective mass. The
measured dissipation does not fit theoretical predictions based either on the Andreev
scattering of thermal quasiparticles or by pair-breaking from the moving interface.
We describe a new mechanism based on the redistribution of thermal quasiparticle
excitations in the B-phase texture engendered by the moving interface. This gives
rise to friction via orbital viscosity and generates a significant effective mass of the
interface. We have incorporated this mechanism into a simple preliminary model which
provides reasonable agreement with the measured behaviour.
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1 Introduction

The A–B interface is the most ordered interface available for experimental study [1].
The two bulk phases have different symmetries, with well-understood and established
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order parameters. When an interface between the A and B phases is stabilised, the order
parameter varies smoothly between the two, passing through a planar-like state [2–5].
In thermodynamic terms the phase transition between the A and B phases is first order
with a corresponding latent heat [6,7], and the interface has an associated surface
tension [8–12].

The analogies between the order parameters of superfluid 3He and those describing
other fundamental systems allow us to use the superfluid as an exemplar for the exper-
imental investigation of a broad range of phenomena [13]. For instance the structure
of the order parameters which develop as the fluid passes through symmetry-breaking
phase transitions are similar to the broken symmetries of the metric of the Universe.
The superfluid thus provides a test-bed for the study of transitions in the quantum
vacuum state of the early Universe [14,15], and the A–B interface can simulate a
2-brane [16].

Here we focus on the dynamical behaviour of the A–B interface. Previous exper-
iments by Buchanan et al. [17] on a fast freely-moving interface in low mag-
netic fields found values for the friction that were in line with theoretical esti-
mates based on the Andreev scattering of thermal quasiparticle excitations [18].
Later measurements were made in Lancaster on a controlled oscillating inter-
face in high magnetic fields and at much lower temperatures [19]. In this case
the friction was found to be orders of magnitude higher than theoretical predic-
tions [1,18,20]. Furthermore, the friction was found to have an unexpected frequency
dependence [19].

Below, we show that the behaviour of an oscillating A–B interface in high magnetic
fields and low temperatures is dominated by orbital viscosity [21] and by a significant
effective mass generated by thermal quasiparticle excitations in the B-phase order
parameter texture.

In zero magnetic field the B phase is pseudo-isotropic, with no net spin or orbital
angular momentum, and an isotropic energy gap �0 [22]. In a magnetic field the
B-phase order parameter is distorted and the energy gap is suppressed along the
orbital anisotropy axis l B , producing intrinsic spin and orbital angular momentum
[21]. Further, in the large magnetic fields needed to stabilise the A phase the B-
phase anisotropy is dominated by significant Zeeman splitting. Thus a large den-
sity of thermal excitations occupy states along the l B axis. The orientation of l B

is influenced by the presence of the A–B interface [5] so as the interface moves
the orientation changes and the thermal excitations must redistribute. This generates
substantial dissipation related to orbital viscosity. The redistribution also has a sig-
nificant reactive component which can be characterised as an effective mass of the
interface.

2 The Experiment

The experiments were performed on a sample of superfluid 3He contained in a
sapphire tube connected to the inner cell of a Lancaster-style nuclear cooling stage,
shown in Fig. 1 and described earlier in more detail [7]. The sapphire tube has internal
diameter 4.3 mm and length 44 mm, sealed at the bottom and closed at the top by a thin
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Fig. 1 The experimental cell showing the sapphire black body radiator that contains the A–B interface,
and the multiple solenoid stack used for creating and manipulating the field profiles (Colour figure online)

sheet of stycast-impregnated paper with a small 0.5 mm diameter orifice connecting
it to the inner cell. This small hole provides a weak thermal link to the thermal bath
and the sapphire tube can be treated as a pseudo black body radiator for quasiparticle
excitations [6,23]. The temperature of the sample was monitored by measuring the
quasiparticle density inferred from the damping of a 4.5µm diameter NbTi vibrating
wire resonator (VWR) [24]. A 13µm NbTi VWR was used as a heater. The VWRs were
at the top of the cell where the magnetic field was always relatively small, on the order
of 50 mT. At these low fields the energy gap of the B phase is approximately isotropic
and the damping width � f2 of the VWR resonance is proportional to exp(−�0/kB T ),
allowing for reliable thermometry [25].

