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Abstract
In ballistic open quantum systems, one often observes that the resonances in the
complex-energy plane form a clear chain structure. Taking the open three-disk
system as a paradigmatic model system, we investigate how this chain structure
is reflected in the resonance states and how it is connected to the underlying
classical dynamics. Using an efficient scattering approach, we observe that
resonance states along one chain are clearly correlated, while resonance states of
different chains show an anticorrelation. Studying the phase-space representa-
tions of the resonance states, we find that their localization in phase space
oscillates between different regions of the classical trapped set as one moves
along the chains, and that these oscillations are connected to a modulation of the
resonance spacing. A single resonance chain is thus not a WKB quantization of a
single periodic orbit, but the structure of several oscillating chains arises from
the interaction of several periodic orbits. We illuminate the physical mechanism
behind these findings by combining the semiclassical cycle expansion with a
quantum graph model.
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1. Introduction

The study of geometrically open (leaky) quantum systems is a subject of intense research, with
recent interest driven in equal parts by concrete applications (including electronic transport
[1, 2] and microcavity lasers [3, 4]) and deep fundamental questions [5–7]. Many of the systems
of interest display the signatures of quantum chaos, which in the presence of leakage become
enriched by the formation of a fractal trapped set in the classical limit. Over the past decade, it
has been realized that this phenomenon finds a quantum-mechanical analogue in the distribution
of the resonances in the complex-energy plane. The localization of resonance states on the
classical trapped set has already been observed by Casati, Maspero and Shepelyanski [8], who
numerically studied the open Chirikov map. Mathematical work established that in consequence
the resonances follow a modified, fractal Weyl law [9–14]. This fractal Weyl law has been
confirmed numerically for a wide range of quantum maps [15–24], and numerical [25–28] as
well as first experimental [29] work shows that the fractal Weyl law also holds for autonomous
systems. In a simple physical picture, this law originates from the increasing phase-space
resolution as one approaches the classical limit, which results in a proliferation of short-lived
resonances that follow ballistical classical escape routes [15]. The observations of Casati,
Maspero and Shepilyanski on the localization of resonance states have been refined by Keating
et al [30], and Nonnenmacher and Rubin [31], who distinguished between the left and right
resonance states, and showed for the baker map that all semiclassical measures (i.e. all possible
semiclassical limits of these states) localize on the forward, respectively, the backward trapped
set. Later this localization was rigorously shown by Nonnenmacher and Zworski [32] for a
much larger class of systems. A classification of the possible semiclassical measures similar to
the Schnirelmann theorem for closed systems is still open and has so far only been obtained for
the very special case of the Walsh quantized baker map [31, 33].

Autonomous systems are much richer than maps as they display an additional, even more
ubiquitous phenomenon related to quantum-to-classical correspondence, namely the formation
of resonance chains encountered in various systems, such as quantum cavities with large
openings [34, 35], dielectric microresonators with low index materials [36–40], and models of
mathematical interest such as convex co-compact surfaces (Schottky surfaces [28]). The
simplest resonance chains are supported by a single ballistic trajectory, resulting in a sequence
of states in close analogy to those of a particle in a one-dimensional box with leaking walls [41].
However, for open chaotic systems the physical picture behind the fractal Weyl law implies that
the states on such chains must eventually morph into complex wave-chaotic states supported by
the trapped set. In this work we make a first step towards an understanding of the question of
how these fundamental phenomena fit together. Firstly, we show that the clearly distinguishable
resonance chains display systematic interactions driven by the quantization of more than just a
single trajectory. These interactions manifest themselves in systematic oscillations of resonance
spacings and lifetimes, which go along with crossings of the chains in the complex plane and
oscillations of the phase-space support of the associated resonance states. Secondly, we show
that the initially well-separated pairs of resonance chains merge and perform more complicated
interactions as one moves further into the semiclassical limit. We also observe that the first
merging of the chains is linked to a better phase-space resolution of the trapped set.

