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Abstract. This article reports on a modification of the user-kNN algorithm that 
measures the similarity between users based on the similarity of text reviews, 
instead of ratings. We investigate the performance of text semantic similarity 
measures and we evaluate our text-based user-kNN approach by comparing it 
to a range of ratings-based approaches in a ratings prediction task. We do so 
by using datasets from two different domains: movies from RottenTomatoes 
and Audio CDs from Amazon Products. Our results show that the text-based 
user-kNN algorithm performs significantly better than the ratings-based 
approaches in terms of accuracy measured using RMSE. 
 
Keywords: Recommender systems, Collaborative Filtering, Text reviews, 
Semantic similarity measures. 
 

Introduction 

Recommender systems work by predicting how users will rate items of potential interest. A 

common approach is Collaborative Filtering (CF); “k-Nearest Neighbors” (user-kNN), for 

example, predicts a user’s rating according to how similar users rated the same item *1+. User-

kNN matches similar users based on the similarity of their ratings on items. We argue that 

ratings alone are insufficient to fully reflect the similarity between users for two reasons: a) 

ratings do not capture the rationale behind a user’s rating, and b) there is a high probability 

(p=0.8) that two ratings of the same value on the same item will be given for different reasons 

[2]. We identify this as a potential challenge for ratings-based approaches and define it as a 

similarity reflection problem. 

Existing work [3, 4] reports that measuring the similarity of users using the sentiment of 

their text reviews, instead of ratings, improves the accuracy of user-kNN. However, we argue 

that a sentiment-based approach does not fully address the similarity reflection problem since 

the reasons behind a sentiment of a review remain unexploited. In other words, the sentiment, 

similar to a rating, says how much a person liked an item, but it misses the reason why. For 

example, in the case of a movie, did the reviewer like it because of the performance of a 

mailto:j.n.whittle%7d@lancaster.ac.uk


The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-08786-3_17 

specific actor? Or because of the style of the director? We argue that text reviews potentially 

offer a substantiated opinion of a user for an item, making them an ideal source of knowledge 

for enhancing the recommendation process.  

There is a growing body of research which aims to exploit the content of text reviews for 

various tasks. However, the analysis of text reviews to address the similarity reflection 

problem remains an under-explored area. Work in [5, 6] for example, uses text reviews to 

construct user preference profiles: sets of item features (such as plot or special effects in the 

movie domain) are extracted from the users’ text reviews. These user preference profiles may 

then be used to measure user similarity in a user-kNN algorithm [5], or they are used to 

constrain CF by only using reviews similar to a user’s profile when making recommendations 

[6]. These approaches assume that “the overall number of opinions regarding a certain item 

feature reveals how important that feature is to a user” *6+. An important aspect of this 

assumption, however, is that it generalizes the features a user finds interesting to all the items 

in a domain. For example, it assumes that if a user likes special effects in an action movie, s/he 

also likes to have special effects in a drama. Hence, such an approach does not distinguish 

between user preferences across domains. 

Our previous investigation *2+ indicated that users’ similarity is not well reflected in rating-

based approaches that only rely on users’ ratings, and suggested the use of text reviews. In 

this paper, we present the text-based user-kNN, a modification of user-kNN algorithm,that 

uses text reviews to measure similarity between users, instead of using ratings. 

Our text-based user-kNN applies text similarity measures directly on text reviews of co-

reviewed items, instead of applying statistical similarity measures on ratings or constructing 

profiles of user preferences extracted from text reviews. In doing so, we attempt to form 

neighborhoods of users who have reviewed the same items with semantically similar reviews, 

while respecting the diversity of user feature preferences over items. We then identify a 

target user’s nearest neighbor, and use their ratings to predict the target user’s ratings. In an 

evaluation of the approach, we measure the accuracy of its predictions by comparing them to 

the target user’s actual ratings.  

 

This paper’s two main contributions are: 

1. A text-based user-kNN approach that measures the similarity of users by applying text 

similarity measures directly on users’ text reviews for each co-reviewed item.      

