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The BICEP2 experiment has announced a signal for primordial gravity waves with tensor-to-scalar ratio 
r = 0.2+0.07

−0.05 [1]. There are two ways to reconcile this result with the latest Planck experiment [2]. 
One is by assuming that there is a considerable tilt of r, Tr , with a positive sign, Tr = d ln r/d lnk �
0.57+0.29

−0.27 corresponding to a blue tilt for the tensor modes of order nT � 0.53+0.29
−0.27, assuming the Planck 

experiment best-fit value for tilt of scalar power spectrum nS . The other possibility is to assume that 
there is a negative running in the scalar spectral index, dnS/d lnk � −0.02 which pushes up the upper 
bound on r from 0.11 up to 0.26 in the Planck analysis assuming the existence of a tensor spectrum. 
Simple slow-roll models fail to provide such large values for Tr or negative runnings in nS [1]. In this 
note we show that a non-Bunch–Davies initial state for perturbations can provide a match between large 
field chaotic models (like m2φ2) with the latest Planck result [3] and BICEP2 results by accommodating 
either the blue tilt of r or the negative large running of nS .

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Early Universe cosmology has become a very active area of re-
search in the last decade or so, as there is a wealth of precise 
cosmic microwave background (CMB) measurements pouring in. In 
particular, since last year two major collaborations Planck [2] and 
BICEP [1] have announced their results. The CMB measurements 
analyzed with other cosmological data favor the simple �CDM 
model for late time cosmology and inflationary paradigm for early 
stages of Universe evolution. According to the Planck Collabora-
tion data [2] the power spectrum of CMB temperature fluctuations 
(or as it is known, the power spectrum of curvature perturbations) 
PS is measured to be about 2.195 × 10−9. The spectrum is almost 
flat, with a few-percent tilt toward larger scales (i.e., red spectrum) 
and is almost Gaussian.

Planck took cosmologists by surprise as it not only did not 
observe non-Gaussianity, which could have been used to consid-
erably constrain inflationary models, but also put a strong upper 
bound on the amplitude of primordial gravity waves during infla-
tion. These gravity waves are tensor mode fluctuations which are 
produced during inflation. The power spectrum of gravity waves 
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PT is usually reported through the tensor-to-scalar ratio r = PT /PS

which Planck reported to be bounded at 2σ level as r < 0.12, as-
suming no running in the scalar spectral index, nS . This bound 
corresponds to the pivot scale k∗ = 0.002 Mpc−1, �∗ � 28. The tilt 
in the power spectrum of curvature perturbations is customarily 
denoted by nS − 1, nS − 1 ≡ d ln P S/d ln k, where k is inverse of the 
scale. Planck constrained nS − 1 = −0.0397 ± 0.0146 at 2σ level. 
Of course the upper bound on r0.002 could be increased, if there is 
running in the scalar spectral index. The Planck Collaboration lim-
its the running of scalar spectral index, dnS/d ln k = −0.021 ±0.011
in the presence of the tensor modes. Then the upper bound on r
at the Planck pivot scale, k∗ = 0.002 Mpc−1, becomes weaker, 
r < 0.26. Planck’s measurement of nS and its running dnS/d ln k
disfavored many single field models, especially those with convex 
potential [2].

CMB besides having one-in-105 part temperature fluctua-
tions is partially polarized and the parity odd polarization, the 
B-mode, is usually attributed to primordial gravity waves, tensor 
modes [4]. BICEP2 Collaboration has recently announced observa-
tion of B-mode polarization [1]. BICEP results took cosmologists 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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by an even greater surprise, when measured r = 0.2+0.07
−0.05.1 This 

was not an outright inconsistency between the two collaborations 
though, because BICEP focused on smaller scales than the range 
of scales covered by Planck; BICEP data is for � ∼ 80. BICEP result 
was challenging in view of Planck results, as the measured value 
is already in the region which was excluded by Planck, unless ei-
ther (i) the power spectrum of gravity waves considerably grows 
as we move to smaller scales, i.e. a blue, with relatively large tilt, 
for power spectrum of tensor modes, or (ii) there is a large nega-
tive running in the scalar spectral index. These are two possibilities 
to reconcile BICEP data with Planck results [1]. Nonetheless, both 
potential ways for Planck–BICEP reconciliation seem very hard to 
achieve in the context of slow-roll inflationary models composed 
of scalar fields minimally coupled to Einstein gravity. To see the 
difficulties associated with these options, we need to go through 
the equations more closely.

