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In this work we study new ways to observe and characterize specific fractional

quantum Hall (FQH) states.

In the first chapter we investigate the possibility to realize specific FQH states

in bilayer graphene (BLG). BLG is a novel material in which the electron-electron

interaction can be tuned with the help of external parameters. This allows one to

make one or another FQH state favourable. We develop a framework for theoretical

investigation of the stability of FQH states in BLG. We apply our framework to

investigate the stability of the Pfaffian state. We find that the region in which

our framework allows for making reliable predictions is quite restricted because of

Landau level mixing effects. However, within that region we find the conditions

under which the Pfaffian is more stable than in the conventional ”non-relativistic”

systems. These conditions can, in principle, be realized experimentally.

In the second chapter we focus on characterizing the FQH states with the help

of measurements of the noise of the electric current tunnelling between two FQH

edges. We develop a theoretical framework allowing for analysing such data, and

test it by successfully applying it to describe the results of the experiment [Bid et

al., Nature 466, 585 (2010)]. We further develop our framework and show that it

is possible to determine the tunnelling quasiparticle scaling dimension from such

measurements. We also investigate experimental conditions necessary for this.
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Introduction

The quantum Hall effect (QHE), observed in two-dimensional electron systems

subjected to a strong perpendicular magnetic field, is a quantum version of classi-

cal Hall effect with Hall conductivity taking quantized values of σ = ν e2/h [2, 3]

(ν is called ”filling factor”). The history of the QHE started with the integer QHE

(IQHE) for which ν takes on integer values. Except for the transitions between

the plateaux of constant Hall conductivity, the IQHE is believed to be pretty well

understood in terms of the theory of non-interacting electrons in disordered sam-

ples. It also has a practical application: the currently used standard for electrical

resistance is based on the IQHE [2].

Quite different is the situation with the fractional QHE (FQHE), in which

ν takes on fractional values. With interactions between the electrons playing

a crucial role [3], the FQHE exhibits collective behaviour of the electrons with

strong correlations between them. Thus, the FQHE cannot be analyzed in terms

of weakly interacting electron-like quasiparticles, making it extremely hard for

theoretical study. However, not only the challenge of theoretical investigation

made it one of the most intensively studied areas in condensed matter physics

during the last 30 years.

Some FQHE states have been predicted to support quasiparticle excitations

with non-abelian statistics, which may allow for topologically protected quantum

computations (TPQC) [4]. I.e., with the help of some FQHE states it is, in princi-

ple, possible to create a quantum computer intrinsically protected from (or rather,

stable against) decoherence. The challenges of building such a quantum computer
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based on a particular FQHE state require significant theoretical and experimental

effort, but it turns out that getting a specific FQHE state to work with poses an

equally hard task.

For a given filling factor there are usually several likely candidate states, one of

which gets realized in the system depending on the specific details of the system

and the experimental conditions (such as the magnetic field strength). Not all of

the candidate states are expected to allow for TPQC. Thus, it is important to be

able to get a specific state in a controlled reproducible way. This problem can be

approached in two main ways: one can either study theoretically conditions which

make a particular state favourable and try to implement these conditions experi-

mentally; or one can find theoretically the measurements allowing to discriminate

between the states and then experimentally find the system that supports a specific

state.

Both ways are explored in the present work.

The first chapter expounds a microscopic study of the possibility to realize the

so-called Pfaffian (or Moore-Read) FQHE state [5] in bilayer graphene. Bilayer

graphene is a novel material consisting of two sheets of graphene. It turns out that

this material allows for unprecedented tunability of the parameters important for

FQHE by means of external electric and magnetic fields. It was first proposed to

use this property to tune the system into the regime which favours the Pfaffian state

in Ref. [6]. However, it turns out that the effects of Landau level mixing, vacuum

polarization etc., not considered in Ref. [6], are extremely important in this system.

The analysis of such effects is performed in order to figure out the conditions

under which theoretical predictions are reliable. Under appropriate conditions the

possibility to realize the Pfaffian state is investigated. The methodology presented

in the chapter can be readily applied to study the possibility to realize any other

FQHE state in bilayer graphene given the state’s trial wave function.

The second chapter focuses on characterization of FQHE states with the help

of electric current noise measurements. Namely, measurements of the noise of the
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current tunnelling between two edges of a FQHE state through a narrow con-

striction. It is a well-known result that in the weak-backscattering limit such a

measurement gives information about the electric charge of the quasiparticle re-

sponsible for the tunnelling (see, e.g., Refs. [7, 8, 9]). By presenting theoretical

analysis of the data of the experiment of Ref. [1] this chapter shows that much

more information can be inferred from such measurements, including some infor-

mation about the interaction of an Ohmic contact with an FQHE edge. More

importantly in the context of the problem outlined above, we show that informa-

tion about the edge physics such as the tunnelling quasiparticle scaling dimension

can, in principle, be obtained from such measurements.

It is worth mentioning that different methodologies are used in the two chap-

ters. As the problem attacked in the first chapter concerns comparison of the exact

system state and a model state, the microscopic quantum-mechanical methodol-

ogy based on many-particle wave functions is used. In this methodology FQHE

states are primarily characterized by their trial ground state wave function. In the

second chapter transport measurements are dealt with, and it is more convenient

to use the methodology based on the low-energy effective field theories in this case.

In this methodology a FQHE state is characterized by its low-energy edge theory.

There are some widely used hypotheses about the connection between the two

approaches (namely, on how to relate a ground state trial wave function with the

corresponding edge theory). However, the connection between the two approaches

is not considered in the present work.

The results of the present work concerning possibility to observe specific FQHE

states and ways to characterize them by no means fully resolve the problem of

getting in a controlled reproducible way a FQHE state which allows for TPQC.

However, they may constitute an important piece in the way of finding an answer

to the problem.
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Chapter 1

Ways to observe specific

fractional quantum Hall states in

bilayer graphene

In this chapter we develop a methodology which allows to study the possibility

to realize specific FQHE states in bilayer graphene.

It is well-known that the electron-electron interaction is crucial for the FQHE

[3]. Depending on the exact form of the interaction potential one can get at the

same filling factor different FQHE states or even no FQHE at all. Bilayer graphene

is a novel material that allows adjusting properties of the electron-electron inter-

action with the help of external parameters: perpendicular to the material sheet

magnetic and electric fields. Using this property to tune the system into the regime

which favours a specific FQHE state was first proposed in Ref. [6].

However, there is a number of effects that make theoretical studying of such

possibilities more complicated. These complications arise due to significance of the

interaction between different Landau levels in bilayer graphene. A methodology

allowing to deal with the complications is developed and expounded in the present

chapter.

The first section reminds the reader the methodology for studying FQHE in
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conventional (”non-relativistic”) systems basing on the exact numerical diagonal-

ization of the system Hamiltonian in the single Landau level approximation.

In the second section we expound a formalism which allows to use the same

methodology in bilayer graphene.

In the third section we discuss the effects of interaction of different Landau

levels and incorporation of them into the single-Landau-level-based methodology

introduced earlier.

Finally, in the fourth section we apply our methodology that takes into account

the deviations from the single Landau level approximation to study the possibility

to realize the Pfaffian [5] state in bilayer graphene.

1.1 Numerical diagonalization approach to the

quantum Hall effect in non-relativistic sys-

tems

1.1.1 Problem of a free non-relativistic electron in mag-

netic field

In this section we recall how Landau levels (LLs) emerge in two-dimensional

non-relativistic systems in magnetic field, we also introduce some notation that

will be used in the following sections.

The single electron Hamiltonian in the uniform magnetic field, perpendicular

to the plane of the system, is

H1−part =
π2

2m∗
− e~
mec

BSz, (1.1)

where π = (πx, πy) (since the system is two-dimensional), πi = pi + eAi/c, pi =

−i~∂i, e is the elementary charge, A = [B × r]/2 is the vector potential of the

uniform magnetic field B = −Bez, Sz is the z-component of the electron spin, me
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is the free electron mass and m∗ is the effective mass of the electron.

We introduce the magnetic length l, the cyclotron frequency ωc, and the com-

plex coordinate w in the plane:

l =

√
~c
eB

, ωc =
eB

m∗c
, w =

x+ iy

l
, w̄ =

x− iy
l

. (1.2)

We also introduce operators â, â†, b̂, b̂†:

â =
√

2(∂̄ +
w

4
), â† =

√
2(−∂ +

w̄

4
), (1.3)

b̂ =
√

2(∂ +
w̄

4
), b̂† =

√
2(−∂̄ +

w

4
). (1.4)

where ∂ and ∂̄ denote ∂/∂w and ∂/∂w̄ respectively. All commutation relations

between these four operators are trivial except for the following:

[
â, â†

]
=
[
b̂, b̂†

]
= 1. (1.5)

We can then rewrite the Hamiltonian in the form

H1−part = ~ωc(â†â+
1

2
)− e~

mec
BSz. (1.6)

The operators â, â† are similar to the ladder operators in the problem of the

harmonic oscillator, thus the system’s spectrum consists of Landau levels with

energies En = ~ωc(n + 1/2) − e~BSz/(mec), n ∈ Z+, Sz = ±1/2. Operators b̂, b̂†

commute with the Hamiltonian, thus they transform one state into another state

within the same Landau level.

Let us consider the operator of the z-projection of the angular momentum:

L̂ = L̂z/~ = [r× p]z /~ = z∂ − z̄∂̄ = b̂†b̂− â†â. (1.7)
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It is easy to see that

[
L̂, â

]
= â,

[
L̂, â†

]
= −â†,

[
L̂, b̂
]

= −b̂,
[
L̂, b̂†

]
= b̂† (1.8)

⇒
[
L̂,H1−part

]
= 0. (1.9)

Thus the eigenstates of the Hamiltonian (1.1) can be labeled by three quantum

numbers: Landau level number n ∈ Z+, z-projection of the angular momentum

m ∈ (Z+ − n) and the electron spin projection Sz = ±1/2

|n,m, Sz〉 = ψnm(w)⊗ |Sz〉. (1.10)

The orbital wave function ψnm can be expressed as

ψnm(w) =
1√

n!(n+m)!
(b̂†)n+m(â†)nψ00(w), (1.11)

ψ00(w) =
1√
2πl2

e−
|w|2
4 , âψ00 = b̂ψ00 = 0. (1.12)

Note that the wave functions (1.11) are polynomials of complex coordinates w, w̄,

multiplied by the exponential exp (−|w|2/4) which is the same for all of the states.

In particular,

ψn=0,m(w) =
1√

2m+1πl2
wme−

|w|2
4 . (1.13)

So, the system’s energy levels are Landau levels with energies En,Sz = ~ωc(n+

1/2)− e~BSz/(mec), with eigenstates in a LL labeled by the angular momentum

projection m ≥ −n.

In a finite sample there is only a finite number of states available to an electron

in a Landau level. One can estimate their number using the fact that the states

(1.11)-(1.12) are spatially localized: the number of states in a Landau level of a

finite round sample is approximately equal to the number of states (1.11)-(1.12)

that are localized mainly in the area of the sample. Thus, one can introduce the
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filling factor ν:

ν = 2πl2ne = Ne/Norb, (1.14)

where ne is the density of electrons, Ne is the total number of electrons in the

system and Norb is the number of orbits in a LL in the sample.

Typically in GaAs heterostructures m∗ ≈ 0.07me, thus LLs with the same

number but different spin projections form quasidegenerate doublets. For a typical

fractional quantum Hall (FQH) experiment in such systems the typical Coulomb

energy scale e2/(κl) (κ is the dielectric constant, in GaAs κ ≈ 13) is about of the

same order as the cyclotron frequency ~ωc. For B & 5T the interaction energy

scale is less than the inter-doublet distance, thus for greater fields it is a not too

bad approximation to consider only electrons which are in the two quasidegenerate

LLs; all of the other levels — either not filled yet or fully filled already — differ in

energy too much, so the interaction between electrons cannot throw electrons to

the other Landau levels effectively. The corrections to this picture can be taken

into account by means of perturbation theory but for the simplicity of exposition,

in this section we neglect them.

The orbital wave function of the electrons in a fully polarized state is totally

antisymmetric. Antisymmetric orbital wave function means that it is unlikely to

have two electrons close to each other. This reduces their repulsion energy (if the

interaction potential decreases monotonically which is typically the case). Another

reason for the electrons to form spin-polarized states is the Zeeman splitting (even

though it is small). Thus, usually electrons form spin-polarized states which are

fully in one of the quasidegenerate Landau levels.

In the remaining part of this section we only consider one Landau level, ne-

glecting the influence of another Landau levels. This approximation is called the

single Landau level approximation (SLLA). We also assume that the state is spin-

polarized, therefore we suppress spin variables.
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1.1.2 Interaction of two electrons in a non-relativistic Lan-

dau level

We begin the discussion of the many-body problem with the two-particle case.

For interaction potentials which depend only on the distance between the electrons

this problem can be solved exactly. This solution gives an opportunity to introduce

some important notions.

The two-electron Hamiltonian can be written as follows:

Ĥ2−part = Ĥfree + V (r), (1.15)

Ĥfree = Ĥ1−part,1 + Ĥ1−part,2, (1.16)

where r = |~r1− ~r2| = l|w1−w2|, V (r) is the interaction potential, e.g., the Coulomb

potential.

Since we are working in the SLLA approximation, the single-particle part of the

Hamiltonian is proportional to the identity operator and can be excluded from the

consideration. Thus to diagonalize the Hamiltonian we only need to diagonalize

the interaction potential operator V (r) in the Hilbert space spanned by vectors

|m1,m2〉 =
1√
2

(|m1〉 ⊗ |m2〉 − |m2〉 ⊗ |m1〉), (1.17)

with the angular momenta of the two electrons, m1 and m2, taking all the possible

values in the LL considered.

We introduce z-projections of the relative angular momentum and the angular

momentum of the center of mass:

L̂rel =

(
1

2~
[(~r1 − ~r2)× (~p1 − ~p2)]

)
z

=

1

2

(
L̂1 + L̂2 − b†1b2 − b†2b1 + a†1a2 + a†2a1

)
, (1.18)
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L̂cm =

(
1

2~
[(~r1 + ~r2)× (~p1 + ~p2)]

)
z

=

1

2

(
L̂1 + L̂2 + b†1b2 + b†2b1 − a†1a2 − a†2a1

)
. (1.19)

These operators projected onto a single LL have the following form:

L̂prel =
1

2

(
L̂1 + L̂2 − b†1b2 − b†2b1

)
, (1.20)

L̂pcm =
1

2

(
L̂1 + L̂2 + b†1b2 + b†2b1

)
. (1.21)

Raising and lowering operators for this ”single-level angular momenta” are

b̂†1∓ b̂
†
2 and b̂1∓ b̂2 respectively. With the help of these operators we can represent

the eigenstates of the ”single-level angular momenta” in the (n, Sz) Landau level

as follows:

|m,M〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(ψn,−n)1(ψn,−n)2, (1.22)

L̂prel|m,M〉 = (m− n)|m,M〉, (1.23)

L̂pcm|m,M〉 = (M − n)|m,M〉. (1.24)

Here M,m ≥ 0. We will say that |m,M〉 is a state with the relative angular

momentum m and the center of mass angular momentum M . Since every state has

to be antisymmetric with respect to the permutation of the electrons, only states

with odd m are present in our Hilbert space. The states |m,M〉 for m ∈ 2Z+ + 1

and M ∈ Z+ form a complete orthonormal basis.

Commutation relations of the ”angular momenta” with the operator V̂ = V (r)

are [
V̂ , L̂prel/cm

]
= 0, (1.25)
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[
V̂ , b̂†1 + b̂†2

]
= 0 ,

[
V̂ , b̂1 + b̂2

]
= 0, (1.26)[

V̂ , b̂†1 − b̂
†
2

]
6= 0 ,

[
V̂ , b̂1 − b̂2

]
6= 0. (1.27)

Thus the interaction potential operator can be represented in the LL as

V̂ (r) =
∑
m,M

|m,M〉V (n,n)
m 〈m,M |, (1.28)

which solves the two-body problem in the LL.

Matrix elements V
(n,n)
m which parametrize the operator are called pseudopo-

tential coefficients (or just pseudopotentials), they were first introduced in [10].

Connection of the pseudopotentials with the interaction potential’s matrix ele-

ments is obvious since the states |m,M〉 are orthonormal.

In the following section we shall also need a more general matrix element

V
(n1,n2)
m :

|n1, n2,m,M〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(ψn1,−n1)1(ψn2,−n2)2, (1.29)

V (n1,n2)
m = 〈n1, n2,m,M |V̂ |n1, n2,m,M〉 = 〈n1, n2,m, 0|V̂ |n1, n2,m, 0〉. (1.30)

It is easy to check that V
(n1,n2)
m = V

(n2,n1)
m for the potentials depending on the

distance between the electrons.

For computations, it is often more convenient to express V
(n1,n2)
m in terms of

the potential’s Fourier transform Ṽ (q) [3]:

Ṽ (q) =
1

l2

∫
d2rV (r)e−i~q~r/l =

2π

l2

∫ ∞
0

V (r)J0(qr/l)rdr =

2π

∫ ∞
0

V (lx)J0(qx)xdx, (1.31)

V (n1,n2)
m =

∫ ∞
0

Ṽ (q)Lm(q2)Ln1(q
2/2)Ln2(q

2/2)e−q
2 qdq

2π
, (1.32)
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where J0 is the zeroth Bessel function of the first kind, Lk are the Laguerre poly-

nomials, l is the magnetic length. Derivation of this formula is presented in the

appendix A.1.

Thus, the electrostatic interaction between the electrons located in one Landau

level can be expressed through a countable set of pseudopotentials V
(n,n)
m , where

n is the LL number, and m ∈ 2Z+ + 1 is the ”relative angular momentum” of the

two interacting electrons.

1.1.3 Many-particle problem

Here we discuss the problem of many electrons in a Landau level and the

approach of numerical diagonalization.

Since we know how to express the action of the electron-electron interaction in

the Hilbert space of two electrons in a Landau level, we can, in principle, express

the many-particle system’s Hamiltonian through the pseudopotentials. Then, the

task to do is to diagonalize it. Typically this cannot be done theoretically. What

remains is to do this numerically. The problem is that the Hamiltonian is an infinite

matrix (since there are an infinite number of orbits in a Landau level). However,

any real system is finite: boundaries of the sample do not allow electrons to leave

it. This can (and should!) be described by adding an external confining potential.

For example, one can consider a system of electrons on a disk, with the confining

potential

Vext(r) =

 0, r < r0

+∞, r > r0

. (1.33)

However, such a choice changes single-level states in a Landau level (especially

those close to the boundary). At the same time we expect that for a large number

of electrons the properties of the system do not depend significantly on the exact

form of the bounding potential. Since in any Landau level each of the states ψnm

is localized in a circle with width of the order of the magnetic length l and radius
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r ≈ l
√

2m (for m� 11), it should be a good approximation to consider a system

with the same single-electron states as in the infinite system, but only orbits with

m ≤ m0 available to the electrons. We shall refer such a system as a ”system on

disk”.

Thus, the Hamiltonian of a system on disk is a finite matrix that can be

expressed in terms of pseudopotentials introduced in the previous subsection and

diagonalized numerically. This enables us to find the spectrum and the eigenstates

of the system. A typical thing to do then is to compare the numerically found

ground state (and, possibly, the excited states) with some trial wave function to

check whether the real state is close to the proposed trial state.

There is some peculiarity in choosing the number of electrons and orbits in the

system. If one studies the filling factor ν, then by definition in the thermodynamic

limit number of electrons Ne in the LL considered and the number of orbits avail-

able to them Norb are related by Ne/Norb ≈ {ν}, where {ν} denotes the fractional

part of the filling factor. On the contrary, trial wave functions (as it can be seen

from examples below) fix the relation between the two numbers not approximately

but exactly:

Norb = Ne/ {ν} − S + 1. (1.34)

Number S is called ”shift” and can be different for different trial wave functions.2.

Of course, we expect the properties of the system in the thermodynamic limit to be

independent of the precise ratio between the number of electrons and the number

of orbits; but in order to compare an exact state with a trial wave function, the

numbers of orbits and electrons in the two should coincide.

Often they consider a system on sphere [10] instead of the system on disk (two-

dimensional finite sphere with the uniform magnetic field transverse to the sphere

is considered instead of plane). System on sphere is finite from the very beginning

1In fact, this is a good approximation already for m ≥ n, where m is the angular momentum
quantum number and n is the Landau level number.

2The summand +1 is for the number of the last available orbit in the zeroth LL mmax to be
expressed as mmax = Ne/ {ν} − S. This is the commonly used definition of the shift.
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so one does not need to introduce a boundary. The wave functions of the single

particle states and pseudopotentials are expressed in a somewhat different way

(so the matrix of the Hamiltonian is expressed somewhat differently via spherical

pseudopotentials). However, for large enough systems the results on sphere should

coincide with the results on disk (since the curvature of the sphere plays little role

then). That’s why they often use planar pseudopotentials for diagonalization on

sphere (see e.g. [11])3. In this work we do a similar thing: we use diagonalization

on sphere with planar pseudopotentials.

So, the procedure of numerical finding the system’s ground state and its com-

parison with trial state is as follows: choose the trial state with which to compare;

choose the number of electrons and orbits in such a way that it corresponds to the

trial state; find pseudopotentials; calculate the system’s Hamiltonian and diago-

nalize it; calculate the scalar product of the numerically found ground state with

the trial state (the closer it is to 1 the more similar the states are).

Usually the numerical diagonalization can be performed only for relatively small

numbers of electrons (around 10 to 20) in most cases. This is far from the thermo-

dynamic limit. However, the experimental success of Laughlin’s wave function (or

rather predictions based on it) together with the numerical success of Laughlin’s

wave function gives hope that the results of numerical diagonalization for small

numbers of electrons can be relied on, at least to some extent.

Before proceeding to application of this method to bilayer graphene, we show

several examples of trial wave functions in the next paragraph.

1.1.3.1 Examples of trial wave functions

Now we are going to consider several examples of trial wave functions in order

to understand how they look and how to interpret them (for the purposes of

numerical diagonalization).

3There is a correspondence between trial states which are proposed for the sphere and for the
plane, so a result of the diagonalization on sphere can be compared with a trial state just in the
same way as a result of the diagonlization on disk.
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The simplest example is a trial wave function for the fully filled zeroth LL. Let

N be the number of electrons which occupy first N orbits of the n = 0 level. Due

to the Pauli principle the only possible state is the Slater determinant of all the

occupied single-particle orbits:

ψ(w1, ..., wN) = det
1≤i≤N,0≤m≤N−1

ψn=0,m(wi) ∝

∝

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 w1 . . . wN−1
1

1 w2 . . . wN−1
2

...
...

. . .
...

1 wN . . . wN−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣
× e−

∑
i |wi|2/4, (1.35)

where we used the explicit form of the single-particle wave functions in the zeroth

LL (1.13). The determinant in the r.h.s. is the well known Vandermonde determi-

nant. Therefore, we can write down the answer for the wave function, which, up

to the normalization constant N , looks as follows:

ψ(w1, ..., wN) = N e−
∑
i |wi|2/4

∏
1≤i<j≤N

(wi − wj). (1.36)

This example illustrates the fact that any wave function of electrons in the

zeroth LL can be expressed as a polynomial of coordinates wi — no w̄i — times

the exponent which is determined only by the number of electrons. In what follows

in this paragraph instead of the wave function ψ(w1, ..., wN) we will write out the

polynomial P (w1, ..., wN). For example, for the fully filled zeroth LL

P (w1, ..., wN) =
∏

1≤i<j≤N

(wi − wj). (1.37)

If electrons don’t fill the whole LL they will try to keep as big a distance

from each other as possible (because of the Coulomb repulsion). Starting from

this argument, R. Laughlin proposed his famous trial wave function for the filling

33



factor ν = 1/3 [12]:

P (w1, ..., wN) =
∏

1≤i<j≤N

(wi − wj)3. (1.38)

It is easy to convince oneself that it indeed corresponds to ν = 1/3 by counting

the number of orbits used by the electrons in this wave function. It has shift

S = 3 (in contrast to the full filling, where S = 1). This trial wave function has

been extremely successful, the key point is that power 3 significantly reduces the

probability of finding two electrons close to each other.

