
Please	 cite	 this	 paper	 as:	

Stacey,	 P.K.	 (2014)	 “Its	 Time	 to	 Act:	 Understanding	 and	 Assessing	 Agility	 in	 Information	
Systems	 Development”,	 Lancaster	 University	 Management	 School,	 Working	 Paper	 series,	
Working	 Paper	 2014:7	

Lancaster University Management School
Working Paper 2014:7

Its Time to Act: Understanding and
Assessing Agility in Information Systems

Development

Dr. P.K. Stacey

The Department of Management Science
Lancaster University Management School

Lancaster LA1 4YX
UK

© Dr. Patrick K Stacey
All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission,
provided that full acknowledgment is given.

The LUMS Working Papers series can be accessed at http://www.lums.lancs.ac.uk/publications

LUMS home page: http://www.lums.lancs.ac.uk

1

Abstract

This paper focuses on addressing the question of how agile are agile methods. To do
this I synthesize seven general features of agility, drawing on management and
sociology disciplines, into a framework, to act as a ‘gold standard’ by which to compare
agile methods. I found that agile methods did not entirely measure up to this framework
and that they were lacking in terms of (i) survival, (ii) prospering or thriving on change,
and (iii) being able to regulate and leverage emotions in action responses to change.
This paper offers: (i) a framework for assessing agility in software development, (ii) the
elucidation of a knowledge gap in agile methods with respect to emotion, and, (iii) a
conceptualization that reveals the need to incorporate emotional regulation and leverage
into assessments of agility.

Keywords: agile methods, assessment, agency, emotion, game design

2

Introduction
This paper is a direct response to a current concern in the IS design literature: how agile
are agile methods? In order to provide an answer, I propose I need some sort of ‘gold
standard’ for agility, i.e. an independent benchmark to see how agile methods measure-
up. When quality in software design is tested I have the likes of the Capability Maturity
Model (SW-CMM) (Humphrey et al. 1991b), ISO 9001 (Paulk 1995), Bootstrap
(Kuvaja et al. 1994), ami (Debou et al. 1994), SPICE (Dorling 1993), and TickIT
(Classe 1993). However, when it comes to agility in software development, there are no
independent standards or frameworks for assessing agility. Although Baskerville et al
(2003) formulated metaprinciples for agile software development, these were based on
software practitioner views; so the metaprinciples were somewhat in-bred, i.e.
developed from within the context of agile methods. My study is different in that I
propose a framework that is based on a synthesis of definitions of agility that borrow
from outside the Information Systems Development (ISD) field, drawing on scholars in
management and philosophy. I then use this framework to assess: (i) agile methods in
an industrially context-free manner, i.e. based on general thinking about agile methods,
(ii) agility in an utilitarian software development context (drawing on ISD literature),
and (iii) in a computer games development context (drawing on a field study I
conducted of a computer games studio in Singapore). As each assessment of agility is
made, I continually reflect on what are useful ways of assessing agility in software
development.

I suggest the need to probe deeply into a software development setting/team in order to
perform such an assessment, since I argue that agility is largely based on the concept of
human agency and emotional regulation. So, similarly to some quality assessment
approaches that investigate organisational culture (e.g. (Humphrey et al. 1991b) to get a
sense of a quality culture, we need in-depth field studies to get a sense of how agile the
culture is. So, assessing agility does not just involve checking whether a team releases
software in short cycles, or whether they reduce the cost of moving information
between team members decision (Cockburn et al. 2001), but about understanding the
deeper emotional profile of the developers in the setting. This paper’s contributions are:
(i) a framework for assessing agility in software development, (ii) the elucidation of a
knowledge gap in agile methods with respect to psychological concepts such as
emotion, and, (iii) a conceptualization that reveals the need to incorporate emotional
regulation and leverage into agility assessments. The paper argues that agile methods
can be improved if they were to embrace not just change per se (Beck 1999) but the
emotional aspect of change.

Theoretical Foundations

Business Agility

The term agility in a business context was first coined by the Iaccoca Institute in 1991
(Sanchez et al. 2001). Generally, agility is often described as having the ability to adapt
quickly to changing circumstances (Zain et al. 2003). Organisational agility is, “a

3

response to the challenges posed by a business environment dominated by change and
uncertainty” (Zain et al. 2005:p83). Such a response may be characterised by the
capability to survive and prosper in an environment of continuous and unpredictable
change (Gunasekaran 1998). A capability, which in turn, according to Gunasekaran
(1998) and Yusuf et al. (1999), stems from a flexible and adaptive capability. According
to Shaw et al. (2005), agility is sometimes related to levels of organizational virtuality
with strategically selected partners and supported by electronic commerce (Gunasekaran
et al. 2002). So IT support for business processes and Inter Organisational Systems are
also important features of being agile in a business context (Zain et al. 2005). However,
Yusuf et al. (1999) explain that “the main driving force behind agility is change” (Yusuf
et al. 1999):p34), i.e. as opposed to just the use of IT.

A Philosophy of Agility

Indeed, the Chambers dictionary would not disagree with the above interpretations of
agility, although it does offer a new connotation when looking up the etymology of
“agile”, which it defines as ‘nimble’, i.e. moving quickly and lightly. The word agile is
derived from the Latin agere – to do or act. So in one sense agile simply means to do
something irrespective of the speed at which the doing occurs. However, if I take it to
mean to act this has a more significant connotation, i.e. that a person takes action if they
are agile. They do not stand still in the face of continuous and unpredictable change, but
do something about it; they are flexible and adaptive (Yusuf et al. 1999). The opposite
then would be someone who does not adapt or change their plans when faced turbulent
times, i.e. escalating commitment to a failing course of action (Keil et al. 1993).
A person with the capability to act or adapt is referred to as an agent. In social theory
taking action or acting is explored through the concept of action theory or agency.
Anthony Giddens is a prominent author on the topic, who’s view, in a nutshell, is that
agents can make a difference in the world (Giddens 1984b). For Giddens, agency is “the
stream of actual or contemplated causal interventions of corporeal beings in the ongoing
process of events-in-the-world.” (Giddens 1993:p81). The word ‘interventions’ is
important since it indicates that agents have the capability to bring about a change in a
situation. Just because a situation has been ‘so’ does not mean they should continue as
such, “the seed of change is there in every act which contributes towards the
reproduction of any ‘ordered’ form of social life” (Giddens 1993:p108). Thus an agent
not only responds to change but is capable of provoking change. After all, “the main
driving force behind agility is change” (Yusuf et al. 1999:p34)
Agents make their decision, whether wittingly or unwittingly, about how to act through
their ongoing reflexive monitoring of themselves and their social contexts (Giddens
1984). Reflexive monitoring affords the agent a sense of ontological security; knowing
what’s what in any particular situation at any point in time. For example, what are social
norms? What is socially acceptable? What is unacceptable? Do I care what is
(un)acceptable? Agents rationalize their decisions and actions by forming a theoretical
understanding of why they (are about to) act in certain ways. This in turn is guided by
their so-called “projects” or overall plans or programmes in life, i.e. their motivations.
Motivations in turn are directly connected to their emotions, “The connection of
motivation to the affective elements of personality is a direct one, and is recognized in

4

everyday usage; motives often have ‘names’ – fear, jealousy, vanity, etc. – and these are
at the same time commonly regarded as the ‘names’ of emotions.” (Giddens 1993:p92).
So feelings may also to some extent guide the actions of agents, such as not feeling like
making a difference, being or stubborn, or indeed being gung ho and stepping up to
adapt, survive and prosper when faced with change, or indeed, wishing to provoke
change (Gunasekaran 1998). An extended version of Giddens’ stratification model of
the agent (Stacey et al. 2006) shows the mechanism underlying human agency. I will
elaborate on this mechanism when I present my conceptualization.