In the first approach, the controversy is best formulated in 
terms of the tilt of tensor-to-scalar ratio Tr ,

Tr ≡ d ln r

d ln k
= d lnPT

d ln k
− d lnPS

d ln k
= nT − (nS − 1), (1)

where nT is the tilt of power spectrum of tensor modes and nS −1
is the tilt of the power spectrum of curvature perturbations. Planck 
requires nS − 1 to be negative and of order −0.04. Standard, text-
book analysis for slow-roll inflationary models leads to the “con-
sistency relation” nT = −r/8 [5], which is a red-tilt for gravity 
waves [7,8]. Therefore, nT , too, is negative and of order O(−0.01)

for such inflationary models. On the other hand, BICEP–Planck rec-
onciliation requires

Tr ≥ +0.30. (2)

The lower bound of the inequality corresponds to the lower end 
of the 1σ interval of the BICEP results, r = 0.15, which is already 
smaller than the more conservative tensor to scalar ratio, r = 0.16, 
quoted in BICEP, obtained from the best data driven model of the 
emission of polarized dust. This clearly shows the tension between 
standard slow-roll models, and in particular the consistency rela-
tion with Planck+BICEP data: Slow-roll inflationary models cannot 
easily and readily accommodate the respectively large value of 
tensor-to-scalar spectral tilt Tr and the blue tensor spectrum re-
quired by recent observations (please see [9] for another attempt 
to make r run).

As stated above, another way to conciliate these two experi-
ments is by assuming a running spectral index. However in the 
presence of Bunch–Davies initial states, such a running in slow-roll 
models is second order in terms of slow-roll parameters [2]

dnS

d ln k
= 16εη − 24ε2 − 2ξ2, (3)

where ε , η are the usual first and second slow-roll parameters de-
fined in (24) and ξ is the third slow-roll parameter defined as

ξ2 ≡ M4
Pl Vφ Vφφφ

V 2
. (4)

The running of scalar spectral index can be also achieved by as-
suming a scale and space-dependent modulation which suppresses 
the CMB power spectrum at low multipoles [10].

1 The BICEP experiment has interpreted the signal as solely given rise from the 
primordial B-mode during inflation, underestimating the contribution of combina-
tion of Galactic foregrounds and lensed E-modes. This assumption was recently 
questioned in [6] where the authors showed that the data is consistent with both 
r = 0.2 and negligible foregrounds and also with r = 0 and a significant dust po-
larization signal. The analysis of this paper is relevant if the value of r at � = 80
obtained after “realistic” foreground removal turns out to be larger than the corre-
sponding value of r at the Planck experiment pivot scale.
The possibility which we will entertain here to achieve either 
of these goals is based on the fact that in deriving standard cos-
mic perturbation theory results, besides the action of the model 
(which establishes the background inflationary dynamics and pro-
vides the equation of motion for cosmic perturbation fields), we 
also need to specify the initial quantum state over which these 
(quantum) cosmic perturbations have been produced. The standard 
initial state used is the Bunch–Davies (BD) vacuum state [11], stat-
ing that perturbation modes with physical momenta much larger 
than the Hubble scale during inflation H , effectively propagate in 
a vacuum state associated with flat space, the standard quantum 
field theory vacuum state.

In the context of first approach, in particular noting (1), to 
remedy Planck–BICEP tension we need to relax the consistency 
relation nT = −r/8. Considering non-Bunch–Davies (non-BD) ini-
tial state for cosmic perturbations during inflation provides the 
setup to relax the consistency relation [12] (see [13] for some 
earlier works on the non-BD inflationary cosmology). In fact, in 
our previous paper [3] we discussed such a setup and already 
used it in resolving the tension between Planck data and large-
field chaotic inflationary models, including the simplest inflation-
ary model with m2φ2 potential for the inflaton field φ. Large-field 
models generically predict large value for tensor-to-scalar ration r, 
with r ∼ 0.05–0.2 [14]. So, they are potentially very good can-
didates for accommodating BICEP too. As we will discuss here, 
non-BD initial state can equip the large-field models with the tilt 
of r, Tr (equivalent with blue tensor spectrum, nT > 0) or the neg-
ative running of dnS/d ln k � −few × 0.01 needed for BICEP–Planck 
reconciliation; the chaotic model m2φ2 [14] with non-BD initial 
state nicely fits with all available cosmological data.