This wave function has been generalized for the fillings ν = 1/m:

P (w1, ..., wN) =
∏

1≤i<j≤N

(wi − wj)m. (1.39)

However, since the wave function of the electrons should be antisymmetric, m

has to be odd. So, this wave function can be used only for fillings with odd

denominators.

There had not been any need in description of even denominators until the

ν = 5/2 FQHE was observed. Moore and Read in 1991 proposed their trial wave

function for a half-filled LL4 [5]. The wave function, if written for the zeroth LL,

looks like

P (w1, ..., wN) = Pfaff

(
1

wi − wj

) ∏
1≤i<j≤N

(wi − wj)2 =

AntiSymm

(
1

w1 − w2

1

w3 − w4

. . .
1

wN−1 − wN

)
×∏

1≤i<j≤N

(wi − wj)2. (1.40)

AntiSymm (. . .) denotes the expression in brackets antisymmetrized in electrons

permutations. The antisymmetrized combination which is present here is called

”Pfaffian” in honour of German mathematician Johann Friedrich Pfaff. After this

4As it has been mentioned already, it is assumed that only the partially filled level is important.
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expression the Moore-Read wave function is also often called the Pfaffian. Filling

factor associated with this wave function is ν = 1/2, and the shift is S = 3; the

wave function is evidently antisymmetric.

One can write wave functions for higher Landau levels in a similar explicit

fashion, but, in fact, for numerical comparison one only needs the coefficients of the

state vector expanded in the basis of orbital occupation numbers. For a zeroth LL

wave function those coefficients can be obtained from the polynomial representing

it by expanding the polynomial into a linear combination of monomials — each

wki up to the normalization factor corresponds to an electron occupying the state

ψn=0,m=k. One can also interpret the zeroth LL trial wave function as a wave

function for a higher LL. For that one should replace ψ0,k → ψn,k−n in the very end

of the procedure of getting the coefficients. Therefore, polynomials of electrons’

coordinates wi are used for representing trial wave functions for both zeroth LL

and the higher LLs.

Absolutely similarly a polynomial can be interpreted as a trial state for any

system where states in a LL are labeled by an integer number limited from below

and corresponding to the angular momentum.

Thus, all the trial states, including the Pfaffian, can be used for higher LLs.

In the n = 1 LL the Pfaffian state’s overlap with the numerically found ground

state for 12 electrons is close to 0.75. This is not that impressive as Laughlin’s

98 − 99%, but not that bad for the Hilbert space of dimension over 16 thousand

(two random vectors would have an overlap near 1/16000 in such space). The

FQHE with ν = 5/2 (which corresponds to a half-filled n = 1 LL) is observed in

GaAs heterostructures. However, it remains unclear up to now whether the state

corresponds to the Moore-Read state or not — that is, among other reasons, due

to the experimental fragility of the state, which makes it hard to work with.

5By overlap we mean scalar product’s absolute value squared.
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1.1.4 Summary of the section

In this section we review the basis of numerical diagonalization methodology

for non-relativistic FQHE systems: introduce Landau levels, briefly discuss the

applicability of the SLLA to the GaAs heterostructures, introduce pseudopoten-

tials, and discuss peculiarities of numerical diagonalization in the non-relativistic

systems. We also discuss several examples of trial wave functions, including the

Pfaffian, and their representation in the form of holomorphic polynomials of com-

plex coordinates.

1.2 Numerical diagonalization approach to the

quantum Hall effect in bilayer graphene (sin-

gle Landau level approximation)

In this section we discuss peculiarities of numerical diagonalization method in

bilayer graphene in the SLLA. Landau levels in bilayer graphene are introduced,

formulae for the pseudopotentials are found.

1.2.1 Bilayer graphene. Hamiltonian of a free electron in

bilayer graphene

Graphene is a one-atom thick layer of graphite, or in other words — two di-

mensional hexagonal lattice with carbon atoms in lattice points. Bilayer graphene

(BLG) is just two layers of graphene (two graphene sheets) with certain match-

ing of lattice points. For a detailed review on graphene and bilayer graphene

see Ref. [13]. We are going to recall only the facts necessary for the following

consideration.

The Fermi surface of graphene comprises just two points, in vicinity of which

the low-energy excitations are situated. One can usually neglect jumping of elec-
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trons between the two vicinities (valleys)6. Therefore, to describe this system we

can consider two Hamiltonians each of which describes dynamics of one valley.

In bilayer graphene the low-energy excitations are also situated near the same

points in the momentum space. The low-energy bilayer graphene Hamiltonian

(without external magnetic field) can be written then as [13, 14]7

HBLG
1−part = ξ



−U 0 0 vπ†

0 U vπ 0

0 vπ† U ξγ1

vπ 0 ξγ1 −U


, (1.41)

where ξ = ±1 corresponds to the two valleys K (ξ = +1) and K ′ (ξ = −1),

π = px + ipy is the complex momentum; the spectrum has a mini-gap 2U , which

can be tuned by the external electric field perpendicular to the bilayer graphene

sheet8. We will call U the ”mini-gap parameter”. The Fermi velocity is taken to

be v ≈ 106 m/s, and the interlayer hopping constant is taken to be γ1 ≈ 0.35 eV

[13].

In the absence of the external electric field (when U = 0) the low-energy

spectrum has quadratic form E = ±|π|2/(2m∗), where the effective mass m∗ =

γ1/(2v
2) ≈ 0.03me [14].

6This is due to the fact that jumping needs transfer of a quite big momentum (of the order of
h/a, where a is the lattice constant and has value around 0, 25 nm). For example, matrix element
of the Coulomb potential decreases like 1/q as the transferred momentum q grows. Therefore,
jumping between the valleys is suppressed with controlling parameter being the ratio of the
lattice constant a to the typical spatial scale one is interested in (in our case this is the magnetic
length l, typical values of the magnetic length are around l = 10 nm).

7The Hamiltonian is written in the basis corresponding to the atomic sites A, B̃, Ã, B in
the K valley and B̃, A, B, Ã in the K ′ valley. The sites A and B are situated in the bottom
graphene layer, while Ã and B̃ are in the top layer. Our convention is the same as the one used
in Refs. [13, 14] except for a redefinition of U .

8One can think that the electrostatic potential of one layer is U , while the other layer’s
potential is −U .
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1.2.2 Problem of a free electron in magnetic field (bilayer

graphene)

The Hamiltonian of an electron in bilayer graphene in the perpendicular mag-

netic field is obtained by extending the derivatives and taking the spin energy into

account:

HBLG
1−part = ξ



−U 0 0 vπ†

0 U vπ 0

0 vπ† U ξγ1

vπ 0 ξγ1 −U


− e~
mec

BSz, (1.42)

where ξ = ±1 is for the two valleys, π = πx+ iπy (see definition of πi after formula

(1.1)). Without loss of generality we will consider only the case B,U > 0.

It is easy to express the complex momenta through the operators (1.3-1.4):

π = −i
√

2~l−1â, π† = i
√

2~l−1â†. (1.43)

Thus the Hamiltonian can be expressed as

HBLG
1−part = ξ~ωc



−u 0 0 iγâ†

0 u −iγâ 0

0 iγâ† u ξγ2

−iγâ 0 ξγ2 −u


− 2µBBSz, (1.44)

where we introduced ωc = eB/(m∗c) = 2v2eB/γ1c (after definition of ref. [14]),

γ2 = γ1/(~ωc), u = U/(~ωc).

It turns out that this Hamiltonian does not commute with the z-projection

of the orbital angular momentum L̂ defined in Eq. (1.7). We introduce the z-
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projection of the ”pseudospin angular momentum” Σ̂:

Σ̂ =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


. (1.45)

Then the z-projection of the full angular momentum Ĵ = L̂ + Σ̂ does commute

with the Hamiltonian.

Now it is easy to express the general form of the spatial part of the Hamilto-

nian’s (1.44) eigenstates through the non-relativistic wave functions (1.11-1.12):

Ψnm =



Anψnm

Bnψn−2,m+2

Cnψn−1,m+1

Dnψn−1,m+1


, (1.46)

the sense of the number n is similar to the Landau level number, while m corre-

sponds to the projection of the full angular momentum jz = m+1. The amplitudes

An, Bn, Cn, Dn do not depend on m.

Acting on this wave function by the Hamiltonian and demanding it to be an

eigenfunction we find the equation for the eigenvalues:

((u− ξε)2 − γ2n)((u+ ξε)2 − γ2(n− 1)) = γ4(ε2 − u2) (1.47)

where ε = (E + 2µBBSz)/(~ωc), and E is the energy.

Finding the single particle spectrum for the realistic values of the parameters,

we see that the levels split into two groups: the one with |E| < γ1 and the one with

|E| ≥ γ1. The Zeeman splitting is negligibly small, just like in the non-relativistic

case. The levels with |E| < γ1, which we are interested in can be characterized

by five quantum numbers: the valley index ξ, the LL number n ∈ Z+, the full
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angular momentum projection jz = m + 1 with m ∈ (Z+ − n), s = ±1 (which

shows whether the energy is positive or negative) and Sz = ±1/2. Thus the wave

functions (their spatial components) in the n-th LL look like

Ψξs
nm =



Aξsn ψnm

Bξs
n ψn−2,m+2

Cξs
n ψn−1,m+1

Dξs
n ψn−1,m+1


. (1.48)

The amplitudes which are present in this formula can be expressed like

Aξsn = N , (1.49)

Bξs
n = −

√
n− 1

u+ ξεξsn

(u− ξεξsn )2 − γ2n

ξγ2
√
n

N , (1.50)

Cξs
n = −i(u− ξε

ξs
n )2 − γ2n

ξγ3
√
n

N , (1.51)

Dξs
n = i

u− ξεξsn
γ
√
n
N , (1.52)

where N is a normalization constant. Obviously, they depend on the magnetic

field B and the mini-gap parameter U .

Before considering the two particle problem in bilayer graphene, have a look at

the single-particle spectrum. Fig. 1.1a shows the dependence of the several lowest

Landau levels on the magnetic field for U = 50 meV. Only positive part of the

spectrum is shown, the negative part can be obtained with the help of electron-hole

conjugation (εξ,−sn = −ε−ξ,sn ). Each positive LL is labeled by a pair of quantum

numbers (n, ξ). One can see that for large values of the magnetic field the levels

form quasidegenerate doublets which are separated by the energies of the order of

~ωc. Fig. 1.1b shows the dependence of the same LLs’ energies on the mini-gap

parameter U for the magnetic field B = 10 T. Note that for large enough values

of U (or for small enough values of B) multiple crossings of Landau levels occur.

It is easy to understand that when several LLs are close to each other (for small
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magnetic fields/large mini-gaps when the LLs cross, or for small values of the

mini-gap when the levels in a doublet are almost degenerate) significant deviation

from the SLLA can occur. Thus, the applicability of the SLLA puts constraints

onto the external parameters. This point is discussed in details later. And now

we move to the two-particle problem in bilayer graphene in the SLLA.

1.2.3 Interaction of two electrons in a Landau level of bi-

layer graphene

The two-particle problem within the SLLA in bilayer graphene can be solved

analogously to the non-relativistic case.

Define the projections of the relative and the center of mass full angular mo-

menta to a single Landau level:

Ĵprel/cm = L̂prel/cm +
1

2
(Σ1 + Σ2) =

1

2
(Ĵ1 + Ĵ2 ∓ (b†1b2 + b†2b1)). (1.53)

The commutation relations of the projected angular momenta and their raising

and lowering operators with the parts of the two-particle Hamiltonian are abso-

lutely similar to the non-relativistic case:

ĤBLG
2−part = ĤBLG

free + V (r), (1.54)

ĤBLG
free = ĤBLG

1−part,1 + ĤBLG
1−part,2, (1.55)

[
ĤBLG
free , Ĵ

p
rel/cm

]
= 0 ,

[
ĤBLG
free , b̂

†
1 ∓ b̂

†
2

]
= 0, (1.56)[

ĤBLG
free , b̂1 ∓ b̂2

]
= 0 ,

[
V̂ , Ĵprel/cm

]
= 0, (1.57)[

V̂ , b̂†1 + b̂†2

]
= 0 ,

[
V̂ , b̂1 + b̂2

]
= 0, (1.58)[

V̂ , b̂†1 − b̂
†
2

]
6= 0 ,

[
V̂ , b̂1 − b̂2

]
6= 0. (1.59)
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Figure 1.1: Dependence of the lowest LLs’ energies on (a) the magnetic
field B for U = 50 meV, and (b) on the mini-gap parameter U for B =
10 T. Each level is labeled by a pair of quantum numbers (n, ξ). Only positive-
energy part of the spectrum is shown.
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The eigenstates of the two ”angular momenta” in a Landau level have the form

|m,M〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(Ψξs

n,−n)1(Ψξs
n,−n)2, (1.60)

Ĵprel|m,M〉 = (m− n+ 1)|m,M〉, (1.61)

Ĵpcm|m,M〉 = (M − n+ 1)|m,M〉. (1.62)

Thus, just like in a non-relativistic system, the two-particle interaction poten-

tial in a Landau level can be expressed through pseudopotentials:

V̂ (r) =
∑
m,M

|m,M〉V n,ξ,s
m 〈m,M |. (1.63)

The expression for the pseudopotentials in terms of matrix elements of the potential

is straightforward as the states |m,M〉 are orthonormal. These pseudopotentials

can be expressed via the non-relativistic pseudopotentials:

V n,ξ,s
m = |Aξsn |4V (n,n)

m + |Bξs
n |4V (n−2,n−2)

m +

(|Cξs
n |2 + |Dξs

n |2)2V (n−1,n−1)
m +

2|Aξsn |2|Bξs
n |2V (n,n−2)

m +

2|Aξsn |2(|Cξs
n |2 + |Dξs

n |2)V (n,n−1)
m +

2|Bξs
n |2(|Cξs

n |2 + |Dξs
n |2)V (n−2,n−1)

m . (1.64)

This expression makes obvious the possibility of tuning of the pseudopotentials

by changing the values of the amplitudes Aξsn , B
ξs
n , C

ξs
n , D

ξs
n . Since the amplitudes

depend on the external parameters U and B, the pseudopotentials can be tuned

with the help of external perpendicular electric and magnetic fields.

For practical purposes it is useful to incorporate formula (1.32) into Eq. (1.64)
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which leads to

V n,ξ,s
m =

∫ ∞
0

Ṽ (q)Lm(q2)
(
F ξs
n (q2/2)

)2
e−q

2 qdq

2π
, (1.65)

F ξs
n (q2/2) = |Aξsn |2Ln(q2/2) + |Bξs

n |2Ln−2(q2/2) +

(|Cξs
n |2 + |Dξs

n |2)Ln−1(q2/2). (1.66)

After pseudopotentials are calculated the numerical diagonalization procedure

is absolutely similar to the non-relativistic case9.

Let us emphasize that the consideration above is a consideration within the

SLLA. As it is discussed in the next section, in BLG the SLLA is less justified

than in GaAs systems. There are, however, conditions when the SLLA is a good

approximation; in that regime the multi-LL physics can be incorporated into the

SLLA by means of introducing corrections to the interaction potential and the

pseudopotentials.

1.2.4 Summary of the section

In this section the explicit formulae for the SLLA in BLG are provided (wave

functions in a Landau level, expression for the pseudopotentials). It is shown

that application of the numerical diagonalization methodology to BLG system

within the SLLA does not differ too much from the application to a non-relativistic

system.

9Recall that though the trial wave functions are written in the form of complex polynomials,
they, in fact, give decomposition of the wave function into Slater determinants of the single
particle states. Thus they are applicable to any system with Landau levels having structure
similar to the non-relativistic case, so they are applicable to the BLG. If a trial state is written
in the basis of occupation numbers the only difference to the diagonalization and comparison
procedure is that one has to use the BLG pseudopotentials instead of the non-relativistic ones.
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1.3 Deviations from the single Landau level ap-

proximation in bilayer graphene

As discussed in the previous section, studying FQHE in BLG within the SLLA

does not differ too much from the non-relativistic case. However, as it has already

been mentioned the single-particle spectrum of BLG restricts applicability of the

SLLA, and under the usual experimental conditions the restriction is significant.

Depending on several factors, there are three regimes:

• when the SLLA is fully reliable;

• when one has to consider several Landau levels together since the electrons

partially occupy each of those, the SLLA is completely inapplicable;

• in between the two previous regimes, the effects of presence of other Landau

levels can be incorporated into the SLLA as corrections to the intra-level

electron-electron interaction.

In this section we discuss factors which determine boundaries between the regimes,

we also show how to take into account the corrections in the third regime. First,

the brief discussion is presented in the subsection 1.3.1, with technical details are

presented in the subsection 1.3.2.

1.3.1 Effects important in bilayer graphene

Now we discuss in details the effects which are important in BLG. As before,

we are working in quite a good approximation when interaction does not change

spin quantum numbers of electrons. The important effects are as follows:

• Firstly, BLG in perpendicular electric field is a narrow gap semiconductor,

thus the effects of vacuum polarization are strong [15].

• Secondly, Coulomb interaction of electrons can lead to mixing of Landau

levels, or to emergence of spin or/and valley unpolarized states. Coulomb
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interaction can also lead to intervalley hopping of electrons. Even though

such processes are suppressed compared to intravalley scattering one should

still estimate their relevance.

• Thirdly, even when LL mixing is small, virtual hopping between the LLs can

change (renormalize) intra-level electron-electron interaction.

Now, in more details about each of those.

1.3.1.1 Vacuum polarization

The virtual processes shown in Fig. 1.2a lead to renormalization of the electron-

electron interaction. This is important since the interaction determines the FQHE.

The Fourier transform of the renormalized (screened) interaction potential can be

expressed as10

Ṽscr(q) =
Ṽ (q)

1 + l2Ṽ (q)Π(q, ω = 0)
(1.67)

where Ṽ (q) = 2πe2/(lqκ) is the Fourier transform of the unscreened Coulomb

potential, κ is the dielectric constant, which is felt by the system’s electrons11, and

Π(q, ω) is the polarization function. Since we are interested in the effects at the

energy scales much less than the inter-LL distances we can neglect the retardation

effects (use only ω = 0).

We compute the polarization function for the BLG in magnetic field within

the RPA (random phase approximation), which can be justified within the 1/N -

expansion [15] (N = 2 spin projections × 2 valleys = 4). Since Π(q, ω = 0) ∝ q2,

screening is not efficient at large distances; however, it strongly affects the first few

Haldane pseudopotentials (corresponding to distances of the order of the magnetic

length) which have the most significant impact on the stability of any FQHE state.

Details of the calculation are described in the paragraph 1.3.2.1.

10A similar screening approach has been discussed in GaAs; see, for example, [16].
11The dielectric constant sensed by BLG is κ = (κ1 +κ2)/2, where κ1 and κ2 are the dielectric

constants of the environment below and above the sheet of BLG.
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Figure 1.2: Feynman diagrams showing renormalization of the electron-
electron interaction due to (a) the vacuum polarization processes, and (b) the
simplest processes involving virtual hopping of one or both of the two interacting
electrons from the n-th LL to the n′-th LL.

1.3.1.2 Landau level mixing and population reversal

The order of levels in Fig. 1.1 prescribes the natural order of filling of the LLs

by electrons in the independent electrons approximation. However, it can happen

that for some filling fractions the electron-electron interaction leads to a reversal of

this natural order in a part of parameter space (by external parameters we mean

the magnetic field, the mini-gap and the dielectric constant). For example, the

Coulomb energy of the fully filled (2,+1) LL is less than the one of the fully filled

(2,−1) for U > 0. In the region where the interaction is strong compared to the

gap between the two levels this can lead to the fully filled (2,+1) LL having lower

total energy than the fully filled (2,−1) level. Thus, the former would be filled

before the latter.

Whereas for fractional filling such effects are much more difficult to analyze,

population reversal at the integer filling fraction would be an indicator of a strong

violation of the SLLA. Thus, we constrain our analysis to the region of the param-

eter space where no population reversal occurs at integer filling. More details on

the population reversal issues are presented in paragraph 1.3.2.2.

When the quasidegenerate levels are from different valleys, valley-unpolarized

states may be preferred, particularly for fractional filling. Furthermore, when the

quasidegenerate levels are from the same valley (as in the n = 0 and n = 1 case)

level mixing may occur. These are interesting effects which are, however, beyond

the scope of this work.

In any of the cases (valley unpolarized state or level mixing) one has to consider
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several LLs simultaneously. On the one hand, this is hard technically since for the

same number of electrons the system’s Hilbert space is significantly larger, which

complicates use of numerical diagonalization. On the other hand, in such cases

it is extremely unlikely to find a state similar to the ones expected for one LL.

Therefore, we restrict study to the region of the parameter space where no valley

unpolarized states and no level mixing occur. Our criteria for smallness of level

mixing and valley unpolarization are discussed in paragraph 1.3.2.2.

For the valley-polarized states one can still investigate whether the state is spin

polarized. Generally, spin-unpolarized states are not favored by Coulomb repulsion

unless the potential/list of pseudopotentials is hollow core (does not fall off mono-

tonically with distance/relative angular momentum). We find that the screened

potentials do fall off monotonically for κ & 10 in all the cases considered in sec-

tion 1.4. For κ . 10 the potential does not fall off monotonically in some regions

of the parameter space. However, the non-monotonicity of the list of pseudopoten-

tials in the latter case is either absent or very small. Therefore, we consider only

spin-polarized states and do not further restrict the external parameters’ region

due to possible spin-unpolarization issues.

1.3.1.3 Renormalization of pseudopotentials due to virtual hopping

The SLLA is exact in the limit of infinite difference of energies ∆E between the

LLs. For finite ∆E the pseudopotentials acquire corrections due to virtual transi-

tions between the LLs such as, for example, shown in Fig. 1.2b. Such corrections

are theoretically tractable only in the perturbative regime (when they are small);

however, even the presence of small corrections may dramatically affect the phase

diagram due to the extreme sensitivity of the FQHE states to the details of the

interaction (see e.g. [11]).

We restrict the region of validity of our consideration by requiring the typical

interaction energy scale (it can be interaction potential value at the magnetic

length distance or, almost equivalently, the zeroth pseudopotential) to be smaller
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than the distances to each of the neighbouring LLs from the same valley. In these

regions we take into account corrections to the pseudopotentials up to the second

order perturbation theory (Fig. 1.2b).

Similar but higher order processes lead to emergence of three-body, four-body

etc. electron-electron interactions. We neglect those interactions. This is justified

by the fact that the typical interaction energy scale is smaller than the inter-LL

distance, therefore higher order processes should be suppressed compared to the

lower order ones.

The details of the calculation of the corrections are presented in the para-

graph 1.3.2.3.

1.3.1.4 General plan for numerical study of a fractional QHE in bilayer

graphene

With the remarks made above, the general plan for study of FQHE at a certain

filling fraction on a certain LL can be formulated as follows:

1. Calculate the screened interaction potential.

2. Determine the region of parameter space in which no valley unpolarized

states emerge and level mixing doesn’t take place12.