The experiments were carried out at 0 bar pressure with a base temperature of
146µK, determined by an equilibrium between the heat leak into the sapphire tube
and the power carried by quasiparticles leaving through the orifice. We calibrated the
change in � f2 of the thermometer VWR as a function of power by dissipating known
amounts of heat in the tube using the heater VWR [23,25]. This enabled us to then
use the thermometer VWR to measure power dissipation owing to motion of an A–B
interface in the lower section of the tube.

A solenoid stack was used to create a shaped magnetic field profile to stabilise the
A phase in the bottom of the tube in fields above the transition field Bc = 340 mT [6,
7,26], whilst maintaining the top of the tube with the VWRs in low field B phase.
Once the A–B interface was established across the tube, a small additional alternating
field was applied to oscillate the interface over a range of frequencies.
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3 Modelling the Interface Dynamics

Referring to Fig. 2, in equilibrium the A–B interface is located at a vertical position
zeq where the magnetic field is equal to the transition field Bc. The magnetic field is
approximately uniform in the horizontal plane so we can assume that the interface is
flat. We ignore the small effect of surface tension [12] and wetting at the cell walls [9]
since they give rise to a meniscus on the order of 0.1 mm, much smaller than the
diameter of the sapphire tube. When the field profile is adjusted, the position of Bc

changes, and the interface experiences a restoring force towards the new equilibrium
position. The magnitude of the restoring force per unit area is equal to the difference in
Gibbs free energy per unit volume �G AB(B) between the two phases at the interface
which is in a field B.

The field dependence of the Gibbs free energy for a material of magnetic suscepti-
bility χ is given by

G(B) = G(0) − 1

2
χ B2 (1)

Fig. 2 The bottom end of the sapphire black body radiator contains A phase in the bottom and B phase in
the top. The A–B interface is stabilised at a position zeq corresponding to the transition field Bc by a shaped
magnetic field profile (solid line) provided by the solenoid stack. Oscillating the field profile oscillates the
equilibrium position zeq along the cell axis. The oscillatory response of the A–B interface depends on its
effective mass and friction (Colour figure online)
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where G(0) is the free energy at zero field. Thus the difference between the two phases
is

�G AB(B) = �G AB(0) − 1

2
χAB B2 (2)

where χAB is the difference in susceptibilities between the A and B phases. At the
transition field the Gibbs free energy difference is zero, �G AB(Bc) = 0. Hence
�G AB(0) = 1

2χAB B2
c , giving

�G AB(B) = 1

2
χAB

(
B2

c − B2
)
. (3)

Suppose that the interface is at a vertical position zI and that it moves in a uniform
vertical field gradient ∇B. The field at the interface is B = Bc + ∇B(zI − zeq) so the
corresponding force on the interface is

F(z) = −AχAB Bc|∇B|
(

zI − zeq

)
. (4)

where A = π D2/4 is the cross-sectional area of the sapphire tube. Equation (4) gives
the restoring force directed towards the equilibrium position with a spring constant
per unit area

k = χAB Bc|∇B|. (5)

In general the interface will also experience inertial and frictional forces, so the equa-
tion of motion of a planar interface can be written as

mz̈I + γ ż I + k(zI − zeq) = 0, (6)

where m is the effective mass per unit area of the interface and the friction coefficient
γ is the dissipative force per unit area per unit velocity. In the following we suppose
that m and γ are constant during the interface motion.