 2. An extensive evaluation which includes: 

a. An investigation of the performance of various text similarity measures in the text-based 

user-kNN approach. The investigation highlights a significant improvement of text semantic 

similarity measures over a simple lexical matching measure. 

b. A comparison of text-based user-kNN with a range of ratings-based approaches in a 

ratings prediction task. Results show that the text-based user-kNN produces a small but 

significant improvement over ratings-based approaches in minimizing the RMSE between 

the actual and the predicted ratings. Our evaluation is performed using two different 

datasets – a RottenTomatoes dataset and an Audio CD dataset from 

AmazonProductReviews. The consistently higher accuracy of the text-based user-kNN 

approach verifies its better performance.  
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The novelty of our approach over previous work lies in the way we incorporate text reviews 

in user-kNN. We calculate the direct similarity of text reviews to measure the similarity 

between users and form neighborhoods of similar users. In addition, we provide evidence of 

the effectiveness of our approach in predicting ratings, over various state-of-art rating based 

approaches using two different datasets. 

Related Work 

The use of text reviews as implicit feedback to improve the recommendation process is an 

expansive topic. In matrix factorization CF approaches, text reviews have been used to define 

a ‘regularizer’ score for the factorization model. The regularizer is assigned one of three scores 

depending on the methodology used: the opinion score, calculated using feature extraction 

and sentiment analysis of text reviews [7]; the sentiment score, calculated using only 

sentiment analysis on text reviews [8]; or the review-quality score, calculated based on the 

occurrence of features in text reviews [9]. In addition, in [10], both ratings and features 

extracted from text reviews are used to define a regularizer. However, the above approaches 

are not focused on improving the performance of neighborhood based models, such as user-

kNN. 

In user-kNN approaches, similar to our work, research exploiting text reviews is limited to 

applying sentiment analysis on text reviews [3, 4], or building user profiles of feature 

preferences extracted from text reviews [5, 6]. Sentiment analysis has been applied on text 

reviews to either reflect a user’s interest in an item in terms of a binary score (like/dislike) *3+, 

or to refine a list of rating-based CF recommendations by removing items whose review is 

labeled with a negative sentiment [4]. However, in such approaches [3, 4], the reasons behind 

a user’s rating remain unexploited. Chen and Wang [5] investigated regression models on user 

text reviews to infer weighted feature preferences. They then matched users with similar 

weighted feature preferences to produce the item recommendations. Musat et al. [6], 

proposed Topic Profile CF (TPCF), a technique which builds user profiles based on extracted 

‘topics’ from the users’ aggregated text reviews. They then use the item reviews that are most 

similar to the user’s profile to predict the user’s rating for the item.  

In contrast to our work, TPCF does not form neighborhoods of similar users based on their 

text reviews. Chen and Wang [5], focused on producing item recommendations instead of 

predicting ratings.  Furthermore, both approaches [5, 6] are based on building user profiles 

with features extracted from all text reviews thus assuming that what a user likes in one 

domain, s/he also likes in another domain. 

User preference profiles have also been used by Content Based (CB) recommendation 

approaches. For example, Levi et al. *11+, used text reviews to infer the ‘traits’ or preferences 

of contextually similar groups in a hotel recommender and then calculate the impression a 

user has for a hotel. The main difference our approach with Levi et al. [11], is that we form 

neighborhoods of users based on their text reviews rather than exploiting the preferences of 

predefined groups of users. Also, we measure the direct similarity of the users’ text reviews, 

instead of building profiles of user preferences.  In doing so, we distinguish user feature 

preferences across domains. 
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Fig. 1. User-kNN and Text-Based User-kNN 

In this section we present text-based user-kNN, a modification of user-kNN which 

incorporates text reviews in the measurement of similarity between users, shown in Figure 1. 

We are given a set of users    , a set of items     and a  set of quadruples D, (       )  

 , with each quadruple corresponding to a review of user u  on item i using the rating r and 

the content of text review c. We reserve special indexing letters for distinguishing users from 

items: for users u, v (      ) and for items i (   ). Our objective is to predict each 

unknown rating  ̂ of user u for item i in set P. 

