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Abstract

Intermittent demand time series involve items that are requested infrequently,
resulting in sporadic demand. Croston’s method and its variants have been
proposed in the literature to address this forecasting problem. Recently other
novel methods have appeared. Although the literature provides guidance on
the suggested range for model parameters, a consistent and valid optimi-
sation methodology is lacking. Growing evidence in the literature points
against the use of conventional accuracy error metrics for model evaluation
for intermittent demand time series. Consequently these may be inappropri-
ate for parameter or model selection. This paper contributes to the discussion
by evaluating a series of conventional time series error metrics, along with
two novel ones for parameter optimisation for intermittent demand methods.
The proposed metrics are found to not only perform best, but also provide
consistent parameters with the literature, in contrast to conventional met-
rics. Furthermore, this work validates that employing different parameters
for smoothing the non-zero demand and the inter-demand intervals of Cros-
ton’s method and its variants is beneficial. The evaluated error metrics are
considered for automatic model selection for each time series. Although they
are found to perform similarly to theory driven model selection schemes, they
fail to outperform single models substantially. These findings are validated
using both out-of-sample forecast evaluation and inventory simulations.
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1. Introduction

Spare parts are typically demanded in a sporadic or intermittent fashion.
This makes such time series different to conventional ones, due to the pres-
ence of several periods with zero demand. Some examples where intermittent
demand can appear are listed by Willemain et al. (2004), including cases of
demand of heavy machinery and respective spare parts, aircraft service parts,
electronics, maritime spare parts, etc. Johnston et al. (2003) identified that
in many cases such items can account for up to 60% of the total stock value.
Due to their slow moving nature, such items are at greatest risk of obsoles-
cence. This can have substantial impact on the operations of organisations,
which tie resources in stocking items of this nature (Boylan and Syntetos,
2010). Companies often hold more than the necessary stock, to account for
poor demand forecasts (Ghobbar and Friend, 2003), thus making accurate
forecasts important.

Croston (1972) first argued that traditional time series methods, like ex-
ponential smoothing, do not produce reliable forecasts for intermittent de-
mand time series and instead proposed an alternative method. Several stud-
ies have verified the good forecasting accuracy and inventory performance of
this method; for example see Willemain et al. (1994), Johnston and Boylan
(1996), Willemain et al. (2004) and Syntetos and Boylan (2006). The liter-
ature has identified several improvements of the original method, correcting
it for bias (Syntetos and Boylan, 2005), or proposing new methods for in-
termittent demand able to overcome structural limitations of the original
method, such as obsolescence issues (Teunter et al., 2011). However, most of
the literature uses ad-hoc model parameters in applying these methods on
intermittent demand problems.

The lack of a valid and consistent optimisation methodology complicates
the application of Croston’s method in real problems. The common approach
in the literature is to apply a set of different parameters across all time se-
ries of a dataset (for some examples see Syntetos and Boylan, 2005; Teunter
and Duncan, 2009). However, because of the nature of intermittent data,
evaluating which parameter is better is not trivial. Using the conventional
time series approach, that is minimising the error of some in-sample fit, is
contentious, as the use of conventional errors has been challenged in the liter-
ature (Syntetos and Boylan, 2005; Wallström and Segerstedt, 2010). On the
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other hand, using out-of-sample criteria for identifying which parameter per-
forms better requires availability of adequate sample and may be impractical,
if not impossible, for individual time series parameter selection. Additionally
using conventional error metrics may be inappropriate, as already mentioned.
Nonetheless, in the forecasting literature it is widely accepted that using the
optimal model parameters for each time series is best practice, leading to
accuracy improvements (Fildes et al., 1998; Hyndman et al., 2002; Gardner,
2006). This paper aims to explore this question: given the limitations of ex-
isting error metrics – as optimisation cost functions – for Croston’s method
and its variants, how should we optimise such models?

In the literature there are some examples of optimised intermittent de-
mand models (Eaves and Kingsman, 2004; Petropoulos et al., 2008; Boylan
et al., 2008; Petropoulos et al., 2013; Teunter et al., 2010), however these
have not focused on exploring the validity and performance of using conven-
tional time series optimisation for intermittent data. This work explores the
performance of different error metrics as cost functions for optimising fore-
casting models for intermittent demand. Furthermore, different optimisation
setup options, such as optimising the initialisation values of the models or
not, are evaluated. The conventional error metrics are found lacking and
two novel ones are proposed. These are found to produce better results in
terms of forecasting and inventory performance and to automatically select
parameters with values that are in agreement with the suggestions of the
literature.

A closely related topic to parameter selection is model selection, as both
are conventionally based on evaluating the quality of the fit of models to
time series. Recently there has been a surge in researching alternative in-
termittent demand forecasting methods, raising the issue of model selection.
Assuming that for each method optimal parameters can be identified, an
important problem is which model to use. Although there have been some
theoretical advancements for selecting between a subset of intermittent de-
mand methods, depending on the time series characteristics (Syntetos et al.,
2005; Kostenko and Hyndman, 2006; Heinecke et al., 2011), these cannot
provide generic model selection guidance. This paper investigates whether
the different error metrics explored here can facilitate and automate model
selection for intermittent demand data. The findings are contrasted with the
literature, highlighting problems in model selection for intermittent demand
time series.

The rest of the paper is structured as follows: section 2 frames the pa-
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rameter and model selection problem for intermittent demand drawing from
the literature. Section 3 presents the forecasting methods that this paper
focuses on. Section 4 discusses the applicability of established metrics as
optimisation cost functions and introduces two novel ones that overcome the
limitation of existing ones. Section 5 presents the experimental setup and
the results of the empirical evaluation, while section 6 concludes with a short
discussion of the findings.