Figure 1: an extended version of Giddens’ stratification model of the agent

General Features of Agility

Based on the above theoretical insights drawn from outside of agile software methods,
and are therefore somewhat ISD independent, I now look across them all to try to tease
out the essence of agility. I begin by summarizing and tabulating them into actions
versus contexts (see table 1).

Agents Reflexive monitoring of action
Rationalisation of action
Motivation of action
Emotions

Unintended
Consequences of
Action

Unacknowledged
Conditions of
Action

Change

5

Table 1: Summary of views on agility

Agile actions Contextual forces enabling
and constraining agility

Author

ability to adapt quickly to changing circumstances Zain et al (2003)
a response to challenges posed by a

business environment
dominated by change and
uncertainty

Zain et al (2005)

the capability to survive and
prosper in

an environment of
continuous and
unpredictable change

Gunasekaran (1998)

a flexible and adaptive
capability

 Gunasekaran (1998) and
Yusuf et al. (1999)

 levels of organizational
virtuality with strategically
selected partners and
supported by electronic
commerce

Gunasekaran and Yusuf
(2002)

 IT support Zain et al (2005)
 Change Yusuf et al. (1999)
To act or take action Chambers dictionary
Exercise agency Giddens (1993)
“the stream of actual or
contemplated causal
interventions of corporeal
beings in the ongoing
process of events-in-the-
world”

 Giddens (1993)

Regulate and leverage
emotions for motivation and
action

 Stacey and Nandhakumar
(2006)

Now that I have summarized these insights, I tease out the general features of agility,
particularly based on the “agile actions” column – see table 2.

6

Table 2: General features of agility

General feature of agility Contextual forces enabling
and constraining agility

GF1 Be responsive
GF2 Adapt quickly
GF3 Survive
GF4 Prosper
GF5 Be Flexible
GF6 Capability to intervene and

exercise agency
GF7 Capability to regulate and

leverage emotions for action

in…

…a business environment
marked by continuous,
unpredictable, and uncertain
change

Expressing the general features of agility in table 2 as a statement:

Respond in a manner that exhibits quick adaptability, survival, prosperity,
flexibility, intervention, and an ability to regulate and leverage emotions for
action (being aspects of human agency), in a business environment marked by
continuous, unpredictable, and uncertain change.

Aspects of Agile Methods

Having proposed a set of 7 general features of agility (table 2), i.e. which were
formulated independently of agile methods, I now review current thinking on agile
methods.

Similarly to the above interpretations of agility in the management and philosophy
literature, Agile software methods also emphasize flexibility (Cusumano et al. 1999),
specifically in terms of, inter alia, the choice, sequence, scheduling, and documentation
of development activities. Incarnations of agile software methods include eXtreme
Programming (Beck 1999), Scrum (Schwaber 1995), Crystal (Cockburn 2002), Feature
Driven Development (Palmer et al. 2002), the Rational Unified Process (Kruchten
1996), Dynamic Systems Development Method and Adaptive Software Development
(Highsmith 2000). In these approaches, emphasis is placed on being responsive to
disruptions in the environment such as changing user requirements, “Agility, for a
software development organisation, is the ability to adopt and react expeditiously and
appropriately to changes in its environment and to demands imposed by this
environment” (Kruchten 2001:p27). Responsiveness is said to be enabled to some
degree by developing in small iterations or sub cycles (Baskerville et al. 2003;
Cockburn 2002); for example XP’s ‘iterations to release’ phase (Beck 1999).
Furthermore, XP has six phases; Exploration, Planning, Iterations to Release,
Productionizing, Maintenance and Death (Beck 1999). Stories consisting of features are
written and prioritized by the customer working alongside the developers (Exploration

7

and Planning phases) taking into account the effort estimates of the engineers, who then
iteratively develop each feature (Iterations to Release phase). Many of XP’s activities
occur in close succession, doing a little of each activity at each iteration, i.e. a little
planning, analysis, design and testing (Beck 2001). Continuous testing is an important
aspect of XP’s paired programming approach; as one writes code the other writes the
test script (Beck 1999).

However, it is not just the implantation of customers in the development context
(Baskerville et al. 2003) and an iterative approach that facilitates agility. It is also the
way in which a team is organised, i.e. a software company needs to reduce the cost of
moving information between people and reduce the elapsed time between making a
decision to seeing the consequences of that decision (Cockburn et al. 2001), for
example; by continually testing the software (Beck 1999). Reducing the cost of moving
information between people may be achieved by placing developers physically closer,
replacing documents with conversations and generally improving the team’s sense of
community and morale so that people are more inclined to relay valuable information
quickly (Cockburn and Highsmith 2001:p131). According to Baskerville et al (2003),
“Agile principles prioritize speed, responsiveness, and improvisation rather than quality
or cost as traditional principles do. Contrary to traditional software development’s
emphasis on control, discipline, formality, and rigor, agile principles stress informal
knowledge exchange, collaboration, and experience, and acknowledge more sensitivity
to tailoring project practices to environmental conditions.” (Baskerville et al.
2003):p75).

Aspects of agile software development
Table 3 summarizes the aspects of agile methods. Each aspect is assigned a code for
easy reference later on. In the following section I compare these aspects back to those
general features of agility already established in table 2.

Agile methods and general features compared

This section assesses the agility of those aspects of Agile methods reviewed above in
light of the general features of agility; table four puts them side-by-side. There are three
possible qualitative scores to be assigned to each aspect of agile methods; (i) maps well
(to an general feature or GF), (ii) maps partially, (iii) no equivalent.

Do not map
Table 4 shows that GFs of survival (GF3) and prosperity (GF4) in a turbulent business
environment are not addressed in agile software thinking. It is difficult to offer a
rigorous reason for this, although the following section on applications of agile methods
may offer one possible explanation, i.e. many studies of agile software development are
conducted at large stable companies such as Microsoft or ABB. Survival is perhaps an
issue more relevant to SME developers, such as the one featured in my empirical study.
The general feature of prosperity means that developers thrive on uncertainty. Although
Beck’s article entitled “Embracing change with extreme programming” (Beck 1999)

8

would seem to reflect this, upon reading the article there is little to indicate the need to
thrive on change.