The first phase of user-kNN is the neighborhood formulation. During this phase the main 

goal is to measure the similarity between users and define a set of users    , who tend to 

review items similarly to u (“neighbors”). The similarity of two users is measured by applying 

similarity measures between their reviews on their co-reviewed items. User-kNN uses ratings 

to measure similarity between users. It accepts as input the set   *(     ) (       )   +, 

with each triple corresponding to a review of user u, on item i,  using rating r. User-kNN 

calculates the similarity,     , between the users u and v, by applying statistical similarity 

measures such as Pearson, between the ratings of the two users. On the other hand, text-

based user-kNN uses text reviews. In this phase text-based user-kNN accepts as input the set 

   *(     ) (       )   + . Each triple in C represents a review of the user u, on item i 

with content of the text review c. Text-based user-kNN measures similarity       , between 

the users u and v by applying a text similarity measure ψ over the content of the reviews of 

the two users’ for each of their co-reviewed items (Equation 1). The measure ψ calculates the 

similarity between the content of two the text reviews to produce a numerical similarity score 

from 0 (no similarity) to +1 (strong similarity),         ,   -. 

 

        
 

        
∑  (       )          (1) 

where       is the set of co-reviewed items of user u and user v, and  (       ) the  

text similarity measure between the content     of the text review of user u for item i and the 

content of text review     of user v for item i. 

The calculated similarity scores between the users are stored in set W,  (          )   , 

and are used  a) to construct the set N using the k users who have the highest similarity score 

with user u and b) as a weight in the ratings prediction phase. 
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    In order to estimate the unknown rating  ̂   we resort to a set of users v, N(v,k), who have 

the highest similarity with user u and actually rated item i (i.e.,     is known for each user 

   ). Both approaches use the set S, (     )    ⊆  , in which each triple includes the 

rating r of  the user  v  for an item i. The number of neighbors k is calculated during the 

training phase of the model. The estimated value of  ̂   is taken as a weighted average of the 

neighbors’ ratings: 

  ̂    
∑         (      (   ) ) 

∑          (   )  
 (2) 

where N is the set of k similar neighbors of user u;    is the rating of the neighbor v for the 

item i; and       is the similarity between the users u and v stored in set W. 

    In cases where no formulation of neighborhood can be established, both user-kNN 

approaches use the average value of an item’s ratings to predict a user’s rating. 

Short Text Similarity Measures.  

    The core part of our text-based user-kNN uses a text similarity measure ( ) that can 

identify ‘similar reviews’: reviews that use semantically similar wordings to review an item. A 

typical approach for finding the similarity between two text segments is to use a simple lexical 

matching method such as ‘word overlap’ to produce a similarity score based on the number of 

words that occur in both segments. While successful to a certain degree, such lexical methods 

cannot identify semantic similarity. For instance, there is an obvious similarity between the 

text segments “The movie has an amazing storyline” and “The plot of this film is good”, but 

most of the text similarity measures will fail in identifying any kind of connection between 

these texts because of the lack of lexical overlap. The semantic similarity between two words 

can be measured using WordNet [12], an online lexical database of English terms structured 

based on synsets, that is, sets of synonymous words. Synsets are connected to one another 

through relations such as “is-a”. For example, “plot” and “storyline” nouns are in the same 

synset, which is connected to the “noun communication” synset by an “is-a” relationship.  

    We employ six word similarity measures: a simple word overlap measure; two measures 

based on the path length two words in WordNet; and three that use the information content 

(IC) of a word. All the WordNet measures we employ are publicly provided by [13]. To derive 

the similarity score of two text reviews (ψ) we use the average of the similarity scores (s) 

between each of their words. All stop words have been removed from the datasets using the 

stop word lists provided by Lewis et al.[14]. 

 

Semantic similarity measures based on path length.  
Two of the measures we use in our experiment, the measure provided by Leacock and 

Chodorow [15] and the measure provided by Wu and Palmer [16], are based on path length of 

a WordNet taxonomy. A path length is equal to the count of relation links of words in the 

taxonomy. The lower the distance between two words, the higher the similarity between 

them. For example, the path length of two synonymous words is 0. The measure by Leacock 
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and Chodorow[15], denoted as      , returns a similarity score based on the shortest path that 

connects two words and the maximum depth of the taxonomy: 

     (     )       
    (     )

   
 (3) 

where     (     ) is the shortest distance between the words     and   , and D is a 

constant (e.g., the maximum depth in the WordNet taxonomy). 

The similarity metric by Wu and Palmer [16],     , is based on the depth of the two words 

in WordNet and that of their least common subsumer (LCS), that is, the word that is a shared 

ancestor of the two words. For example the LCS of the words ‘car’ and ‘boat’ would be 

‘vehicle’. The     measure is determined by the equation below: 

     (     )   
       (     (     ))

     (  )      (  )
 (4) 

where    (     )is the LCS between the words    and   and      ( ) is the length of the 

shortest path between the root and a word  . 