2. Background research

Croston (1972) proposed a forecasting method specific for intermittent
demand problems. Croston’s method derives a non-zero demand and an
inter-demand interval time series from the original intermittent data. These
new time series are then smoothed and forecasted independently using sin-
gle exponential smoothing, employing the same smoothing parameter α for
both. Dividing the resulting estimates produces the final forecast, which
is used to predict the average future demand per time period. Since then,
Croston’s method has been widely researched, applied in practice, and at-
tracted some criticism. The theoretical grounding of the method has been
questioned by Snyder (2002), Shenstone and Hyndman (2005) and Snyder
et al. (2012). Furthermore, the method assumes that the demand size and the
inter-demand intervals are independent, something that has been questioned
by Willemain et al. (1994). Kourentzes (2013) showed that modelling such
dependence explicitly is beneficial. Nonetheless, several studies have verified
the good forecasting accuracy and inventory performance of this method (for
example see Willemain et al., 1994; Johnston and Boylan, 1996; Willemain
et al., 2004), with Shenstone and Hyndman (2005) arguing that these limi-
tations and issues do not “mean that Croston’s method itself is not useful”.
The availability of the method in several established forecasting packages,
such as ForecastPro, SAS and SAP APO, is indicative of its widespread use
in practice by organisations. These factors make it important to explore how
to optimally parametrise and use such models.

Syntetos and Boylan (2001) showed that the original Croston’s method is
biased and proposed a modified version that corrected the problem (Synte-
tos and Boylan, 2005), demonstrating improved accuracy. Teunter and Sani
(2009b) and Wallström and Segerstedt (2010) provide evidence that this mo-
dification can still be biased when the intermittency of a series is quite low.
Shale et al. (2006) showed that if the orders arrive as a Poisson process then
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a different modification is more appropriate. Levén and Segerstedt (2004)
proposed an alternative modification to Croston’s method to avoid the bias
of the original method, yet this was shown to be biased in a different manner
(Boylan and Syntetos, 2007). Teunter et al. (2011) observed that although
the previous work dealt with the bias of Croston’s method, it was still un-
suitable to deal with obsolescence issues. To address this, they proposed a
new method that updates the probability of demand continuously, in con-
trast to Croston’s method that updates its estimates only when non-zero
demand is observed. Recently, several other methods have appeared in the
literature, such as bootstrapping based methods (Willemain et al., 2004; Por-
ras and Dekker, 2008), neural networks (Gutierrez et al., 2008; Kourentzes,
2013) and aggregation based methods (Nikolopoulos et al., 2010; Babai et al.,
2012); however, these have not been widely used yet. The reader is referred
to Boylan and Syntetos (2010) and Bacchetti and Saccani (2012) for a more
detailed review of the area.

Focusing on Croston’s method and its variants, it is evident from the
literature that the selection of the parameters is mostly done ad-hoc (for
examples see: Syntetos and Boylan, 2005; Teunter and Duncan, 2009; Wall-
ström and Segerstedt, 2010; Romeijnders et al., 2012). Syntetos and Boy-
lan (2005) argue that optimising the parameters of Croston’s method is not
straightforward, due to the limited non-zero observations. The short demand
history causes the initialisation of the method to be carried forward into the
forecasts. In practice intermittent demand datasets are often short. Ar-
guably, this problem may be overcome by optimising both model parameters
and initial values, which is standard practice for exponential smoothing on
fast moving items (Hyndman et al., 2002; Ord and Fildes, 2012). Croston
(1972) suggested that the parameters should be between 0.1 and 0.3, while
Syntetos and Boylan (2005) advised for values between 0.05 and 0.2. Babai
et al. (2011) investigated parameters up to 0.3 and found that depending
on the levels of intermittency and lumpiness different smoothing parameters
achieved minimum bias, thus demonstrating the need to tune the parameters
according to the series at hand.

Similarly, the method proposed by Teunter et al. (2011) was not opti-
mised, although they provide guidelines on how to select the parameters.
Romeijnders et al. (2012) that employed the same method used ad-hoc pa-
rameters, although they provide additional details on how to initialise the
method.

Conventional exponential smoothing optimisation is typically done on
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squared or absolute errors (Gardner, 2006). Wallström and Segerstedt (2010)
point out that in the case of intermittent demand, an optimiser will focus
on the many zero demand periods, thus biasing the forecast to be lower
than the actual demand. They found that mean absolute error was par-
ticularly vulnerable to this, something highlighted by Teunter and Duncan
(2009) as well. This issue has been investigated in the literature in a re-
lated context, when trying to identify an appropriate evaluation metric for
intermittent series. Such error measures will favour zero-demand forecasts,
while using different error measures is not practical due to the zeros included
in the time series. Special metrics have appeared in the literature (Synte-
tos and Boylan, 2005; Hyndman and Koehler, 2006). Although these can
be calculated for the majority of circumstances, they still do not solve the
potential bias in favour of a zero-forecast. Wallström and Segerstedt (2010)
proposed a series of new metrics based on cumulative errors that mitigate to
an extend these problems and can be seen as a proxy to inventory metrics.
On the other hand, inventory metrics have been long discussed as a better
evaluation alternative for intermittent demand experiments (for example see
Sani and Kingsman, 1997; Syntetos and Boylan, 2006; Strijbosch et al., 2011;
Kourentzes, 2013). Therefore, applying conventional exponential smoothing
optimisation for Croston’s method and its variants is not trivial, explaining
the large body of literature that prefers to use ad-hoc parameter selection.

There are a few examples of optimised Croston’s method in the literature.
For example, Eaves and Kingsman (2004) aggregated the demand data and
optimised their methods based on mean absolute percentage errors. Although
this approach will remove the zero-demand periods that make the optimisa-
tion problematic, the characteristics of the time series are altered, which can
be undesirable (Spithourakis et al., 2012). Petropoulos et al. (2008, 2013)
optimised Croston’s method by mean squared error and found good results
in terms of bias, even though there is little theoretical support for this result
due to the chosen error metric. A similar approach was followed by Boylan
et al. (2008). Teunter et al. (2010) also reported using optimal parameters,
however they provided limited information how this was done.