The interface is driven by applying a small uniform oscillating field Baceiωt which
produces an oscillation in the equilibrium position

zeq = Bac

|∇B|eiωt . (7)

The resulting oscillation of the interface can be written as zI = z0eiωt . Substituting
zI and zeq in Eq. (6), and then solving for the amplitude gives

z0 = k

k − mω2 + iωγ

(
Bac

|∇B|
)

. (8)

The ensuing power dissipated by the moving interface is Q̇diss = Aγ ż2
I . Substituting

for ż I using Eq. (8) and taking the time average gives the average power dissipation

〈Q̇diss〉 = A

2
γ

k2ω2

(k − mω2)2 + (γω)2

(
Bac

|∇B|
)2

. (9)
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In the low frequency limit the interface moves with the equilibrium position zeq , the
amplitude of motion is Bac/|∇B|, and the average dissipation is

〈Q̇diss〉ω→0 = A

2
γω2

(
Bac

|∇B|
)2

. (10)

In the high frequency limit the interface lags behind the equilibrium position and the
dissipation becomes independent of the field gradient

〈Q̇diss〉ω→∞ = Aγ

2

χ2
AB B2

c B2
ac

m2ω2 + γ 2 . (11)

Experimental results for the measured average dissipation from an oscillating inter-
face are shown in Fig. 3 for three different field gradients, reproduced from our earlier
report [19]. The measurements were made at temperatures around 155µK and at 0 bar
pressure, using the techniques discussed in Sect. 2. The data at low frequencies, below
≈ 2 Hz, fit quite well to Eq. (9) with m = 0 and a constant value for γ [19]. Setting the
effective mass term to zero was consistent with the theoretical expectation of a negli-
gibly small effective mass arising from differences in the densities of the A phase, B
phase and planar-like phase across the interface [1,18]. However, the inferred value for
γ was orders of magnitude greater than the theoretical estimates of Leggett and Yip,
and of Kopnin, for Andreev scattering and for pair-breaking [1,18,20]. Further, the
increase in dissipation for frequencies above 2 Hz could not be explained by existing
theories.

Fig. 3 The dissipation of the oscillating A–B boundary versus frequency. The points show measurements
at a field oscillation amplitude of Bac = 0.64 mT for three different field gradients. The lines are fits to the
model, see text (Colour figure online)
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4 Friction and Effective Mass Due to the Orbital Texture

We first consider the A phase, whose order parameter is highly anisotropic for all
values of the magnetic field. The energy gap has nodes along the orbital axis l A [22].
The preferred orientation of l A is perpendicular to the magnetic field, perpendicular
to the cell walls, and parallel to the plane of the A–B interface. In the experimental
geometry illustrated in Figs. 1 and 2, all of these preferences can be accounted for by
having a texture where l A lies in the horizontal plane, albeit with at least one textural
defect. For this configuration motion of the interface does not require any change in the
orientation of l A so the orbital texture does not couple to the interface dynamics. This
may not be the case close to the cell walls where the A-phase meniscus bends upwards
to make a contact angle [9] of approximately 70 ◦. This occurs over a relatively small
length scale so we neglect its effect on the interface dynamics.

Conversely, in the B phase the orbital texture across the whole cross-section of the
cell is affected by the A–B interface and its motion. In a magnetic field, the energy of
a quasiparticle excitation with momentum p and spin σ h̄ is given by [27,28]

E p,σ =
√

(E‖(p) − σ h̄ω̃L)2 + (�⊥ p⊥)2 (12)

where E‖(p) = (ξ2 + �2‖ p2‖)
1
2 and ξ = (p − pF )vF is the kinetic energy relative

to the Fermi energy. Here �‖ and �⊥ are the energy gaps parallel and perpendicular
to l B , p‖ and p⊥ are the parallel and perpendicular components of the quasiparticle
momentum, pF is the Fermi momentum and vF is the Fermi velocity. The Fermi-
liquid corrected quasiparticle Zeeman energy is σ h̄ω̃L with σ = ±1/2. In practice,
the Zeeman splitting dominates the anisotropy and so �‖ and �⊥ can be approximated
by the zero field gap �0 [28–30].

The minimum quasiparticle energy as a function of the angle between its momentum
and the l B axis is shown in Fig. 4a. At temperatures far below Tc the vast majority
of excitations occupy the lowest energy states with momenta centred around the l B

axis. Motion of the interface changes the local orientation of l B in the vicinity of the
interface which thus changes the quasiparticle energies as illustrated in the figure. The
subsequent relaxation of the excitations occurs over a time scale τ . This is the essential
mechanism for providing the effective mass and friction of the interface. Below we
develop a preliminary model to describe how this affects the interface dynamics.