 

Semantic similarity measures based on information content. 
 We employ three measures that are based on the IC: Resnik [17], Lin [18] and Jiang and 

Conrath [19]. IC is a measure of specificity of a word. High values of IC are associated with 

more specific concepts of words (e.g., mouse) and lower values are more general (e.g., 

animal). The IC is calculated from the observed frequency counts of a word in a sense-tagged 

corpus: a corpus annotated with WordNet senses. The IC value of a word w can be quantified 

as a negative log likelihood of the probability of that word: 

   ( )        ( ) (5) 

The IC-based approaches operate by default using the SemCor [20] corpus, a sense-tagged 

portion of the Brown Corpus.  

The measure by Resnik[17], denoted as       , only considers the IC of the LCS of the two 

compared words: 

     (     )     (    (     )) (6) 

 

where )( 2,1 wwLCS  is the LCS between words    and   . 

The measure introduced by Lin [18] builds on Resnik’s measure by adding a normalization 

factor consisting of the information content of the two input words: 

     (     )   
     (    (     ))

  (  )    (  )
 (7) 

Finally, we use the measure introduce by Jiang and Conrath[19],     , determined using the 

following equation: 

     (     )   
 

  (  )   (  )      (   (     ))
 (8) 
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where the IC of a word is defined by equation (4) and where )( 2,1 wwLCS  is the LCS between 

words    and   . 

Experimental Setup 

To develop our text-based recommender system and run this evaluation we used the 

MyMediaLite 3.07 [21] C# library on Mono architecture. We evaluate the performance of the 

six text similarity measures from Section 4 on our approach compared to a range of 

representative ratings-based approaches using two datasets.  

 

Datasets 

Table 1. Properties of the two datasets used in our experiment 

Dataset  Users Items Training Validation Test set  

(fold size)  

 Sparsity 

RottenTomatoes 451 1000 40371 848 21200 (848)  86.17% 

Audio CDs 53060 36381 66394 1397 34925 (1397)  99.99% 

RottenTomatoes Dataset. 
The Rotten Tomatoes movie review website allows two types of reviewers: critics and non-

critics. Critics write movie reviews professionally. Non-critics or standard users are general 

members of the public. The API of the platform only offers the ability to collect reviews 

written from critics. To avoid any violations of the terms of the service of the platform, we 

only used the functionality offered by the API to construct this dataset. The RottenTomatoes 

dataset includes critics’ reviews for the Top-100 movies for the years 2001 to 2010. Each entry 

in the dataset consists of a user id, a movie id, a timestamp, a rating and a short text passage. 

All reviews having a missing rating (30% of the reviews) or a missing text passage (0.09% of 

the reviews) have been removed from the dataset, resulting in a dataset of 62,365 reviews, 

451 users and 1000 items.  

Since our goal is to improve the accuracy of ratings prediction for the standard users, 

rather than critics, we carried out an experiment to investigate the divergence between 

standard and critic’s text reviews. Using 200 random standard and 200 critic reviews for the 

top five movies from 2010, we carried out a statistical analysis over the two sets. Results 

indicated that there is a Cosine similarity of 0.85 between the term frequencies of the two 

sets, thus indicating the high similarity of language used by critics and standard users. The 

similarity between two sets of 100 random reviews written by standard users is 0.96.  

Audio CDs Dataset. 
The AmazonProductReviews dataset, by Jindal and Liu [24], contains user-item-rating-

review quadruples on different categories of items. In this experimental evaluation, we used 

the category Audio CDs, since this has a reasonable number of users, items and reviews and 
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has been used by related work [7][9].The dataset includes 102,714 reviews, 53,060 users and 

36,381 items. In this dataset ratings are in a 1 to 5 scale. 

Dataset Spitting Method  

A common practice in the recommender systems domain is to split the dataset into three 

subsets: a training set, for learning the parameters of a model; a validation set, to evaluate the 

model over different parameter settings to derive optimum parameters; and a test set, to 

assess the predictive performance of the model on held-out data and thus judge over fitting of 

a learnt model. 