Therefore a valid and consistent optimisation methodology for Croston’s
method and its variants is lacking. This complicates the application of such
forecasting methods in real problems. Once optimal parameters are esti-
mated for each method for a time series, one has to identify which is the
most appropriate model. There is evidence in favour of selecting the ap-
propriate model per time series (Tashman and Kruk, 1996; Hyndman et al.,
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2002), however this is an unresolved question for intermittent demand data.
Syntetos et al. (2005) proposed an item classification framework based on the
average inter-demand intervals and the coefficient of variation of the demand
that indicated when it was advisable to use the original Croston’s method or
the Syntetos-Boylan approximation. Kostenko and Hyndman (2006) refined
this framework, but also recognised its limitations due to the weaknesses in
Croston’s method and its variants. Nonetheless, Heinecke et al. (2011) found
that the proposed refinements provided improved forecasting performance
over the original classification. However, this framework is unable to support
the different non-Croston based methods that have been proposed in the lit-
erature, thus limiting its power further. Ideally, in analogy to fast moving
items, some valid and reliable in-sample fitting criteria would be desirable.

3. Intermittent Demand Methods

Conventional time series methods are not ideal for intermittent demand
data. The standard method for forecasting such data is Croston’s method,
as proposed originally by Croston (1972) and later corrected by Rao (1973).
The main idea behind this method is instead of forecasting an item in the
conventional way, to separate the time series into two components; the non-
zero demand size zt and the inter-demand intervals xt. Consequently, both
zt and xt are modelled and forecasted using single exponential smoothing.
The estimated ẑt and x̂t are only updated when demand occurs and remain
constant otherwise. The forecast ŷt is given by:

ŷt = ẑt/x̂t. (1)

The multi-step ahead forecast is a constant with value equal to ŷt. If de-
mand occurs at every period, Croston’s method becomes identical to single
exponential smoothing.

Conventionally, both vectors are smoothed using the same parameter.
Petropoulos et al. (2008, 2013) and Teunter et al. (2010) have considered
separate parameters for smoothing each of zt and xt. Similar arguments
exist in Schultz (1987) and Snyder (2002). Such a setup allows for increased
flexibility on how fast each vector is updated. However, it also introduces
additional complexity on selecting the appropriate parameters. Hereafter,
this method is referred to as CRO.
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Syntetos and Boylan (2001) showed that Croston’s method is biased, due
to the division in eq. (1), and suggested a modified version (Syntetos and
Boylan, 2005):

ŷt = (1− αx/2) ẑt/x̂t, (2)

where αx is the smoothing parameter for xt. This modified version has
demonstrated good empirical performance, superior to the original method
(Syntetos and Boylan, 2005, 2006).

Teunter et al. (2011) observed that Croston’s method is unsuitable to
deal with obsolescence issues, because of the limited updates of ẑt and x̂t,
which happen only in periods of non-zero demand. They proposed a new
method to address this issue. Similarly to CRO, this method does not model
the intermittent time series directly. Instead, two vectors are considered;
the demand probability dt and the demand size zt. The demand probability
is either 0 or 1 depending whether demand occurs at time t or not and
is modelled using single exponential smoothing. The demand probability
estimate, d̂t, is updated at the end of every period. The demand size is also
modelled with a single exponential smoothing, but is updated only when a
positive demand occurs. Each smoothing model uses a separate parameter,
recognising the need for different rates of updates. Teunter et al. (2011) argue
that the smoothing parameter of demand probability should be smaller than
the smoothing parameter of demand size. The forecast of this method is:

ŷt = d̂tẑt. (3)

The authors report good performance of the method, but alert to the
importance of choosing the two smoothing parameters carefully. This method
will be referred to as TSB.

Even though the application of conventional time series models has been
criticised in the literature (Willemain et al., 1994; Johnston and Boylan,
1996), single exponential smoothing is a popular benchmark for intermittent
demand methods (Willemain et al., 1994; Syntetos and Boylan, 2005; Teunter
and Duncan, 2009; Teunter et al., 2011). The forecasts are calculated as:

ŷt = αyt + (1− α)ŷt−1, (4)

where α is the smoothing parameter (Ord and Fildes, 2012). Note that
this method does not make any special considerations for periods of zero
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demand. Nonetheless there is some evidence in the literature of its good
performance for intermittent time series (for example, see Wallström and
Segerstedt, 2010). Typically its smoothing parameter is kept in the same
area as Croston’s method (Syntetos and Boylan, 2005; Teunter and Duncan,
2009). Hereafter this method will be referred to as SES.

4. Cost Functions

Cost or loss functions are used in optimisation to measure the fit of a
model to the real data and are often based on some error metric. Considering
conventional time series optimisation, one of the most popular cost functions
is the mean squared error (MSE). Given a time series yt and forecasts ŷt at
time t, the MSE is defined as:

MSEn = n−1
∑n

i=1
(yi − ŷi)

2, (5)

where n is the number of in-sample observations. For the case of exponential
smoothing, which is the basis of all CRO, SBA and TSB methods, MSE is the
most widely used optimisation criteria (Gardner, 2006; Ord and Fildes, 2012).
As it is based on squared errors, it is more susceptible to extreme values and
the mean absolute error (MAE) has been discussed as an alternative Gardner
(2006):

MAEn = n−1
∑n

i=1
|yi − ŷi|. (6)

By minimising either MSE or MAE one can identify the parameters of
a model, conditional on a time series. As it was discussed in section 2, the
applicability of such metrics for intermittent time series has been strongly
contested. They tend to bias forecasts in favour of the zero-demand forecast
and are not a good proxy for the corresponding inventory decisions associ-
ated with the forecasts. Nonetheless, there is some evidence of their good
performance (Boylan et al., 2008; Petropoulos et al., 2008).

Wallström and Segerstedt (2010) proposed a new metric to address some
of these issues. They introduced the Periods in Stock (PIS) metric, which
measures the total number of periods a unit of the forecasted item has been
in stock or out-of-stock. This measure assumes a “fictitious” stock, from
which the over- or under-stocking is measured. This is calculated as:

PISn = −
∑n

i=1

∑i

j=1
(yj − ŷj). (7)
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Essentially, it tracks how the cumulative error of the forecast evolves through
time. A good forecast will result in a small PIS over the assessment period. A
positive number implies some stock is left over the assessment period, while
a negative number is the cumulative out-of-stock. Although this metric is
not immune to preferring the zero-demand forecasts for very intermittent
time series, it is more robust to conventional error metrics due to the double
cumulative summation involved. Even though the objective of PIS is to be
used as a bias metric, considering the absolute PIS one can use it as a cost
function. The minimum absolute PIS will also mean that a model provides
the minimum over- or under-stocking over the in-sample assessment period,
which is desirable. Nonetheless, as PIS is a bias measure, it is expected to
provide minimum fitting bias, rather than minimum fit errors.