3. Calculate pseudopotentials in this region of parameter space. Take the cor-

rections due to virtual hopping into account (the modified SLLA).

4. Use the calculated corrected pseudopotentials for numerical diagonalization

and compare the exact numerically found ground state with the trial one.

The next subsection contains details of calculation of the polarization function,

of the corrections to the pseudopotentials, of the criterion for absence of population

reversal of LLs, and of the criteria for absence of valley unpolarization and LL

mixing.

12By external parameters we mean the magnetic field, the mini-gap parameter and the dielec-
tric constant.
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1.3.2 Effects important in bilayer graphene: calculation

details

1.3.2.1 Calculation of the polarization function

The polarization function within the RPA is just a density-density correlation

function13 in the free theory (this corresponds to the fermionic loop in Fig. 1.2a)

Π(~r − ~r′, t− t′) = −i〈Tρ(~r, t)ρ(~r′, t′)〉, (1.68)

~ is put to be 1 in this paragraph, the T -symbol denotes time ordering:

Tρ(~r, t)ρ(~r′, t′) =

 ρ(~r, t)ρ(~r′, t′), t > t′

ρ(~r′, t′)ρ(~r, t), t < t′
. (1.69)

The density-density correlator is translation-invariant since the system is uni-

form, so

〈Tρ(~r, t)ρ(~r′, t′)〉 = 〈Tρ(~r − ~r′, t− t′)ρ(~0, 0)〉. (1.70)

Let’s denote the set of quantum numbers (n,m, ξ, s) by k, and write k < kF

if the state is occupied, and k > kF otherwise. The polarization function can be

expressed with the help of the wave functions (1.48) in the following way:

Π(~r, t) = −2i

[ ∑
k<kF ,k′>kF ,ξ=ξ′

Ψk(x)†Ψk′(x)Ψk′(0)†Ψk(0)× ei(Ek−Ek′ )tθ(t)+

∑
k>kF ,k′<kF ,ξ=ξ′

Ψk(x)†Ψk′(x)Ψk′(0)†Ψk(0)× ei(Ek−Ek′ )tθ(−t)

]
, (1.71)

θ(x) =

 1, x > 0

0, x < 0
. (1.72)

The factor of 2 in front of the square brackets is due to spin.

13Density is meant to be normal ordered: electron/hole creation operators should be to the
left of the annihilation operators.
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The Fourier transform of the polarization function is then defined as

Π(~q, ω) =

∫
d2rdte−i(~q~r/l−ωt)Π(~r, t). (1.73)

So the polarization function at the zero frequency Π(~q, ω = 0), which we need to

find the interaction potential, can be expressed like

Π(~q, ω = 0) = 2
∑

k>kF ,k′<kF ,ξ=ξ′

1

Ek − Ek′
×∫

d2re−i~q~r/l(Ψk(x)†Ψk′(x)Ψk′(0)†Ψk(0) + c.c.). (1.74)

After a short calculation we find that

Π(~q, ω = 0) =
2

l2

∑
j>jF ,j′<jF ,ξ=ξ′

1

Ej − Ej′
× (In,s,n′,s′ + c.c.) =

1

l2~ωc
Πdimless(q), (1.75)

In,s,n′,s′ = (−1)(n−n′)
∫ ∞

0

dr rJ0(qr/l)×
[
Aξsn A

ξs′

n′

(
Aξsn A

ξs′

n′ ψn,0(w)ψn′,0(w)+

Bξs
n B

ξs′

n′ ψn−2,2(w)ψn′−2,2(w) + (Cξs
n C

ξs′

n′ +Dξs
n D

ξs′

n′ )ψn−1,1(w)ψn′−1,1(w)
)

+

Bξs
n B

ξs′

n′

(
Aξsn A

ξs′

n′ ψn,−2(w)ψn′,−2(w) +Bξs
n B

ξs′

n′ ψn−2,0(w)ψn′−2,0(w)+

(Cξs
n C

ξs′

n′ +Dξs
n D

ξs′

n′ )ψn−1,−1(w)ψn′−1,−1(w)
)

+

(Cξs
n C

ξs′

n′ +Dξs
n D

ξs′

n′ )
(
Aξsn A

ξs′

n′ ψn,−1(w)ψn′,−1(w) +Bξs
n B

ξs′

n′ ψn−2,1(w)ψn′−2,1(w)

+(Cξs
n C

ξs′

n′ +Dξs
n D

ξs′

n′ )ψn−1,0(w)ψn′−1,0(w)
)]
. (1.76)

where j denotes a set (n, ξ, s), overbar denotes complex conjugation.14 The inte-

14Note that for some values of n, n′ this general expression has the non-defined wave functions
like, e.g., ψn′−2,0(w) for n′ = 0 or n′ = 1. These terms, however, do not contribute, which is

ensured by the coefficients Bξs
′

n′ , Cξsn etc. which take zero values in those cases.
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grals can be found analytically:

∫ ∞
0

dr rJ0(qr/l)ψn,m(w)ψn′,m(w) =

1

2π

∫
d2rψn,m(w)ei~q~r/lψn′,m(w) =

1

2π
Fn,n′(x)Fn+m,n′+m(x̄)e−q

2/2, (1.77)

Fi1,i2(x)|i1≥i2 =

i2∑
k=0

√
i1!i2!

k!(k + i1 − i2)!(i2 − k)!

(
−|x|

2

2

)k (
ix√

2

)i1−i2
=√

i2!

i1!

(
ix√

2

)i1−i2
L

(i1−i2)
i2

(|x2|/2), (1.78)

Fi1,i2(x)|i1≤i2 = Fi2,i1(x̄), (1.79)

where x = qx+ iqy, and L
(α)
n are generalized Laguerre polynomials. The derivation

is very similar to the derivation of formula (1.32) presented in Appendix A.1.

The Fourier transform of the interaction potential (1.31), (1.67) can be ex-

pressed then as

Ṽscr(q) =
2πe2

κql

1

1 + 2π e
2/(lκ)
~ωc

Πdimless(q)
q

. (1.80)

We take into account not only fully filled or entirely empty LLs but the partially

filled ones as well. We do this with the help of the following approximation: for a

partially filled level we add terms which correspond to the level as an empty one

and as a filled one with coefficients (1 − {ν}) and {ν} respectively. For example,

if some level is half-filled then all the terms in the polarization function which

correspond to the hopping to this level appear with the coefficient 1/2 = 1− 1/2,

and the terms which correspond to hopping from this level also appear with the

coefficient 1/2. Thus, we do not take into account correlations in a partially filled

LL.

For this work the polarization function was calculated approximately: we cal-
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culated only terms with n, n′ ≤ ncutoff = 4. We checked that the pseudopotentials

in the region we are interested in differ from the pseudopotentials calculated with

ncutoff = 3 by less than 2%.

1.3.2.2 Population reversal of Landau levels and level mixing

It was discussed in paragraph 1.3.1.2 that when typical energy scale of the

electron-electron interaction becomes larger than the difference of kinetic energies

of two LLs from the same valley it is natural to expect the SLLA to break down.

The numerical study in such cases is significantly hampered. Moreover, it is hardly

probable to find a state similar to a single-level state in this regime of strong level

mixing. Therefore, we would like to work only in the regime where the mixing of

LLs is small. For this we demand the typical energy scale of the electron-electron

interaction to be smaller than the kinetic energy distance to the closest LL from

the same valley. The remnants of the level mixing can be incorporated then into

the corrections to the SLLA which are discussed in the next paragraph.

One can use different quantities to define the typical energy scale of the

electron-electron interaction. For example, one can use the interaction potential

value at the magnetic length distance V (l) or the zeroth pseudopotential at the LL

one is interested in V n,ξ,s
0 . They typically differ by a factor of order of unity, which

is not too important. We choose to use value of the zeroth pseudopotential as the

typical interaction energy scale. Therefore, we restrict the region of consideration

to those values of external parameters U , B, κ for which V n,ξ,s
0 ≤ ∆E, where ∆E

is the kinetic energy difference between the LL under consideration and the closest

to it another LL.

There is a subtlety regarding this restriction. One can use the zeroth pseu-

dopotential for the screened or for the bare Coulomb interaction potential. Using

the Coulomb pseudopotential seems natural as it is the fundamental perturbation

theory controlling parameter. However, for the weakened screened potential the

Landau level mixing is smaller, and restricting the applicability region by Coulomb
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interaction scale one excludes where our approach should still give reliable results.

On the other hand, if the screening is so strong that the Coulomb energy scale

significantly differs from the screened one, then the RPA approach we use for cal-

culation of the screened potential may be not good enough, bringing in an error

in the interaction potential. In section 1.4 we restrict our region of consideration

by the screened energy scale. However, we also show the Coulomb energy scale

restricted region, so the reader can decide what restriction is more appropriate on

his own.

Besides mixing of LLs from one valley, a similar process can take place for

neighbouring levels from different valleys like (2,±1) (see Fig. 1.1). This is due to

Coulomb interaction on the lattice scale that can make electrons jump from one

valley to another. This interaction is considered in more detail in [17]. What is

important for us is that the typical energy scale of this interaction is

ṼCoul(q)
∣∣∣q= 4πl

3a
=

2πe2

κql

∣∣∣q= 4πl
3a

=
3e2a

2κl2
, (1.81)

where a ≈ 0.25nm is the graphene lattice constant. We would like this interaction

not to play a significant role. Therefore we restrict the parameters region by

demanding that its energy scale is smaller than the distance between the LL under

consideration and the closest to it LL from the different valley.15

Suppose level mixing of LLs from different valleys can be neglected. However,

the electron-electron interaction can lead to a situation when filling a higher LL

is energetically preferable than the lower one. This may lead to a situation when

two levels are partially filled at the same time. If this happens, the two LLs, even

not mixing, influence each other through the density-density interaction (since the

electrons still repel each other). In such case the two levels from different valleys

15Unlike the case of level mixing in one valley, due to quasi-momentum conservation, mixing
of the LLs from different valleys can happen only if both of them are filled with electrons at
least partially. Naively, one would think that because of this argument the level (2,+1) is not
dangerous when we consider the (2,−1) LL. However, the screening processes happen because
of hopping of the electrons to higher LLs. Therefore, the (2,+1) LL is ”virtually” filled, to some
extent. Thus, to be on the safe side, we still apply this restriction when we consider the (2,−1)
LL.
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should be considered together just like in the case of level mixing. So from the

same reasoning as in the case of mixing, we do not want to consider the system in

the regime of two levels from different valleys partially filled.

Thus, we need to find the region of parameter space where such simultaneous

filling does not occur — in order to use the SLLA there. Since the case of partially

filled level is hard to analyze, as a criterion we choose the demand that for integer

fillings there should be no change of the filling order. I.e., the full energy (kinetic

plus interaction) per electron of fully filled levels should put them in the same

order as their kinetic energy. For example, if the kinetic energy of the (2,−1) LL

is less than the one of the (2,+1) LL, then the full energy per electron in the fully

filled (2,−1) level should also be less than the full energy per electron in the fully

filled (2,+1) level.

For the fully filled level it is easy to calculate its interaction energy since there

is only one state possible — the Slater determinant of all the level’s orbits. The

interaction energy can be expressed through the pseudopotentials:

Einter., Nelectrons =
N(N − 1)

2
Tr V̂ ρ̂2, (1.82)

Einter. pp = lim
N→∞

Einter.,Nelectrons
N

= 2
∑

m∈2N−1

Vm, (1.83)

where ρ̂2 is the two-particle density matrix, pp in the subscript stands for ”per

particle”.

This energy can be separated into the Hartree (density-density interaction) and

the Fock (exchange) parts:

EHartree pp =
∞∑
m=0

Vm =
1

2l2

∫ ∞
0

dr rV (r), (1.84)

EFock pp =
∞∑
m=0

(−1)m+1Vm =
1

2l2

∫ ∞
0

dr rV (r)g(r). (1.85)

The function g(r) is related to two-particle and one-particle density matrices
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ρ2 and ρ1:

ρ1(x′|x) = 〈x′|ρ̂1|x〉, (1.86)

ρ2(x′y′|xy) = 〈x′| ⊗ 〈y′| ρ̂2 |x〉 ⊗ |y〉, (1.87)

ρ2(x′y′|xy) = |N →∞, Slater determinant state| =

(ρ1(x′|x)ρ1(y′|y)− ρ1(y′|x)ρ1(x′|y)), (1.88)

g(r) = N2(ρ2(r, 0|r, 0)− ρ1(0|0)2), (1.89)

g(r) = −N2ρ1(0|r)ρ1(r|0). (1.90)

Notice that the Hartree energy can be expressed as an integral of the interaction

potential, with the form of the integral independent of a Landau level. This is a

consequence of the fact that the fully filled LL has constant density. We have to

say that the integral for the Hartree energy is divergent at the upper limit for the

Coulomb-like interaction potentials. However, only differences of the energies have

physical meaning, thus we can calculate this integral with a certain regularization

if only the regularization is always the same.

The Fock part of the energy is, on the contrary, convergent, but it depends on

the LL through the function g(r), which characterizes short-range correlations.

If the interaction potential is the same for two different Landau levels, their

Hartree energies are identical. Naively one would think that if the screening is

different, their Hartree energies can lead to population order reversal. However,

one has to take into account the background positive charge (since the system

is electrostatically neutral). The total electrostatic energy then, as we show in

Appendix A.2, does not differ for different screened potentials.

Therefore, the interaction energy difference comes from the Fock term only.

For the non-relativistic levels and the Coulomb potential the Fock energy is the

greater (has smaller absolute value but negative sign) the bigger is level number n.

This is an additional reason (the main is the large dielectric constant) for absence
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of population reversal in the non-relativistic systems: interaction energy works

together with the kinetic one.

Consider, for example, levels (2,−1) and (2,+1) in bilayer graphene (the latter

has greater kinetic energy). The wave functions in the (2,+1) level are close to

the wave functions of the non-relativistic n = 0 LL, while the wave functions in

(2,−1) are close to the ones in n = 2. Thus, the Fock energy prefers the (2,+1)

LL, while the kinetic energy prefers the (2,−1) LL. Therefore if the interaction is

strong enough population reversal may happen.

While for the bare Coulomb interaction population reversal would happen in

some regions of the parameter space, for the screened potentials we do not find

such an effect for the (2,−1) and (2,+1) LLs. This makes improbable emergence

of valley-unpolarized states.

Therefore, it is enough to restrict the region of parameter space by demanding

the smallness of level mixing for LLs from one valley and from different valleys

according to the criteria described in the beginning of this paragraph.

1.3.2.3 Calculation of corrections to the SLLA pseudopotentials due

to virtual hopping

Suppose we are in the region where spin-/valley-unpolarized states do not

emerge, and the LL mixing of the level under consideration with the levels from

the same valley is small. Then the small mixing can be taken into account with the

help of corrections to the electron-electron interaction within the SLLA. Those are

the small corrections to the pseudopotentials. It is known that small corrections

of the order of 5 − 10% from the pseudopotentials’ values can lead to significant

change of the overlap with a trial state (see e.g. [11]). In this paragraph we present

the formulae we use to compute such corrections.

Consider the two-particle problem. In the subsection 1.2.3, it was shown that

the eigenstates of the two-particle problem within the SLLA are |m,M〉, with their

energies being V j
m, j = (n, ξ, s). Let us denote |m,M〉 as |m,M, j, j〉 to emphasize
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that both of the electrons are in the LL j. Now we add to our consideration the

closest unfilled LLs from the same valley (for small deviations from the naive SLLA

those are the levels above); we introduce the following basis in the Hilbert space:

|m,M, j, j′〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(Ψξs

n,−n)1(Ψξs′

n′,−n′)2. (1.91)

The leading correction to the eigenstates’ energies, which is due to the virtual

hopping to the higher LLs from the same valley, is given by the second order

perturbation theory:

Ej
m = V j

m −
∑

(j1,j2)6=(j,j),m′,M ′

|〈m,M, j, j|V̂ |m′,M ′, j1, j2〉|2

Ekin
j1

+ Ekin
j2
− 2Ekin

j

. (1.92)

Express the square of the distance between the two interacting electrons r2 =

l2|w1 − w2|2 through the operators (1.3-1.4):

r2 = 2l2(b̂1 − b̂2 + â†1 − â
†
2)(â1 − â2 + b̂†1 − b̂

†
2). (1.93)

Since the interaction potential V is a function of r2, one can show that the only

non-zero matrix elements of all the 〈m,M, j, j|V̂ |m′,M ′, j1, j2〉 are

V j,j,j1,j2
m = 〈m,M, j, j|V̂ |m+ (n1 − n) + (n2 − n),M, j1, j2〉, (1.94)

V j,j,j1,j2
m = (−1)(n1−n)+(n2−n)V j,j,j2,j1

m . (1.95)

These matrix elements can be expressed through non-relativistic matrix ele-

ments, similarly to how the pseudopotentials in BLG are expressed via the non-

relativistic pseudopotentials:

|m,M, n, n′〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(ψn,−n)1(ψn′,−n′)2, (1.96)

V n,n′,n1,n2
m = 〈m,M, n, n′|V̂ |m+ (n1 − n) + (n2 − n′),M, n1, n2〉, (1.97)
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V n,n,n1,n2
m = (−1)(n1−n)+(n2−n)V n,n,n2,n1

m , (1.98)

V j,j,j1,j2
m = V n,n,n1,n2

m Aξsn
2

Aξs1n1
Aξs2n2

+ V n−2,n,n1−2,n2
m Bξs

n A
ξs
n B

ξs1
n1
Aξs2n2

+ ... (1.99)

The non-relativistic matrix elements can be expressed through the Fourier

transform of the pseudopotential in a form quite similar to the expression for

the pseudopotentials (1.32):

V n,n′,n1,n2
m =

∫ ∞
0

Ṽ (q)Fm,m+(n1−n)+(n2−n′)(x̄
√

2)×

Fn,n1(x)Fn′,n2(−x)e−q
2 qdq

2π
, (1.100)

Fi1,i2(x)|i1≥i2 =

i2∑
k=0

√
i1!i2!

k!(k + i1 − i2)!(i2 − k)!

(
−|x|

2

2

)k (
ix√

2

)i1−i2
=√

i2!

i1!

(
ix√

2

)i1−i2
L

(i1−i2)
i2

(|x2|/2), (1.101)

Fi1,i2(x)|i1≤i2 = Fi2,i1(x̄), (1.102)

x = qx + iqy, and L
(α)
n are generalized Laguerre polynomials. The derivation is

very similar to the derivation of formula (1.32) presented in the appendix A.1.

Since Fn,n(x) = Ln(|x|2/2), for n = n1, n′ = n2 the formula (1.32) is restored, as

it should be because by definition V
(n1,n2)
m = V n1,n2,n1,n2

m .

We neglected here the corrections to the two-particle interaction, three- and

more-particle interactions which appear from the higher orders of the perturbation

theory. It is permissible since in the regime we work in the typical interaction

energy scale is less than the distance to the closest LL. Therefore, the subleading

corrections are expected to be smaller than the leading ones coming from the

second order perturbation theory.

The correction (1.92) calculated here corresponds to the diagram in Fig. 1.2b

in the approximation of neglecting the dependence of the polarization function on
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frequency and neglecting the self-energy of the electron (corrections to the electron

propagator). This approximation is discussed in the Appendix A.3.

1.3.3 Summary of the section

In this section we discuss important effects which restrict the applicability of

the SLLA in BLG. We also discuss the conditions under which it is enough to

introduce corrections to the SLLA to restore the theory applicability. The details

of the calculations are presented in the second subsection.

1.4 Possibility to observe the Moore-Read state

in bilayer graphene

In order to investigate the role of the effects discussed above on the stability

of FQHE states we focus on the Pfaffian state. Our choice is motivated by the

following considerations. Firstly, this state is particularly sensitive to the details of

the interaction so it is a good illustration for our analysis. Secondly, the stability of

this state in BLG was investigated in Refs. [6, 18] in the SLLA approximation but

without these effects taken into account, so we can compare the phase diagrams.

Thirdly, the Pfaffian itself is an important state because it is an example of the

non-abelian topological fluid.

The tunable parameters are the magnetic field B, the electric field which de-

termines the mini-gap parameter U and the effective dielectric constant κ16 which

controls the deviation from the naive SLLA (which is exact for κ→∞). We can

also choose the half-filled LL number. Here we will concentrate only on the two

levels: (1,−1) and (2,−1). The (1,−1) level wave function is constructed from the

nonrelativistic n = 0 and n = 1 LL wave functions, the (2,−1) level wave function

is constructed from the nonrelativistic n = 0, 1, 2 LL wave functions. In both cases

16The dielectric constant sensed by BLG is κ = (κ1 +κ2)/2, where κ1 and κ2 are the dielectric
constants of the environment below and above the sheet of BLG.
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for the bare Coulomb interaction one can tune the pseudopotentials close to their

values at the nonrelativistic n = 1 LL, where the 5/2 state is observed in GaAs17.

The tuning mechanisms are, however, different for the two levels. Amplitudes

of the wave function (1.48) in the (1,−1) LL show little dependence on U so the

main control parameter is B18. In contrast, the amplitudes of the wave function

in the (2,−1) LL mainly depend on one parameter which is the U/~ωc ratio, so

both B and U can be used for tuning.

The main factors determining deviation from the naive SLLA for the two levels

are the polarization and virtual hopping to the nearby levels. For the (1,−1) LL

this is hopping to the (0,−1) and the (2,−1) LLs, while for the (2,−1) LL the

important hopping is to the (3,−1) LL. In addition to this, for the (2,−1) LL, it

is important to consider effects of mixing with the (0,−1) and (2,+1) LLs. The

latter are important factors restricting the region of applicability of perturbative

analysis, however, when suppressed they do not lead to a renormalization of the

intra LL interaction.

Figures 1.3a and 1.3b show the regions of the applicability of perturbative anal-

ysis for different values of κ for the (1,−1) LL.19 For Fig. 1.3a the typical interac-

tion energy scale, which determines the significance of level mixing, is estimated

with the help of the screened potential (”type S estimate”), while for Fig. 1.3b —

with the help of the bare Coulomb potential (”type C estimate”). The regions are

bounded from above by the condition of small hopping to the (2,−1) LL, the lower

bound is due to the condition of small hopping to the (0,−1) LL. At small enough

magnetic fields at least one of the conditions is violated at all values of U . The

thick black line shows where the maximum overlap with the Pfaffian for the bare

17Though the (2,+1) level wave function is also constructed from the nonrelativistic n = 0, 1, 2
LL wave functions the numerics shows that the high overlap with the Pfaffian state is not achieved
here for the bare Coulomb interaction in contrast to the (1,−1) and the (2,−1) LLs.

18In the low-energy two-band model [14] (which corresponds to the γ1 →∞ limit) such tuning
is impossible because the amplitude A−1,+1

1 is identically equal to 1 with other amplitudes being
zero.

19Due to some mistakes in calculation of the region of applicability, in the original result-
reporting paper [19] the form of the region is not entirely correct. Here we corrected the mistakes.
This applies to both the (1,−1) LL and the (2,−1) LL case, which is considered next.
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Figure 1.3: The region of the applicability of perturbative analysis for
fixed values of κ = 5 (yellow), 10 (green) and 15 (blue) for the (1,−1) LL.
The size of the region increases with increasing κ. For (a) the typical interaction
energy scale is taken to be the zeroth pseudopotential of the screened interac-
tion potential, for (b) — of the bare Coulomb potential. The thick black line
shows where the maximum overlap with the Moore-Read Pfaffian state for the
bare Coulomb interaction is achieved.

Coulomb interaction is achieved. One can see that for small dielectric constants

this line lies outside the region of validity of perturbative analysis, however for

large enough κ they intersect near U = 50 meV.