The rest of this Letter is organized as follows. We first briefly 
review the setup presented in [3] to fix our notations. We then 
show that a mild tilt in the non-BD initial state will accommodate 
BICEP as well as Planck data. We first focus on the possibility of 
producing a running r and then try to resolve these two experi-
ments conflict with negative large running nS . In the end we make 
some concluding remarks.

Power spectra and non-BD initial state Here we consider a simple 
single-field slow-roll inflationary model described by the action

L= − M2
pl

2
R − 1

2
∂μφ∂μφ − V (φ), (5)

where Mpl = (8πG N )−1/2 = 2.43 × 1018 GeV is the reduced 
Planck mass. We take our model to be a chaotic inflation large-
field model [7], motivated by the recent observation of tensor 
modes [1], e.g. V (φ) = 1

2 m2φ2. The details of cosmic perturbation 
theory analysis for this model in standard Bunch–Davies vacuum 
may be found in standard textbooks, e.g. [7], and the modifications 
due to non-BD initial state in [3,13]. For completeness we have 
gathered a summary of this analysis in Appendix A. The power 
spectra and tensor-to-scalar ratio, r, are

PS = 1

8π2ε

(
H

Mpl

)2

γS

PT = 2

π2

(
H

Mpl

)2

γT

r = PT

PS
= 16εγ , (6)

with

γS = ∣∣αS − β S
∣∣2

,
k k k=H



100 A. Ashoorioon et al. / Physics Letters B 737 (2014) 98–102
γT = ∣∣αT
k − βT

k

∣∣2
k=H

,

γ = γT

γS
, (7)

where α’s and β ’s parameterize non-BD initial state for scalar and 
tensor modes and the spectral tilts are then2

nS − 1 = (nS − 1)BD + d lnγS

d ln k
,

nT = (nT )BD + d lnγT

d ln k
,

Tr = (Tr)BD + d lnγT

d ln k
− d lnγS

d ln k
. (10)

The Lyth bound [15] and the consistency relation will also be 
modified due to the non-BD effects to [3]

r � 2.5 × 10−3
(

�φ

Mpl

)2

γ , r = −8nT γ , (11)

where �φ is the inflaton field displacement during inflation. The 
modification in the consistency relation is, as discussed, what can 
resolve the mismatch of slow-roll models with BICEP + Planck 
data.3

Parameterizing the initial states We note the fact that only the 
phase difference between the Bogoliubov coefficients αk and βk
appears in the power spectra and their k-dependence (cf. (7)). 
Moreover, the normalization conditions (28) and (32), too, depend 
only on the phase difference. Therefore, one can take out the aver-
age (an overall phase) and parameterize the coefficients such that 
only the phase difference appears [3]:

αS
k = coshχS eiϕS , β S

k = sinhχS e−iϕS

αT
k = coshχT eiϕT , βT

k = sinhχT e−iϕT . (12)

We consider a crude model in which [16],

∣∣β{S,T }
k

∣∣ ∝ β
{S,T }
0 exp

{−k2/
[
Ma(τ )

]2}
(13)

(or any smooth function in which |βk|2 falls off as k−(4+δ)). Here 
M is a super-Hubble energy scale associated with the new physics 
which leads to the non-BD initial state. In this scenario, all the k
modes are pumped to an excited state as their physical momen-
tum reaches the cutoff k

a(τ )
= M . The choice in (13) indicates that 

M is the (cutoff) scale at which the mode gets excited from Bunch–
Davies vacuum.