Partially map
There are a few aspects that only partially map to the GFs. Having the capability to
intervene and exercise agency (GF6) is only partially related to passing on information
(A4) because relaying information may or may not evoke an agent’s capability to make
a difference. It will depend on the nature and impact of the information. Being able to
regulate and leverage emotions for action (GF7) also only maps partially to improving
the team’s sense of community and morale (A4), because it does not address regulating
(negative) emotions but focuses on positive emotions. According to Bagozzi (2003), the
positive organisational behavior literature also shows how negative moods like
embarrassment may have positive effects by provoking efforts to repair relationships,
for example (Bagozzi 2003):p192).

Map well
However, many of the aspects of agile methods do map well with the GFs: (i) Being
responsive to disruptions in the (A2:GF1), (ii) reducing the elapsed time between
making a decision to seeing the consequences of that decision (A5:GF2), (iii) tailoring
of project practices (A9:GF2), (iv) flexibility (A1:GF5), and (v) improvisation
(A7:GF6).

9

Table 3: Aspects of Agile methods

Code Feature Author(s)
A1 Flexibility, with respect to the choice, sequence,

scheduling, and documentation of development
activities

(Cusumano and Yoffie,
1999)

A2 Being responsive to disruptions in the
environment

Kruchten (2001)

A3 Develop in small iterations/ sub cycles Cockburn (2002);
Baskerville et al. (2003)

A4 Reduce the cost of moving information between
people by -
• Placing developers physically closer
• Replacing documents with conversations
• Improving the team’s sense of community

and morale so that people are more inclined
to relay valuable information quickly

Cockburn and Highsmith
(2001)

A5 Reduce the elapsed time between making a
decision to seeing the consequences of that
decision by –
• continually testing the product
• implanting customers in the development

context to get quick feedback

Cockburn and Highsmith
(2001), Beck (1999)

A6 Continuous testing Beck (1999)
A7 Improvisation Baskerville et al (2003)
A8 Experience Baskerville et al (2003)
A9 Tailoring of project practices Baskerville et al (2003)

 The score
To heuristically assess how agile are agile methods, on the basis of table 4 one point is
given for those aspects that mapped “well”, half a point for those that mapped
“partially” and no score is given for those marked as having either “no equivalent” or
“doesn’t map”. The points are summed for each row and divided into the total number
of aspects or rows in the table (denoted by # in left most column). There are 7 ASD
aspects that map “well” with the GFs, 2 partially and 2 not at all, which renders a score
of 8/11 or 72%. This is purely a heuristic, a gauge. The main message here is that agile
methods do not entirely measure-up, in a qualitative sense, to the general features of
agility.

Tailoring the General features for Agile software development

Table 4 demonstrated how aspects of agile methods (such as develop in small cycles)
map to the general features of agility. I now refine and tailor the GFs to agile software
development with those ASD aspects in table 4 that mapped well. It is important to do
this to help make clear sense of the 2 subsequent assessments in this paper.

10

Table 4: Mapping aspects of Agile methods to general features of agility

GF
Code

General features ASD aspects Score

1 GF1 Be responsive Being responsive to disruptions
in the environment (A2) (Maps
well)

1

2 Develop in small iterations/ sub
cycles (A3) (Maps well)

1

3 GF2 Adapt quickly Reduce the elapsed time
between making a decision to
seeing the consequences of that
decision (A5)
(Maps well)

1

4 Tailoring of project practices
daily (A9)
(Maps well)

1

5 GF3 Survive No equivalent 0
6 GF4 Prosper No equivalent 0
7 GF5 Be Flexible Flexibility, with respect to the

choice, sequence, scheduling,
and documentation of
development activities (A1)
(Maps well)

1

8 GF6 Capability to intervene
and exercise agency

people are more inclined to relay
valuable information quickly
(A4)
(Maps partially)

½

9 Improvisation (A7) (Maps well) 1
10 Experience (A8) (Maps well) 1
11 GF7 Capability to regulate

and leverage emotions
for action

Improving the team’s sense of
community and morale (A4)
(Maps partially)

½

 = 8

11

Table 5: General features of agility for ASD

GF
Code

General features for ASD

GF1 Be responsive: to disruptions in the environment, and
develop in small iterations

GF2 Adapt quickly: reduce time between decision and
consequence, and tailor practices daily

GF3 Survive
GF4 Prosper or thrive on change
GF5 Be Flexible: with respect to scheduling and

documentation
GF6 Capability to intervene and exercise agency: be

prepared to improvise and be experienced
GF7 Capability to regulate and leverage emotions for

action

Assessing agile methods in an utilitarian context
The previous section assessed how agile are agile methods in a context-free manner. A
concern at this stage is how valid is the agility framework (based on the set of 7
features) I devised? The following assessment is based on literature pertaining to
utilitarian software development contexts, i.e. operating systems, productivity tools,
web browsers, industrial automation and telecoms.

Cusumano et al. (1998) looked at Microsoft’s “synchronize-and-stabilize” approach to
software development, which “allows engineers to make a lot of changes in their
designs until late in a project, while still keeping individuals synchronized and the
evolving product more or less stable” (Cusumano and Selby 1998:ix). With respect to
impact of context on practices, “Microsoft uses a range of build-cycle frequencies
depending on the particular needs of a project and the amount of time required to
complete a build successfully. Systems products generally take longer to build because
of their size and the number of files and interdependencies included. Microsoft builds
Excel, Word, and a test bed version of Office daily; it builds the full version of Office at
least weekly” (Cusumano and Selby 1998:p275).

Baskerville et al’s (2003) study of internet software development emphasized the
impact of the rush-to-market working environment on the ASD process. In this context,
there were frequent releases of the web browser, smaller feature sets, design and
development occurred simultaneously, a dependence on development tools, an
immediacy of feedback from the customer, product maintenance issues were ignored,
and the methodology was tailored daily by the team (Baskerville et al 2003). In
Cusumano and Yoffie’s (1999) study of internet software development at Netscape and
Microsoft, developers and their teams had a great deal of autonomy and a say in most
aspects of the product development, i.e. the feature set. Furthermore, they were integral
to the knowledge-ware of the product, self sustaining in terms of doing their own

12

process improvement, built their own tools, and required little motivation (Cusumano
and Yoffie 1999).

Karlström et al. (2005) found that industrial automation and telecoms companies, which
had implemented Agile, similarly benefited from the team reorganization aspects of
Agile. The teams experienced improved communication, conversations proved to be
more effective than documentation in resolving issues, and they obtained faster
feedback by identifying and working closely with a customer representative. They also
developed the most important feature first, which kept “the project deadline from
affecting their scope. Only less important features might be scaled back or dropped”
(Karlstrom and Runeson 2005:p46). Having ascertain and developed the most important
feature first, their microplanning for remaining functionality involved ascertaining
effort and trade-offs, i.e. if the customer asked for a new feature then the developer
would ask them what ex tant feature they would like to drop. Table 6 structures and
summarizes these agile software practices in an utilitarian software development
context.