For a cylindrical tube parallel to a magnetic field, the preferred orientation of l B

is given by the “flare-out” texture [31–33]. This texture has l B oriented parallel to
the field direction along the tube axis, and bending radially so that it is perpendicular
to the sidewalls. The healing length ξB over which l B changes direction is inversely
proportional to the magnitude of the field [31–34], and for fields close to Bc we
estimate ξB ≈ 0.1 mm [5,32,34,35]. This is much smaller than the tube radius in our
experiments so as a first approximation we may neglect the influence of the walls and
assume that the B-phase l B texture far from the interface is uniform and parallel to
the vertical field.

However, close to the interface it is energetically favourable for l B to be oriented
parallel to the interface [5]. Thus in our experimental configuration far away from
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a b

Fig. 4 Schematic of the effects of orbital motion in the B-phase texture induced by an oscillating A–B
interface. a The minimum energy of a quasiparticle excitation in the B-phase texture. Oscillation of the
texture induces oscillations in the quasiparticle energies. b As the A–B interface moves the A-phase texture
is unchanged, and our simple model assumes that the whole B-phase texture moves with the interface, see
text. The subsequent change in the quasiparticle energies results in an effective mass of the interface and
dissipation (friction) (Colour figure online)

the interface the l B texture is vertical, but approaching the interface it must rotate to
become horizontal. The change in orientation occurs over a distance of order ξB from
the interface. This texture is illustrated in Fig. 4b where θ denotes the angle between
l B and the vertical.

A change in the orientation of l B by an amount δθ changes the quasiparticle energies
by

δE p,σ = ∂ E p,σ

∂θ
δθ (13)

which produces a viscous torque [36,37]

Γ vis = −μl B × l̇ B = −μθ̇ , (14)

where μ is the orbital viscosity. We find the corresponding force on the interface by
considering the work done by the viscous torque and equating it to the work done by
the moving interface.

To simplify the problem we suppose that the orbital texture in the B phase responds
instantaneously to the changing position of the interface. This means that we neglect the
orbital dynamics and suppose that l B always has its equilibrium orientation θ(z − zI )

relative to the position of the interface, as illustrated in Fig. 4b. This simplification is
ultimately justified here by the model capturing the essential behaviour of the exper-
imental data; a fuller treatment in future ought to take into account the dynamics of
the l B texture itself.

Consider a small change in position of the interface δzI . This causes the texture
orientation in the B phase to adjust by

δθ(z) = ∂θ

∂zI
δzI (15)
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and thus

θ̇ = ∂θ

∂zI
ż I . (16)

The corresponding work done on the quasiparticle distribution is

δW =
∫

V

ΓvisδθdV (17)

where Γvis = |Γ vis | = μθ̇ and the integral is over the whole volume of the B phase.
Substituting for Γvis and using Eqs. (15) and (16) we find

δW =
∫

V

μ

(
∂θ

∂zI

)2

ż I δzI dV . (18)

The force exerted by the moving interface has reactive and dissipative components
corresponding to the inertial and frictional force respectively F = A(ml z̈ I + γl ż I ),
where the subscript denotes the contributions from the viscous torque due to the
changing l B texture. For oscillatory motion z̈ I = iωż I so the work done on moving
the interface by δzI can be written as

δW = A(γl + iωml)ż I δzI . (19)

Equating this with the work done on the quasiparticles, Eq. (18), and substituting
dV = Adz gives

γl + iωml = μ

∫

z

(
∂θ

∂zI

)2

dz. (20)

Thus the friction coefficient γI is related to the real part of the orbital viscosity and
the effective mass of the interface ml is related to the imaginary part.