Croston’s method and its variants do not provide an expected demand as
a forecast, rather a ”demand rate”, as illustrated in eq. (1). The output is
the average expected demand in each future period. For example a forecast
of 0.1 should be seen as a demand of 1 unit over 10 periods, a demand rate
of 0.1. Note that in this sense, Croston’s method does not violate the integer
valued nature of intermittent demand time series. Consequently, measuring
the difference of such a demand rate forecast from the raw time series data is
not meaningful, as they have different units (Kourentzes, 2013). Both MSE
and MAE are problematic in this aspect. Although PIS overcomes this,
due to its cumulative error basis, we can use this property of the forecasts to
derive a series of new cost functions. At each point CRO provides an average
expected demand over each time period. Instead of comparing this with the
realised demand, we can compare it with the in-sample mean demand over
time, i.e. including both zero and non-zero demand periods. This way both
values are of the same nature and thus comparable. Furthermore, in order to
track the evolution of the demand for instationary time series the cumulative
mean is considered as in:

ri = ŷi − i−1
∑i

j=1
yj. (8)

From ri we can construct a squared and an absolute version of the metric,
namely the mean squared rate (MSR) and mean absolute rate (MAR) errors:

MSRn =
∑n

i=1
r2i , (9)

MARn =
∑n

i=1
|ri|. (10)
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To make this cost function more robust it is advisable to winsorise the first
periods of ri due to the limited available sample to estimate the cumulative
mean. The intuition behind both MSR and MAR is to fit the intermittent
demand forecasts on the average demand per period, rather than the realised
demand. This way the timing of the non-zero demand does not impact on
the errors, while the demand probability and size are considered.

In the following section these cost functions are used to optimise the
methods outlined in section 3, assessing their performance.

5. Empirical Evaluation

The objective of the empirical evaluation is to assess the performance of
the five different cost functions: MSE, MAE, PIS, MSR and MAR. Further-
more, a set of different optimisation designs are evaluated. For CRO and
SBA optimising a single parameter for both zt and xt or separate parameters
is investigated. For all CRO, SBA and TSB the impact of optimising the
initial estimates is explored, as well as imposing parameter upper bounds
lower than 1. Subsequently, different alternatives for model selection based
on these metrics are analysed. The evaluation is done both on accuracy and
inventory metrics.

5.1. Datasets

The different setups are evaluated on 3,000 real time series of automotive
spare parts. Each time series is 24 months long. This dataset originates from
the study by Syntetos and Boylan (2005). The observed average non-zero
demand ranges from 1 to 194 units, while the inter-demand interval from
1.04 to 2 periods. Following the classification by Syntetos et al. (2005) the
dataset contains the following series: 441 erratic, 314 lumpy, 1271 smooth
and 974 intermittent. Three different lead times are investigated, t+1, t+3
and t + 5. From each time series the last 5 observations are withheld as a
holdout test set, providing 3000 out-of-sample forecasts for each lead time,
ample to allow for valid comparisons. A simulated dataset is used to support
the inventory metrics comparison. This contains 5,000 time series. The real
time series are broken into pairs of demand size and intervals, which are
bootstrapped to produce the new time series. This way the properties of the
original dataset are retained.
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5.2. Accuracy Metrics

Following the discussions in Hyndman and Koehler (2006) and Wallström
and Segerstedt (2010) two different error measures are used to assess the
performance of the models. First we calculate the mean absolute scaled
error (MASE) across the 3,000 time series. This error has desirable statistical
properties and can be calculated for intermittent time series. For each time
series and forecast horizon the absolute scaled error is calculated as:

ASEh = |yh − ŷh|/
(

n−1
∑n

k=2
|yk − yk−1|

)

, (11)

where h is the horizon and n the number of in-sample observations. Es-
sentially this is the conventional out-of-sample absolute error, scaled by the
in-sample 1-step ahead in-sample error to allow for summarising across time
series. The individual ASE are averaged across all time series to provide the
reported MASE value.

The originally proposed PIS is a scale depended measure of bias. To sum-
marise it across series its absolute value is considered, which is consequently
scaled by the mean in-sample demand of each item. This makes the error
measure scale-independent and therefore it is now possible to simply aggre-
gate across series. The modified scaled absolute periods in stock (sAPIS)
measure is calculated as:

sAPISh = n
∣

∣

∣
−
∑h

i=1

∑i

j=1
(yj − ŷj)

∣

∣

∣
/
∑n

k=1
yk, (12)

The advantage of this metric is that it will penalise adequately zero fore-
casts, which otherwise may appear to perform well, due to the number of
zero-demand periods in the out-of-sample period. Note that because of the
absolute in the calculation the direction of the bias is lost, but its size is re-
tained. Therefore, when summarising across time series the various measured
biased will not cancel out.

The error measures above focus on point forecasts. Snyder et al. (2012)
suggest to use prediction distribution based measures instead, the latter being
more informative. However this is not done in this paper as direct calculation
of inventory metrics is performed.

The focus of the accuracy metrics experiments is to identify whether any
of the optimisation alternatives performs better. To this purpose considering
the mean rank of each model in terms of PIS is useful. The model with the
lowest mean rank performs the best. Given the sample size of the forecasts,
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it is possible to assess the significance of the differences. The Friedman
test, which is the non-parametric analogous to ANOVA, is used to identify
whether at least one model is significantly different (Hollander and Wolfe,
1999). Consequently, the post-hoc Nemenyi test is used to assess the detailed
ranking of the different models. The latter was shown to be a generalisation
of the MCB test that was used to identify significantly better models in the
M3 forecasting competition (Koning et al., 2005; Hibon et al., 2012).