Figures 1.4a and 1.4b show the regions of the applicability of perturbative

analysis for different values of κ for the (2,−1) LL. For Fig. 1.4a the type S

estimate is used, while for Fig. 1.4b the type C estimate is used. The regions

are bounded from above by the condition of small mixing with the (0,−1) LL,

the lower bound is due to the condition of small mixing with the (2,+1) LL. The

thick black line shows where the maximum overlap with the Pfaffian for the bare

Coulomb interaction is achieved. One can see that for small dielectric constants

this line lies outside the region of validity of perturbative analysis, however for

large enough κ they intersect near U = 30 meV.

Figures 1.5a and 1.5b show the dependence of the overlap of the exact ground

state of the system with the Pfaffian on the magnetic field and the dielectric con-

stant at U = 50 meV for the (1,−1) LL and at U = 30 meV for the (2,−1) LL

respectively.20 We do not show the data in the region where the perturbative anal-

20Due to some mistakes in calculation of the screened potential, in the original result-reporting
paper [19] the overlaps for the (1,−1) LL behave somewhat differently. Here we corrected the
mistakes. As to the (2,−1) LL, here we consider another value of U than in the paper [19], see
footnote 19.
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Figure 1.4: The region of the applicability of perturbative analysis for
fixed values of κ = 2.5 (brown), 5 (yellow) and 10 (green) for the (2,−1)
LL. The size of the region increases with increasing κ. For (a) the typical in-
teraction energy scale is taken to be the zeroth pseudopotential of the screened
interaction potential, for (b) — of the bare Coulomb potential. At κ = 2.5 in
(b) the condition of smallness of level mixing is not satisfied anywhere within the
range of external parameters shown. The thick black line shows where the maxi-
mum overlap with the Moore-Read Pfaffian state for the bare Coulomb interaction
is achieved.

ysis is not applicable according to type S estimate. The region of inapplicability

of our theory according to the type C estimate is hatched. As one can see, for the

(1,−1) level, a high overlap up to 0.94 (compare with non-relativistic n = 1 level

overlap of 0.7) can be achieved. For the (2,−1) level a high overlap up to 0.92 is

achieved. However, the behavior of the high-overlap (> 0.9) region is somewhat

different in the two cases. For the (1,−1) LL the region narrows down with de-

creasing of κ, and vanishes for κ ≈ 15. Though, this happens in the ”grey” area

where our theory is still applicable according to the type S estimate, but already

not applicable for according to the type C estimate, and one cannot be sure on the

reliability of the data in that region. For the (2,−1) LL the high-overlap region

also gets narrower with decreasing κ, but we cannot say whether it continues to

κ . 5 or not.

The authors of [6] found that in the (1,−1) LL, high overlap is achieved in

the region near B = 10 T. We find that the region of high overlap is situated

there for large enough values of κ. However, for smaller values of κ . 15 the effect

of level mixing becomes significant which makes observation of the Pfaffian state
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Figure 1.5: Color plot of the overlap of the ground state with the Moore-
Read Pfaffian for 12 particles as a function of the magnetic field B and
the dielectric constant κ. (a) – for the (1,−1) LL at U = 50 meV, (b) – for
the (2,−1) LL at U = 30 meV. Contours show the lines of constant overlap.
The region where perturbative analysis is not applicable according to the type
C estimate is hatched. Data is not shown beyond the region where perturbative
analysis is applicable according to the type S estimate.

unlikely.21 The (2,−1) LL was also considered in [6], where it was concluded that

the maximal overlap with the Pfaffian on this level is less than 0.6. Our results do

not support this conclusion (even for the bare Coulomb interaction).

The previous consideration shows that BLG can, in principle, be tuned into

the regime of high overlap with the Pfaffian. However, one needs higher dielectric

constant than the usual κ ≈ 2.5 for graphene on SiO2 or h-BN substrate. This

is experimentally achievable. For example, on HfO2 substrate [22] κ is around

12.5. This value of κ = 12.5 is enough to tune into the high-overlap region for

the (2,−1) LL around B = 8 T (with the overlap being about 0.92). The gap to

the first excited state at these parameter values is around 2.2 K. With increasing

magnetic field we find that the gap monotonically increases to the values of around

7.8 K at B = 15 T and 16 K at B = 30 T. At the same time the overlap decreases

to around 0.6 which is still fairly large. This result, obtained for a finite number

of particles, suggests that the system may still be in the same topological phase at

higher magnetic fields. However, the experimental observation of the Pfaffian in

21It is interesting to note that recently a ν = 1/2 FQHE state has been observed in suspended
bilayer graphene [20] for U ≈ 0. The parameters of the experiment lie far beyond the region
of applicability of our methodology. However, the study [21], which does take into account the
strong mixing between the quasidegenerate (1,−1) and (0,−1) LLs beyond perturbation theory,
claims that the Pfaffian is a likely candidate to explain the observed ν = 1/2 FQHE.
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BLG in this way in the nearest future is unlikely. The main problem for observation

of the fractional QHE in graphene (and BLG as well) is the too high disorder in

the samples caused by the disorder in the substrate (evidently, it is impossible to

observe FQHE when the typical height of the disorder potential is greater than

the gap to the first excited state). For example, the FQHE with the filling factor

ν = 1/3 has been observed in suspended single-layer graphene [23] and in graphene

on h-BN substrate [24] but not on a substrate with different lattice structure (which

is the case for HfO2 needed to achieve the high dielectric constant).

Another way to achieve higher dielectric constants is to use substrate on the

both sides of BLG sheet. In that case the effective dielectric constant κ is equal

to the substrate dielectric constant. Therefore, using h-BN one can get κ = 5.

The region of high overlap comes quite close to this value of dielectric constant for

the (2,−1) LL. For example, at U = 30 meV, B = 6 T, and κ = 6 the overlap

of the exact ground state and the Pfaffian state is about 0.91, with the gap to

the first excited state being about 1.2 K. With increasing magnetic field the gap

monotonically increases to the values of around 10 K at B = 15 T and 23 K at

B = 30 T. At the same time the overlap decreases to around 0.6 which is still

fairly large, which suggests that the system may still be in the same topological

phase at higher magnetic fields. This, together with the fact that FQHE has been

observed on h-BN substrate [24] (so one can hope to overcome the problems with

disorder in this case), gives a hope that the Pfaffian state can be realized in BLG

surrounded with h-BN.22

The reader can find some additional data on the behaviour of gaps and overlaps

in Appendix A.4.

22Such configurations have recently started being explored experimentally from the perspective
of FQHE: see Ref. [25].
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1.5 Summary of the chapter

We analyze the influence of inter-Landau level transitions (vacuum polariza-

tion, virtual hopping) on the phase diagram of the FQHE states. We find that

the SLLA can only be used under quite stringent conditions, and corrections to

the SLLA should be taken into account. A method for taking the corrections into

account by means of perturbation theory is developed. However, the region of

applicability of the SLLA with our corrections is also quite restricted.

With the help of the developed method we study the possibility to observe the

Moore-Read state in bilayer graphene. We find that the mentioned effects indeed

lead to a substantial modification of the phase diagram. However, the external

parameters needed to tune into the regime favouring the Moore-Read state are, in

principle, achievable, for BLG surrounded with h-BN.
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Chapter 2

Characterization of fractional

quantum Hall states with the

help of tunnelling current noise

measurements

In this chapter a theoretical study regarding the information which can be

extracted from tunnelling current noise measurements in FQHE regime is pre-

sented. The system considered in this chapter comprises two FQHE edges far

apart from each other with a narrow constriction at which the edges come close

to each other and interact via tunnelling of quasiparticles. In such a system the

electric tunnelling current and its noise can be measured experimentally. A theo-

retical framework for quantitative analysis of such experiments is expounded here,

together with the analysis of the data of the experiment of Ref. [1], and some

proposals for the experiments.

The first section of the chapter is devoted to the analysis of the experiment of

Ref. [1]. The experiment is analysed within the theoretical framework developed

throughout the section.

In the second section the formulae obtained in the first one are used to show that
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it is, in principle, possible to extract the tunnelling quasiparticle scaling dimension

from such experiments, without knowing a specific model of the FQHE edge.

2.1 ν = 2/3: counterflowing neutral mode and

its properties from tunnelling current noise

measurements

2.1.1 Introduction

The quasi-one-dimensional edge channels supported by fractional quantum Hall

(FQH) states have for a long time attracted attention of both theorists and ex-

perimentalists. During the 1980-s models emphasizing the role of edge states for

FQH transport developed into a powerful field-theoretical framework of a chiral

Luttinger liquid (CLL) [26]. A very rigid mathematical structure of the latter

leads to a number of non-trivial predictions such as fractionally charged quasipar-

ticles, and excitations with anyonic or even non-abelian statistics.1 Some of these

predictions have been tested experimentally while others still pose a challenge to

experimentalists.

One of the milestones in the experimental studies of the FQH effect is the

recently reported observation [1] of the neutral current (a transport channel which

does not carry electric charge) at the edge of the ν = 2/3 FQH state. The ν = 2/3

state is one of the simplest for which the CLL theory is not consistent without a

neutral current. Moreover, the predicted flow direction of this current is opposite

to the electrons’ drift velocity [27, 28] and thus contradicts intuition based on the

magnetic hydrodynamics [29].

Apart from the detection of the upstream neutral mode, the design of the

1The predictions related of fractional charge or unusual statistics of quasiparticles in the
FQHE first appeared from different arguments, not from CLL framework. However, these prop-
erties appear extremely naturally within the CLL methodology. Since the CLL approach allows
to obtain statements about these properties theoretically, one can still call them predictions of
CLL.
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experiment, Ref. [1], gave access to a significant amount of quantitative data char-

acterizing the system [1, 30]. This motivated the work presented in this section

where a detailed quantitative description of the experiment is developed basing

on the minimal ν = 2/3 edge model worked out in [27, 28] and supported by

numerical simulations of small systems [31, 32]. Within the developed framework

the data of [1] is analyzed in order to (a) check its consistence with the minimal

ν = 2/3 edge model quantitatively and (b) extract new information about ν = 2/3

edge physics.

While an excellent agreement of our theory with the experimental data of

Ref. [1] is found, it is worth making a remark that a number of alternative theories

have been proposed recently in order to explain other experimental results such

as those of Ref. [33]. These theories extend the minimal ν = 2/3 edge model by

introducing new physics, such as edge reconstruction [34] or bandwidth cutoffs

[35], at some intermediate energy scale. Such extensions can be incorporated

into our framework. However, as they contain additional unknown parameters,

their comparison against experiment can only be insightful with more independent

experimental data.

2.1.2 Description of the experiment [1]

Here the experiment [1], where the upstream neutral currents at the quantum

Hall (QH) edge were investigated, is briefly discussed.

Figure 2.1 shows a sketch of the experimental device. The green region is

the AlGaAs heterostructure with the light-green showing where the 2DEG (two-

dimensional electron gas) is actually present. The sample is in the transverse

magnetic field so that the filling factor is 2/3 and the corresponding quantization of

the Hall conductivity is observed. Green arrows show the direction of the electrons’

drift velocity which coincides with the flow direction of the charge transporting

channel (charged mode). Yellow patches represent Ohmic contacts. The purple

rectangular pads on top of the sample are the gates which allow one to make
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Figure 2.1: Scheme of the experimental device. Contacts Ground 1 and
Ground 2 are grounded. Source N and Source S are used to inject some electric
current into the system. Measurement of the electric current and its noise is
performed at Voltage probe.

and adjust a constriction which plays the role of tunnelling junction (denoted as

QPC in the figure). Contacts Ground 1 and Ground 2 are grounded. Source N

and Source S are used to inject electric current into the device. Measurements of

electric current and its noise are performed at Voltage probe.

The idea of the experiment is as follows. Suppose a current In is injected

into Source N. If the edge supports only one chirality (counterclockwise) then

anything injected into Source N will be absorbed by Ground 1 and have no effect

on Voltage probe. However, if we assume that there is a neutral mode flowing

clockwise, information about the events in Source N carried by the neutral mode

may reach QPC. In QPC such information may be transmitted to the opposite

edge and then transported to Voltage probe by the charged mode. In particular,

let us assume that the injection of the current In excites the neutral mode flowing

out of Source N towards QPC. Due to the tunnelling across QPC of quasiparticles

having both charged and neutral degrees of freedom the neutral mode excitations

will be converted into the current noise at Voltage probe. Thus, the presence of

the counterpropagating neutral mode implies that the noise observed at Voltage
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probe should depend on the current In. Such a dependence was reported in [1].

The observation of the theoretically predicted upstream neutral mode is a very

important qualitative result. However, experimental techniques and numerical

data reported in [1] go far beyond this achievement providing a lot of implicit

quantitative information about current fractionalization in Ohmic contacts, trans-

port along the QH edges and quasiparticle tunnelling across the QPC. In order to

effectively utilize this quantitative information one needs an analytical theory of

the experiment based on the modern understanding of the FQH edge. The goal of

this section is to discuss the results of [1] within such a theoretical framework.

2.1.3 Theoretical picture of the experiment

Our theoretical description of the experiment has three key ingredients: the

effective theory of the quantum Hall edge, a model of the QPC, and phenomeno-

logical assumptions about the interaction of the Ohmic contacts with the QH edge.

The former two are based on the standard theoretical framework which we briefly

review in the next subsection. In this subsection we focus on the general picture

of the experiment, paying particular attention to the assumptions regarding the

Ohmic contacts.

Our theoretical model of the experiment is illustrated in Fig. 2.2. Each edge

supports one counterclockwise charged mode and one clockwise neutral mode.

The two edges approach each other in the QPC region where the tunnelling of

the quasiparticles between the edges occurs. Our quantitative theory is developed

for the case of weak quasiparticle tunnelling. The Ohmic contacts are shown

as rectangles. We assume that any excitations of neutral and charged modes

are fully absorbed by the Ohmic contacts they flow into. We further assume

strong equilibration mechanisms at the edge so that the hydrodynamic description

can be used. That is, each edge can be characterized by local point-dependent

thermodynamic variables including the charged mode chemical potential µ(c), the

charged mode temperature T ′ and the neutral mode temperature T , and any other
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Figure 2.2: Theoretical picture of the experiment. The injected current In
”heats” the neutral mode of the upper edge to the temperature Tn. Equilibration
processes between the charged and the neutral modes lead to the charged mode
temperature T ′n = Tn. Both modes at the lower edge have the temperature of the
environment: T ′s = Ts = T0. Tunnelling of the quasiparticles at the constriction
induces extra noise in the charged mode of the lower edge which is detected at the
Voltage probe. Injection of the current Is only changes the chemical potential of
the charged mode of the lower edge.

thermodynamic variables arising due to the existence of extra conserved quantities.

We assume that in the absence of currents (In = 0 and Is = 0) the edges are in

equilibrium with the environment so that all modes’ temperatures are equal to the

base temperature T0 and the chemical potentials are equal to zero. Away from

this state the temperatures and chemical potentials are unknown functions of In

and Is, and other thermodynamic variables are assumed to be unaffected by the

injection of currents In, Is. The functions µ(c)(In, Is), T (In, Is), T
′(In, Is) for each

edge are defined by the interaction of the Ohmic contact with the edge, however

no predictive theoretical model of such interaction is known today. As we show,

these functions can be inferred from the experimental data under some plausible

phenomenological assumptions.

We assume that there is a strong heat exchange between the modes at each
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edge. In this approximation the local temperatures of the two modes coincide at

each point along the edge: Tn = T ′n, Ts = T ′s. Moreover, following [1] we assume

that the lower edge temperature is equal to the base temperature (Ts = T ′s = T0);

that is, the electric current Is injected by the Ohmic contact Source S does not

induce any non-equilibrium noise to the lower edge charged mode.

2.1.4 Formalism of the edge field theory

In this subsection we give a brief overview of the CLL formalism [26, 36, 37],

which is believed to provide the effective theoretical description of a fractional QH

edge. We then focus on a particular edge model relevant to the experiment [1].

We conclude this subsection by a discussion of the model Hamiltonian describing

the tunnelling of quasiparticles between the QH edges.

2.1.4.1 General formalism2

Abelian QH edge theories are usually formulated in terms of bosonic fields

ϕi(x, t), where t is time and x is the spatial coordinate along the edge. Each field ϕi

represents an edge mode. Suppose that we haveN edge modes and correspondingly

N fields ϕi with i = 1, ..., N . Then the dynamics of the edge is described by the

effective action [38]3

S =
1

4π

∫
dxdt

∑
i

(
−χiDxϕiDtϕi − vi(Dxϕi)

2 + qiε
µνaµ∂νϕi

)
, (2.1)

where vi ∈ R+ are the propagation velocities, χi = ±1 represent chiralities of the

modes (plus for the clockwise and minus for the counterclockwise direction), and

aµ(x, t) is the electromagnetic field potential at the edge. Covariant derivatives are

defined as Dµϕi = ∂µϕi − χiqiaµ. The coupling constants qi provide information

on how the electric charge is distributed between the modes. The symbol εµν

2Here and in what follows we put e = ~ = kB = 1 unless the opposite is stated explicitly.
Here e is the elementary charge, ~ is the Planck constant, kB is the Boltzmann constant.

3In fact, the action (2.1) has to be used with care because its chiral nature imposes implicit
constraints on the external perturbation aµ. This problem does not emerge in Hamiltonian
formalism used in [36].
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denotes the fully antisymmetric tensor with µ, ν taking values t and x (or 0 and 1

respectively) and εtx = ε01 = 1.

Conservation of total electric current in the whole volume of a 2D sample leads

to the condition [36, 37] ∑
i

χiq
2
i = ν. (2.2)

The electric current at the edge is

Jµ =
δS

δaµ
=

1

2π

∑
i

qiε
µνDνϕi +

ν

4π
εµνaν . (2.3)

In the presence of the electric field it is not conserved:

∂µJ
µ = − ν

4π
εµν∂µaν 6= 0, (2.4)

which is a manifestation of the inflow of the Hall current from the bulk.

In the absence of the electric field aµ(x, t) = 0 the current is conserved and has

the form

Jµ =
1

2π

∑
i

qiε
µν∂νϕi, ∂µJ

µ = 0 (2.5)

In the rest of this subsection we assume that aµ(x, t) = 0.

Further to the electric current one can also define neutral currents

Jµn =
1

2π

∑
i

piε
µν∂νϕi, ∂µJ

µ
n = 0, (2.6)

with vector p = (p1, ..., pN) being linearly independent of vector q = (q1, ..., qN).4

The quantized fields ϕi can be presented as follows

ϕi(x, t) = ϕ0
i +

2π

L
π0
iXi + i

∞∑
n=1

√
2π

Lk

(
ai(k) exp(−ikXi)− a†i (k) exp(ikXi)

)
(2.7)

4The conserved neutral currents can give rise to neutral modes’ chemical potentials µ(n) —
thermodynamic quantities dual to the neutral charges. In the main text, as it was pointed out
in the previous subsection, we assume that these neutral chemical potentials are not involved in
the experiment we are going to analyze. However, for the sake of generality we include them in
formulae in Appendices B.1, B.8.
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where Xi = −χix + vit, k = 2πn/L, n ∈ N; L → ∞ is the system size, ai(k) and

a†i (k) are the annihilation and the creation operators respectively, ϕ0 and π0 are

the zero modes:

[ai(k), a†j(k
′)] = δijδkk′ , [π0

i , ϕ
0
i ] = −iδij. (2.8)

The fields ϕi obey the commutation relation of chiral bosons:

[ϕi(x, t), ϕj(x
′, t′)] = −iπsgn(Xi −X ′i) δij. (2.9)

The edge supports quasiparticles of the form

Vg(x, t) =

(
L

2π

)−∑
i g

2
i /2

: exp

(
i
∑
i

giϕi(x, t)

)
:, (2.10)

which are important for the processes of tunnelling at the QPC. The notation : ... :

stands for the normal ordering, and g = (g1, ..., gN), gi ∈ R are the quasiparticle

quantum numbers.

Among the quasiparticle fields there has to be a field representing an electron

which is the fundamental constituent particle:

ψ(x, t) =

(
L

2π

)−∑
i a

2
i /2

: exp

(
i
∑
i

aiϕi(x, t)

)
:, (2.11)

ai ∈ R. Minimal models of the QH states of Jain series ν = N/(2N ± 1) have N

electron operators each representing a composite fermion Landau level:

ψα(x, t) =

(
L

2π

)−∑
i e

2
αi/2

: exp

(
i
∑
i

eαiϕi(x, t)

)
:, eαi ∈ R. (2.12)
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The electron fields have to satisfy the following constraints:

{ψα(x, t), ψα(x′, t)} = 0,

ψα(x, t)ψβ(x′, t)± ψβ(x′, t)ψα(x, t) = 0, α 6= β,

[J0(x, t), ψα(x′, t)] = δ(x− x′)ψα(x, t).

(2.13)

where J0 is the charge density operator defined in Eq. (2.5), {...} denotes the

anti-commutator, and a plus or minus sign in the second equation can be chosen

independently for each pair (α, β); α, β = 1, ..., N .

For the parameters eαi in Eq. (2.12) these constraints imply

eα · eα ∈ 2Z + 1, eα · eβ ∈ Z, q · eα = −1 (2.14)

where we defined eα = (eα1, ..., eαN) and q = (q1, ..., qN) with qi being the coupling

constants from the action (2.1), and the operation A ·B ≡
∑N

i=1 χiAiBi.

Equations (2.14) have many inequivalent solutions each defining a topological

QH class. It is convenient to parametrize these classes with the help of the K-

matrix:

Kαβ = eα · eβ. (2.15)

Consider now a QH fluid corresponding to a particular solution {e1, ..., eN} of

Eqs. (2.14). The spectrum of the quasiparticles (2.10) present in the model is de-

termined from the requirement of mutual locality with all the electron operators:

ψα(x, t)Vg(x
′, t) + sVg(x

′, t)ψα(x, t) = 0, (2.16)

where s is either +1 or −1 depending on the particular quasiparticles.

This leads to the following restrictions on the parameters gi in Eq. (2.10):

g · eα = nα ∈ Z, α = 1, ..., N, (2.17)
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where g = (g1, ..., gN). The set of numbers nα completely defines the properties of

a quasiparticle operator.

For the following considerations two quantum numbers of the quasiparticle

operator (2.10) are of particular importance: the electric charge Q and the scaling

dimension δ. They are given by

Q(n) = q · g =
∑
αβ

K−1
αβnβ, (2.18)

δ(n) =
1

2

∑
i

g2
i . (2.19)

2.1.4.2 The minimal model of the ν = 2/3 QH edge

Here we use the general principles discussed above to obtain the minimal model

of the ν = 2/3 QH edge. This model emerges from different semi-phenomenological

theoretical approaches to the QH edge [39, 40] and is the most likely candidate to

describe this fraction [32].

First, we note that it is impossible to satisfy the constraints (2.2) and (2.14)

assuming that N = 1. For N = 2 we choose the chiralities

χ1 = 1, χ2 = −1 (2.20)

and the charge vector5

q = (
√

2/3, 0). (2.21)

Then equations (2.14) lead to an infinite one-parameter family of solutions:

e1 =

(
−
√

3

2
,

√
3

2
+ 2m+ 1

)
, (2.22)

e2 =

(
−
√

3

2
, −
√

3

2
+ 2m+ 1

)
, (2.23)

5Note that there exists an infinite freedom in the choice of the vector q giving rise to infinitely
many physically inequivalent theories. However, as it was shown in [27, 28] by perturbative RG
analysis, the choice (2.21) leads to a theory stable against disorder scattering.
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where m = −1, 0, 1, 2, ...