13

Table 6: Utilitarian agile software development practices

Code Author(s)
 Build Frequency
U1 Build frequencies at Microsoft vary with

complexity and product size
Cusumano and Selby
(1998)

U2 Frequent releases of web browser Baskerville et al (2003)
 Design and Development
U3 Make changes to designs until late in a

project
Cusumano and Selby
(1998)

U4 Design and development occur
simultaneously

Baskerville et al (2003)

U5 Autonomy and influence over most aspects
of the product design and development

Cusumano and Yoffie
(1999)

 Features and Planning
U6 Smaller feature sets Baskerville et al (2003)
U7 Developed the most important feature first Karlstrom and Runeson

(2005)
U8 Microplanning
 Tools
U9 Reliance on development tools Baskerville et al (2003)
U10 Tool building Cusumano and Yoffie

(1999)
 Customer Feedback
U11 Immediate feedback from the customer Baskerville et al (2003)
U12 Obtain faster feedback by identifying and

working closely with a customer
representative

Karlstrom and Runeson
(2005)

 Process Structuring
U13 Methodology was tailored daily by the team Baskerville et al (2003)
U14 Team performs their own process

improvement
Cusumano and Yoffie
(1999)

U15 Product maintenance issues ignored Baskerville et al (2003)
 Teamwork
U16 Team requires little motivation Cusumano and Yoffie

(1999)
U17 Improved communication within the team Karlstrom and Runeson

(2005)
U18 Conversations more effective than

documentation in resolving issues
Karlstrom and Runeson
(2005)

14

Utilitarian ASD Practices and General Features Compared

I now assess the utilitarian ASD practices in light of the general features, and, as before,
there are three possible qualitative scores to be assigned to each utilitarian ASD
practice; (i) maps well, (ii) maps partially, (iii) no equivalent.

Do not map
Table 7 shows that GFs of survival (GF3) and prospering (GF4) in a turbulent business
environment are not addressed in utilitarian agile software development. Although I
proposed one explanation for this above, i.e. that many studies of agile software
development are conducted at large stable companies such as Microsoft or ABB, there
is always the possibility that these general features are not useful. Again, the GF of
prospering or thriving on uncertainty is not evident in the practices.

Partially map
Tool building (U9 and U10) only map partially well to GF2 “adapt quickly” because it
depends on what tools exactly have been built. They should not be the kind that lead to
design lock-in but simply free you from tedious programming, i.e. code completion and
custom libraries. Also, improved communication within the team (U17) partially maps
to having the capability to intervene and exercise agency (GF6) because communication
does not necessarily connote taking action; it may only be passive. Finally, a team that
requires little motivation (U16) only partially connotes an ability to regulate and
leverage emotions for action (GF7), since the mechanism by which motivation occurs is
not explored.

Map well
However, many of the ASD practices do map well with the GFs, i.e. the build
frequencies (GF1), the close connection between design and development (GF2), the
quick feedback from customers (GF2), the flexibility to make late design modifications
(GF5), prioritizing by developing the most important feature first (GF5), the daily
tailoring of process (GF5), the autonomy of the developers (GF6), the microplanning
(GF6) and that conversations trump documentation (GF6).

15

Table 7: Comparison of Utilitarian ASD practices and general features

GF General features for ASD Utilitarian ASD practices Score
1 GF1 Be responsive: to disruptions

in the environment, and
develop in small iterations

Build frequencies at Microsoft vary
with complexity and product size (U1)
(maps well)

1

2 GF2 Adapt quickly: reduce time
between decision and
consequence, and tailor
practices daily

Frequent releases of web browser (U2)
(maps well)

1

3 Design and development occur
simultaneously (U4) (maps well)

1

4 Reliance on development tools (U9)
(maps partially)

½

5 Tool building (U10) (maps partially) ½
6 Immediate feedback from the customer

(U11)
(maps well)

1

7 Obtain faster feedback by identifying
and working closely with a customer
representative (U12) (maps well)

1

8 GF3 Survive No equivalent 0
9 GF4 Prosper or thrive on change No equivalent 0
1
0

GF5 Be Flexible: with respect to
scheduling and documentation

Make changes to designs until late in a
project (U3) (maps well)

1

1
1

 Developed the most important feature
first (U7) (maps well)

1

1
2

 Methodology was tailored daily by the
team (U13) (maps well)

1

1
3

 Product maintenance issues ignored
(U15) (maps well)

1

1
4

GF6 Capability to intervene and
exercise agency: be prepared
to improvise and be
experienced

Autonomy and influence over most
aspects of the product design and
development (U5) (maps well)

1

1
5

 Microplanning (U8) (maps well) 1

1
6

 Team performs their own process
improvement (U14) (maps well)

1

1
7

 Improved communication within the
team (U17) (maps partially)

½

1
8

 Conversations more effective than
documentation in resolving issues
(U18) (maps well)

1

1
9

GF7 Be able to regulate and
leverage emotions for action

Team requires little motivation (U16)
(maps partially)

½

 = 15

16

The score
There are 13 utilitarian ASD practices that map “well” with the GFs, 4 partially and 2
not at all, which renders a score of 15/19 or 78%. This is purely a heuristic. The main
message here is that ASD practices in an utilitarian software development context do
not entirely measure-up to the general features of agility.

Refining the General features for Agile Software Development

Based on the above assessment, I may further refine the general features of agility for
ASD. Again, those practices in table 7 that mapped “well”, and are different to those
already in the feature set, are incorporated. Table 8 constitutes a theoretical GF
framework for assessing agility in software development.

17

Table 8: Refined General features of agility for ASD (a theoretical framework)

GF General features for ASD
GF1 Be responsive:

- to disruptions in the environment
- develop in small iterations
- build frequencies may vary with complexity and

product size
GF2 Adapt quickly:

- reduce time between decision and consequence
- tailor practices daily
- frequent releases
- design and develop simultaneously
- Work closely with the customer and obtain

immediate feedback
GF3 Survive
GF4 Prosper or thrive on change
GF5 Be Flexible:

- with respect to scheduling and documentation
- accommodate design changes late into a project
- develop the most important feature first
- tailor practices daily
- ignore product maintenance

GF6 Capability to intervene and exercise agency:
- be prepared to improvise
- be experienced
- autonomy and influence over most aspects of

product design and development, and process
improvement

- microplanning
- conversations not documentation

GF7 Capability to regulate and leverage emotions for action

Knowledge Gap: Emotion

What the above theoretical assessments (tables 4 and 7) reveal is that the capability to
survive (GF3), prosper or thrive on change (GF4), and foster emotional regulation and
leverage (GF7) are all largely missing. Of these weakly represented general features I
choose to explore GF7, since the theoretical foundations for this concept have already
been laid. With respect to the emotion, although there is reference to agile methods
improving a sense of community and team morale (Cockburn and Highsmith 2001) this
does not go far enough, i.e. it does not explore how emotions make a difference to
agility.

This lack of concern with the concept of emotion and inner life is supported by the
philosophical foundations of Agile. According to (Brown et al. 2004) the Agile

18

approach is influenced by complex adaptive systems and soft systems thinking; the
characteristics of living systems are applied to software (Highsmith 2002). This systems
perspective is concerned with parts, their interaction, and how they connect to form a
whole (Checkland 1999). Metaphorically, this regards the organization as an organism
(Morgan 1997; Walsham 1993). The interacting parts of the ‘organism’ seek unity and
homeostasis (a biological extension of the metaphor); trying to bring things back into
rhythm in the aftermath of environmental change, connoting a joining, a synchronity, a
rhythmical coordination of parts – circadian and routine. Such a biological perspective
assumes software to be functionalistic; that it has parts and a whole have identifiable
purposes and will adapt objectively. The subject, inner life and emotion are absent.