5.3. Inventory Simulation and Metrics

The use of accuracy metrics to evaluate the performance of methods in
intermittent demand data has been contested in the literature (for exam-
ples see: Gardner, 1990; Teunter and Duncan, 2009; Syntetos et al., 2010;
Kourentzes, 2013). Inventory metrics are directly related to the operations
and decision making process of the organisations. For this reason an inven-
tory simulation is performed. The common in practice order-up-to policy
(T ,S) is used (Teunter and Sani, 2009a). Target service levels of 0.80, 0.90,
095 and 0.99 are considered and the inventory review period is set to one
month. The initial stock is assumed to be equal to the order-up-to level S.
In each period the actual demand is subtracted from the holding stock H.
If the stock falls below S, then an order S − H is placed. Lead times of
one, three and five periods are considered. To simplify the simulation, it is
assumed that any out-of-stocks are serviced by competitors and therefore are
considered lost. The simulation follows the setup described by Kourentzes
(2013).

The first simulation uses the real dataset. The first 13 observations are
used to initialise the simulation and the remaining 11 are used for the em-
pirical evaluation. This data split was suggested by Syntetos and Boylan
(2006) using the same dataset, as well as the stock initialisation assumption.
A second simulation is done on the 5,000 constructed time series. In this case
there are no sample limitations. The first 96 observations of the simulated
time series are used for fitting the models and initialising the simulation, the
next 1,000 observations are used as a burn-in period and the last 240 obser-
vations are used to measure the inventory performance of the methods. The
purpose of the burn-in period is to remove the impact of any stock initiali-
sation values and advance the simulation to a realistic state regarding level
of stock and orders. Inventory metrics are not measured during the burn-in

period.
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The advantage of using the real data is clear. On the other hand, with
the limited history of the real data it is not possible to use a burn-in period,
thus the results are sensitive to the simulation initialisation assumptions.
The advantage of using simulated data is that this limitation is overcome
and it is trivial to collect large samples. Results from both datasets will be
presented, as both setups have their own merits.

The holding stock and out-of-stocks are recorded for the out-of-sample
simulation period. These are used to create trade-off curves between stock-
holding and out-of-stock. Both are made scale independent by dividing them
with the average in-sample demand to allow summarising the results across
time series. Furthermore, service level α is tracked.

5.4. Optimisation Results

Here the out-of-sample results of the different optimisation setups are
presented. Table 1 provides the mean ranks of the different cost functions
across all methods ‘Overall’, CRO, SBA, CRO and SBA together ‘CRO,

SBA’, TSB and SES according to PIS. Mean ranks based on MASE are very
similar. The mean ranks are calculated across all time series and forecast
horizons, resulting in 9,000 forecasts. The lower the value of the reported
mean rank the better the performance of the method. The best performance
for each method is highlighted in boldface. For all methods apart from TSB

the MAR cost function is the best. For TSB the MSR is marginally better
than MAR.

Table 1: Mean rank per cost function and forecasting model

Overall CRO SBA CRO, SBA TSB SES

MSE 3.012 2.990 3.045 3.018 2.989 2.988

MAE 3.042 2.979 3.073 3.026 3.106 2.965

PIS 3.215 3.335 3.117 3.226 3.172 3.275

MSR 2.870 2.854 2.890 2.872 2.864 2.910

MAR 2.861 2.841 2.876 2.858 2.869 2.862

Figure 1 provides a summary of the statistical tests for 5% significance
level. For all methods the results of the cost functions are significantly dif-
ferent according to the Friedman test. For any results joined by a vertical
line there is not enough evidence of significant differences according to the
Nemenyi test. For example, in figure 1 for CRO there is no evidence of differ-
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ences between MAR and MSR, as well as between MAE and MSE. The mean
rank for each cost function is also provided in the figure for easy reference.

MAR − 2.86  

MSR − 2.87  

MSE − 3.01  

MAE − 3.04  

PIS − 3.22  

Overall

MAR − 2.84  

MSR − 2.85  

MAE − 2.98  

MSE − 2.99  

PIS − 3.44  

CRO

MAR − 2.88  

MSR − 2.89  

MSE − 3.04  

MAE − 3.07  

PIS − 3.12  

SBA

MAR − 2.86  

MSR − 2.87  

MSE − 3.02  

MAE − 3.03  

PIS − 3.23  

CRO, SBA

MSR − 2.86  

MAR − 2.87  

MSE − 2.99  

MAE − 3.11  

PIS − 3.17  

TSB

MAR − 2.86  

MSR − 2.91  

MAE − 2.96  

MSE − 2.99  

PIS − 3.27  

SES

Figure 1: Mean rank and Nemeneyi test results for different cost functions per method.

We can see that in all cases MAR and MSR are in practice similar, but
perform significantly different from other cost functions. For all CRO, SBA
and ‘CRO, SBA’ the use of MSE and MAE results in similar performance,
while this is not true for TSB. This is reflected in the Overall results as well.
The behaviour of SES is quite distinct. Although MAR again ranks highly
and significantly different from all other cost functions but MSR, the latter
performs similarly to MAE. The PIS metric, although intuitively appealing
since it uses cumulative errors, it does not perform well as a cost function for
any of the methods. However, it is useful to keep in mind that minimising the
absolute PIS, will not provide the minimum error fit, as it is a bias measure.

The similarity of MSR and MAR can be explained by the nature of ri.
The rate error is already smooth, without extreme outliers, and therefore
considering either squared or absolute errors provides similar performance.
We can conclude that the proposed MAR and MSR are useful for optimising
the investigated methods. Hereafter, to avoid clutter in the results, only the
results based on MAR optimisation will be presented.

Table 2: Mean rank of optimisation setup alternatives

Type No. of parameters Optimise y0 CRO, SBA CRO SBA TSB

1|0 1 No 2.510 2.528 2.493 -

1|1 1 Yes 2.467 2.476 2.458 -

2|0 2 No 2.560 2.550 2.571 1.623

2|1 2 Yes 2.462 2.446 2.478 1.377

Table 2 provides results on the remaining of the optimisation setups, i.e.
the number of parameters to be optimised and whether to optimise the vec-
tor of initialisation values y0. The best mean PIS rank for each method is
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2|1 − 2.45  

1|1 − 2.48  

1|0 − 2.53  

2|0 − 2.55  

CRO

1|1 − 2.46  

2|1 − 2.48  

1|0 − 2.49  

2|0 − 2.57  

SBA

2|1 − 2.46  

1|1 − 2.47  

1|0 − 2.51  

2|0 − 2.56  

CRO, SBA

2|1 − 1.38  

2|0 − 1.62  

TSB

Figure 2: Mean rank and Nemeneyi test results for different optimisation setups per
method.

highlighted in boldface. In all cases optimising y0 is beneficial. This is in
agreement with conventional exponential smoothing modelling for fast mov-
ing items (Hyndman et al., 2008). Considering that intermittent demand
series are typically short and that low smoothing parameters are advisable,
the forecasts can be substantially influenced by the initialisation values. Op-
timising them avoids using ad-hoc values, which may not be representative
of the series and can lead to poor forecasts.