The physically allowed region in the four parameter space of 
initial states is subject to the following constraints: (1) Absence 
of backreaction of initial states on the inflationary background; (2) 
Planck normalization for PS ; (3) value of spectral tilt nS − 1 as 

2 It is instructive to note and recall expressions for the tilts of power spectra and 
scalar-to-tensor ratio r for λφn chaotic models in the BD vacuum. For these models 
η = 2(n − 1)ε/n, and

(Tr)BD = + 4

n
ε, (nS − 1)BD = − 2(n + 2)

n
ε. (8)

Noting that r ∝ ε ∝ (nS −1), one can relate the tilt of r to the running of the spectral 
tilt (3). Explicitly,

(Tr)BD = ln(1 − nS )

d ln k
= 1

nS − 1

dnS

d ln k
. (9)

3 As we discussed in [3], in major part of the constrained non-BD parameter 
space, γ ≤ 1 and effective field theory could not be saved by reducing �φ < Mpl , 
enhancing γ .
observed by Planck; (4) fitting the value of r and the corresponding 
tilt Tr , as required by BICEP + Planck, i.e. we take rPlanck ≤ 0.12 (at 
�∗ � 28) and rBICEP � 0.2 (at � ∼ 80). In our analysis we focus on 
large-field single-field slow-roll models. The first three conditions 
were also considered in [3] while the fourth one is new.

Absence of backreaction of initial excited state on the back-
ground slow-roll inflation trajectory implies that the energy stored 
in the initial non-BD state for both scalar and tensor sectors should 
not exceed the change in the energy density in one e-fold. This 
condition is fulfilled if [3]

sinhχS � ε
H MPl

M2
, sinhχT � ε

H MPl

M2
. (14)

The above indicates that the upper bound on the deviation from 
BD initial state measured by χS is inversely proportional to 
the scale of new physics M . Hence, larger values of M require 
smaller χS . The COBE normalization implies

H

Mpl
= 1√

γ S

3.78 × 10−5. (15)

Assuming nS takes its best fit value of Planck, nS − 1 � −0.04, 
and that ε ∼ 0.01, then d lnγS/d ln k � 10−2.

The above conditions are achieved if we take χT and χS to take 
typical values [3], i.e. sinhχS � eχS /2, sinhχT � eχT /2 and hence

γS � e2χS sin2 ϕS , γT � e2χT sin2 ϕT .

Moreover to be able to rely the effective field theory methods, we 
are typically interested in larger values of M which is possible if 
ϕS is close to maximal; M � 20H happens when ϕS ∼ π/2 [3].

Blue tensor spectrum In this approach, to reconcile BICEP + Planck 
we want nS − 1 ∼ −0.04 and Tr ≥ +0.3 and the Planck bound on r
requires γ < 3/4. Therefore,

e2(χT −χS ) sin2 ϕT < 3/4,

dχS

d ln k
� 10−2,

dχT

d ln k
+ cotϕT

dϕT

d ln k
� 0.13. (16)

We need not impose any condition on dϕS
d ln k , as ∂ lnγS/∂ϕS = 0

at ϕS = π
2 . Above we have also assumed that tanϕT 
 e−2χT . If 

χT � 1, in principle very small values for ϕT could be achieved.
One theoretically interesting option is to have χT = χS , corre-

sponding to the case where the numbers of particles in the tensor 
and scalar excited states are equal. Change in nS − 1 from its 
Bunch–Davies value could be set to zero, if dχS/d ln k = 0. This 
choice is particularly useful for m2φ2 as its spectral index with 
Bunch–Davies vacuum nicely matches the Planck results. Since 
χS = χT , one has to assume that χT is scale independent too. 
A positive tensor spectral index would come totally from the scale-
dependence of ϕT . The amount of suppression of r0.002, will be 
equal to sin2 ϕT , while at BICEP scales (� ∼ 80) ϕT is close to its 
maximal value π/2. In such a scenario, to get r = 0.12 at � ∼ 28
we need

ϕT ∼ π

3
� 1.04, at � � 28, (17)

and the variation of ϕT with scale has to be

dϕT

d ln k
� 0.5. (18)

Thus ϕT has to be scale dependent such that ϕT ∝ k0.5. Asking 
for larger suppression of r at � ∼ 28 would require smaller val-
ues of ϕT , and hence larger values of dϕT . For example the case 
d ln k
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ϕT = −kτ0, where τ0 is the preferred initial time, can provide 
larger suppression at � � 28. Since larger values of logarithmic tilt 
of ϕT are not theoretically well motivated, getting small ϕT values 
for the χT = χS scenario is not a feasible option.