Addressing the Gap

To address the knowledge gap in ASD with respect to emotions, I now turn to an
empirical assessment of how ASD practices fair in an emotive or “passionate” games
development organisation. This is a novel context for studies of (agile) software
development, and one which has received scant attention in the literature concerning
ISD in general. The game design context is unique because games are designed to
provide a compelling and sensory entertainment experience (Baba et al. 2001; Swartout
et al. 2003), unlike a software application, which is usually designed to provide a
business solution, enhance productivity or be “useful”. A game is an intrinsically
motivated phenomenon that produces experiences to be enjoyed for their own sake
(Deci 1975). These experiences may also be described then as “inherently pleasurable”,
“exciting”, and “enjoyable” (Calder et al. 1975).
The empirical assessment will draw and build on the general features for ASD as per
table 8.

Research Setting and Method
I conducted an in-depth study of a computer games studio in Singapore, a country
which has little in the way of natural resources and therefore relies on external trade and
foreign direct investment to buttress its economy (Santiago 2003). In order to attract
foreign direct investment, government agencies such as the Infocomm Development
Authority (IDA) produce statistical reports and success stories which are presented at
international games events such as E3. Local companies (games studios and otherwise)
are encouraged and at the same time under some pressure to be successful so as to
bolster the country’s portfolio of achievements and hence its attractiveness. Time is of
the essence in this agile economy, especially in the wake of economic and social crises
such as the Asian Financial Crisis (1997) and SARS (2003). In 1998, for example, the
Singapore government responded to the Asian Financial Crisis by setting up the
Committee on Singapore’s Competitiveness, which focused on high-tech
entrepreneurship and innovation as a means of steering through the economic
challenges (Wong 2002). Indeed, the computer games industry has been identified as
one of the new ‘engines’ of Singapore’s economy (Lim 2004).

19

The research approach adopted in this study is interpretive (Walsham 1993) involving a
collection of detailed, qualitative data on the games development process in its context.
I conducted twenty four semi-structured interviews with the team members of CGS (see
table 9) over a three year period to understand their games development process and in
what way it was agile. A typical project team at CGS involves six people: two
programmers, two artists, a game designer and a project manager. CGS has developed
numerous mobile games in association with studios in France and Italy, and their games
have been distributed on European networks such as Vodaphone’s.

Table 9. Interviews at CGS between January 2004 and March 2006

Interview with Number of interviews
Team 1
Project Manager 2
Game Designer 5
Programmers 12
Artists 4
TOTAL = 24 (6 team members x 4

visits)

Data collection

From January 2004 to March 2006 I made several visits to CGS to conduct interviews
with project team members. Detailed notes were kept on the interviews and the
observations of work practices during each visit. Company documents and flowcharts
were also analyzed to gain more insight into their software practices and to verify
interview notes. I have reason to believe that their practices were influenced by agile
methods since they expressed an awareness of them and some had used them in
previous occupations. By adopting an interpretive approach to collecting and analyzing
the interview data, I attempted to understand the phenomenon (the games development
process) through the meanings that team members assigned to that process. Such
meanings may be rooted in data incidents like jargon, symbols, and metaphors the
interviewee uses. It is up to the researcher to explore these ‘incidents’, taken-for-granted
understandings (Schutz 1967) within the setting.

The data collection process was as follows: (i) I began by interviewing the team as a
whole so as to become better acquainted, introduce my research project to them and to
see how the related to each other in that situation, (ii) semi-structured interviews were
then conducted with all six team members on four visits to CGS during the past three
years, in which I asked a combination of direct and open-ended questions, and (iii) a
summary of the data collected was periodically presented to the Managing Director for
him to validate and provide us with feedback.

The direct questions were asked with reference to specific aspects of their practices (see
table 10). These questions were based on those used by (Radice et al. 1999) in their
programming process study. Whilst their study was not used to assess agile practices,

20

the questions they asked in their interviews with programmers are still evocative of
many aspects of Agile. To show how these questions related to the GF framework in
table 8, I provide the column “pertains to GF” in table 10. General features of agility
GF3, GF4 and GF7 are not covered by these questions. However, they are addressed in
subsequent sections that deal with the more unstructured data I collected on their
practices.

Table 10: Structured questions pertaining to aspects of ASD

Structured Question Pertains to
GF

SQ1. What is your Build frequency? GF1
SQ2. Do you find yourself following any procedures? GF6
SQ3. How do you estimate resources, i.e. manpower…? GF5
SQ4. How are changes controlled? GF5
SQ5. What development tools do you use and build? GF2
SQ6. What checks and balances, reviews, feedback and approvals are
involved?

GF2

SQ7. What is the level of customer awareness in your unit/team? GF2
SQ8. Are there any defined procedures for your work? GF6
SQ9. What documentation do you use? GF6
SQ10. What documentation do you produce? GF6

Data Analysis

To organize the mass of data and prepare to analyze it, the interview transcripts and
field notes were imported into a software package ‘nVivo’. To structure my analysis of
the unstructured data I collected, I drew upon Miles and Huberman’s three tier coding
approach, i.e. descriptive, interpretive and pattern coding (Miles et al. 1994). Firstly, I
performed descriptive coding in which I focused on identifying agile software practices
and related activities; for example, the practice of continuous play-testing. Secondly, I
performed interpretive coding to put these practices and related activities into context; I
wanted to understand the local dynamics pertaining to these activities, i.e. why and how
they occurred. Thirdly, I performed pattern coding, in which I looked across all the
practices in context to discern a pattern in their occurrence, i.e. emergent themes. As
patterns and themes emerged, I began to think of them in more abstract terms and
develop my ideas on ASD in a games development context.

Case Description and Analysis
CGS has a management hierarchy with four layers of managers: senior management,
middle-management, project leaders and executives. The working environment at the
premises gave a sense of home-from-home: there was a meeting room with antique
Indonesian furniture which doubled as the Game Designer’s office, an office for the
programmers who seemed subdued although their walls seemed to reflect their female
fantasies, an office for the artists who had various traditional games like table football

21

set up, and a laboratory full of computers for rendering purposes. The environment
seemed conducive to long hours of work. My study focused on the work practices of the
Game Designer, Project Manager, Lead Programmer, Programmers, and Artists. These
were the dominant organizational actors involved in all games projects. However,
sometimes these roles were not discrete and overlaps occurred. The Lead Programmer
sometimes became involved in game design and the Game Designer was also the
Managing Director, which meant he had to participate in business ‘events’ outside the
organizational context; with government agencies, partners, clients and distributors.