For CRO and ‘CRO, SBA’ optimising the non-zero demand and the inter-
demand intervals separately is beneficial. However, consulting figure 2 we can
see that this is not significantly different from optimising a single parameter,
based on the results of the Nemenyi test. For SBA not using optimised initial
values and a single smoothing parameter is not significantly different as well.
Figure 2 follows the same naming convention as column ‘Type’ in table 2.

Given that from a theoretical point of view there is no motivation in
updating both x̂t and ẑt at the same rate (Snyder, 2002), it makes sense
to prefer the flexibility of using separate smoothing parameters. Therefore,
based on these results, it is suggested to use two smoothing parameters and
optimal initialisation values for all intermittent demand methods considered.

In the literature the smoothing parameters of intermittent demand met-
hods are typically small (Syntetos and Boylan, 2005; Teunter et al., 2011).
It might be beneficial to translate this into upper bounds for parameter op-
timisation. In figure 3 this option is explored. The parameters are optimised
with upper bounds from 0.1 up to 1. The average sAPIS across all forecast
horizons is plotted, across all time series, for CRO, SBA and TBS sepa-
rately. The results suggest that for both CRO and SBA imposing lower
upper bounds, for the optimisation of the smoothing parameters, does not
provide any advantages. For TBS the opposite is revealed. Very low upper
bounds can harm the accuracy of the method substantially. Based on these
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results, it is suggested to use only the natural upper bound of 1 for parameter
optimisation.
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Figure 3: sAPIS for optimal parameters with upper bounds from 0.1 to 1.

To further understand this result, figure 4 provides boxplots for the op-
timal parameters of CRO, SBA and TBS, as identified by MAR. Most of
the parameters are within the region suggested by the literature, with only
some outlying values. The first and third quartiles of the boxplots broadly
match the range of identified best parameters by Babai et al. (2011) and
Petropoulos et al. (2013), who used the same dataset. Note that in these
studies the same parameters were applied to all time series in the dataset.
The parameters for CRO and SBA demonstrate a very similar behaviour,
while TBS parameters are generally lower with less outliers. The reasonable
optimal parameters occur only in the case of MAR and MSR. For the lat-
ter the parameter boxplots are very similar to figure 4. Conventional cost
functions, such as MSE and MAE result in substantially higher smoothing
parameters, as illustrated in figure 5 for MAE. MSE parameter values are
similar. These do not follow the recommendations of the literature. The
smoothing parameters are often quite high, resulting in very sensitive mod-
els that do not perform well for intermittent data. This explains the poor
ranking of such metrics demonstrated in table 1 and figure 1. The absolute
PIS cost function resulted in even higher smoothing parameters.

This illustrates the success of the proposed MAR and MSR cost func-
tions for the case of intermittent demand forecasting. Due to their nature,
the resulting parameters are low, in agreement with the literature, and con-
sequently the different forecasting methods perform well. This is found to be
impossible with conventional cost functions, as well as with PIS.

When comparing the optimal parameters with a-priori selected parame-
ters the good performance of MAR and MSR holds. All methods are simu-
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Figure 4: Boxplots of the optimal parameters for updating zt and xt for the different
methods based on MAR. The average in each case is plotted with a dot (•).
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Figure 5: Boxplots of the optimal parameters for updating zt and xt for the different
methods based on MAE. The average in each case is plotted with a dot (•).

lated using fixed parameters of 0.05, 0.10, 0.15 and 0.20, following the sug-
gestions by Syntetos and Boylan (2005), who used the same dataset. The
comparisons indicate that for CRO and TSB the optimal parameters are
significantly better in all cases, while for SBA parameters of 0.15 and 0.20
provide less accurate forecasts, yet not significantly different. Detailed re-
sults are not provided due to space considerations. Parameter optimisation
achieved significantly better performance for both CRO and TSB, and equiv-
alent performance for SBA.

The inventory metrics results for the real and the simulated datasets are
summarised in figures 6 and 7 respectively. The figures refer to the results for
the lead time of three periods. The results for one and five periods are similar
with less or more exaggerated differences respectively and are not reported to
conserve space. The different forecasting methods are reported separately in
each column. The target and realised service level α are provided on the top
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row of plots. The trade-off curves between scaled holding stock and scaled
backlog are provided in the lower row of plots. To facilitate the matching
of the target service levels with the trade-off curves the different levels are
indicatively marked for one of the curves. Ideally a method should achieve
the target service level with the minimal amount of cost. In other words,
the trade-off curves that are closer to the origin of the axes dominate other
trade-off curves, as they achieve lower stock-outs while requiring less holding
stock.
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Figure 6: Service level and scaled stock-backlog trade-off curves for real dataset.

Considering the inventory simulation results on the real dataset (figure
6), for all CRO, SBA and TSB the MAR and MSR behave similarly. They
consistently achieve higher service levels than MSE and MAE, while requiring
less stock. Their trade-off curves dominate those of MSE and MAE. The
differences between MSE and MAE are small, with the exception of the poor
service levels achieved by MAE in the case of SBA.

Considering the results from the simulated time series in figure 7 the good
performance of MAR and MSR is verified again. They consistently, across all
models, achieve higher service levels while using less stock. Furthermore the
differences between MAR and MSR are very small. Interestingly, all three
CRO, SBA and TSB perform very similarly when optimised using MAR. On
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Figure 7: Service level and scaled stock-backlog trade-off curves for simulated dataset.

the other hand, MSE and MAE have rather unstable behaviour, reflecting
the findings in figure 5. The trade-off curves of MSR and MAR dominate
their MSE and MAE counterparts in all cases. It is interesting to observe
that MAE performs particularly poorly in optimising SBA again.