We develop this picture by considering a paradigmatic open autonomous system with a
fractal trapped set, the three-disk system, which was introduced by Gaspard and Rice [42–44]
and Cvitanovic and Eckhardt [45], and has found several experimental realizations [29, 46–48].
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We employ an efficient scattering approach that allows us to calculate the resonance states. Via
these resonance states and the corresponding phase-space representations, we can study their
localization on classical phase-space structures and the connection to the resonance chain
structure. This leads us to the observation that resonances on one chain show a significantly
different correlation behavior than resonances on different chains. The chain structure is thus
not only a visual impression but also reflects common physical properties. In order to extract the
underlying mechanism behind these correlations and modulations, we formulate an
approximate correspondence of the three-disk system with an open quantum graph, consisting
of two edges of different lengths. This correspondence holds in the leading order of the cycle
expansion, and implies that the systematic correlations and interactions of the chains originate
from the approximate commensurability of the fundamental periodic orbits in the system.
Deeper in the semiclassical limit, we find that the merging of resonance chains coincides with
an increased population of the classical trapped set by long-lived resonance states.

This paper is organized as follows. In section 2 we review the key classical and quantum
features of the three-disk system, and describe our method to calculate the full spatial structure
of the resonance states. Furthermore, we explain how this method can be used to efficiently
calculate Poincaré–Husimi distributions, as well as the symmetric phase-space distributions
proposed by Ermann et al [49]. These methods are then used in section 3 to relate the resonance
states to the underlying classical phase-space structures, allowing us to extract the spatial
correlations that complement the modulations of the spectral features. In section 4 we describe
the approximate correspondence of the three-disk system with the open quantum graph and
discuss how this leads to a phenomenological explanation of our numerical observations.
Section 5 contains our conclusions.

2. Model and methods

2.1. The three-disk system

In the three-disk system [42–44, 50], a particle moves in a two-dimensional plane and scatters
off identical hard disks whose centers form an equilateral triangle (see figure 1). The distance
between the centers of the disks is denoted by R, and the disk radius is denoted by a. Up to
scaling, the geometry is completely defined by the ratio R a/ .

The quantum system is described by the free Schrödinger equation

 ψ ψ− = kr r( ) ( ) (1)2 2

with Dirichlet boundary conditions at the disk boundaries. Further imposing outgoing boundary
conditions on the scattering states, the spectrum becomes a discrete set of quantum resonances
with complex wave number = +k k kRe iImn n n and associated resonance wave functions
ψ r( )

n
. The complexity of the resonances kn arises from the non-hermiticity of the wave equation

with outgoing boundary conditions, and thus reflects the leakage out of the system.
The disk configuration of the three-disk system is symmetric under the symmetry groupC v3

and allows a symmetry reduction, which is well understood on the classical and semiclassical
level [51] as well as on the quantum level [44]. We focus on resonance states in the
A2-representation, which is the reduction of choice for experimental realizations of the
desymmetrized system. These states have to be antisymmetric with respect to reflections at the
symmetry axes, and thus describe the resonances in the fundamental domain (shaded in light
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blue in figure 1) with additional Dirichlet boundary conditions at the boundaries of the
fundamental domain. The resonances can be calculated numerically from the poles of the
scattering matrix, which can be expressed in terms of Bessel and Hankel functions [44] (see also
section 2.2). As shown in the bottom panel of figure 1, these resonances form well-defined,
systematically interacting chains, whose appearance is a ubiquitous feature in open quantum
and wave-optical systems.

We aim to explain the formation and interaction of these chains in terms of the underlying
classical phase-space structures. Classically, the particle moves ballistically along straight lines,
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Figure 1. Top panel: schematic drawing of the three-disk system (with the fundamental
domain shaded in light blue), consisting of three disks of radius a centered at the corners
of an equilateral triangle of side length R, where here and throughout this work R a/ = 6.
Also shown are the two fundamental orbits 0 (orange) and 1 (blue). Middle panel:
forward and backward trapped sets of order n = 1 in light gray and n = 2 in dark gray
displayed in the Birkhoff coordinates of one of the three disks. The intersections of
these sets make up the trapped sets  n( ). The regions  i