The other possibility to obtain positive Tr and hence a blue ten-
sor spectrum is to allow for running of χT . If this is the sheer 
cause of a blue gravitational spectrum a value of

dχT

d ln k
� 0.13 (19)

is required to solve the discrepancy between BICEP and Planck 
data. Depending on the value of ϕT , one has to ensure the required 
suppression through the γ factor.

Running scalar spectral index One can produce such a negative 
large running with scale-dependent excited states too. In this case 
there is no need to suppress the prediction of a model like m2φ2

for r at the Planck pivot scale, i.e. we can assume that ϕT = π/2. 
Only the running of scalar spectral index of order −few × 0.01
would be enough to patch up two experiments. The running of 
scalar spectral index in the presence of excited states is

dnS

d ln k
=

(
dχS

d ln k

)
BD

+ d2 lnγS

(d ln k)2
. (20)

The contribution of the scale-dependent Bogoliubov coefficients to 
the running of scalar spectral index close to ϕS = π

2 is

d2 lnγS

(d ln k)2
= 2

d2χS

(d ln k)2
− 2

(
dϕS

d ln k

)2

. (21)

Now there are two ways one can achieve the negative running of 
order −0.02:

• One can assume that d2χS
(d ln k)2 � −0.01. Then the desired run-

ning in the scalar spectral index could be achieved. This, for 
example, would correspond to the case where |β S

k | decreases 
slowly and quadratically with ln k and could be achieved if 
|β S

k | ∝ −0.005(ln k)2. The phase, ϕT , can be constant in this 
case.

• Instead one can assume that ( dϕS
d ln k ) � 0.1. What is notable and 

interesting in this case is that the running always turns out to 
be negative. The required scale-dependent phase turns out to 
be quite small in this case too. The number density of the par-
ticles in the scalar perturbations could be scale-independent 
in this case.

1. Concluding remarks

As discussed in [3], non-Bunch–Davies initial condition for in-
flationary perturbations with a typical value of the χS parameter 
(χS � 1) and the non-BD phase ϕS close to maximum, ϕS ∼ π/2, 
can reconcile the m2φ2 chaotic model with Planck data, r0.002 <

0.12, if the scale of new physics which sources the non-BD initial 
state M , is around 20H . Observation of B-modes by the BICEP ex-
periment at � � 80 can be matched with the bound from Planck 
data, either if the gravity wave spectrum has a blue tilt of order 
0.53 or there is a running of scalar spectral of order dnS/d ln k �
−0.02. Due to the large blue tilt for the gravity waves needed for 
this purpose, the second option is the preferred one.

Slow-roll inflation with BD initial condition cannot provide any 
of the above two possibilities. One can obtain such a blue spec-
trum for the gravity waves if the tensor Bogoliubov coefficient has 
a maximum allowed value for the phase at the Planck pivot scale, 
(ϕT � π/3), with moderate k-dependence, ∂ϕT /∂ ln k � 0.5. The 
negative large running of scalar spectral index could be obtained 
if dϕS/d ln k � 0.1. In the second case, the running turns out to be 
always negative. Simple chaotic models, in particular m2φ2 model, 
have been of interest because they are endowed with simplicity 
and beauty. As our analysis indicates they can be compatible with 
both Planck and BICEP results, if perturbations start in a non-BD 
initial state at the beginning of inflation.

In the current work we mainly focused on the non-BD ini-
tial state effects on observables related to two-point functions, 
the power spectra and their tilts. One should in principle also 
analyze the bi-spectra and non-Gaussianity in this context. Such 
an analysis has been carried out in many papers in the litera-
ture (see [3] and references therein). As we pointed out in [3], 
such excited initial states can hardly leave observable signatures 
on non-Gaussianity if the bound from backreaction is respected 
and the scale of new physics is separated maximally from the in-
flationary Hubble scale. The local configuration is the one which is 
mostly influenced in the presence of excited states for which the 
fNL at most reaches 0.43, which is well within the bounds allowed 
by the Planck experiment [2].