The electron operators have the smallest scaling dimension for m = −1, which

gives

e1,2 =

(
−
√

3

2
, ±
√

1

2

)
(2.24)

and the K-matrix

K =

1 2

2 1

 . (2.25)

This defines the minimal model of the ν = 2/3 QH edge.

The quasiparticle spectrum of the model is defined by Eq. (2.17). The parame-

ters of the three excitations which are most relevant for tunnelling across the QPC

are given in Table 2.1.

Table 2.1: Parameters of the most relevant excitations in the minimal model of
the ν = 2/3 QH edge (see Eqs. (2.10), (2.17), (2.18), and (2.19)).

Type g1 g2 Q δ

1
√

1/6
√

1/2 1/3 1/3

2
√

1/6 −
√

1/2 1/3 1/3

3
√

2/3 0 2/3 1/3

We find it convenient to define the neutral current (2.6) with

p = (0,−1). (2.26)

2.1.4.3 Tunnelling of quasiparticles across the QPC

Wherever the two QH edges approach each other at a distance on the order

of the magnetic length processes of quasiparticle exchange between the edges are

possible. It is widely accepted [36, 41, 42] that such processes can be described by

adding the following term to the Hamiltonian:

HT =
∑
g

ηgV
(u)†
g (0, t)V (l)

g (0, t) + h.c., (2.27)

78



where the superscripts (u), (l) label quantities relating to the upper and the lower

edge respectively; for simplicity we assume that tunnelling occurs at the origin.

In the case of weak tunnelling across the bulk of the QH state the sum runs over

all quasiparticles in the model. However, at small energies quasiparticles with

the smallest scaling dimension δ(g) have the largest tunnelling amplitude ηg, thus

giving the most important contribution.

2.1.5 Calculation of observable quantities

In this subsection we derive analytical expressions for two observable quantities

as functions of the experimentally variable parameters. These quantities are the

tunnelling rate, that is the ratio of the current tunnelling across the QPC to the

Source S current Is, and the excess noise in the Voltage probe, which is the noise

in the Voltage probe in the presence of currents In, Is less the equilibrium noise

at In = Is = 0. We further demonstrate that it is advantageous to consider the

ratio of these quantities rather than each separate one. This way the influence of

non-universal physics of the tunnelling contact can be reduced.

Our expressions for the excess noise and the tunnelling rate, presented in

Eqs. (2.40)-(2.46), are in full agreement with Eqs. (10) and (11) of Ref. [43].

2.1.5.1 Tunnelling rate

As it was mentioned in the previous subsection, the most important contri-

bution to the tunnelling processes is due to the most relevant excitations. Such

excitations are listed in Table 2.1, and we restrict our considerations to these ex-

citations only. To this end we introduce the following notation ψi(x, t) = Vgi(x, t)

where gi, i = 1, 2, 3 are the three most relevant quasiparticle vectors given in

Table 2.1.
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The tunnelling Hamiltonian can then be written as

HT =
3∑
i=1

ηiAi(t) + η∗iA
†
i (t), (2.28)

Ai(t) = ψ
(u)†
i (0, t)ψ

(l)
i (0, t) (2.29)

where the superscripts (u), (l) label quantities relating to the upper and the lower

edge respectively and ηi are unknown complex phenomenological parameters.

We calculate the tunnelling current within the second order perturbation the-

ory in the tunnelling Hamiltonian. The detailed derivation can be found in Ap-

pendix B.2. The resulting tunnelling rate is given by the Kubo formula:

r =

∣∣∣∣ITIs
∣∣∣∣ =

∣∣∣∣∣∣ 1

Is

∑
i

|ηi|2Qi

∞∫
−∞

dτ
〈[
Ai(τ), A†i (0)

]〉∣∣∣∣∣∣ , (2.30)

where IT is the tunnelling current and Is is the current originating from Source S.

Note, that apart from r paper [1] also uses t = 1− r.

2.1.5.2 Excess noise

Noise spectral density of the electric current flowing into the Voltage probe (see

Fig. 2.2) can be calculated as the Fourier transform of the two-point correlation

function of the current operator I,

S(ω) =

∞∫
−∞

dτ exp
(
iωτ
)1

2

〈{
∆I(0),∆I(τ)

}〉
, (2.31)

where {. . . } denotes the anti-commutator, and ∆I = I − 〈I〉.6

It is convenient to separate the operator I of the full current flowing to the

Voltage probe into I0 + IT with I0 = Jµ(l)(x = −0, t = 0)|µ=1=x being the spatial

component of the operator Jµ(x, t) defined in Eq. (2.5) which represents the electric

6We must note here that there are two conventions concerning the definition of the noise
spectral density. While some authors (see, e.g., [7]) use the same definition as we do, others
(see, e.g., [44], [1]) adopt the definition which is twice as large as ours. Thus our results must be
multiplied by 2 in order to be compared with the data of [1].
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current flowing along the lower edge just before the tunnelling point, and IT being

the tunnelling current operator. Then the noise can be represented as follows:

S(ω) = S00(ω) + S0T (ω) + S0T (−ω) + STT (ω), (2.32)

Sab(ω) =

∞∫
−∞

dτ exp
(
iωτ
)1

2

〈{
∆Ia(0),∆Ib(τ)

}〉
, (2.33)

with ∆Ia = Ia − 〈Ia〉, indices a, b take values 0 and T .

We are interested in the low-frequency component measured in the experiment.

To a good approximation this can be replaced by the zero-frequency component

S(ω = 0). Within the second order perturbation theory we find

S00(0) =
ν

2π
Ts, (2.34)

STT (0) =
∑
i

|ηi|2Q2
i

∞∫
−∞

dτ
〈
{Ai(0), A†i (τ)}

〉
, (2.35)

S0T (0) =
1

2

∑
i

|ηi|2Qi

∞∫
−∞

dτ

∞∫
−∞

dτ ′
〈
{∆I0(0), [Ai(τ

′), A†i (τ)]}
〉
. (2.36)

We remind the reader that Ts is the lower edge temperature in the neighbourhood

of the QPC. These formulae are derived in Appendix B.4.

The contribution S00 is the Johnson-Nyquist noise of the lower edge. If we

restore e, ~, and kB, we see that S00(0) = kBTs/R, R = 2π~/(νe2) = h/(νe2).

Since the Voltage probe contact not only absorbs the lower edge charged mode

but also emits another charged mode which flows to the right of it, the actual

Nyquist noise measured in the contact will be SJN(0) = 2kBTs/R, in agreement

with general theory of Johnson-Nyquist noise. The factor of 2 difference from the

Nyquist noise expression used in [1] is due to the noise spectral density definition

as discussed in footnote 6.

Following [1] we define the excess noise

S̃(0) = S(0)− Seq(0), (2.37)
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where Seq is the equilibrium noise spectral density (i.e. the noise when Is = 0 and

In = 0, meaning that the edge temperatures are equal to the base temperature:

Ts = Tn = T0). It turns out that Seq(0) = S00(0) resulting in

S̃(0) = 2S0T (0) + STT (0). (2.38)

This fact is proven in Appendix B.7 using the explicit formulae for S0T (0), STT (0)

obtained in Appendices B.5 and B.6.

2.1.5.3 Noise to tunnelling rate ratio7

Expressions (2.30), (2.35), and (2.36) depend on the tunnelling amplitudes ηi.

It is well known (see e.g. [45, 46, 47] and references therein) that the tunnelling

amplitudes ηi in electrostatically confined QPCs strongly depend on the applied

bias voltage in a non-universal way, probably due to charging effects. Therefore

one would like to exclude this dependence from the quantities used for comparison

with experiment.

Consider the ratio of the excess noise to the tunnelling rate:

X =
S̃(0)

r
= eIs

∑3
i=1 θiFi∑3
i=1 θiGi

= eIs
F1 + θF3

G1 + θG3

, (2.39)

where θi = |ηi|2(vc/vn)2((gi)2)2 , θ = θ3/(θ1 + θ2), vc and vn are the propagation

velocities of the charged and the neutral mode respectively, and e is the elementary

charge. The number (gi)2 is presented in the column g2 of Table 2.1 for each of

the three excitations enumerated by i. Functions Fi and Gi (see Appendices B.3,

B.5, B.6 and B.8) represent contribution of different excitations to the excess noise

and tunnelling current respectively. In particular, the excess noise is given by

S̃(0) =
4e2(πTs)

4δ−1

~4δ+1v4δ
c

∑
i

θiFi, (2.40)

7In this paragraph we restore the elementary charge e, the Planck constant ~ = h/2π, and the
Boltzmann constant kB in order to simplify use of our formulae for comparison with experimental
data.
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and the tunnelling rate is equal to

r =
4e(πTs)

4δ−1

Is~4δ+1v4δ
c

∑
i

θiGi. (2.41)

The explicit form of these functions is presented below. Note that F1 = F2 and

G1 = G2.

Gi = sin 2πδ

∞∫
0

dt
Qiλ

2δ sinQijst

(sinh t)2δ (sinhλt)2δ
(2.42)

Fi = F TT
i cos 2πδ − 2

π
F 0T
i sin 2πδ, (2.43)

F TT
i = Q2

i × lim
ε→+0

 ε1−4δ

1− 4δ
+

∞∫
ε

dt
λ2δ cosQijst

(sinh t)2δ (sinhλt)2δ

 (2.44)

F 0T
i =

∞∫
0

dt
Q2
iλ

2δ t cosQijst

(sinh t)2δ (sinhλt)2δ
(2.45)

js =
Is
I0

, I0 = ν
e

h
πkBTs = ν

e

h
πkBT0, (2.46)

where λ = Tn/Ts, Tn is the local upper edge temperature at the QPC, Ts = T0 is

the local lower edge temperature at the QPC, e is the elementary charge, h = 2π~

is the Planck constant, kB is the Boltzmann constant, ν = 2/3 is the filling factor,

and the scaling dimension δ and the quasiparticle charges in the units of the

elementary charge Qi can be found in Table 2.1.

Remarks on non-universality in the noise to tunnelling rate ratio. It

is easy to see that if any one quasiparticle dominates tunnelling (for example, if

θ →∞) then the unwanted non-universal dependence of the tunnelling amplitudes

on the applied bias voltage does not enter the expression (2.39). If we assume

that the SU(2) symmetry of the edge [27, 28] is for some reason preserved at

the tunnelling contact so that |η1|2 = |η2|2 = |η3|2, then again the non-universal

behavior of the tunnelling amplitudes does not enter the expression X; moreover,

in this case finding θ allows us to determine the vc/vn ratio. In general, though, θ
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may exhibit some non-universal behavior. Anticipating results, we can say that,

surprisingly, θ does not seem to exhibit any strong dependence on Is or In.

For the following considerations we also give the large-Is asymptotic behavior of

the noise to tunnelling rate ratio (2.39) which we derive using Eqs. (2.42)-(2.46):

Xλ,θ(Is)|Is→∞ = Q1e|Is|
1 + θ(In, Is)(Q3/Q1)4δ+1

1 + θ(In, Is)(Q3/Q1)4δ
=
e

3
|Is|

1 + 27/3θ(In, Is)

1 + 24/3θ(In, Is)
. (2.47)

This asymptotic expression can give the reader an idea as to the effect introduced

by the non-universal function θ(In, Is). One can see, for example, that the gradient

of the asymptote increases by a factor of 2 as θ increases from zero to infinity.

2.1.6 Comparison with the experiment

In this subsection we compare our analytical results with the experimental

data.

The following data are available from the paper [1]: the transmission rate

t = 1−r dependence on the currents In and Is (Fig. 3(a) of [1]), the dependence of

the excess noise at zero frequency on the currents In and Is (Fig. 3(a) of [1]) and

the dependence of the excess noise at zero frequency on the current In for Is = 0

(Fig. 2 of [1]).

It is a well-known problem (see, e.g., [45, 46, 47] and references therein) that

the dependence of the transmission rate t on the current Is does not have the form

predicted by the minimal model of tunnelling defined in Eqs. (2.28), (2.29). A

possible explanation is the non-universal dependence of the tunnelling amplitudes

ηi on Is due to electrostatic effects. As discussed in the previous subsection this

problem can be avoided in simple cases by considering the ratio of the excess

noise to the tunnelling rate r = 1 − t. However, in the present case a certain

degree of non-universality remains due to the non-universal function θ(In, Is). The

theoretical expression for the noise to tunnelling rate ratio Xλ,θ(Is) is given by

Eq. (2.39), where λ = Tn/Ts is the ratio of the two edges’ temperatures. Neither
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θ, nor λ can be calculated theoretically and we will deduce them from fits of the

experimental data. We assume that λ depends on In but not on Is; we also assume

that the non-universal behaviour of the tunnelling amplitudes does not lead to any

significant dependence of θ on the currents In, Is. While the former assumption is

physically plausible in the weak tunnelling regime, the latter one is motivated by

our intention to reduce the number of fitting parameters as much as we can.

In Fig. 2.3 the results of fitting Xλ,θ(Is) to the experimental data taken from

Fig. 3(a) of [1] are shown. Optimal fits are found for each set of points correspond-

ing to a given value of In with θ and λ being fitting parameters. The corresponding

values and standard deviations of fitting parameters are shown in Table 2.2. For

In = 0 we have set λ = 1 by definition.

Table 2.2: Results of fitting the experimental points from Fig. 3(a) of [1] by the
function Xλ,θ(Is) defined in Eq. (2.39). Fitting parameters λ and θ are defined
independently for each value of the current In. ∆λ and ∆θ are standard deviations
of λ and θ respectively.

# In (nA) λ ∆λ θ ∆θ
1 0.0 1.00 − 0.53 0.04
2 0.5 4.48 0.19 0.44 0.03
3 1.0 6.16 0.15 0.35 0.02
4 1.5 7.32 0.17 0.30 0.02
5 2.0 8.65 0.13 0.36 0.03

As one can see from the Table 2.2, the values of θ do not vary significantly.

Thus we repeat the fitting procedure with θ equal to the mean of the five values

and λ being the only fitting parameter. The resulting fits and values of λ are

presented in Fig. 2.4 and Table 2.3. As one can see the fits remain good, thus we

cannot reliably find the extent of deviation of θ from a constant value with the

available experimental data.

Table 2.3 gives us some data on the dependence of Tn = λTs = λT0 on the

current In. We further investigate this by fitting it with the following function:

Tn = T0

(
1 + C |In|a

)
, (2.48)
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Table 2.3: Results of fitting the experimental points from Fig. 3(a) of [1] by the
function Xλ,θ(Is) defined in Eq. (2.39). Fitting parameter λ is defined indepen-
dently for each value of the current In for fixed θ = θmean =

∑
i θi/5 = 0.39. ∆λ is

the standard deviation of λ.

# In (nA) λ ∆λ
1 0.0 1.00 −
2 0.5 4.62 0.18
3 1.0 5.98 0.14
4 1.5 6.99 0.17
5 2.0 8.55 0.11

where C and a are fitting parameters. The resulting fit is shown in Fig. 2.5. The

corresponding values of fitting parameters are a = 0.54(5), C = 5.05(13) nA−a.

This disagrees with the claim of Ref. [43] that the experimental data are consis-

tent with a linear Tn dependence on In. We cannot analyze the source of this

discrepancy because Ref. [43] does not contain sufficient detail as to how the com-

parison with the experiment was done.

Using the phenomenological dependence (2.48) it is possible to predict the noise

to tunnelling rate ratio at any Is, In without any further fitting procedures (we

still take θ = θmean = 0.39). So we can test the formula (2.48) by comparing the

theoretical prediction of Xλ,θ(Is) to another data set. We take the experimental

data for the excess noise S̃(0) dependence on In for Is = 0 from Fig. 2 of the paper

[1] for t = 1− r = 80%. The resulting comparison of the noise to tunnelling rate

ratio X is shown in Fig. 2.6. An excellent agreement of the theoretical curve and

the experimental points gives an independent confirmation of the result (2.48).

2.1.7 Discussion

Here we discuss the results of the comparison of theoretical predictions with

the experimental data, and emphasize some important aspects of our analysis.

The good quality of the fits shown in Fig. 2.4 suggests that the minimal model

of the ν = 2/3 quantum Hall edge is consistent with the experimental data. Note,

that the existence of good fits is not trivial because of the following reasons. The
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Figure 2.3: Excess noise to tunnelling rate ratio as a function of the
current Is. Shown are experimental points and fits thereof by theoretical curves
for different values of the current In. The legend shows the In value in nA for
each curve (plot symbol). Fitting parameters λ and θ are defined independently
for each value of In.

number of fitting parameters is small; namely, two fitting parameters are used to

get Fig. 2.3, only one is used for Fig. 2.4 and no fitting parameters are involved in

obtaining Fig. 2.6. Moreover, our theory imposes strong constraints on the shape

of the function Xλ,θ(Is) in the whole region of parameters λ, θ. For example, as

can be seen from Eq. (2.47), the gradient of the large Is asymptote of the curve

Xλ,θ(Is) varies between e/3 and 2e/3 as θ increases from zero to infinity. The fact

that the experimental curve lies between these bounds is non-trivial.

The fact that the gradient of the large Is asymptote of the curve Xλ,θ(Is) does

not coincide with the limiting values of e/3 and 2e/3 provides an indirect con-

firmation of the presence of more than one quasiparticle species taking part in

tunnelling. Indeed, in the case of a single quasiparticle species of charge Q, the

asymptote gradient would equal Q. From considerations similar to the flux inser-

tion argument [3, Section 7.5] one can deduce that the natural ν = 2/3 fractional

charges are integer multiples of e/3. Interpreting the asymptotic behavior of the
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Figure 2.4: Excess noise to tunnelling rate ratio as a function of the
current Is. Shown are experimental points and fits thereof by theoretical curves
for different values of the current In. The legend shows the In value in nA for each
curve (plot symbol). Fitting parameter λ is defined independently for each value
of In. Parameter θ is set to θ = θmean =

∑
i θi/5 = 0.39.

Figure 2.5: Excess temperature of the upper edge Tn − T0 as a function
of the current In. (Color online). Comparison of the points obtained from the
data in Table 2.3 with the fit of these points by formula (2.48) is shown.
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Figure 2.6: Excess noise to tunnelling rate ratio for Is = 0 as a function
of current In. (Color online). Experimental points are taken from Fig. 2 of [1]
for the tunnelling rate r ≈ 0.2. The theoretical curve is obtained for θ = θmean =∑

i θi/5 = 0.39. The values of λ are given by Eq. (2.48). No fitting procedure is
involved.
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noise to tunnelling rate ratio in terms of a single quasiparticle tunnelling, one would

get an unnatural value of Q lying between e/3 and 2e/3. The minimal model of

the ν = 2/3 edge explains this contradiction in a natural way: the experimen-

tally observed ”charge” is a weight average of the charges of two equally relevant

quasiparticles with weights defined by non-universal tunnelling amplitudes’ ratio

θ. This gives an extra argument in favour of the minimal model of the ν = 2/3

edge with the K-matrix (2.25). A similar point was made in paper [35] in relation

to the experiment [33].

Note, that the minimal model analyzed here can also be regarded as the low-

energy limit of the extended models proposed in Refs. [35, 34]. At higher energies

both extended models predict tunnelling contact physics to be dominated by a

quasiparticle with charge e/3. Since we do not see this in our analysis, we conclude

that either the extended physics is not present in the system or occurs above the

energies probed in the experiment of Ref. [1].

It should, however, be emphasized that the minimal ν = 2/3 edge model

alone is not sufficient to describe the present experiment. Extra assumptions are

needed to model the non-universal physics of Ohmic contacts, edge equilibration

mechanisms, and the tunnelling contact. Such assumptions have been discussed

throughout the text, here we summarize them:

• injection of electric current into an Ohmic contact induces non-equilibrium

noise in the neutral mode but not in the charged mode;

• injection of electric current into an Ohmic contact does not induce a shift in

the neutral mode chemical potential (that is the thermodynamic potential

dual to the neutral charge defined through Eqs. (2.6) and (2.26));

• strong equilibration of the charged and the neutral modes takes place along

the edge resulting in some current-dependent local temperature of the edge;

• the tunnelling contact can be modelled by the minimal tunnelling Hamil-

tonian (2.28) with tunnelling amplitudes depending on the edge chemical
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potential in some non-universal way.

While these phenomenological assumptions are plausible, they may not be accu-

rate. Moreover, their validity may depend on the experimental conditions.

The theoretical framework presented here enables a more detailed experimental

investigation and refinement of our understanding of non-equilibrium processes at

the edge. For example, in the present work we use experimental data to establish

a phenomenological law (2.48) describing the dependence of the neutral mode

temperature at the QPC on the current In (see Figs. 2.5 and Fig. 2.6). Recently

there has been some theoretical progress in understanding of the interaction of

Ohmic contacts with the quantum Hall edge [48]. However, at present a complete

theoretical predictive model of Ohmic contacts is still missing, and the information

on the neutral mode heating may contribute to its development.

It is also interesting to note that we do not find any significant dependence

of the ratio of the tunnelling amplitudes of different species of quasiparticles on

the currents In, Is (see discussion of Figs. 2.3 and 2.4). This is surprising since

the tunnelling amplitudes themselves appear to vary significantly to explain the

tunnelling rate dependence on Is observed in [1]. This fact suggests the existence of

a mechanism which ensures roughly equal participation of all three quasiparticles

species in the tunnelling. It is known [27, 28] that disorder scattering at the

edge enforces the SU(2) symmetry between the quasiparticle species. A similar

mechanism might be responsible for the discussed phenomenon.

We emphasize that our theoretical predictions are derived in the limit of per-

turbatively weak tunnelling of the quasiparticles. Therefore, the tunnelling rate at

which the comparison with the experimental data is made should be small enough

so that our theory remains valid, but large enough in order to minimize statistical

errors of the noise to tunnelling rate ratio.
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2.1.8 Summary of the section

Using the chiral Luttinger liquid theory of the quantum Hall edge we develop

a quantitative model of the experiment reported in [1]. This model enables us

to extract important quantitative information about non-equilibrium processes in

Ohmic and tunnelling contacts from the experimental data. In particular, for

ν = 2/3, we find a power-law dependence of the neutral mode temperature on

the charge current injected from the Ohmic contact. We also find a surprising

behavior of quasiparticle tunnelling amplitudes which may be a signature of the

SU(2) symmetry in the quasiparticle tunnelling across the QPC.

2.2 Tunnelling quasiparticle’s scaling dimension

from tunnelling current noise measurements

2.2.1 Introduction

The effective low-energy edge theories’ methodology provides a powerful frame-

work for theoretical study of FQHE. However, typically for a given filling factor

ν there are several candidate theories with similar main properties (such as the

Hall conductance) but different in other ones (such as the presence of non-abelian

quasiparticles). Thus, it is desirable to be able to discriminate between them. It

is even more valuable to extract explicit constraints on some of the parameters of

the theories from the experimental data. If no existing theory fits the data, the

explicit restrictions on theory parameters can provide clues on how to find the

correct one.

An important characteristic of an edge theory is the spectrum of local quasi-

particles the theory contains. Each quasiparticle has two important quantum

numbers: the electric charge and the scaling dimension. In the case of weak tun-

nelling at a quantum point contact (QPC) the quasiparticle with the smallest

scaling dimension (the most relevant quasiparticle) provides the most important
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contribution to the measured quantities. One may expect to extract the charge

and scaling dimension of the particle from transport measurements in such a sys-

tem. Even such a small amount of data as the properties of the most relevant

quasiparticle can significantly reduce the number of candidate theories. This can

be seen, for example, from the theoretical study of Ref. [49], relating to ν = 5/2.