Structured data relating to agility in CGS’ practices

Table 10 provided a list of direct questions that I asked in each interview, which
retrospectively are evocative of many aspects of Agile methods. In table 11 I present a
summary of the responses the participants gave to them, assign a code to them, and

22

Table 11: Comparing game design practices to the GF framework

GF General features for ASD Game design practices Scor
e

1 GF1 Be responsive:
- to disruptions in the

environment
- develop in small

iterations
- build frequencies may

vary with complexity
and product size

CGS have daily build for code
units in early stages of project, and
they have daily builds for entire
game code towards end of project
as units are integrated and play-
testing commences (maps well)

1

2 GF2 Adapt quickly:
- reduce time between

decision and
consequence

- tailor practices daily
- frequent releases
- design and develop

simultaneously
- Work closely with the

customer and obtain
immediate feedback

CGS use the following tools:
Jcreator, WTK2.0, J2ME, Java
SDK, 3Dstudio, phone emulator
(maps well)

1

3 I don't build tools (partially maps) ½
4 To obtain feedback on progress

CGS review milestone completion,
hold daily and weekly meetings,
hold code reviews.
(maps well)

1

5 Not much customer awareness at
CGS: “I are gamers so I are also
the customer”, “depends on target
audience for the game”, “most are
aware except the more junior
members”, “not much awareness
since most of my games are
produced for “suits” at Telcos”
(doesn’t map well)

0

6 GF3 Survive No equivalent 0
7 GF4 Prosper or thrive on change No equivalent 0
8 GF5 Be Flexible:

- with respect to
scheduling and
documentation

- accommodate design
changes late into a
project

- develop the most

estimating resources is either based
on experience, depends on the
complexity of the game, or by
asking individuals to estimate their
own time (maps well)

1

23

important feature first
- tailor practices daily
- ignore product

maintenance
9 Changes are controlled by:

decision-makers, or not strictly
tracked or controlled or are by the
design committee
(doesn’t map)

0

GF General features for ASD Game design practices Scor

e
10 GF6 Capability to intervene and

exercise agency:
- be prepared to

improvise
- be experienced
- autonomy and

influence over most
aspects of product
design and
development, and
process improvement

- microplanning
- conversations not

documentation

As opposed to procedures I just
follow the project lead (doesn’t
map)

0

11 estimate resources by asking
individuals to estimate their own
time (maps well)

1

12 CGS has little in the way of
defined procedures except for the
concept stage. Sometimes its up to
the project leader, otherwise
developers are autonomous
(Maps well)

1

13 CGS’ only commonly used
document is the Game Design
Document (GDD)
(maps well)

1

14 CGS produces the following
documents:
technical doc, bug log, game
design doc, meeting notes, reports,
marketing docs
(doesn’t map)

0

15 GF7 Be able to regulate and
leverage emotions for action

No equivalent 0

 = 7.5

24

The score
There are 7 agile games development practices that map “well” with the GFs, 1 partially
and 7 not at all, which renders a score of 7.5/15 or 50%.

What does and does not map
What maps particularly well here are the build frequencies CGS uses (GF1), the tools
they use (although they do not build tools), the frequent status meetings and code
reviews (GF2), their resource estimation approach (GF5), reliance less on procedure and
more on improvisation (GF6), little reliance on document (GF6). What is at odds with
the GFs for ASD is the over creation of documentation that is hardly used (GF6), lack
of attention to emotional dimensions of team work (GF7), there are times when team
members rely on the leader (GF6), there is no evidence of thriving on change (GF4), nor
survival instincts, i.e. heroic efforts (Bach 1995). More controversially is the lack of
customer awareness (GF2). GF2 states the importance of working closely with
customers in order to obtain quick feedback so as to adapt quickly and reduce the time
between decision and consequence. However, the developers insisted that they were
also “gamers” and therefore were in-tune with the needs of external customers. This
issue in itself requires further scrutiny to understand its validity.

Data sufficiency
ASD practices in the games development context seem to fair worse based on the
heuristic score than the utilitarian ones. However, this is due to the way the data was
collected. To assess agility I need to collect much richer data; it is insufficient to ask
direct questions only. Given I conducted semi-structured interviews, there was ample
opportunity for the interviewee to take the “reins” of the conversation and talk about
their games projects and practices. The next section presents narrative data which reveal
evidence for those GFs for which CGS scored zero above, i.e. GF3, GF4, GF6 and GF7.

Narrative: “against the odds”

The Game Designer (Alf) and team began work on the concept for a sci-fi game for
which their investor gave them five months to develop. On the team was Jacky, who
was also the chairman of the Animé Club and had his own artists who were already
working on a futuristic animation series. Alf suggested merging their ideas but Jacky
did not want to since he had his own animation team and concept already. Jacky shared
these ideas with Alf and they decided that Jacky would work on an animation series
whilst Alf would produce a PC game based on these ideas. After a month or so into the
production phase they began discussing how to share the intellectual property. Alf was
surprised when this led to a disagreement and Jacky renouncing their partnership and
Jacky’s staff “walking out”. Although this was a serious blow to the project since the
game ideas were Jacky’s, Alf did not want to give up, particularly since he had already
made a commitment to MDA. Alf persevered and had to decide whether to come up
with a completely new game idea or continue with what he had so far but alter the

25

storyline. He decided to do the latter and the game Beyond Event Horizon began to take
shape. On reflection, Alf said he was glad that there had been a parting of ways because
it became clearer and easier to maneuver. As things started moving again, his senior 3D
artist was poached by a US game company. After this second setback Alf decided to
coordinate the art team himself, which he described as “a nightmare”. However, he
mobilised an “army” of freelance 2D and 3D artists. In the end the project was deemed
a success; they were invited to Austin, Texas in the US to pitch to a publishing
company.

Analysis
What this narrative reveals is a spirit of survival, a prospering or thriving on change,
and the regulation and leveraging of emotions. For instance, Jacky and his team’s
departure from CGS led to the breakdown of established routines, and resulted in the
incumbents losing their sense of security, or using Giddens’ phrase, a loss of ontological
security, i.e. what’s what? However, Alf’s rationalisation for getting the project back on
track was two-fold; he had a sense of duty to since the Media Development Authority
was funding the project, and also the project excited him. His motivation for steering
back the project was therefore linked to his feelings of excitement, loyalty and
obligation. These feelings provoked him to adjust his reflexive monitoring, or
awareness of the situation, so as to identify and draw on new rules and resources that
would support his improvisations, i.e. modifications to the game’s story and concept,
which were originally provided by Jacky. Faced with another unexpected environmental
change - the resignation of the lead 3D artist and some of his colleagues - Alf took over
the reins of lead artist. Through his continuous monitoring of contexts of human
resources he assembled a new team of artists. He would not give up. His capability to
act and to overcome was related not just to his ability to monitor and mobilise his
contexts however, but to his emotional attachment to the project; his motivation was
emotional.
Furthermore, it would seem that his survival instinct was related to quick adaptation,
responsiveness and flexibility. This suggests that the GFs of agility being responsive,
adapt quickly and be flexible may be all subsumed under this GF, i.e. under survival
(GF3). So one possible reason why there had been no direct evidence for the general
feature of survival is that it is a meta general feature.