(1) visited by the orbits i = 0, 1
are shaded in orange and blue, respectively; the location of these orbits
[ π= ±q p( , ) ( 1/6 , 0)0 and = ±q p( , ) (0, 0.5)1 ] is indicated by the black dots. Bottom
panel: position of the quantum-mechanical resonances kn of the A2-symmetry reduced
system in the complex-k plane. The resonances organize into chains, which are marked
in different colors. The crosses mark some of the resonances examined in more detail
later on in this paper.



with specular reflections off the hard walls of the disks. The escape out of the system is then
conveniently analysed via the trapped sets: the forward trapped set of order n, which contains all
the points in the phase space that have at least n reflections on the disks in a positive time
direction, and the backward trapped set of order n, which is defined analogously for the negative
time direction. The intersection of the forward and backward trapped set makes up the trapped
set of order n, denoted by  n( ). In the limit → ∞n , these sets form Cantor sets (the forward
trapped set, the backward set and the trapped set, respectively).

In the three-disk system, the trapped sets are conveniently examined on the Poincaré
section of boundary reflections at one of the disks, parameterized by Birkhoff coordinates

π π∈ −q [ , ] (the arc length around the disk, expressed in units of a) and = ˆ · ˆ ∈ −p t p [ 1, 1]

(the projection of the normalized momentum p̂ onto the tangent t̂). The trapped sets of order
one and two are shown in the middle panel of figure 1. The backbone of these sets is formed by
the periodic orbits in the system. It is known that for sufficiently separated disks, the set of
periodic orbits can be described by a complete symbolic dynamic of the alphabet {0, 1} [45].
The two fundamental orbits are given by the two words of length one, where 0 corresponds to
the bouncing ball orbit, and 1 corresponds to the triangular orbit (see figure 1). An analogous
symbolic dynamic applies to the trapped sets [42]. We will only need to distinguish the four
regions of trapped set  (1), and denote the union of the two regions around orbit 0 with  0

(1),

and the two regions around orbit 1 with  1
(1).

2.2. Calculation of scattering states

We obtain the resonance states ψ
n
by extending the approach by Gaspard and Rice, who

determined the resonance wave numbers kn from the poles of the scattering matrix S [44, 50].
Far from the scattering center, the scattering state takes the asymptotic form

∑ψ δ ψ ψ≈ +
′=−∞

∞

′ ′ ′ ′
⎡⎣ ⎤⎦k k S k kr r r( ; ) ( ; ) ( ) ( ; ) (2)

l
l

ll l ll l
in out

where

ψ
π

π π ϕ= − − −′ ′′ k
kr

kr lr( ; ) :
1

2
exp ( i( /2 /4)) exp (il )

l
in

and

ψ
π

π π ϕ= − −′ ′′ k
kr

kr lr( ; ) :
1

2
exp (i( /2 /4)) exp (il )

l
out

are the asymptotic forms of incoming and outgoing waves with angular momentum ′l , while the
scattering matrix ′S k( )ll describes the coupling between these states. The scattering matrix
extends meromorphically to the complex-k plane, and the resonances are precisely given by its
poles.

Now let ∈kn be a resonance of multiplicity one and ∈k a nearby point. After
truncating the S-matrix for sufficiently high angular momenta, ′S k( )ll becomes a well-defined
matrix and there is a maximal singular value σ k( ) as well as two normalized vectors


⃗ = ∈i k i k( ) ( ( ))l l and ⃗ = ∈a k a k( ) ( ( ))l l such that
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∑ σ=′ ′i k S k k a k( ) ( ) ( ) ( ).
l

l ll l

As ′S k( )ll n is singular, the maximal singular value σ k( ) will diverge for →k kn. In order to

define the resonant scattering state, we assume that in this limit, the two vectors ⃗i k( ) and ⃗a k( )

converge to two well-defined vectors ⃗i and ⃗a . Symbolically we write

∑ α= ∞ =′ ′ ′i S k a( ) . (3)
l

l ll n l l

In practice we will never be able to evaluate the scattering matrix exactly at the pole, so ⃗i and ⃗a
will also be approximations to the idealized singular vectors, and equation (3) practically means
that the corresponding singular value is so large that all terms that do not contain α ′l can be
neglected [52].