The orbital viscosity in the B phase at low temperatures was previously shown to
be [21]:

μ = τ + iωτ 2

1 + (ωτ)2

[
π

6
N (0)

�

kB T
exp (−�/kB T )(h̄ω̃L)2

]
(21)

to first order in ω̃2
L , where τ is quasiparticle collision time, N (0) is the normal density

of states at the Fermi surface, and � is approximately equal to the zero field gap �0.
We can estimate the integral in Eq. (20) by supposing that θ decays exponentially

from π
2 to zero over the textural healing length ξB ,

θ(z) = π

2
exp (−(z − zI )/ξB). (22)
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The integral in Eq. (20) is then evaluated as

∫

z

(
∂θ

∂zI

)2

dz = π2

8ξB
. (23)

Substituting Eqs. (21) and (23) in Eq. (20) gives the following estimates for the
friction coefficient

γl = τ

1 + (ωτ)2

[
π

6
N (0)

�

kB T
exp (−�/kB T )(h̄ω̃L)2

]
π2

8ξB
(24)

and the effective mass

ml = τ 2

1 + (ωτ)2

[
π

6
N (0)

�

kB T
exp (−�/kB T )(h̄ω̃L)2

]
π2

8ξB
. (25)

To evaluate γl and ml for the experimental data in Fig. 3 we use the following values:
h̄ω̃L = 0.67�0, from [28–30]; �0 = 1.76kB Tc with Tc = 0.929 mK at 0 bar pressure,
from [38]; N (0) = 1.0 × 1051 m−3, from [38,39]; ξB = 0.1 mm, from [5,32,34,35];
and T = 155µK (noting that this is an average temperature, and the actual temperature
during the measurements varied from T = 150µK to T = 160µK as the dissipation
increased from low to high frequencies). The value of quasiparticle relaxation τ is the
only unknown parameter.

To compare the model predictions with the experimental data in Fig. 3 we intro-
duce two additional fitting parameters βγ and βm for the magnitudes of the friction
coefficient and effective mass respectively

γ = βγ γl (26)

m = βmml (27)

The fits shown in Fig. 3 were made with βγ = 1.55, βm = 0.95 and τ = 0.045 s. For
clarity, we have used the same fitting parameters for all three sets of data. Better fits can
be obtained by changing the parameters for each set of data, but given the simplicity
of the model we do not believe that this reveals any significant new information.

5 Discussion

The values of the fitting parameters βγ and βm are both close to unity. This suggests
that orbital motion in the B phase is the dominant mechanism for determining both the
friction coefficient and the effective mass of the A–B interface. The friction coefficient
γ determines the low frequency response of the interface, below a few Hz for the data
shown in Fig. 3. At the lowest frequencies, the interface moves with the equilibrium
position and the dissipation is given by Eq. (10). At slightly higher frequencies the
dissipation reaches a plateau as the interface lags behind the equilibrium position. The
quasiparticle relaxation time determines the second rise in dissipation at a frequency
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f ≈ 1/(2πτ). This rise only occurs when the interface is over-damped, with βγ > βm .
In the under-damped case, a dissipation peak occurs at a frequency f ≈ √

k/m/(2π).
It will be interesting to investigate whether such a peak can be observed experimentally.
The effective mass parameter βm determines the location of the second plateau at the
highest frequencies.

The fitted value for the quasiparticle relaxation time τ = 0.045 s is of order a
hundred times larger than the transit time of a quasiparticle moving between the walls
of the cell, τwall ≈ D/vg , where the mean quasiparticle group velocity vg is roughly
one third of the Fermi velocity for our experimental conditions. This is the expected
order of magnitude since the vast majority of excitations have insufficient energy
to propagate through the changing texture close to the wall. These excitations are
Andreev reflected and effectively form bound states within the texture. Only a small
fraction of excitations, ∼1%, are able to scatter with the cell wall and contribute to
the quasiparticle relaxation.

To conclude, we have shown that orbital motion in the high field distorted B phase of
superfluid 3He can account for the dissipation and the effective mass of an oscillating
A–B interface at low temperatures. Our simple model gives a reasonable fit to the
experimental data. A more sophisticated model will need to take into account the
precise dynamics of the orbital texture, the effects of cell walls and the role of Andreev
scattering within the texture.
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