It is, in principle, possible to extract the charge and the scaling dimension from

the tunnelling current measurements only (see an experimental work of Ref. [50]

and references to theory therein). Though, it is well known (see e.g. [45, 46, 47]

and references therein) that the tunnelling amplitudes in electrostatically confined

QPCs strongly depend on the applied bias voltage in an unknown non-universal

way, probably due to charging effects. Thus, the charge and scaling dimension

provided by such approach cannot be considered as 100% reliable. Even in the

simplest FQHE case of ν = 1/3 experimental and theoretical curves agree only

qualitatively but not quantitatively (see e.g. Ref. [51]).8

It has been shown in the previous section of this chapter that considering the

ratio of the tunnelling current noise to the tunnelling rate allows one to exclude

the unwanted non-universal dependence in the weak tunnelling regime in the case

of a single quasiparticle type tunnelling. The fractional charge of the most relevant

quasiparticle for ν = 1/3 was first confirmed [8, 9] by methods essentially equiva-

lent to the analysis of the noise to tunnelling rate ratio. In this section we focus on

the possibility to extract the scaling dimension of the most relevant quasiparticle

from such data, paying particular attention to the ν = 1/3 case as the simplest

one.

8Moreover, in the case of ν = 1 the experimental curves also deviate from the behaviour
one would expect theoretically [52]. Ref. [52] explains this by emergence of isles of fractional
QHE in the QPC region. However, phenomenologically one can interpret this as the bias voltage
dependence of the tunnelling amplitudes that determine tunnelling between the ν = 1 edges.
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2.2.2 Scaling dimension from the noise to tunnelling rate

ratio

It turns out that the results (2.39)-(2.46) are valid not only for the case when

a FQHE edge is described by the minimal ν = 2/3 edge model but also for a

wide class of typical abelian and non-abelian FQHE edge models.9 One should

only modify the number of the parameters θi (according to the number of the

most relevant excitations), use the excitation charges Qi and scaling dimension δ

appropriate for the edge model.10 Thence the results of this subsection are also

applicable for a wide class of models.

Consider the large Is limit of the Eq. (2.39). For |Is| � λI0 ≥ I0 one gets11

X(Is)
∣∣|js|�λ≥1 =

S̃(ω = 0)

r
= eIs

∑
i θiFi∑
i θiGi

=

= e|Is|
∑

i θiQ
4δ+1
i∑

i θiQ
4δ
i

+ eI0
2− 8δ

π
+O

(
|js|−1

)
. (2.49)

We remind the reader that

js =
Is
I0

, I0 = ν
e

h
πkBTs = ν

e

h
πkBT0, (2.50)

where Is is the electric current flowing along the lower edge before the QPC,

λ = Tn/Ts, Tn is the local upper edge temperature at the QPC, Ts = T0 is the

local lower edge temperature at the QPC, e is the elementary charge, h = 2π~

is the Planck constant, kB is the Boltzmann constant, ν is the filling factor, δ

is the scaling dimension of the most relevant excitations, and Qi are the electric

charges (in the units of the elementary charge) of the quasiparticles contributing

to tunnelling.

9See Appendix B.9 for a detailed discussion of this issue.
10The definition of the parameters θi should also be modified for some edge models: the

ratio of the velocities becomes more complex if there are several charged or neutral modes, or
disappears if there is only one mode in the model. However, as long as we are going to treat θi
as phenomenological parameters related to the tunnelling amplitudes of the different excitations
that doesn’t affect the following considerations.

11See Appendix B.10 for derivation.
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The leading term of the asymptotic behaviour (2.49) gives the well-known result

that in the regime of weak tunnelling the gradient of the noise to tunnelling rate

ratio is equal to the tunnelling quasiparticle’s charge. In our case it is some average

of the charges in the case of several quasiparticles participating in tunnelling. Note

the subleading term: constant offset contains information about the quasiparticles’

scaling dimension. It is important that all the quasiparticles which significantly

contribute to tunnelling have the same scaling dimension.

Thus, in principle, by fitting large Is experimental data with a linear function

one can find not only the ”effective charge” of the tunnelling quasiparticles but

also their scaling dimension (which is the same for all of the most relevant quasi-

particles). However, in practice there are significant restrictions to the useability

of this approach. They are discussed below.

2.2.2.1 What experimental conditions are necessary for successful ex-

traction of the scaling dimension?

Now we discuss the possibility to extract the scaling dimension from real exper-

imental data. The result (2.49) shows that it is, in principle, possible to extract the

scaling dimension of the tunnelling quasiparticles from experimental data on noise

to tunnelling rate ratio without knowing fully the specific edge theory. However,

there are few practical aspects which should be discussed.

First of all, the parameters θi related to the quasiparticles’ tunnelling ampli-

tudes depend on the current Is in a non-universal way. In the study of the previous

section of this chapter, concerning ν = 2/3, we found that the ratios θi/θi′ do not

depend on the current Is. However, there is no known reason why this should be

true for general experimental conditions (other filling factors, other sample etc.).

For the sake of simplicity, from now on we concentrate on the case when all the

charges of the quasiparticles contributing to tunnelling are equal: Qi = Q. Then,
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independently of θi,

X(Is)
∣∣|js|�λ≥1 = eQ|Is|+ eI0

2− 8δ

π
+O

(
|js|−1

)
. (2.51)

Let us note that in this case for λ = 1 it is possible to write a simple analytic

expression for the original noise to tunnelling rate ratio12:

X(Is) |λ=1 =
2eQIs
π

Im

[
ψ

(
2δ +

iQjs
2

)]
, (2.52)

where the digamma function ψ(x) = (ln Γ(x))′ is the logarithmic derivative of the

Euler gamma function Γ(x), and Im[...] denotes taking of the imaginary part.

Second issue is that the dynamics of the system changes near a characteristic

energy scale in the FQHE system. Namely, there is a bulk gap ∆. As the typical

energies of the system exceed ∆ bulk dynamics starts being involved. Thus one

should restrict oneself to

|Is| . ν
e

h
π∆. (2.53)

Deviations from our theory can be expected beyond this threshold.13

Third issue is the lower boundary above which the result (2.51) is applicable.

Fig. 2.7 shows the comparison of the noise to tunnelling rate ratio (2.52) against

its asymptotic behaviour (2.51) for Q = 1/3 and δ = 1/6. These parameters

correspond to the most relevant quasiparticle of the simplest ν = 1/3 edge model.

As one can see, for |Is| ≥ 3I0 the NtTRR and its large Is asymptote almost

coincide.

To estimate how close are the asymptote and the original curve we have done

some fitting. Namely, we took part of the original curve with |Is| between αI0 and

10I0 and fitted it with (2.51) using Q and δ as fitting parameters. For α ≥ 3 the

fitted charge and scaling dimension deviate from their correct values by no more

12Derivation is given in Appendix B.11.
13Similar applicability restrictions are put by the energy cutoffs of charged and neutral modes,

which are considered in some works, e.g. [35]. However, typically these cutoffs are of the same
order as or greater than the bulk gap ∆.
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Figure 2.7: Noise to tunnelling rate ratio vs its asymptotic behaviour.
The green curve is the original noise to tunnelling rate ratio at λ = 1 (2.52) for
Q = 1/3, δ = 1/6. The cyan curve is the large Is asymptote (2.51) for the same
values of Q and δ. The asymptote almost coincides with the original curve for
|Is| ≥ 3I0.
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than 1% and 11% respectively. This gives an idea how accurate can be estimates

of Q and δ obtained from fitting experimental data if there are no other sources

of errors.

Thus, for equal temperatures of the edges one can use the asymptotic expression

(2.51) for |Is| & αI0, α = 3. Of course, the border value of the multiplier α

somewhat differs for different models (different Q, δ).

Note that the greater is I0 the more significant is the term containing the scaling

dimension in Eq. (2.51). At the same time, the less is the interval ν e
h
π∆ & |Is| &

αI0. Thus the choice of the system temperature should be a matter of trade-off

between these to restrictions in order to allow as good determining of the scaling

dimension δ as possible.

Fourthly. The asymptotic behaviour (2.51) is valid only when the contribution

of less relevant quasiparticles (with greater scaling dimensions) to the tunnelling

processes can be neglected. Otherwise the corrections due to less relevant quasi-

particles can hinder finding the scaling dimension using the large Is NtTRR be-

haviour. Unfortunately, there are no known reliable ways to estimate theoretically

how significant are these corrections. Thus, it should be done in practice by com-

paring experimental data with different possible theoretical answers for NtTRR

(the answers including and not including less relevant quasiparticles).

Fifth issue is related to measurement errors. Scaling dimension enters

Eq. (2.51) as a subleading term. Thus finding the scaling dimension demands

a very high quality experimental data with very small statistical errors. The tun-

nelling current noise errors can be made less significant by using greater values of

tunnelling rate. This, however, worsens the accuracy of theoretical result (2.51)

which was derived perturbatively in the limit of small tunnelling rate. Therefore,

the choice of the strength of tunnelling in experimental data should be balanced

between worsening the applicability of the theory and bettering the quality of data

for NtTRR. The most appropriate choice should probably be found by trial and

error method.
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Sixth issue has just been mentioned above. The theoretical result (2.51) was

derived perturbatively in the limit of weak tunnelling of the quasiparticles. One

can reasonably expect that if the tunnelling rate is about, e.g., 10% the next

perturbative correction to (and the inaccuracy of) the NtTRR should also be

around 10%. While such inaccuracy would bring an error of the same order to

the determined charge Q, the effect on the subleading term may be much more

significant. This compromises the possibility to find the scaling dimension with this

approach. The question, how small should be the tunnelling rate for the result

(2.51) to be applicable enough, is investigated in detail in the next subsection.

There we find that for ν = 1/3 for typical experimental parameters one needs the

tunnelling rate r . 5% so that the inaccuracy of the perturbative formulae does

not bring in a too large error, allowing to find δ reasonably accurately.

To summarize, the large Is asymptotic behaviour of NtTRR (2.51) can, in

principle be used to find the scaling dimension of the most relevant quasiparticle.

However, in practice this is somewhat restricted due to several reasons. The degree

of some of these restrictions can only be estimated by trying to apply this method

practically, which will be the matter of future research.

One of the restrictions is due to the perturbative nature of Eq. (2.51). For-

tunately, for the simplest model of ν = 1/3 edge the tunnelling rate and the

tunnelling current noise can be found exactly [41, 53, 54]. In the next subsection

we compare our answer with the exact one in order to investigate the significance

of the corrections to our answer.

2.2.3 Exact answers for ν = 1/3 and the conditions to ex-

tract the scaling dimension by perturbative formulae

In this subsection we concentrate on the filling factor ν = 1/3. The minimal

edge model for this filling factor has only one edge mode represented by the chiral

bosonic field and can be constructed in the way described in subsection 2.1.4. The

electric charge and the scaling dimension of the most relevant quasiparticle in this
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model are respectively equal to Q = 1/3, δ = 1/6.

This model is usually considered to be the one which should actually describe

the FQHE at ν = 1/3. However, that statement has not been reliably confirmed

yet. While the charge of the most relevant quasiparticle has been confirmed long

time ago [8, 9], this is not true for its statistics or other properties of the model.14

Therefore, finding the most relevant quasiparticle’s scaling dimension would be an

important check of the validity of the minimal model.

However, as is was noted in the previous subsection finding the scaling dimen-

sion from large Is asymptotic behaviour of NtTRR has a number of difficulties,

one of which is related to the perturbative nature of the theoretical formulae. For-

tunately, for the minimal model of the ν = 1/3 edge there is an exact solution of

the problem of the most relevant quasiparticle tunnelling at QPC which allows for

finding of the tunnelling rate and the tunnelling current noise [41, 53, 54].

In this subsection we compare the perturbative answer for NtTRR with the

exact one in order to find out at what tunnelling rates the perturbative result can

be applied for finding the scaling dimension. While in order to use exact answers

at non-zero temperature involves some complication15, we concentrate on the case

of zero temperature of both edges (Tn = Ts = T0 = 0) where analytic expressions

are available.

The exact answer for the tunnelling rate r = |IT/Is| at zero temperature is as

14Moreover, recently there has been a report [55], results of which may be interpreted as a
signature of presence of additional neutral modes in the ν = 1/3 FQHE. However, in the present
work we are not going to discuss this evidence.

15In that case one has to solve equations of thermodynamical Bethe anzatz either numerically
or by some other means in order to find NtTRR. We haven’t done this yet and this is a matter
of future research.
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follows:

r
(
|Is| > Ξeζ

)
= ν

∞∑
n=1

An(ν)

(
|Is|
Ξ

)2n(ν−1)

, (2.54)

r
(
|Is| < Ξeζ

)
= 1− ν−1

∞∑
n=1

An(ν−1)

(
|Is|
Ξ

)2n(ν−1−1)

, (2.55)

An(x) = (−1)n+1

√
πΓ(nx)

2Γ(n)Γ(3/2 + n(x− 1))
, (2.56)

ζ =
1

2
ln (1− ν) +

ν

2(1− ν)
ln ν. (2.57)

The tunnelling amplitude η in the perturbative formulae (2.39)-(2.41) and the

parameter Ξ here are related: Ξ ∝ |η|1/(1−ν). Thus Ξ characterizes the tunnelling

strength. The restrictions on |Is| in the first two formulae represent the radii of

convergence of the series.16

According to Ref. [53], at zero temperature the excess noise at zero frequency

S̃(ω = 0) is connected to the tunnelling rate r via

S̃(ω = 0, Is) =
νe

2(1− ν)
|Is| × Ξ

∂

∂Ξ
r(Is). (2.58)

The explicit series are

S̃
(
ω = 0, |Is| > Ξeζ

)
= ν2e|Is|

∞∑
n=1

nAn(ν)

(
|Is|
Ξ

)2n(ν−1)

, (2.59)

S̃
(
ω = 0, |Is| < Ξeζ

)
= ν−1e|Is|

∞∑
n=1

nAn(ν−1)

(
|Is|
Ξ

)2n(ν−1−1)

. (2.60)

It is easy to see expansion in the orders of the tunnelling amplitude η in the

formulae (2.54), (2.59). Taking only the first term in the sums in Eqs. (2.54), (2.59)

one should recover the lowest order perturbation theory result for the regime of

weak tunnelling. This is indeed the case.17 Note that while the perturbative noise

16In Ref. [53] the definition of ζ (which is called ∆ there) contains a misprint. However, one can
check and find that the radius of convergence of the series leads to the definition of ζ presented
here.

17There is a small subtlety here. To adapt the perturbative answers (2.39)-(2.46) for T = 0
one should take the limit T → 0 which coincides with the limit |js| >> 1. Then up to a factor
one recovers the expression one can get from taking only the first term in the sums in Eqs. (2.54),
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Figure 2.8: Tunnelling rate at ν = 1/3. Perturbative answer vs exact
answer. The red curve is the exact tunnelling rate given by Eqs. (2.54), (2.55).
The green curve is the lowest order perturbation theory answer for the tunnelling
rate, which can be obtained by taking only the first term in the sum in Eq. (2.54).
We remind the reader that the system temperature is equal to T0 = 0.

to tunnelling rate ratio X(Is) = S̃ (ω = 0, Is) /r (Is) does not depend on the value

of the tunnelling amplitude η (or Ξ, which is equivalent), the exact NtTRR does.

We now compare the exact answers with the perturbative ones. Fig. 2.8 shows

the comparison of the perturbative and the exact answers for the tunnelling rate.

For tunnelling rates18 not exceeding 0.2 the two answers are reasonably close.

Note, that knowing the tunnelling rate at a certain value of the current Is one can

find the corresponding value of the tunnelling amplitude Ξ.

Fig. 2.9 shows the comparison of the perturbative and the exact answers for

the noise to tunnelling rate ratio. Since the temperature T0 = 0 the perturbative

answer for NtTRR is just Xpert(Is) = eQ|Is|. The deviation of the perturbative

NtTRR from the exact one can be noticed even in the regime when the perturbative

tunnelling rate almost coincides with the exact one.

(2.59). This factor is related to the proportionality factor between Ξ and |η|1/(1−ν).
18We remind that the tunnelling rate lies between 0 and 1 by definition.
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Figure 2.9: Noise to tunnelling rate ratio at ν = 1/3. Perturbative an-
swer vs exact answer. The red curve is the exact NtTRR plotted using the
Eqs. (2.54)–(2.60). The green curve is the lowest order perturbation theory an-
swer for the NtTRR, which can be obtained by taking only the first term in the
sums in Eqs. (2.54), (2.59). We remind the reader that the system temperature is
equal to T0 = 0.
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While the comparison made in Fig. 2.9 allows one to estimate the deviation

of the exact answer from the perturbative one, it does not resemble the expected

comparison of experimental curves with the perturbative answer. This is because

the tunnelling amplitude Ξ in a real experiment exhibits a non-universal depen-

dence on Is. Experimentalists like to work (see e.g. [1]) in the regime of constant

tunnelling rate. As can be seen from Fig. 2.8 this regime corresponds to the ratio

|Is|/Ξ being constant.

Fig. 2.10 shows the comparison of the perturbative and the exact answers for

the noise to tunnelling rate ratio for |Is|/Ξ = 2. Since the temperature T0 = 0

the perturbative answer for NtTRR is just Xpert(Is) = eQ|Is|. The exact answer

in the regime |Is|/Ξ = const > eζ is equal to Xexact(Is) = eQ∗|Is|. So the exact

answer differs from the perturbative one by the gradient value determined by the

”effective charge” Q∗. In the limit of infinitely small tunnelling rate |Is|/Ξ → ∞

the effective charge coincides with the true charge of the tunnelling quasiparticle:

Q∗ → Q. However, at finite values of |Is|/Ξ > eζ the charges do not coincide:

Q∗ < Q.

Although at the moment we are not able to estimate the deviation of the per-

turbative answer for NtTRR from the exact one at non-zero temperature, the ob-

servation that has just been made allows to formulate some qualitative conditions

for applicability of the formula (2.51). Namely, one can compare the difference

between the answers at zero temperature e(Q−Q∗)|Is| at maximum value of |Is|

which is going to be used with the term eI0(2 − 8δ)/π = (2 − 8δ)kBT0νe
2/h in

Eq. (2.51), where T0 is the system temperature.

For example, at T0 = 10 mK for |Is|/Ξ = 2 (which corresponds to the tun-

nelling rate r ≈ 26%) at Is = 1 nA for Lauglin quasiparticle (Q = 1/3, δ = 1/6)

the term containing δ is about three times smaller than the error e(Q − Q∗)|Is|.

Therefore, finding the scaling dimension of the Laughlin quasiparticle with the

help of Eq. (2.51) is not possible under these experimental conditions.

For typical experimental values of T0 = 30 mK and Is = 1 nA the error term
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Figure 2.10: Noise to tunnelling rate ratio at ν = 1/3. Perturbative answer
vs exact answer in the regime of constant tunnelling rate ratio. The red
curve is the exact NtTRR plotted using the Eqs. (2.54)–(2.60) for Ξ = 0.5|Is|. The
green curve is the lowest order perturbation theory answer for the NtTRR, which
can be obtained by taking only the first term in the sums in Eqs. (2.54), (2.59).
We remind the reader that the system temperature is equal to T0 = 0.
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does not exceed (2 − 8δ)kBT0νe
2/h for r ≤ 27% and does not exceed 0.1 × (2 −

8δ)kBT0νe
2/h for r ≤ 4%. When e(Q−Q∗)|Is| is 10 times smaller than the term

containing δ, one can hope to find δ with a reasonably small error. Thus, if the

quality of the experimental data at r ≈ 4% is high enough, it should be possible

to find δ reasonably accurately (with the systematic relative error ≈ 10 − 20%

due to (a) difference between the exact answer and the perturbative one and (b)

difference between the perturbative answer and its large-Is asymptotic behaviour)

by fitting the experimental data for NtTRR with Eq. (2.51).

Apart from that, the deviation of the effective charge Q∗ from the quasiparticle

charge Q at higher values of the tunnelling rate r gives an opportunity to further

check the edge model and the tunnelling contact model at ν = 1/3.

2.2.4 Summary of the section

Using chiral Luttinger liquid theory of QH edge and perturbative treatment of

tunnelling processes, we develop a method for finding the scaling dimension of the

most relevant quasiparticle at a QH edge using tunnelling current and tunnelling

current noise measurements. The advantages of the method are (a) reduced sen-

sitivity to the non-universal physics of tunnelling contacts (compared to methods

based solely on tunnelling current measurements), (b) certain degree of model

independence. By comparing our perturbative results with the exact results of

Ref. [53] in the case of ν = 1/3 we find that our method should be applied for

small enough tunnelling rates r . 5%.

Using the exact solution of Ref. [53] at ν = 1/3 for higher tunnelling rates, we

find that the effective charge Q∗ which can be found from an experiment using

standard perturbative formulae deviates from the true charge of the most relevant

quasiparticle Q. We propose to measure and study this difference in order to check

the minimal ν = 1/3 edge model and the tunnelling contact model.
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Conclusions

In the present work we study two different problems: (a) problem of realizing

specific fractional quantum Hall states in bilayer graphene and (b) problem of

characterization of fractional quantum Hall states using tunnelling current noise

measurements.

Regarding the first problem, we develop a method for taking into account the

corrections due to interaction of different Landau levels. Using the developed

method we study the possibility to realize the Pfaffian FQHE state in bilayer

graphene and plot the phase diagram. We find that reliable predictions can be

made only for large enough substrate dielectric constants. The developed method-

ology can be straightforwardly applied to study the possibility to realize any spe-

cific FQHE state in bilayer graphene.

Regarding the second problem, we develop a methodology for quantitative com-

parison of the tunnelling current noise measurements with corresponding theory.

We test this methodology by successfully applying it to the data of the experi-

ment of Ref. [1]. We further develop this methodology and propose a method for

model-independent determination of the scaling dimension of the most relevant

quasiparticle excitation.
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Appendix A

Appendices related to Chapter 1

A.1 Derivation of the expression for pseudopo-

tentials through the Fourier transform of

the interaction potential

By definition,

|n1, n2,m,M〉 =
1√

2m+Mm!M !
(b̂†1 − b̂

†
2)m(b̂†1 + b̂†2)M(ψn1,−n1)1(ψn2,−n2)2, (A.1)

V (n1,n2)
m = 〈n1, n2,m,M |V̂ |n1, n2,m,M〉 = 〈n1, n2,m, 0|V̂ |n1, n2,m, 0〉. (A.2)

The direct Fourier transform for the interaction potential is defined in (1.31),

the inverse Fourier transform looks like

V (r) =

∫
d2q

(2π)2
Ṽ (q)ei~q~r/l. (A.3)
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Now we can rewrite the definition (A.2) as follows:

V (n1,n2)
m = 〈n1, n2,m,M |V̂ |n1, n2,m,M〉 =∫

d2r1d
2r2ψ̄n1,n2,m,M(~r1, ~r2)V (r)ψn1,n2,m,M(~r1, ~r2) =∫

d2q

(2π)2
Ṽ (q)〈n1, n2,m,M |ei~q~̂r/l|n1, n2,m,M〉. (A.4)

Introducing x = qx + iqy, we can write ~q~r/l = (xw̄ + x̄w)/2. w, w̄ can be

expressed through the â, â†, b̂, b̂† operators:

w =
√

2(â+ b̂†), w̄ =
√

2(â† + b̂). (A.5)

Thus, we need to find the matrix element

〈n1, n2,m,M |ei~q~̂r/l|n1, n2,m,M〉 =

〈n1, ...|e
i√
2

(x(â†1−â
†
2+b̂1−b̂2)+x̄(â1−â2+b̂†1−b̂

†
2))|n1, ...〉. (A.6)

This matrix element can be easily rearranged into a product of three different

matrix elements:

〈n1, n2,m,M |ei~q~̂r/l|n1, n2,m,M〉 = MEn1MEn2MEm, (A.7)

MEn1 = 〈n1|e
i√
2

(xâ†1+x̄â1)|n1〉, (A.8)

|n1〉 =
1√
n1!