With this singular vector ⃗i we define the asymptotic behavior of the resonant scattering
state to the pole kn as

∑

∑ ∑

∑ ∑

∑ ∑

∑

ψ ψ

δ ψ ψ

ψ ψ

ψ α ψ

α ψ

=

= +

= +

= +

≈

′=−∞

∞

′ ′ ′ ′

′
′ ′

′
′ ′

′
′ ′

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

i k

i k S k k

i k i S k k

i k k

k

r r

r r

r r

r r

r

( ) ( ; )

( ; ) ( ) ( ; )

( ; ) ( ) ( ; )

( ; ) ( ; )

( ; ) (4)

n
l

l l n

l
l

l
ll l n ll n l n

l
l l n

ll
l ll n l n

l
l l n

l
l l n

l
l l n

in out

in out

in out

out

where we find in the last step that the scattering matrix ′S k( )ll n is singular and thus neglect the

first term, as explained above. With the singular vectors ⃗i and ⃗a we have thus defined scattering
states which consist of purely outgoing waves. Equivalent to the fact that resonances of
quantum maps have not only right but also left eigenstates, a resonance in the three-disk system
also corresponds to a scattering state of purely incoming waves. As ψ ψ= −k kr r( ; ) ( ; )

l l
out in , this

state is simply obtained by taking the complex conjugate of ψ r( )
n

.
In order to implement this strategy, we require explicit knowledge of the scattering matrix.

Based on Greenʼs theorem, Gaspard and Rice showed that the wave function can be calculated
via four surface integrals

∑ψ = +∞
=

k I Ir( ; ) (5)
l

j
lj

1

3

along the boundary of volume D (see figure 2), and gave explicit formulas for them in terms of
Bessel and Hankel functions (see equations (A6) and (A11) in [44])

ϕ=∞I l J krr( ) exp (i ) ( ) (6)
r l
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∑π θ= −
=−∞

∞

I
a

A H kr J ka m
2i

( ) ( ) exp (i ) (7)lj
m

ljm m j m j
(1)

for a position θr( , )j j in the local polar coordinate system of disk j (see right panel in figure 2).

Here, only the Fourier coefficients of the so-called boundary wave function, which is the normal
gradient of the wave function at the disk boundaries, occur. They are defined by

 ∑ψ θ· =
=−∞

∞

k A mn r( ; ) exp (i ) (8)j l j
m

ljm j

where =j 1, 2, 3 are the labels of the disks and rj is a point on the boundary of disk j with

polar angle θj. Gaspard and Rice used equations (5), (6) and (7) in order to derive the following

expression for the scattering matrix;

∑= −′
′ ′

′ ′ ′ ′
−

′S C M D1 i . (9)ll
jj mm

lj m j m jm l jm
1

The matrices D M, and C have explicit formulas in terms of Bessel and Hankel functions,
which can be found in [44], and their connection to the expansion coefficients in equation (6) is
given by

∑=
′ ′

′ ′ ′ ′
−A C M .ljm

j m
lj m j m jm

1

From here, all the ingredients for calculating the scattering state ψ r( )
n

are known: first find the

singular vectors ⃗i and ⃗a of S according to equation (3), then use equation (4) and find the final
formula
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Figure 2. Left panel: schematic drawing of the three disks (dark gray), the volume D in
light gray and its borders ∂Di close around the disks, and ∂∞D limiting the volume at a
large distance from the scattering center. Right panel: visualization of the different polar
coordinate systems occurring in the calculations of the scattering states.