For example, the dataset used in The Netflix Prize [25] consists of three splits: a training set 

of 95.9% of the ratings, a validation set of 1.36% of the ratings, while the remaining 2.77% of 

the ratings are used to form the two almost equal size test folds. Although popular, such a 

splitting method does not allow for statistical significance testing of the predictive 

performance of a model Testing the statistical significance of an evaluation is important due 

to the marginal increases in performance often observed in the literature, in assessing for the 

chance involvement in such increases and to be more confident in any improvement we find 

when assessing our own method.  

The modified approach we apply in this experiment uses the 1.36% of the dataset for the 

validation [25]. However, instead of using only two test folds, we use 25 equal size test folds. 

Using a small number of test sets may lead to mislabeling of significant results as insignificant 

[28]. Our modified setup uses 64.64% of the reviews for training, 1.36% of the reviews for 

validation and 1.36% for each of the 25 testing folds. 

Also, we preserve time ordering when splitting the dataset: the training set’s reviews 

appeared before those in the validation set, and both training and validation contain reviews 

from before each of the 25 folds. A splitting method that preserves time ordering resembles, 

most closely, the situation of a recommender in a real system *23+. The system ‘knows’ only 

the previous reviews at recommendation time and knows nothing about the future. Cross 

Validation (CV) evaluation methods such as the 5-fold CV used by [7] or the 10-fold CV used by 

[9], on the Amazon ProductReviews dataset, introduce bias in a model by training on future 

results.  

Ratings-based Approaches.  

A common practice when evaluating the benefits of a modified ratings-based 

recommendation approach by incorporating text reviews is to compare the modified 

approach to the original ratings-based approach. For example, the TBCF approach [6] and the 

text reviews clustering approach to produce recommendations [5] were compared to a non-

personalized baseline, and the Opinion-BMF [7] approach was compared to its ratings 

equivalent. 

 In this study, in addition to the ratings equivalent (user-kNN), we compare our approach to 

a range of ratings-based approaches organized into three categories: 

a) Baseline: approaches that make no use of personalized information such as 

UserItemAverage, which makes ratings predictions based on the average rating value 

of an item, plus a regularized user and item bias. 
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b) Memory-based Neighborhood algorithms: We employ the rating equivalent of our 

approach user-kNN, and the Item-based k-Nearest Neighbors (item-kNN), which 

forms neighborhoods of similar items. We use both methods with Cosine and 

Pearson Correlation Coefficients similarity measures [1]. 

c) Matrix Factorization methods: approaches based on low-dimensional factor models. 

In this category we use SVD++ and BMF. SVD++ incorporates both the standard 

Singular Value Decomposition (SVD), representing users by their own factor 

representation, and the asymmetric SVD model, representing users as a bag of item 

vectors. We also use BMF – the standard MF method with explicit user and item 

biases [26].  

 Training the user-kNN approaches.  

We trained all the approaches on the training set and then validated their performance on 

the validation set. During this procedure we observed that ratings-based user-kNN 

approaches required a different size of neighborhood (k) than the text-based user-kNN 

approaches to achieve their best performance. The user-kNN approaches on ratings tend to 

produce the lowest RMSE when using 100 or 200 neighbors (k=100, k=200), while the text-

based user-kNN approaches performed better when using only the single most similar 

neighbor (k=1). In other words, the text-based approaches perform better when using the 

most proximate user in terms of sharing similar views about items, or when using a weighted 

average of the ratings of a large amount of users.  

Intuitively, this is similar to how a person would ask for a recommendation in a real life 

scenario: a person interested in getting a recommendation for a restaurant will probably ask 

the one person whom s/he trusts most when choosing a restaurant, i.e., the one that s/he 

shares similar tastes and views on restaurants with. Otherwise, the person would 

crowdsource many opinions using social networking sites, reviewing websites, or asking 

people from the offline environment to get a large amount of opinions and make a final 

decision on which recommendation to follow.  In the future, we aim to further explore this 

observation. 

Results and Discussion 

All results are reported on the test folds, which were excluded from the training process. 

For each of the test folds, we calculated the RMSE between the actual ratings and the 

predictions and averaged this over the 25 testing folds. All significant values reported were 

calculated using a Sign Test [22], as suggested by [23] due to its simplicity and lack of 

assumptions over the distribution of cases over the 25 testing folds. 