(â†1)n1 |Ω〉, (A.9)

â1|Ω〉 = 0, (A.10)

MEn2 = 〈n2|e−
i√
2

(xâ†2+x̄â2)|n2〉, (A.11)

|n2〉 =
1√
n2!

(â†2)n2|Ω〉, (A.12)

â2|Ω〉 = 0, (A.13)
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MEm = 〈m|e
i√
2

(x(b̂1−b̂2)+x̄(b̂†1−b̂
†
2))|m〉, (A.14)

|m〉 =
1√

2mm!
(b̂†1 − b̂

†
2)m|Ω〉, (A.15)

(b̂1 − b̂2)|Ω〉 = 0. (A.16)

It is easy to see that all the three expressions are very similar. Let’s see how

to calculate, e.g., MEn1 . Baker-Campbell-Hausdorff identity says that

eαâ
†
1+βâ1 = eαâ

†
1eβâ1eαβ/2. (A.17)

Thus

e
i√
2

(xâ†1+x̄â1)
= e

i√
2
xâ†1e

i√
2
x̄â1e−|x|

2/4. (A.18)

Then

MEn1 = 〈n1|e
i√
2

(xâ†1+x̄â1)|n1〉 =

e−|x|
2/4〈n1|e

i√
2
xâ†1e

i√
2
x̄â1|n1〉 =

e−|x|
2/4

∞∑
n=0

〈n1|e
i√
2
xâ†1|n〉〈n|e

i√
2
x̄â1|n1〉, (A.19)

where we used the identity 1̂ =
∑∞

n=0 |n〉〈n|.

After a calculation of the expression

〈n|e
i√
2
x̄â1|n1〉 =

∞∑
k=0

1

k!

(
i√
2
x̄

)k
〈n|âk1|n1〉 =

=
∞∑
k=0

1

k!

(
i√
2
x̄

)k
δk,n1−n

√
n1!

n!
=

1

(n1 − n)!

(
i√
2
x̄

)n1−n
√
n1!

n!
, (A.20)
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and its complex conjugate, we get

MEn1 = e−|x|
2/4

n1∑
n=0

(
−|x|

2

2

)n1−n n1!

n!(n1 − n)!2
=

|k = n1 − n| =

e−|x|
2/4

n1∑
k=0

(
−|x|

2

2

)k
n1!

(n1 − k)!(k)!2
=

e−|x|
2/4

n1∑
k=0

(
−|x|

2

2

)k
1

k!
Ck
n1

= e−|x|
2/4Ln1(|x2|/2), (A.21)

where Ln1 is the Laguerre polynomial.

Calculation of MEn2 , MEm is absolutely similar. Gathering all the three matrix

elements together we finally get formula (1.32):

V (n1,n2)
m = 〈n1, n2,m,M |V̂ |n1, n2,m,M〉 =∫ ∞

0

Ṽ (q)Lm(q2)Ln1(q
2/2)Ln2(q

2/2)e−q
2 qdq

2π
. (A.22)

A.2 Full Hartree energy of a Landau level

The electrostatic (Hartree) energy per electron of a fully filled Landau level

can be expressed as

EHartree pp =
1

2Ne

∫
d2x d2yρ(x)ρ(y)V (|x− y|), (A.23)

where Ne is the number of electrons in the LL, x and y are the coordinate vectors

of points in the plane, V (r) is the electron-electron interaction potential, and ρ(x)

is the electron density, integration is done over the whole plane1. Using the fact

that for a fully filled LL ρ(x) = 1/(2πl2) = ρ and changing integration variables

1Over the whole sample of area S → ∞ with Ne electrons in the LL so that S/Ne = 2πl2. l
is the magnetic length.
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to R = (x + y)/2 and r = x− y, we get

EHartree pp =
ρ2

2Ne

∫
d2R d2rV (r), (A.24)

where r = |r|.
∫
d2R is equal to the sample area S. ρ× S = Ne, therefore

EHartree pp =
ρ

2

∫
d2rV (r) =

1

4πl2
2π

∫
drV (r) =

1

2l2

∫ ∞
0

dr rV (r), (A.25)

in agreement with Eq. (1.84).

This derivation is valid for the potentials that decay sufficiently fast as r →

∞, and the Coulomb interaction does not satisfy this condition. However, only

differences of the energies have physical meaning. If we consider two energies for

differently screened interaction potentials (1.67):

E
(1)
Hartree pp − E

(2)
Hartree pp =

1

2l2

∫ ∞
0

dr r
(
V (1)(r)− V (2)(r)

)
, (A.26)

the integral of the difference is convergent since the Coulomb part cancels out and

what remains decays sufficiently fast at large distances. Therefore, we can express

such difference through the interaction potential Fourier transforms Ṽ (q) defined

in Eq. (1.31):

E
(1)
Hartree pp − E

(2)
Hartree pp =

1

4π
lim
q→0

(
Ṽ (1)(q)− Ṽ (2)(q)

)
. (A.27)

Recalling (1.67) and taking into account that Π(q) = Π(q, ω = 0) ∼ const ×

q2 +O(q4) for q → 0, one gets

E
(1)
Hartree pp − E

(2)
Hartree pp =

πe4

κ2
lim
q→0

(
Π(2)(q)− Π(1)(q)

q2

)
. (A.28)

Basing on this consideration, naively one might think that Hartree energies

contribute to the population order reversal effect and that the contribution is

characterized by the quantity limq→0 Π(q)/q2. However, this consideration does
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not take into account the electrostatic energy of interaction with the compensat-

ing positive charge (as the system is electrically neutral as a whole). Although,

the screening processes happen at the BLG plane, they influence the interaction

potential of charges outside of the plane.

Consider a simple model: the compensating positive charge is evenly dis-

tributed in the plane at a distance d from the BLG plane; for simplicity, all the

system is in the environment with the dielectric constant κ = 1. Suppose the

screening processes happen only in the BLG sheet. Then one can calculate the

potential of interaction of the charges situated in different points of space. We are

going to do that now.

We need several definitions: Coulomb electrostatic potential ϕ(r =√
x2 + y2 + z2) = 1/r, the spatial polarization function with screening happening

only in the z = 0 plane Π(r) = Π(x, y, z) = Π(x, y)δ(z)2, and their Fourier trans-

forms w.r.t. plane coordinates x, y defined similarly to Eq. (1.31) and to Eq. (1.73)

respectively: ϕ̃(q = |q|, z) = 2π exp (−q|z|/l)/(ql) and Π(q, z) = Π(q)δ(z).

Then the interaction potential of two charges e1 and e2 placed in r and r′ is

Vscr(r, r
′) = e1e2ϕscr(|x− y|, z, z′) =

e1e2ϕ(r, r′)−

− e1e2e
2

∫
d3xd3yϕ(|r− x|)Π(x− y)ϕ(|y − r′|)+

+ e1e2e
4

∫
d3xd3yd3zd3wϕ(|r− x|)Π(x− y)ϕ(|y − z|)Π(z−w)ϕ(|w − r′|)−

− ... (A.29)

Here e is the elementary charge — the absolute value of the charge of the electrons

participating in the screening processes.

One can show then that the in-plane Fourier transform of the screened inter-

2δ(z) is the Dirac delta-function.
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action potential of the two charges has the form

Ṽscr(q, z, z
′, e1, e2) = e1e2ϕ̃scr(q, z, z

′) =

e1e2ϕ̃(q, z − z′)− e1e2ϕ̃(q, z)
e2l2Π(q)

1 + e2l2ϕ̃(q, 0)Π(q)
ϕ̃(q,−z′) =

e1e2

(
2π exp (−q|z − z′|/l)

ql
−

2π exp (−q|z|/l)
ql

e2l2Π(q)

1 + e2l2 2π
ql

Π(q)

2π exp (−q|z′|/l)
ql

)
. (A.30)

For e1 = e2 = e and z = z′ = 0 one restores the expression (1.31), as it should be.

The electrostatic energy of interaction of all the electrons in the fully filled LL

and the charge-compensating background is equal to

EHartree = e2

∫
d2x d2yρ(x)ρ(y)

(
1

2
ϕscr(|x− y|, z = z′ = 0)+

+
1

2
ϕscr(|x− y|, z = z′ = d)− ϕscr(|x− y|, z = d, z′ = 0)

)
. (A.31)

Performing same operations as in the beginning of the current appendix for the

Hartree energy of electrons in the LL only, we get:

EHartree =
e2Ne

2π
lim
q→0

(
1

2
ϕ̃scr(q, z = z′ = 0)+

+
1

2
ϕ̃scr(q, z = z′ = d)− ϕ̃scr(q, z = d, z′ = 0)

)
=

e2Ne

2π
lim
q→0

(
2π(1− exp (−qd/l))

ql
−

4π2e2Π(q)

2q2
(

1 + e2l2 2π
ql

Π(q)
)(1 + exp (−2qd/l)− 2 exp (−qd/l))

)
=

e2Ne

2π

2πd

l2
=
e2Ned

l2
, (A.32)

where we have used the fact that Π(q) = Π(q, ω = 0) ∼ const × q2 + O(q4) for

q → 0.
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First of all, the answer does not depend on the polarization function Π(q).

Secondly, it coincides with the energy of a capacitor made of two parallel planes of

area S at a distance d with charge Q = eNe on its plates. Indeed, such a capacitor

has the capacitance C = S/(4πd) and energy Ecap = Q2/(2C). Since S = 2πl2Ne,

one easily finds that EHartree = Ecap.

So, in this simple model, the full Hartree energy of a filled Landau level and the

compensating charge layer does not depend on screening. Of course, this model

does not take into account many features of real experimental systems. However, it

clearly illustrates that one can hardly expect to have different Hartree energies for

differently screened potentials. Therefore, the Hartree energy does not contribute

to the population reversal effect.

A.3 Peculiarities of calculations of virtual hop-

ping corrections

In the paragraph 1.3.2.3 we presented the derivation of the corrections to the

pseudopotentials which correspond to the diagram in Fig. 1.2b. The derivation pre-

sented there is based on a consideration of two interacting particles, which interact

through the screened potential, within the methodology of quantum mechanics. In

fact, the full expression for this correction comes from the consideration within the

quantum field theory methodology and the second quantization approach. Thus,

the diagram should take into account not only the potential screening but also

the corrections to the electron propagator (self-energy), and also the dependence

of the polarization function on the frequency (within the screened potential ap-

proach we neglect this dependence, and it is not important until the calculation of

this correction). The applicability of the ”quantum-mechanical” approximation is

discussed in this appendix.

We denote the electron propagator as G(ω, ~q1, ~q2, j) (j is the LL in which the

electron propagates; ~q1/2 are the 2-momentums — the electron propagator in uni-
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form magnetic field is not translation-invariant, so it contains two momenta coming

from the Fourier transforms with respect to two spatial coordinates). We denote

the photonic propagator as D(ω, ~q) (it is translation-invariant, so depends only on

one spatial momentum). Then the propagators can be expressed as follows (in-

finitely small imaginary parts of the denominators are not written out explicitly):

G(ω, ~q1, ~q2, j) =
fj(~q1, ~q2)

ω − Ej + Σ(ω, ~q1, ~q2)
, (A.33)

D(q) =
v(~q)

1 + v(~q)
∑

j′,j′′(
Πj′,j′′ (~q)

ω−Ej′+Ej′′
+

Πj′′,j′ (~q)

ω−Ej′′+Ej′
)
, (A.34)

fj(~q) is a smooth function (without poles).

The diagram we are interested in can be expressed then via the propagators

(we will need only the ω dependence for our analysis, so the dependence on the

spatial momenta is not written explicitly):

Diag =

∫
over momenta

∫
dω G(ω, j1)×

D(E1 − ω)G(−ω + E1 + E2, j2)D(−ω + E1 + E2 − E4), (A.35)

where Ei are the energies of the incoming and outcoming electrons, in our case

those are all in one LL j: Ei = Ekin
j . j1 and j2 denote the levels to which the

electrons hop, just like in the paragraph 1.3.2.3.

All the functions (propagators) participating in the expression are the time-

ordered correlation functions at zero temperature and their poles are situated in

such a way that one can do Wick rotation ω → −iω (the zero of energies is the

partially filled LL Ekin
j = 0). Then, concentrating on the denominators, we can
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write the diagram via the integral over Euclidean frequency:

Diag ∼
∫

over momenta

∫
dω

...

−iω − Ekin
j1

+ Σ(...)
×

...

iω − Ekin
j2

+ Σ(...)
×

...

1 + v(...)
∑

j′,j′′(
Πj′,j′′ (...)

iω−Ekin
j′ +Ekin

j′′
+

Πj′′,j′ (...)

iω−Ekin
j′′ +Ekin

j′
)
×

...

1 + v(...)
∑

j′,j′′(
Πj′,j′′ (...)

iω−Ekin
j′ +Ekin

j′′
+

Πj′′,j′ (...)

iω−Ekin
j′′ +Ekin

j′
)
. (A.36)

Evidently, the denominators of the electron propagators determine the region

of frequencies which give dominating contribution to the integral. And this re-

gion is the interval centered at zero frequency with the width about the energy

distance to the closest higher LL. Self-energy of the electron is proportional to the

typical interaction energy ∼ e2/(κl). The self-energy can change the important

frequencies region, for small enough interaction this should be just a change of

the interval’s width by something proportional to the e2/(κl). Thus taking the

self-energy into account or neglecting it changes the value of the diagram by a cor-

rection, introducing a relative error proportional to the ratio between the typical

interaction energy and the distance to the closest higher LL.

Typical change of the photon propagator when one takes into account the

frequency dependence of the polarization function (as compared to neglecting the

dependence) inside the important region is also proportional to the ratio of the

typical interaction energy to the distance to the closest LL (here — not necessarily

higher).

Thus, taking into account the electron self-energy and the frequency depen-

dence of the polarization function changes the diagram value (which itself is a

small, not more than a 10% correction to the pseudopotential) by a relative cor-

rection of the order of the ratio of the typical interaction energy to the distance to

the closest LL. This is the parameter which controls the level mixing, and in the

region of applicability of the perturbative analysis it is smaller than 1. Deep in the
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region of applicability the parameter is much less than 1, so it is only a small cor-

rection to a small correction, thus not important. However, in a realistic situation

this ratio is around 0.5, so it can change the small correction to a pseudopotential

from 5% of the pseudopotential to 2.5− 7.5%. This may be significant.

However, taking into account that the effect of the corrections in the quantum-

mechanical approximation is rather small quantitative than a qualitative one we

would expect that taking the self-energy and the frequency dependence into ac-

count would only lead to small quantitative corrections. Taking into account the

last argument and technical difficulties of such a calculation we do not deem at

the moment that it is necessary to compute the diagram exactly.

A.4 Supplemental material

In this appendix we provide additional details regarding the stability of the

Pfaffian state.

Figures A.1a and A.1b show the numerically found gap between the exact

ground state of the system with 12 particles and its exact first excited state.

In these figures, the gap is plotted as a function of the magnetic field and the

dielectric constant at U = 50 meV for the (1,−1) LL (Fig. A.1a) and at U =

30 meV for the (2,−1) LL (Fig. A.1b) respectively. We do not show the data

in the region where the perturbative analysis is not applicable according to type

S estimate (with typical interaction energy scale needed for estimates taken to

be the screened potential zeroth pseudopotential at the LL under consideration).

The region of inapplicability of our theory according to the type C estimate (with

typical interaction energy scale taken to be the bare Coulomb potential zeroth

pseudopotential) is hatched. Figures A.2a and A.2b show the same data on the

gaps in the units of typical Coulomb energy e2/(κ`), where ` is the magnetic length

` =
√

~c/(eB).

As one can see, for both levels gaps increase as the magnetic field increases

(staring from points where maximum overlap occurs) and as the dielectric constant
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Figure A.1: Color plot of the gap between the ground state and the first
excited state computed for 12 particles as a function of the magnetic field
B and the dielectric constant κ. (a) – for the (1,−1) LL at U = 50 meV,
(b) – for the (2,−1) LL at U = 30 meV. The region where perturbative analysis
is not applicable according to the type C estimate is hatched. Data is not shown
beyond the region where perturbative analysis is applicable according to the type
S estimate.

decreases. This can be partially (for magnetic field) or fully (for the dielectric con-

stant) attributed to the increase of e2/κ`. This result, obtained for a finite number

of particles, suggests that the system may still be in the same topological phase

at higher magnetic fields. The same holds for low dielectric constants down to

boundary of the perturbative approach applicability region: for smaller dielectric

constants the physics is essentially non-single Landau level.

Figures A.3a and A.3b show the dependence of the gap on the magnetic field at

U = 50 meV and κ = 25 for the (1,−1) LL in K and in e2/(κ`) units respectively.

Figures A.4a and A.4b show the dependence of the gap on the dielectric con-

stant at U = 50 meV and fixed B = 6.5 T for the (1,−1) LL in K and in e2/(κ`)

units respectively.

Figures A.5a and A.5b show the dependence of the gap on the magnetic field

at U = 30 meV and κ = 6, 12.5, and 25 for the (2,−1) LL in K and in e2/(κ`)

units respectively.

Figures A.6a and A.6b show the dependence of the gap on the dielectric con-

stant at U = 30 meV and fixed B = 8 T for the (2,−1) LL in K and in e2/(κ`)

units respectively.

It is interesting to note that as a function of the magnetic field the gap has a

dip around the point of maximum overlap with the Pfaffian state (see Fig. 1.5) in
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Figure A.2: Color plot of the gap between the ground state and the first
excited state computed for 12 particles as a function of the magnetic field
B and the dielectric constant κ. (a) – for the (1,−1) LL at U = 50 meV,
(b) – for the (2,−1) LL at U = 30 meV. The region where perturbative analysis
is not applicable according to the type C estimate is hatched. Data is not shown
beyond the region where perturbative analysis is applicable according to the type
S estimate.

Figure A.3: Dependence of the gap between the ground state and the first
excited state computed for 12 particles at the (1,−1) LL for U = 50 meV
and κ = 25 as a function of the magnetic field B. (a) – in K, (b) – in e2/(κ`)
units. Only the part where perturbative analysis is applicable is shown.

all the cases both in K and in e2/(κ`) units.

Now we give some data on overlaps and gaps from numerical diagonalization

for different numbers of particles N = 8, 10, 12, 14.

Figure A.7 compares the data on the overlap with the Pfaffian and the gap

to the first excited state for the (1,−1) and the (2,−1) LLs in BLG and the

non-relativistic n = 1 LL. The data are shown for different numbers of particles

N = 8, 10, 12, 14. For the (1,−1) and the (2,−1) LLs in BLG external parameters

are set to be near the maximum overlap regions at several values of the dielectric

constant κ. The gap is presented in units of the typical Coulomb energy e2/κ`.

The results for BLG levels appear to be more stable as the number of particles
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Figure A.4: Dependence of the gap between the ground state and the first
excited state computed for 12 particles at the (1,−1) LL for U = 50 meV
and B = 6.5 T as a function of the dielectric constant κ. (a) – in K, (b) –
in e2/(κ`) units. Only the part where perturbative analysis is applicable is shown.

Figure A.5: Dependence of the gap between the ground
state and the first excited state computed for 12 par-
ticles at the (2,−1) LL for U = 30 meV and κ =
6 (green dotdashed), 12.5 (blue dashed), and 25 (black solid line) as
a function of the magnetic field B. (a) – in K, (b) – in e2/(κ`) units. Only
the part where perturbative analysis is applicable is shown.

Figure A.6: Dependence of the gap between the ground state and the first
excited state computed for 12 particles at the (2,−1) LL for U = 30 meV
and B = 8 T as a function of the dielectric constant κ. (a) – in K, (b) – in
e2/(κ`) units. Only the part where perturbative analysis is applicable is shown.
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Figure A.7: Dependence of the overlap with the Pfaffian and gap to the
first excited state on the number of particles N (N = 8, 10, 12, 14). Solid
black line is for the non-relativistic n = 1 LL. Dashed black line is for the (1,−1)
LL at U = 50 meV, κ = 25 and B = 6.5 T. Dot-dashed lines are for the (2,−1)
LL at U = 30 meV, κ = 25 and B = 8 T (black), κ = 12.5 and B = 8 T (blue),
κ = 6 and B = 6 T (green). The gap is presented in units of typical Coulomb
energy e2/κ`.

Figure A.8: Dependence of the overlap with the Pfaffian and gap to the
first excited state on the number of particles N (N = 8, 10, 12, 14) for the
(1,−1) LL at U = 50 meV, κ = 25. Shown are the dependences for B = 6.5 T
(dashed black line), B = 5 T (dashed grey line), B = 10 T (dashed brown line),
and B = 15 T (dashed purple line).

grows than for the non-relativistic system.

Figures A.8, A.9, A.10, A.11, present the dependence of the overlap and the

gap at several parameter points for (1,−1) LL and (2,−1) LL respectively. Points

are taken to be at the same mini-gap and the dielectric constant values as in

the previous figure, but the magnetic field changes. We took the points in the

maximum overlap region, slightly to the left and to the right of it, and B = 15 T,

which is a lot to the right of the high-overlap region.

Finally, figures A.12a and A.12b show the dependence of the overlap of the

exact ground state of the system with the Pfaffian for N = 12 particles on the
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Figure A.9: Dependence of the overlap with the Pfaffian and gap to the
first excited state on the number of particles N (N = 8, 10, 12, 14) for the
(2,−1) LL at U = 30 meV, κ = 25. Shown are the dependences for B = 8 T
(dot-dashed black line), B = 6 T (dot-dashed grey line), B = 10 T (dot-dashed
brown line), and B = 15 T (dot-dashed purple line).

Figure A.10: Dependence of the overlap with the Pfaffian and gap to the
first excited state on the number of particles N (N = 8, 10, 12, 14) for the
(2,−1) LL at U = 30 meV, κ = 12.5. Shown are the dependences for B = 8 T
(dot-dashed blue line), B = 6 T (dot-dashed grey line), B = 10 T (dot-dashed
brown line), and B = 15 T (dot-dashed purple line).

Figure A.11: Dependence of the overlap with the Pfaffian and gap to the
first excited state on the number of particles N (N = 8, 10, 12, 14) for the
(2,−1) LL at U = 30 meV, κ = 6. Shown are the dependences for B = 6 T
(dot-dashed green line), B = 5 T (dot-dashed grey line), B = 8 T (dot-dashed
brown line), and B = 15 T (dot-dashed purple line).
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Figure A.12: Color plot of the overlap of the ground state with the Moore-
Read Pfaffian for 12 particles as a function of the magnetic field B and
the dielectric constant κ with no virtual hopping corrections taken into
account. (a) – for the (1,−1) LL at U = 50 meV, (b) – for the (2,−1) LL
at U = 30 meV. Contours show the lines of constant overlap. The region where
perturbative analysis is not applicable according to the type C estimate is hatched.
Data is not shown beyond the region where perturbative analysis is applicable
according to the type S estimate.

magnetic field and the dielectric constant at U = 50 meV for the (1,−1) LL and at

U = 30 meV for the (2,−1) LL respectively with no virtual hopping to the nearby

LL taken into account. Screening is still taken into account. We do not show

the data in the region where the perturbative analysis is not applicable according

to type S estimate. The region of inapplicability of our theory according to the

type C estimate is hatched. As one can see (compare with Fig. 1.5), within the

region of applicability of perturbative treatment of LL mixing the effect virtual

hopping corrections, defined in paragraph 1.3.2.3, have on the phase diagram is

rather relatively small quantitative than a qualitative.
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Appendix B

Appendices related to Chapter 2

B.1 Useful one-edge correlation functions

Here we give explicit expressions for the correlation functions at a single edge

without tunnelling (described by the minimal model for ν = 2/3 defined in the

main text) which are used to calculate the quantities of experimental interest. In

all the correlation functions of this appendix we assume the infinite system size

limit L→∞.