Apart from better accuracy and inventory performance, another advan-
tage of the optimally selected parameters, using the proposed cost functions,
is that model parametrisation for intermittent demand is simplified consid-
erably. There is no need to try several ad-hoc parameters and evaluate them
using out-of-sample bias and accuracy metrics or inventory simulations to
pick the best. This has direct implications for improving the automation of
Croston’s method and its variants in forecasting systems and software.

5.5. Model Selection Results

Based on the findings in section 5.4 we can investigate whether it is pos-
sible to select between the different models for each time series, based on
the outlined error metrics. All models reported hereafter are optimised using
MAR. The in-sample fit of the optimised models using MSE, MAE, PIS, MSR
and MAR is recorded and the model that gives the lowest error is selected
for each time series. Four scenarios are considered. In the first one the model
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pool includes only CRO and SBA. The second one includes additionally TSB

and the third one SES, while the fourth one includes all methods.

Table 3: sAPIS and MASE results for the different in-sample error model selection

Error sAPIS MASE

t+1 t+3 t+5 Rank t+1 t+3 t+5 Rank

Scenario 1: CRO, SBA

MSE 0.747 3.105 6.529 3.002 0.851 0.880 0.912 3.008

MAE 0.747 3.103 6.531 3.012 0.851 0.880 0.912 2.985

PIS 0.747 3.102 6.535 2.994 0.851 0.882 0.913 3.004

MSR 0.747 3.098 6.513 2.996 0.851 0.880 0.912 3.007

MAR 0.747 3.097 6.514 2.997 0.851 0.879 0.912 2.995

Scenario 2: CRO, SBA, TSB

MSE 0.743
† 3.083 6.488 2.991 0.847

†
0.878 0.910 2.981

MAE 0.743
† 3.087 6.498 3.001 0.848 0.879 0.909

† 2.979

PIS 0.743
†

3.081 6.489 2.988 0.848 0.879 0.911 3.005

MSR 0.745 3.084 6.483 2.998 0.849 0.878 0.911 3.013

MAR 0.746 3.090 6.490 3.022 0.850 0.878 0.911 3.022

Scenario 3: CRO, SBA, SES

MSE 0.746 3.099 6.524 3.015 0.850 0.879 0.911 3.005

MAE 0.745 3.097 6.522 2.997 0.849 0.879 0.911 2.977

PIS 0.745 3.089 6.514 2.979 0.849 0.880 0.911 3.008

MSR 0.746 3.089 6.498 2.991 0.850 0.878 0.911 3.001

MAR 0.747 3.095 6.515 3.018 0.851 0.879 0.912 3.009

Scenario 4: CRO, SBA, TSB, SES

MSE 0.743
† 3.085 6.496 2.998 0.848 0.878 0.910 2.992

MAE 0.743
† 3.087 6.500 3.006 0.847

† 0.878 0.910 2.979

PIS 0.745 3.082 6.499 3.009 0.849 0.880 0.911 3.030

MSR 0.744 3.079
†

6.475
† 2.982 0.848 0.877

†
0.910 2.988

MAR 0.745 3.086 6.482 3.006 0.849 0.877
† 0.911 3.010

† Best result across all model pools for that horizon.

The results of the evaluation, for each horizon, for both sAPIS and MASE
are provided in table 3. The selection criteria for each forecast horizon that
provides the best accuracy for each scenario is highlighted in boldface. The
result that is best across all model pools is denoted with a †. The striking
feature of the results are the small differences. Mean PIS and MASE ranks
across all forecast horizons are provided. These highlight further the small
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magnitude of the differences. The Friedman test indicates that for each case
there are no statistically significant differences, therefore in practice there is
no evidence to prefer any of the selection criteria.

The number of models considered in the pool does not alter this finding.
On the other hand, the type of models considered in the pool seems to affect
the overall accuracy, albeit marginally again. Using TSB and SES seems
to be better than using just CRO and SBA. However, these results do not
indicate whether model selection is beneficial at all.

Table 4 presents the sAPIS and MASE results, across the different fore-
cast horizons, for individual methods and pools of methods, as selected by
MAR. The most accurate results are highlighted in boldface. In addition to
the in-sample model selection schemes, as a benchmark, the item classifica-
tion proposed by Syntetos et al. (2005) as refined by Kostenko and Hyndman
(2006) is used. The refined classification was shown to perform better than
the original (Heinecke et al., 2011). The classification is based on the average
inter-demand interval p of each time series and the squared coefficient of vari-
ation of the demand v. Although the original classification was identifying
four regions, the refined version separates the space in only two regions. Any
item with v > 2 − (3/2)p should be modelled with SBA and the rest with
CRO. For this dataset this indicates that 616 items are appropriate for CRO
and that 2,384 should be modelled with SBA. The resulting model selection
that follows from this classification is referred to as ‘KH select’.

Table 4: Individual and model selection sAPIS and MASE results
Model sAPIS MASE

t+1 t+3 t+5 t+1 t+3 t+5

CRO 0.749 3.110 6.563 0.852 0.882 0.914

SBA 0.746 3.100 6.521 0.851 0.879 0.911

CRO, SBA 0.747 3.097 6.514 0.851 0.879 0.912

KH select 0.747 3.101 6.523 0.852 0.880 0.912

TSB 0.742 3.070 6.457 0.847 0.876 0.909

CRO, SBA, TSB 0.746 3.090 6.490 0.850 0.878 0.911

SES 0.742 3.076 6.494 0.845 0.878 0.911

CRO, SBA, SES 0.747 3.095 6.515 0.851 0.879 0.912

CRO, SBA, TSB, SES 0.745 3.086 6.482 0.849 0.877 0.911

The results between sAPIS and MASE are similar. The model selection
that uses CRO and SBA is marginally better than ‘KH select’, but fails to
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demonstrate significant gains over modelling all time series with either CRO
or SBA. Once TSB is included in the model pool, the differences in the
results increase, though not significantly. However, using only TSB to model
all the time series performs the best. This is in agreement with the reported
good performance of TSB by Teunter et al. (2011). If instead of TSB, SES is
introduced in the model pool, smaller improvements are observed, explained
by the poorer performance of SES on its own compared to TSB. On the
other hand, SES outperforms both CRO and SBA. This is in contrast to the
findings by Syntetos and Boylan (2005) and can be attributed to the optimal
SES parameters that are used in this study. Wallström and Segerstedt (2010)
also found evidence of good performance of SES, based on the PIS metric.
Finally, if all four methods are considered in the model pool, the results of
the model selection improve, but still ranks second, though closely, to TSB.