The results of our evaluation, reported in Table 2, indicate that out text-based user-kNN 

approach performs consistently and significantly better than the ratings-based approaches 

over the two datasets. In the RottenTomatoes dataset, the best performing than the best of 

the rating based approaches item-kNN with cosine similarity which achieved a RMSE of 0.1466 

between the actual and the predicted ratings.  
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Table 2. Mean RMSE of text and rating-based approaches over the 25 test folds 
for the RottenTomatoes and Audio CDs datasets (lower is better). 

 
In the Audio CDs dataset, the best performing text-based approaches were those using the 

Lin and Jiang & Conrath similarity measures. They achieved a RMSE of 1.1092, significantly 

better (p<0.0001) than the RMSE of 1.1190 of the user-kNN with Cosine similarity. In addition, 

it is significantly better (p<0.0001) than the best of the rating based approaches, SVD++, which 

achieved a RMSE of 1.1099. The better performance of the text-based user-kNN approach 

over the ratings-based user-kNN approaches and over the two datasets confirms our 

hypothesis that measuring similarity based on text reviews can help to overcome similarity 

reflection problems. 

Moreover, text-based user-kNN with semantic similarity measures, particularly those using 

the IC, performed better than those using the simple lexical overlap. This provides some 

evidence of improvement when measuring text similarity using semantic similarity measures. 

This is also in agreement with the superior performance of IC measures in a paraphrase 

detection task [27] over the path based measures and other approaches including Latent 

Semantic Analysis (LSA). 

Although the improvements of RMSE we obtain may seem small, they are significant. In 

addition, Koren [26] provides evidence that even a small improvement in a rating prediction 

error can affect the ordering of items and have significant impact on the quality of the top few 

presented recommendations and thus the overall performance of the recommender system. 

Conclusion and Future Work 

Related work has suggested using text reviews to overcome the similarity reflection 

problems of user-kNN by incorporating text reviews in the measurement of similarity. The 

 
Rating scale  

RottenTomatoes 
0.0 to 1.0 

Audio CDs 
1.0 to 5.0 

Text–based user-kNN  

Leacock and Chodorow 0.1478 1.1094 

Wu and Palmer 0.1472 1.1094 

Resnik 0.1461 1.1093 

Lin 0.1469 1.1092 

Jiang and Conrath 0.1467 1.1092 

Word Overlap 0.1462 1.1101 

Rating-based approaches  

Pearson user-kNN 0.1485 1.1190 

Cosine user-kNN 0.1473 1.1263 

Pearson item-kNN 0.1473 1.1130 

Cosine item-kNN 0.1466 1.1156 

UserItemAverage 0.1483 1.1398 

SVD ++ 0.1467 1.1099 

BMF  0.1476 1.1105 
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suggested approaches use the sentiment of text reviews instead of ratings  [3,4] or build user 

profiles of aggregated feature preferences extracted from text reviews [5, 6]. We argue that 

using the sentiment of a text review does not overcome completely similarity reflection 

problems since the reasons behind a rating remain unexploited. In addition, building user 

profiles by aggregating the feature preferences does not respect the diversity of the users’ 

feature preferences across items. 

To overcome the above limitations, we proposed text-based user-kNN: an approach that 

measures the direct semantic similarity of users’ text reviews on co-reviewed items to form 

neighborhoods of similar users and minimize RMSE in a ratings prediction task. To measure 

the similarity between text reviews we investigate five semantic similarity measures based on 

WordNet, and a simple lexical word overlap measure, through their application in text-based 

user-kNN. We evaluate its performance by comparing it to BMF, SVD++, user-kNN and item-

kNN with Cosine and Pearson correlation and UserItemAverage baseline, on the 

RottenTomatoes and Audio CDs datasets. Our results show that the text-based methods 

produce consistently and significantly lower RMSE than the rating-based approaches over the 

two datasets used in this experiment. In addition, we have shown that a text-based user-kNN 

that uses semantics similarity measures to calculate the similarity of text reviews performs 

better than when using a simple lexical word overlap measure.  

In our future work, we will carry out an evaluation with other text-based approaches in an 

items prediction task to investigate how significant our approach is to users. In addition, in the 

future we will investigate other techniques to further enhance the measurement of similarity 

between text reviews such as sentiment analysis and evaluate different combinations of text, 

sentiment and ratings similarities. Furthermore, we would like to investigate the use of Linked 

Data to identify hidden similarity between entities found in text reviews to improve the 

similarity reflection between users. 
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