Refining CGS’s scores

If I ‘factor’ in evidence of GF3, GF4 and GF7 into table 11, i.e. assign a score of “1” to
each of these general features, then CGS’s score improves from 7.5 to 10.5/15, or 70%.

Discussion and Implications
Based on the theory and empirically based assessments, I present my conceptualization
of Affective Agility (figure 2); affective being evocative of emotions and moods. In
order to arrive at this conceptualization I translated the general features into concepts,
with the exception of GF4 – prospering or thriving on change. This seems too general to

26

be of use in the conceptualization. As per my analysis of the narrative, “survival” is now
a meta concept for being responsive, adapt quickly and flexibility (the scores of the
agility assessments would improve in this case). The emotional aspect of this
conceptualization is based on my empirical study of a games development context,
which demonstrated the appropriateness of incorporating this concept.

Conceptualization

Drawing on my data analysis and theoretical foundations, I depict my understanding or
conceptualization of Affective Agility.

Figure 2: Conceptualization of Affective Agility

Starting from the top of figure 2, environmental change is a key driving force of agility
(Yusuf et al. 1999). From a sociological perspective this can be interpreted as provoking
ontological insecurity or concerns over what constitutes one’s reality, as characterised
by norms and routines for example. Developers become aware of such changes (e.g.
new features requested by the customer) through their reflexive monitoring of their
contexts. They then interpret and rationalize the meaning of the disruption (Kruchten
2001) or change. As they do so this affects their motivation for action and produces a
mixture of emotions, which are unintended consequences of those changes. These
emotions then become part of the unacknowledged conditions for a developer’s action.
In their practical consciousness, i.e. at a tacit level, the developer’s or agent’s
motivation to respond to change leads them to reinterpret and re-rationalize the meaning
of the changes in their context, which in turn produces a positive mood of and desire to
survive. As my empirical study showed, survival is a meta concept, and this entails
being responsive, adapting quickly and being flexible in the face of change. Emotions
therefore mediate and provoke the action responses to change, as per being responsive,

Agents Reflexive monitoring of action

Rationalisation of action

Motivation of action

Emotions

Unintended
Consequences of
Action

Unacknowledged
Conditions of
action or response

Environmental Change

Survival

Adapt quickly Responsive Flexibility

27

adapting quickly and being flexible; or, in terms of agile practices: build frequencies
(Cusumano and Selby 1998), the time taken between making a decision to seeing its
consequences (Cockburn et al. 2001), the tailoring of project practices (Baskerville et al.
2003), making changes to designs until late in a project (Cusumano and Selby 1998),
and developing the most important feature first (Karlstrom and Runeson 2005), for
example.

I have made three contributions to knowledge in this paper: (i) a framework for
assessing agility in software development; one was suggested in table 8, (ii) the
elucidation of a knowledge gap in agile methods with respect to emotion, and (iii) a
conceptualization that reveals the need to incorporate emotional regulation and leverage
into agility assessments; I depicted this in figure 2.

Implications and Future Research

My conceptualization of Affective Agility has implications for how I may assess agile
methods or agility in a software development setting. Since, as I have shown, agility is a
chronically emotional concept, attempts to assess how agile are agile methods and agile
practices could consider incorporating assessments of emotional regulation and leverage
in the development context under investigation. This requires in depth longitudinal field
studies such as ours to gain such evidence; in similar fashion to some quality
assessment approaches that investigate organisational culture (e.g. Humphrey et al.
1991b). So, assessing agility does not just involve checking whether a team releases
software in short cycles and so forth, but it is about understanding the deeper emotional
profile of the developers in the setting. So, to elaborate on GF7 of agility, “Be able to
regulate and leverage emotions for action”, the researcher needs to encourage the
interviewee to talk about incidents that were perhaps “trying” or “painful”, and observe
the content and manner in which they recount their story. Better still would be for the
researcher to engage in participant observation and spend extended periods of time in
the development setting so as witness such incidents first hand (Nandhakumar et al.
1997). Although I have found emotion to be a key aspect of agility within the context of
games development, I do not generalize beyond this context but invite further studies to
assess the significance of emotion in mediating agility.

My research also has implications for practitioners of agile software development.
According to my findings, to be agile in a software development context is not solely
about your build frequencies, whether you implant customers into your context, and
placing conversation over documentation. Its also about having people with emotional
intelligence, who know not to cover-up their mistakes, or bask in confusion, but are able
to take heroic steps to bring issues out into the open and deal with the conflictual
consequences of doing so, “the development of software systems is a complex,
sociotechnical process in which demanding technical challenges are confronted within a
conflict-laden political context” (Wastell 1996:p29). The source of such conflict may be
people’s different interests, goals, world views (Newman et al. 1990; Orlikowski 1993),
as well as the social structures (Walsham 1993) identified with the workplace. So, an
aspect of agility in software development is developers regulating and leveraging the

28

emotional consequences of conflict in their settings. Managers may therefore try to
cultivate good emotional regulation, or indeed train developers not just on technical
skills but emotional skills too.

Conclusions
This paper has focused on addressing the question how agile are agile methods. To do
this I initially synthesized seven General Features (GFs) of agility, drawing on
management and sociology disciplines, into a framework, to act as a ‘gold standard’ by
which to compare agile methods. When I compared the general features to studies on
Agile thinking, I found that agile methods did not entirely measure up to this
framework; they were lacking in terms of survival (GF3), prospering or thriving on
change (GF4) and being able to regulate and leverage emotions in action responses to
change (GF7). I found the same thing when I used this framework to analyze studies on
Agile methods within an utilitarian software context. Of the three weakly represented
general features I chose to explore GF7, since the theoretical foundations for this
concept had already been laid. This represented an opportunity to elaborate on the role
of agency and emotion in agility. To this end I presented data from a field study of a
computer games development organisation, because this is an emotive and sensory
(Baba et al. 2001) software development setting. Although some of the agile practices
were left wanting, such as over-production of documentation, I did find that emotion
played an important role in priming developers for action. On the back of this finding I
presented a conceptualization of Affective Agility (figure 2), i.e. that emotion plays an
integral role in an agile setting. Therefore, GF7 (emotional regulation) was justified as
an important part of the Agility Assessment Framework (AAF). At the same time
throughout the assessments I conducted, I embellished the framework by elaborating on
the general features with the agile practices and thinking that mapped well. Although
the AAF (table 8) may be useful, it is also rather prescriptive. To assess how agile are
agile methods in a particular context I suggest reference to and the adaptation of my
Affective Agility model (figure 2). Such assessment exercises require in-depth
longitudinal field studies to gain an understanding of the emotions and their
implications for agility in the context.

References

Baba, Y., and Tschang, F.T. "Product development in Japanese TV game software:
The case of an innovative game," International Journal of Innovation Management (5:4)

2001, pp 487-515.
Bach, J. "Enough About Process: What I Need are Heroes," IEEE Software (12:2) 1995.
Bagozzi, R.P. "Positive and Negative Emotions in Organizations," in: Positive

Organizational Scholarship: foundations of a new discipline, K.S. Cameron, J.E.
Dutton and R.E. Quinn (eds.), Berrett-Koehler Publishers, San Francisco, 2003.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., and Slaughter, S. "Is "Internet-
speed" software development different?," Software, IEEE (20:6) 2003, pp 70-77.