∑ ∑

∑ ∑

∑

ψ

π θ

π θ

= +

= −

= −

∞
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

i I I

a
i A H k r J k a m

a
A H k r J k a m

r( )

2i
( ) ( ) exp (i ),

2i
( ) ( ) exp (i ), (10)

n
l

l
j

lj

j m l
l ljm m n j m n j

j m
jm n m n j m n j

1

3

,

(1)

,
;

(1)

where we defined

∑=A i A . (11)jm n
l

l ljm;

The ∞I -term is neglected because we will see in equations (12) and (14) that it is small compared
to the terms containing Ajm n; . We now observe that using the decomposition equation (9), it is

possible to access the Ajm n; directly via the matrix M. This parallels the considerations of

Gaspard and Rice, who obtained the resonances kn as roots of the M-matrix instead of finding
the poles of S. Analogously, we can obtain the resonance states from the singular vectors w⃗ and

⃗v ofM instead of looking for the singular vector ⃗i of S. These singular vectors are obtained by a
standard singular value decomposition such that

∑ = ∞
′ ′

′ ′ ′ ′
−w M v . (12)

j m
j m j m jm jm

1

The comparison with equation (9) shows that the singular vector of S must be related to the
singular vector of M via

∑ =′ ′ ′ ′i C w . (13)
l

l lj m j m

Using this relation and the equality = −A CM 1, we find based on equation (11)

∑

∑∑

∑

=

=

=

= ∞

′ ′
′ ′ ′ ′

−

′ ′
′ ′ ′ ′

−

A i A

i C M

w M

v . (14)

jm n
l

l ljm

j m l
l lj m j m jm

j m
j m j m jm

jm

;

1

1

Summarizing these results, we have shown that we can calculate scattering states knowing only
their Fourier coefficients on the diskʼs boundary. These can be obtained directly by a singular
value decomposition of the matrixM. This procedure is preferable in numerical calculations due
to its speed and stability compared with decomposition of the complete scattering matrix. In the
next section we will see that these Fourier coefficients also provide an efficient way to calculate
phase-space representations of the resonant scattering states.
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2.3. Calculation of phase-space representations

If one is interested in the relation between the resonances and the underlying classical system, it
is necessary to study the resonance states not only in configuration space, but also in phase
space. For closed systems, the Wigner [53] or Husimi functions [54] can be used for this
purpose. For open systems, where each resonance corresponds to two different states (left and
right resonance states, corresponding to incoming and outgoing boundary conditions) Ermann,
Carlos and Saraceno proposed an additional phase-space representation which takes both kinds
of states into account [49]. To visualize such representations for two-dimensional billiards, it is
very common to reduce the three-dimensional energy shell to the canonical two-dimensional
Poincaré section of boundary reflections. In this section we first recall the definition of the
conventional Poincaré–Husimi distributions and then show how these can be efficiently
calculated in the S-matrix approach. Finally, we apply the idea of Ermann, Carlo and Saraceno
to the Poincaré–Husimi distributions and obtain a symmetric phase-space distribution, which
we will call ECS distribution throughout this paper.

Let us start with the definition of the Poincaré–Husimi distribution. Following [55, 56],
this distribution is obtained from the boundary function

ψ= ˆ ·u s s sn r( ) ( ) ( ( )),n n

where sr( ) is a point on the boundary of one of the disks, parameterized by the dimensionless
arclength π π∈ −s [ , ] (measured again in units of a), and ˆ sn( ) is the normal vector at this point.
The Poincaré–Husimi distribution

∫

∝

=
∂

H q p c u

c s u s s

( , )

( ) ( )d (15)

n q p k n

D
q p k n

( , ),Re

2

( , ),Re

2

n

i
n

then follows by a projection onto a coherent state

∑∝ π π

∈

− + − − +c s( ) e ,q p k
l Z

kap s q l ka s q l
( , ),

i ( 2 )
2

( 2 )2

where (q, p) are the Birkhoff coordinates on the disk. The Poincaré–Husimi function can be
normalized afterwards, but in contrast to closed systems, the normalization factor cannot be
given in closed form.