Table 5: Types of selected models

Model % of models in the results

CRO SBA TBS SES

CRO 100.00% 0.00% 0.00% 0.00%

SBA 0.00% 100.00% 0.00% 0.00%

CRO, SBA 48.87% 51.13% 0.00% 0.00%

KH select 20.53% 79.47% 0.00% 0.00%

TSB 0.00% 0.00% 100.00% 0.00%

CRO, SBA, TSB 24.60% 23.93% 51.47% 0.00%

SES 0.00% 0.00% 0.00% 100.00%

CRO, SBA, SES 39.40% 43.43% 0.00% 17.17%

CRO, SBA, TSB, SES 21.80% 21.50% 47.70% 9.00%

1/2 

4/3p

v

 CRO: 616

 SBA: 2384 

KH select

1/2 

4/3p

v

 SBA: 326
 CRO: 290

 SBA: 1208 
 CRO: 1176 

CRO, SBA

1/2 

4/3p

v

 TSB: 286
 SBA: 157
 CRO: 173

 TSB: 1258 
 SBA:  561 
 CRO:  564 

CRO, SBA, TSB

1/2 

4/3p

v

 SES: 102
 SBA: 293
 CRO: 221

 SES:  413 
 SBA: 1010 
 CRO:  961 

CRO, SBA, SES

1/2 

4/3p

v

 SES: 60
 TSB: 270
 SBA: 147
 CRO: 139

 SES:  210 
 TSB: 1161 
 SBA:  498 
 CRO:  515 

CRO, SBA, TSB, SES

Figure 8: Selected models classified according to the KH scheme.

To further investigate the differences between the different model selection
schemes table 5 provides the percentage contribution of each type of model
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selected under each model pool. Comparing CRO, SBA with ‘KH select’ it
is evident that the selected models differ significantly. Once TSB becomes
available in the model pool then the majority of time series are modelled with
it. Given its good performance this result makes sense. Inclusion of SES in
the model pool does not alter the percentages significantly, indicating that
from an in-sample fitting perspective SES does not score high.

Figure 8 identifies the number of time series that were modelled with each
method, for each model selection case, when the time series are classified
according to ‘KH select’. It is notable that the similarly performing ‘CRO,

SBA’ has a substantially different distribution of models to ‘KH select’. In
particular, more time series are modelled with SBA than with CRO, where
the classification supports the latter. TSB and SES, when included in the
model pool, are selected proportionally in both regions of the classification.

Considering the inventory metrics no important differences are observed
between the different model pools. The same is true for ‘KH select’. In
figures 6 and 7 we have already seen that once the different intermittent
demand models are optimised by MAR they have similar inventory perfor-
mance. These small differences naturally are retained when the model selec-
tion schemes are evaluated. Therefore, it is concluded that model selection
using error metrics offers no significant differences to ‘KH select’, which is
turn is only marginally different to the individual optimised models. This
finding holds irrespective of which model selection criteria was used.

6. Conclusions

This paper investigated different alternatives for optimising intermittent
demand methods, in particular the Croston’s method and the SBA approx-
imation, as well as the more recent TSB method. It also explored different
options for fitting error driven model selection for intermittent demand.

Two new cost functions, MSR and MAR, were proposed. They are based
on the idea of using demand rates over time to calculate the error, rather
than realised demand. The proposed cost functions were found to outper-
form MSE and MAE error metrics, as well as a cost function version of PIS.
The resulting optimal parameters were found to be in agreement with the
guidelines of the literature. This was not true for conventional error metrics,
which demonstrated unstable behaviour, often resulting in large smoothing
parameters. It is important to note that the proposed measures were develop
having Croston’s method and its variants in mind, which provide a demand
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rate forecast. Alternative forecasting methods that do not provide such fore-
casts may not benefit from MSR and MAR. This was reflected in the SES

results.
Significant gains were identified by optimising the initialisation values

of all methods. For both CRO and SBA optimising the non-zero demand
and inter-demand interval estimates separately was found to be beneficial.
These findings were verified using both out-of-sample accuracy and inventory
metrics.

This work has useful implications for practitioners. Although there have
been significant developments in intermittent demand methods, the discus-
sion on how to best select model parameters has been limited, often based
on ad-hoc selection. This is reflected in established forecasting and ERP
systems, such as SAP Advanced Planner and Optimiser, which require the
user to input the appropriate model parameters. This work provides easy
to implement recommendations addressing this issue, allowing practitioners
to identify optimal parameters for each of their time series. This can also
help in achieving increased automation of the forecasts. Future work should
explore the implications for the forecasting process in organisations and po-
tential changes in the perceived quality of the forecasts by experts. This in
turn may drive them to change their behaviour in adjusting the forecasts
(Syntetos et al., 2009).

The results on model selection were not equally clear. No preference
was identified for any of the in-sample fitting criteria for model selection
purposes. All of them demonstrated similar performance. Their forecasting
accuracy was marginally better than the ‘KH select’ item classification, when
only CRO and SBA were used. Notably, the models selected for each time
series were substantially different, raising questions regarding the practical
usefulness of either selection schemes. Although classifying series as erratic,
lumpy, smooth and intermittent is helpful for communicating their proper-
ties, the model selection results did not support clear differences in their
modelling needs. This has been somewhat reflected in the ‘KH select clas-
sification, where only two classes are identified. Notably, none of the model
pools managed to outperform substantially the individual models.

Although this paper contributes to the optimisation of intermittent de-
mand methods, it does not provide a clear suggestion on model selection,
as no superior approach was identified. The topic of model selection will
become increasingly relevant with the recent surge of intermittent demand
forecasting research. As new methods appear in the literature that are able
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to outperform Croston’s method and its derivatives, as well as overcome their
limitations, a robust and valid model selection methodology is needed.
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