Beck, K. "Embracing change with extreme programming.," IEEE Computer (32:10)
1999, pp 70-77.

29

Brown, R., Slinkman, C., and Nerur, S. "Philosophical Shifts in Software
Development," Proceedings of the Tenth Americas Conference on Information
Systems, August 2004, New York, 2004.

Calder, B.J., and Staw, B.M. "Self-perception of intrinsic and extrinsic motivation.,"
Journal of Personality and Social Psychology (31) 1975, p 599–605.

Checkland, P. Systems Thinking, Systems Practice John Wiley and Sons, LTD,
Chichester, 1999.

Classe, A. "TickIT update.," Software Quality Management, (19) 1993, pp 10-11.
Cockburn, A. Agile Software Development Addison-Wesley, Boston, 2002.
Cockburn, A., and Highsmith, J. "Agile Software Development: The People Factor,"

IEEE Computer (2001:November) 2001.
Cusumano, M., and Selby, R.W. Microsoft's secrets: How the world's most powerful

softwre company creates technology, shapes markets and manages people
Simon and Schuster, NY, 1998.

Cusumano, M.A., and Yoffie, D.B. "Software development on Internet time," Computer
(32:10) 1999, pp 60-69.

Debou, C., Kuntzmann-Combelles, A., and Rowe, A. "A quantitative approach to
software process management," Software Metrics Symposium, 1994.,
Proceedings of the Second International, 1994, pp. 26-34.

Deci, E.L. Intrinsic motivation Plenum, New York, 1975.
Dorling, A. "SPICE - Software Process Improvement and Capability dEtermination,"

INFORMATION AND SOFTWARE TECHNOLOGY (35:6-7) 1993, pp 404-
406.

Giddens, A. The Constitution of Society: Outline of the Theory of Structure. University
of California Press, Berkeley, CA., 1984.

Giddens, A. The nation state and violence Polity Press, Oxford, 1984b.
Giddens, A. The Giddens Reader Macmillan, London, 1993.
Gunasekaran, A. "Agile manufacturing: enablers and an implementation framework.,"

Int. J. Prod. Res. (36:1223–1247) 1998.
Gunasekaran, A., and Yusuf, Y.Y. "Agile manufacturing: A taxonomy of strategic and

technical imperatives.," Int. J. Prod. Res. (36) 2002, p 1357–1385.
Highsmith, J. Agile Software Development Ecosystems Addison-Wesley, Boston: MA.,

2002.
Highsmith, J.A. Adaptive Software Development: A Collaborative Approach to

Managing Complex Systems Dorset House Publishing, New York, NY, 2000.
Humphrey, W.S., Snyder, T.R., and Willis, R.R. "Software Process Improvement at

Hughes-Aircraft," Ieee Software (8:4), Jul 1991b, pp 11-23.
Karlström, D., and Runeson, P. "Combining Agile Methods with Stage-Gate Project

Management," IEEE Software (May/June) 2005.
Keil, M., and Mixon, R. "Laboratory Studies of IS Failure as Escalating Commitment to

a Failing Course of Action: Overcoming the Obstacles," 14th International
Conference on Information Systems (ICIS), Orlando, FL, 1993, p. 382.

Kruchten, P. "A Rational Development Process," Crosstalk (9:7) 1996, pp 11-16.
Kruchten, P. "Agility with RUP," Cutter IT Journal (14:12) 2001, pp 27-33.
Kuvaja, P., and Bicego, A. "BOOTSTRAP - a European assessment methodology,"

Software Quality Journal (3:3) 1994, pp 117-128.
Lim, T. "The Gaming Landscape," Asia Games Conference, Singapore, 2004.

30

Miles, M.B., and Huberman, M.A. Qualitative Data Analysis Sage Publications,
Thousand Oaks, 1994.

Morgan, G. Images of Organization Sage, 1997.
Nandhakumar, J., and Jones, M. "Too Close for Comfort? Distance and Engagement in

Interpretive Information Systems Research.," Information Systems Journal (7)
1997, pp 109-131.

Newman, M., and Noble, F. "User Involvement as an Interaction Process: A Case
Study," Information Systems Research (1:1) 1990, pp pp. 89-113.

Orlikowski, W.J. "CASE tools as organisation change: investigating incremental and
radical changes in systems development," MIS Quarterly (17:3) 1993, pp 309-
340.

Palmer, S.K., and Felsing, S.M. A Practical Guide to Feature Driven Development
Prentice Hall, Upper Saddle River, NJ., 2002.

Paulk, M.C. "How ISO 9001 compares with the CMM," Software, IEEE (12:1) 1995,
pp 74-83.

Radice, R.A., Harding, J.T., Munnis, P.E., and Phillips, R.W. "A programming process
study.," in: IBM Systems Journal, IBM Corporation/IBM Journals, 1999, p. 297.

Sanchez, L.M., and Nagi, R. "A review of agile manufacturing systems.," Int. J. Prod.
Res. (39) 2001, p 3561–3600.

Santiago, T. "Hungry Singapore looks to move up food chain," in: Electronic
Engineering Times, 2003, p. 39.

Schutz, A. Phenomenology of the Social World. Northwestern University Press,
Evanston, IL, 1967.

Shaw, N.E., Burgess, T.F., de Mattos, C., and Stec, L.Z. "Supply chain agility: the
influence of industry culture on asset capabilities within capital intensive
industries," International Journal of Production Research (43:16) 2005, p 3497–
3516.

Stacey, P., and Nandhakumar, J. "Responding to games development challenges
through mood-mediated improvisation," ECIS 2006, Goteborg, Sweden
(forthcoming), 2006.

Swartout, W., and van Lent, M. "Making a game of system design," Communications of
the ACM (46:7) 2003, pp 32--39.

Walsham, G. Interpreting IS in Organisations John Wiley, Chichester, 1993.
Wastell, D.G. "The fetish of technique: methodology as a social defence," Inform Syst J

(6:1), January 01, 1996 1996, pp 25-40.
Wong, P.K. "From Using to Creating Technology: The Evolution of Singapore's

National Innovation Systems and the Changing Role of Public Policy," in:
Technology Policy in East Asia, S.e.a. Lall (ed.), World Bank and Elgar Press,
2002.

Yusuf, Y.Y., Sarhardi, M., and Gunasekaran, A. "Agile manufacturing: the drivers,
concepts and attributes.," Int. J. Prod. Econ. (62) 1999, p 33–43.

Zain, M., Kassim, N.M., and Mokhtar, E. "Use of Information Technology and
Information Systems for Organisational Agility in Malaysian Firms," Singapore
Management Review (25:1) 2003, pp 69-83.

Zain, M., Raduan, C.R., Iskandar, A., and Maslin, M. "The relationship between
information technology acceptance and organizational agility in Malaysia,"
Information & Management (42) 2005, p 829–839.

31