The two-point correlation function of quasi-particle operators is equal to

〈
V †g (x1, t1)Vg′(x2, t2)

〉
=
〈
V−g(x1, t1)Vg′(x2, t2)

〉
=

= δg,g′
∏
p=c,n

Fp(x1 − x2, t1 − t2 − iε,g) (B.1)

Fp(x, t,g) =
(πT )g

2
p

(ivp sinhπTXp)
g2p

exp (iQ(p)µ(p)Xp/vp) (B.2)

where Vg(x, t) is a quasiparticle excitation operator defined in Eq. (2.10), g =

(g1, g2) = (gc, gn) is the excitation vector, p enumerates charged (c or 1) and

neutral (n or 2) modes, Xp = −χpx + vpt, χp and vp are the mode chirality and

velocity respectively which enter the action (2.1) (in our case χ1 = −χ2 = 1), and

T is the temperature of the edge. The electric charge Q(c) = Q = g′1
√
ν, ν = 2/3,

µ(c) = µ is the chemical potential of the charged mode at the edge. It coincides with
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the chemical potential of the Ohmic contact where the charged mode originates.

The neutral charge Q(n) = g′2 and the chemical potential µ(n) do not enter the

formulae in chapter 2 as we assume µ(n) = 0, though, in principle, injection of the

current from an Ohmic contact could shift the neutral mode chemical potential.

We have also introduced an infinitesimally small positive number ε→ +0.

The electric current along the edge in the equilibrium is given by the average

of the current operator Jµ=1 defined in Eq. (2.5):

〈
J1(x, t)

〉
= χcvc

〈
J0(x, t)

〉
= −vc

√
ν

L

〈
π0

(c)

〉
= χc

ν

2π
µ(c) =

ν

2π
µ(c) (B.3)

in agreement with the quantization law of Hall conductance [56].

The two-point correlation function of quasi-particle operators with the current

operator inserted is given by

〈
J1(x0, t0)V †g (x1, t1)Vg′(x2, t2)

〉
=

=
〈
V †g (x1, t1)Vg′(x2, t2)

〉
×
(〈
J1(x0, t0)

〉
+

+
Q(c)χcπT

2πi
(cothπT (Y0 − Y1)− cothπT (Y0 − Y2))

)
, (B.4)

where Yi = t − χcx/vc + iκi. κ0 = 0, κ1 = κ → +0 is an infinitesimally small

positive number, κ2 = κ1 + ε, and ε is the same as in the two-particle correlation

function.

Finally, the current-current correlation function is

〈
J1(x0, t0)J1(x1, t1)

〉
=〈
J1(x0, t0)

〉〈
J1(x1, t1)

〉
+

ν

(2π)2

(πT )2

(i sinhπT (Y0 − Y1))2
, (B.5)

where Yi = t − χcx/vc + iκi, κ0 = 0, κ1 = κ → +0 is an infinitesimally small

positive number.
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B.2 Tunnelling current

Here a derivation of the expressions for the tunnelling current IT and the tun-

nelling rate r is presented.

The tunnelling current can be defined as the time derivative of the total charge

at the lower edge:

IT =
d

dt
Q(l) = i[H,Q(l)] = i[HT , Q

(l)], (B.6)

Q(l) =

∞∫
−∞

J0(l)(x, t)dx. (B.7)

Here J0(l) is the lower edge charge density operator J0 defined in Eq. (2.5), H is

the full system Hamiltonian and HT is the tunnelling Hamiltonian (2.28). Using

the latter we get an explicit expression

IT,int(t) = i
∑
i

Qi

(
ηiAi(t)− η∗iA

†
i (t)
)
, (B.8)

where Qi are the quasiparticle charges Q in Table 2.1 and Ai are the operators

defined in Eq. (2.29). This is the tunnelling current operator in the interaction

picture with interaction HT (which is emphasized by the subscript ”int”). We cal-

culate the expression for the tunnelling current operator in the Heisenberg picture

within the perturbation theory in HT :

IT (t) = IT,int(t) + i

t∫
−∞

dτ [HT (τ), IT,int(t)] +O(|ηi|3) =

= i
∑
i

Qi

(
ηiAi(t)− η∗iA

†
i (t)
)
−

−
∑
i,j

Qi

t∫
−∞

dτ
[
ηjAj(τ) + η∗jA

†
j(τ), ηiAi(t)− η∗iA

†
i (t)
]

+O(|ηi|3). (B.9)
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The observed tunnelling current is then

〈IT (t)〉 =
∑
i

Qi|ηi|2
t∫

−∞

dτ
〈[
Ai(τ), A†i (t)

]
−
[
A†i (τ), Ai(t)

]〉
+O(|ηi|3). (B.10)

We have used the relationships 〈Ai(t)〉 = 〈Aj(τ)Ai(t)〉 = 0,
〈
A†j(τ)Ai(t)

〉
∝ δij.

It can be checked with explicit correlation functions (B.2) that the integral of

each of the summands in the formula (B.10) is convergent. Thus, one can split them

and manipulate separately. Using time translational invariance of the correlation

functions in both summands and changing sign of the integration variable in the

second one we finally get

〈IT (t)〉 =
∑
i

Qi|ηi|2
+∞∫
−∞

dτ
〈[
Ai(τ), A†i (0)

]〉
+O(|ηi|3), (B.11)

which leads to the expression (2.30) for the tunnelling rate r.

B.3 Tunnelling current (continued)

Starting from the expression (B.11) for the tunnelling current expectation value

and using the explicit form of the correlation functions (B.1) and (B.2), we obtain

up to corrections of O(|ηi|3)

〈IT (t)〉 = 2i
∑
i

Qi|ηi|2v−4δ
c

(
vc
vn

)2((gi)2)2

×

+∞∫
−∞

dτ
(πTn)2δ(πTs)

2δ sinQi∆µτ

(i sinhπTn(τ − iε))2δ(i sinhπTs(τ − iε))2δ
, (B.12)

where Tn = T (u) is the upper edge temperature, Ts = T (l) is the lower edge

temperature, ∆µ = µ(c,u) − µ(c,l) is the difference of the chemical potentials of the

upper and the lower edges’ charged modes, the numbers (gi)1, (gi)2 are presented

in the columns g1, g2 respectively of Table 2.1 for each of the three excitations
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enumerated by i, and δ is the scaling dimension of the excitations presented in the

column δ of Table 2.1, and ε→ +0 is an infinitesimally small positive number.

For 0 < δ < 1/2 the last formula can be further simplified:

IT = 〈IT (t)〉 =

∑
i

4Qi|ηi|2v−4δ
c

(
vc
vn

)2((gi)2)2

sin 2πδ

+∞∫
0

dτ
(πTn)2δ(πTs)

2δ sinQi∆µτ

(sinhπTnτ)2δ(sinh πTsτ)2δ
. (B.13)

B.4 Noise

In this appendix we derive expressions for the noise spectral density S(ω) at

zero frequency ω.

The operator I(t) of the full current flowing to the Voltage probe can be pre-

sented as a sum of the tunnelling current IT (t) defined in Eq. (B.9) and the current

I0 flowing along the lower edge just before the QPC :

I(t) = I0(t) + IT (t), (B.14)

I0(t) = J1(l)(x = −0, t), (B.15)

here I(t) and I0(t) are operators in the Heisenberg picture.

The noise spectral density S(ω) defined in Eq. (2.31) then separates into four

terms, see Eqs. (2.32) and (2.33), where the identity Sab(ω) = Sba(−ω) following

from the time translational invariance of the correlation functions has been used.

Using Eq. (B.5) one obtains

S00(ω = 0) =
1

2

ν

(2π)2

∞∫
−∞

dτ
(πT (l))2

(i sinhπT (l)(−τ − iε))2
+ c.c. =

ν

2π
T (l), (B.16)

where T (l) is the lower edge temperature, and ε → +0 is an infinitesimally small

positive number. This is the identity (2.34).

Since 〈Ai(t)〉 = 0, STT (ω) can be expressed in the following way up to correc-
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tions O(|ηi|3):

STT (ω) =

∞∫
−∞

dτ exp
(
iωτ
)1

2

〈{
IT (0), IT (τ)

}〉
. (B.17)

Using 〈Aj(τ)Ai(t)〉 = 0,
〈
A†j(τ)Ai(t)

〉
∝ δij and neglecting terms O(|ηi|3) we

further simplify this expression to

STT (ω) =
1

2

∑
i

Q2
i |ηi|2

∞∫
−∞

dτ exp
(
iωτ
)〈{

Ai(0), A†i (τ)
}〉

+ c.c., (B.18)

which at ω = 0 is equivalent to Eq. (2.35) due to the time translational invariance

of the correlation functions.

Moving to S0T (ω), we find up to the corrections O(|ηi|3) that

S0T (ω) =
1

2

∑
i

Qi|ηi|2
∞∫

−∞

dτ

τ∫
−∞

dτ ′ exp
(
iωτ
)
×

×
〈{

∆I0(0),
[
Ai(τ

′), A†i (τ)
]
−
[
A†i (τ

′), Ai(τ)
]}〉

. (B.19)

In analogy with the calculation of the tunnelling current expectation value, the

integral of each of the two summands in the last formula is convergent, thus we

can manipulate the two summand integrals separately. Changing the order of in-

tegration and renaming τ ↔ τ ′ in the second summand we arrive at the expression

(2.36) for ω = 0.

B.5 Noise — the TT term

Starting from the expression (2.35) for the TT component of the current noise

and using the explicit form of the correlation functions (B.1) and (B.2), we obtain
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up to corrections of O(|ηi|3)

STT (0) = 2
∑
i

Q2
i |ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

×

+∞∫
−∞

dτ
(πTn)2δ(πTs)

2δ cosQi∆µτ

(i sinhπTn(τ − iε))2δ(i sinhπTs(τ − iε))2δ
, (B.20)

where Tn = T (u) is the upper edge temperature, Ts = T (l) is the lower edge

temperature, ∆µ = µ(c,u) − µ(c,l) is the difference of the chemical potentials of the

upper and the lower edges’ charged modes, the numbers (gi)1, (gi)2 are presented

in the columns g1, g2 respectively of Table 2.1 for each of the three excitations

enumerated by i, and δ is the scaling dimension of the excitations presented in the

column δ of Table 2.1, and ε→ +0 is an infinitesimally small positive number.

For 0 < δ < 3/4 the last formula can be rewritten as

STT (0) = 4
∑
i

Q2
i |ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

cos 2πδ×

lim
ε→+0

 +∞∫
ε

dτ
(πTn)2δ(πTs)

2δ cosQi∆µτ

(sinhπTnτ)2δ(sinh πTsτ)2δ
+

ε1−4δ

1− 4δ

 . (B.21)

B.6 Noise — the 0T term

Starting from the expression (2.36) for the 0T component of the current noise

and using the explicit form of the correlation functions (B.1), (B.2), and (B.4), we

obtain up to corrections of O(|ηi|3)

S0T (0) =
∑
i

Q2
i

2π
|ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

×

+∞∫
−∞

dt

+∞∫
−∞

dτ
i(πTn)2δ(πTs)

2δ+1 cosQi∆µ(τ − t)
(i sinhπTn(τ − t− i(κ− ε)))2δ(i sinhπTs(τ − t− i(κ− ε)))2δ

×

(cothπTs(−τ − iε)− cothπTs(−t− iκ)) + c.c., (B.22)
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where Tn = T (u) is the upper edge temperature, Ts = T (l) is the lower edge

temperature, ∆µ = µ(c,u) − µ(c,l) is the difference of the chemical potentials of the

upper and the lower edges’ charged modes, the numbers (gi)1, (gi)2 are presented

in the columns g1, g2 respectively of Table 2.1 for each of the three excitations

enumerated by i, and δ is the scaling dimension of the excitations presented in

the column δ of Table 2.1, and ε→ +0, κ→ +0 are infinitesimally small positive

numbers such that κ > ε.

It is tempting to integrate each of the two hyperbolic cotangents separately,

however, the integrals of a signle cotangent diverge as t and τ go to ±∞ with t−τ

being finite. Yet, the integral of the difference of the two cotangents is absolutely

convergent. After a change of variables τ = t+ y we get:

S0T (0) =
∑
i

Q2
i

2π
|ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

×

×
+∞∫
−∞

dy

+∞∫
−∞

dt
i(πTn)2δ(πTs)

2δ+1 cosQi∆µy

(i sinhπTn(y − i(κ− ε)))2δ(i sinhπTs(y − i(κ− ε)))2δ
×

× (coth πTs(−t− y − iε)− cothπTs(−t− iκ)) + c.c. (B.23)

Since

+∞∫
−∞

dt(cothπTs(−t− y − iε)− cothπTs(−t− iκ)) =

=

+∞∫
−∞

dt(cothπTs(t− y − iε)− cothπTs(t− iκ)) =

1

πTs
ln

sinhπTs(t− y − iε)
sinhπTs(t− iκ)

∣∣∣∣+∞
−∞

= −2(y − i(κ− ε)), (B.24)
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we get

S0T (0) =
∑
i

2Q2
i

π
|ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

×

×
+∞∫
−∞

dy
−i(πTn)2δ(πTs)

2δ+1(y − i(κ− ε)) cosQi∆µy

(i sinhπTn(y − i(κ− ε)))2δ(i sinhπTs(y − i(κ− ε)))2δ
=

=
∑
i

2Q2
i

π
|ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

×

×
+∞∫
−∞

dy
−i(πTn)2δ(πTs)

2δ+1y cosQi∆µy

(i sinhπTn(y − i(κ− ε)))2δ(i sinhπTs(y − i(κ− ε)))2δ
. (B.25)

For 0 < δ < 1/2 the last formula can be rewritten as

S0T (0) = −4
∑
i

Q2
i

π
|ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

sin 2πδ×

+∞∫
0

dτ
(πTn)2δ(πTs)

2δ+1τ cosQi∆µτ

(sinh πTnτ)2δ(sinhπTsτ)2δ
. (B.26)

B.7 Excess noise

In the equilibrium (∆µ = 0 and Tn = Ts = T0) one can represent the integrals

in formulae (B.21) and (B.26) in terms of Euler gamma function which leads to

STT (0)|eq = 4
∑
i

Q2
i |ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

cos 2πδ×

(πT0)4δ−1 1

2
√
π

Γ

(
1

2
− 2δ

)
Γ(2δ), (B.27)

S0T (0)|eq = − 4

π

∑
i

Q2
i |ηi|2v−4δ

c

(
vc
vn

)2((gi)2)2

sin 2πδ×

(πT0)4δ−1

√
π

4
cot (2πδ)Γ

(
1

2
− 2δ

)
Γ(2δ). (B.28)
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Thus,

STT (0)|eq + 2S0T (0)|eq = 0. (B.29)

Taking into account that the Johnson-Nyquist noise of the lower edge S00(0) does

not depend on the currents In, Is, we get the expression (2.38) for the excess noise

S̃(0).

B.8 Putting things together

The expressions (2.39)-(2.46) for the ratio X of the excess noise S̃(0) =

STT (0) + 2S0T (0) (2.38) and the tunnelling rate r = |IT/Is| (2.30) can be straight-

forwardly obtained using the explicit expressions for IT , STT (0), S0T (0) in formu-

lae (B.13), (B.21), (B.26) respectively. We only changed the integration variable

τ → πTst and restored the fundamental constants: the elementary charge e, the

Planck constant h = 2π~, and the Boltzmann constant kB.

We remind the reader that in the main text of the paper we assumed the

neutral mode chemical potentials of both edges µ(n,u), µ(n,l) to be zero. However, if

needed, the neutral mode chemical potentials can be easily incorporated into the

formulae (2.42)-(2.45) by the substitution Qijst→
(
Qijs −Q(n)

i (µ(n,u) − µ(n,l))
)
t.

The neutral charges of the quasiparticles Q
(n)
i = (gi)2 are given in the column g2

of Table 2.1.

B.9 How general are the answers of the subsec-

tion 2.1.5?

The formulae (2.39)-(2.46) for the tunnelling rate, tunnelling current noise and

their ratio within the second order perturbation theory in tunnelling Hamiltonian

were obtained for the case of the minimal ν = 2/3 edge model under certain phe-

nomenological assumptions. However, these formulae and the calculations leading

to them are straightforward to generalize to a much wider class of edge theories.
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A general abelian QH edge theory can be constructed with the help of ac-

tion (2.1) in the way outlined in subsection 2.1.4. One typically expects all the

modes which carry electric charge to have same chirality χi. If a theory contains

counter-flowing charged modes, in the low-energy limit it can become a theory with

a set of charged modes propagating in one direction and a set of neutral modes

(possibly, with different directions of propagation) according to the mechanism

described in Refs. [27, 28].

Under the same assumptions on the interaction between the Ohmic contacts

and the edge as were used in section 2.1, in the case of such theories one can show

that the formulae (2.39)-(2.46) still hold for tunnelling of the quasiparticles with

δ < 1/2. The only adjustment which has to be made concerns the number of the

parameters θi (according to the number of the most relevant excitations) and their

definition (the ratio of the velocities becomes more complex if there are several

charged or neutral modes, or disappears if there is only one mode in the model).

For tunnelling of the quasiparticles with δ ≥ 1/2 only the formulae (2.42), (2.44),

(2.45) should be modified with the terms cancelling divergencies of the integrals

at t→ 0 similar to the ε1−4δ term in Eq. (2.44).

A more general class of QH edge theories is where the charged sector is still

described in terms of free bosons like in action (2.1), while the neutral sector is

described in terms of a more complicated model — some conformal field theory

(CFT). Examples of such edge theories can be found, e.g., in [49]. For more details

on CFT see Ref. [57]. For the purposes of the present work it suffices to say that

the second order perturbation theory results (2.39)-(2.46) hold for this class of

models as well as they do for the abelian ones.

We remind the reader that the phenomenological assumptions from the sub-

section 2.1.3 are important for the derivation of the formulae (2.39)-(2.46). Some

of these assumptions are not necessary for the derivation of the results of the sub-

section 2.2.2.1 However, for simplicity, we do not release them. It is worth noting,

1For example, the assumption of the same temperature of all the edge modes at a given point
can be weakened. Different temperatures of the different edge modes at the upper edge would
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however, that the assumption that the lower edge temperature does not depend

on the current Is is crucial for the results of that subsection.

So, the formulae (2.39)-(2.46) (up to a modification of the number and the

exact expression of the parameters θi) are valid for a wide class of typical abelian

and non-abelian FQHE edge models.

B.10 Large Is asymptotic behaviour of the noise

to tunnelling rate ratio

Consider the large Is limit of the Eq. (2.42). For |js| � λ ≥ 1 one gets

Gi =
js
|js|

Q4δ
i |js|4δ−1 sin 2πδ ×

 ∞∫
0

dx
sinx

x4δ
+O

(
λ2

Q2
i j

2
s

) =

=
js
|js|

π

2Γ(4δ)
Q4δ
i |js|4δ−1 ×

(
1 +O

(
λ2

Q2
i j

2
s

))
, (B.30)

where Γ(x) is the Euler gamma function.

Similarly, for Eqs. (2.44), (2.45), (2.43) in the limit |js| � λ ≥ 1 one gets

F TT
i =

π

2Γ(4δ) cos 2πδ
Q4δ+1
i |js|4δ−1 ×

(
1 +O

(
λ2

Q2
i j

2
s

))
, (B.31)

F 0T
i =

π(4δ − 1)

2Γ(4δ) sin 2πδ
Q4δ
i |js|4δ−2 ×

(
1 +O

(
λ2

Q2
i j

2
s

))
, (B.32)

Fi =
π

2Γ(4δ)
Q4δ
i |js|4δ−2

(
Qi|js|+

2− 8δ

π
+O

(
λ2

Qi|js|

))
. (B.33)

Using Eqs. (2.39)-(2.41), (B.30), (B.33) one finally gets the asymptotic expres-

not affect the results of that subsection concerning the large Is asymptotic behaviour.

136



sion for the noise to tunnelling rate ratio (2.49):

X =
S̃(0)

r
= eIs

∑
i θiFi∑
i θiGi

=

= eIs

∑
i θi

(
Q4δ+1
i |js|+Q4δ

i
2−8δ
π

+O
(

λ2

Qi|js|

))
js
∑

i θiQ
4δ
i

(
1 +O

(
λ2

Q2
i j

2
s

)) =

= e|Is|
∑

i θiQ
4δ+1
i∑

i θiQ
4δ
i

+ eI0
2− 8δ

π
+O

(
|js|−1

)
. (B.34)

B.11 Analytic expressions for NtTRR for equal

temperatures of the upper and the lower

edges

For the following derivation we need several facts about Euler beta function

B(x, y) and Euler gamma function Γ(x).

Γ(x)Γ(1− x) =
π

sinπx
, (B.35)

Γ(x̄) = Γ(x), (B.36)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (B.37)

B
(

1− 4δ,
α

2
+ 2δ

)
=

∫ ∞
0

dt
e−αt

(sinh t)4δ
. (B.38)

The bars in the second equation denote complex conjugation. The last identity

holds for δ < 1/4 and Re [α] /2 + 2δ > 0, where Re[...] denotes taking of the real

part. However, with it can be analytically continued beyond these restrictions.

Throughout this appendix we consider the case of equal temperatures of the

upper and the lower edge, i.e. λ = 1.

Using Eqs. (B.35)-(B.38), one can get the following analytic expressions for the
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functions defined in Eqs. (2.42), (2.44):

Gi |λ=1 =
Qi2

4δ−2

Γ(4δ)

∣∣∣∣Γ(2δ +
iQijs

2

)∣∣∣∣2 sinh
πQijs

2
, (B.39)

F TT
i |λ=1 =

Q2
i 2

4δ−2

Γ(4δ) cos 2πδ

∣∣∣∣Γ(2δ +
iQijs

2

)∣∣∣∣2 cosh
πQijs

2
. (B.40)

For the function defined in Eq. (2.45), noting that2

F 0T =
1

sin 2πδ

∂

∂js
Gi, (B.41)

one gets

F 0T
i |λ=1 =

Q2
i 2

4δ−2

Γ(4δ) sin 2πδ

∣∣∣∣Γ(2δ +
iQijs

2

)∣∣∣∣2 sinh
πQijs

2
×

×
(
π

2
coth

πQijs
2

+
i

2
ψ

(
2δ +

iQijs
2

)
− i

2
ψ

(
2δ − iQijs

2

))
, (B.42)

where the digamma function ψ(x) = (ln Γ(x))′ is the logarithmic derivative of the

Euler gamma function Γ(x).

Thus, for Fi defined in Eq. (2.43) we have

Fi |λ=1 =
Q2
i 2

4δ−1

πΓ(4δ)

∣∣∣∣Γ(2δ +
iQijs

2

)∣∣∣∣2 sinh
πQijs

2
Im

[
ψ

(
2δ +

iQjs
2

)]
, (B.43)

where Im[...] denotes taking of the imaginary part.

Using Eqs. (2.39)-(2.41), one straightforwardly gets the analytic expression for

the noise to tunnelling rate ratio X(Is) |λ=1 . In the case of coinciding charges of all

the quasiparticles participating in tunnelling this expression simplifies significantly

leading to the result (2.52).

2An interesting relation between this fact and the Ward identity arising due to the conserva-
tion of electric charge was noted in [58].
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