Noting that B-modes are coming from purely tensor perturba-
tions of the metric [17] and that non-BD initial state for perturba-
tions is provided from a high energy pre-inflationary physics, such 
resolutions may open up a window to the realm of quantum grav-
ity, a territory which is untouchable by collider experiments. To 
that end, one should construct explicit models within the (exist-
ing) theoretical frameworks which can realize either of the two 
possibilities discussed here. We hope to return to this question in 
upcoming publications.
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Appendix A. Cosmological perturbations in non-BD initial state

To explore the effects of non-Bunch–Davies (non-BD) initial 
state of perturbations and setup our notations, we briefly review 
cosmic perturbation theory. More detailed analysis in standard BD 
vacuum may be found in many textbooks e.g. [7], more detailed 
discussion on non-BD may be found in [3] and references therein. 
Here we will consider slow-roll models described by the action (5).

The space–time metric in the presence of scalar and tensor per-
turbations can be parameterized as

ds2 = a2(τ )
[−(1 + 2Φ)dτ 2 + (

(1 − 2Ψ )δi j + hij
)
dyidy j].

Φ and Ψ are the scalar Bardeen potentials which are equal for the 
scalar-driven inflationary model we are considering. hij is a sym-
metric divergence-free traceless tensor field, hi

i = 0, ∂ ihi j = 0. The 
inflaton field also fluctuates around its homogeneous background 
value

φ(τ ) = φhom.(τ ) + δφ, (22)

where φhom.(τ ) is the homogeneous part of the inflation which 
satisfies δφ � φhom.(τ ). For the slow-roll quasi-de-Sitter inflation-
ary trajectories

a(τ ) � − 1

Hτ
(23)

ε ≡ 1 − H′
2

� 1, η ≡ ε − ε′
� 1, (24)
H 2Hε
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where H is the Hubble parameter during inflation and prime de-
notes derivative w.r.t. the conformal time τ .

Equation of motion for scalar perturbations, the gauge-invariant 
Mukhanov–Sasaki variable u(τ , y),

u = −z

(
a′

a

δφ

φ′ + Ψ

)
, z ≡ aφ′

H
, H ≡ a′

a
, (25)

is

u′′
k +

(
k2 − z′′

z

)
uk = 0, (26)

uk(τ ) is the Fourier mode of u(τ , y). The most generic solution 
to (26) in the leading order in slow-roll parameters ε , η may be 
expressed as

uk(η) �
√

π |τ |
2

[
αS

k H (1)
3/2

(
k|τ |) + β S

k H (2)
3/2

(
k|τ |)], (27)

where H (1)
3/2 and H (2)

3/2 are respectively Hankel functions of the 
first and second kind. The coefficients αS

k and β S
k are in gen-

eral scale-dependent and may have non-trivial scale-dependent 
phases. They respectively behave like the positive and negative 
frequency modes. These Bogoliubov coefficients satisfy the normal-
ization condition
∣∣αS

k (k)
∣∣2 − ∣∣β S

k (k)
∣∣2 = 1. (28)

The standard BD vacuum corresponds to αk = 1 and βk = 0. How-
ever, in general new physics at the onset of inflation can provide 
us with generic non-BD initial state parameterized with generic αS

k
and β S

k . The power spectrum of curvature perturbations is

PS = k3

2π2

∣∣∣∣uk

z

∣∣∣∣
2

k/H→0
(29)

which for simple chaotic slow-roll models reduce to

PS = PBDγS , (30)

where

PBD = 1

8π2ε

(
H

Mpl

)2

, γS = ∣∣αS
k − β S

k

∣∣2
k=H

. (31)

Similarly, one may consider the tensor mode perturbations in 
a non-BD initial state parameterized by αT

k and βT
k subject to the 

normalization condition
∣∣αT

k

∣∣2 − ∣∣βT
k

∣∣2 = 1. (32)

The power spectrum of tensor modes is then given by [3]

PT = PT
BDγT , (33)

where

PT
BD = 2

π2

(
H

Mpl

)2

, γT = ∣∣αT
k − βT

k

∣∣2
k=H

. (34)
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