Using the Fourier decomposition equation (8) for the boundary function, we obtain at the
boundary of disk j

 

 

∫

∫

∑ ∑

∑

∝

=

π
π π

∈

− − + − − +

∈

∈

− − −

H q p A s

A s

( , ) e e d

e e d ,

n
l

p k a s q l
k a

s q l

m
jm n

ms

m
jm n

m p k a s
k a

s q

0

2
i Re ( 2 )

Re
2

( 2 )
;

i

2

;
i[ Re ]

Re
2

( )

2

n
n

n
n

2

2
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which can be further evaluated to finally give



∑∝
∈

− −H q p A( , ) e e .n
m

jm n
mq p k a m k a

;
i ( Re ) /(2 Re )

2

n n
2

Again only the Fourier coefficients =A vjm n jm; of the resonance state appear in the expression,

which thus can be evaluated knowing the singular vector ⃗v . In contrast to equation (10) for the
wave function, the formula for the Poincaré–Husimi distribution contains no Bessel and Hankel
functions but only exponential functions, and can thus be calculated much faster.

The simple but efficient idea of Ermann, Carlo and Saraceno is to take not only the left or
the right resonant states for the definition of the Husimi distribution, but also the product of the
projection of both states on the coherent state [49]. Applied to the definition of the
Poincaré–Husimi representation, equation (15), this leads to

∝H q p c u u c( , )n
ECS

q p k n
R

n
L

q p k( , ), ( , ),n n

where un
L and un

R are the boundary functions of the left and right resonance states, respectively.
Since these states are related by complex conjugation, the procedure described above directly
carries over to this representation.

3. Numerical results

Via the resonance wave functions and the associated Poincaré–Husimi and ECS distributions,
we are now able to study the properties of the resonance states in the three-disk system both in
configuration space and in phase space. We first verify the observations from quantum maps
that long-lived and short-lived states localize on and off the classical trapped sets, respectively.
We then turn to the correlations of these properties along the resonance chains. This allows us
to identify a pairwise interaction of chains driven by the interplay of the fundamental periodic
orbits. Furthermore, we gain insight into the gradual merging with additional chains as the
phase-space resolution of the trapped sets increases in the semiclassical limit of large kRe n.
This illuminates how the key mechanism behind the fractal Weyl law in quantum maps extends
to autonomous systems.

3.1. Localization on classical phase-space structures

Figure 3 shows three examples of long-lived resonance states. The corresponding resonances
are marked by black crosses on the red chain in figure 1. The top panel shows an example of
localization around the orbit 0. This is already seen in the Poincaré–Husimi distribution, but
comes out prominently in the ECS distribution, where the intensity accumulates on the region
 0

(1) of the trapped set. We also note that the wave function shows a dominant structure around
the bouncing ball orbit 0, and a nodal line around orbit 1. In contrast, the wave function in the
middle panels in figure 3 shows a clear enhancement on the triangular orbit 1, which is
confirmed by the phase-space localization in the Poincaré–Husimi and ECS distributions. Note
that in figure 1, both of these states are near a crossing of the red chain with the blue chain. The
bottom panels in figure 3 illustrate the situation away from these crossings. In the ECS
distribution, the resonance states now localize on both fundamental orbits, while in the
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conventional Poincaré–Husimi distribution, they also occupy the region between these orbits on
the backward trapped set. The wave function shows an enhanced intensity on both fundamental
orbits.

In contrast, the short-lived scattering states, lying deeper in the complex k-plane, avoid the
regions around the periodic orbits. A typical example is given in figure 4. Here the wave
function lives outside the scattering region and locates on the cusps of the backward trapped set
in the Poincaré–Husimi representation. The ECS distribution forms rings or half rings around
the trapped set.

As expected, the resonance states for the three-disk system show the same localization
behavior (on and off the trapped set for long-lived and short-lived resonances) as has already

New J. Phys. 16 (2014) 033029 T Weich et al
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Figure 3.Visualizations of three long-lived resonance states (indicated in figure 1 by the
black crosses on the red chain). Left: the Husimi distribution in a color code where
white denotes vanishing density and black denotes maximal density. Also indicated are
the boundaries of the trapped set of order one (black lines) and the positions of the
fundamental orbits 0 and 1 (dots). Center: analogous plot of the ECS distribution. Right:
intensity of wave function in the configuration space in the color code ranging from
white to blue, with the three disks plotted in black. The top panels show the resonance
state at = −k a 23.66 0.26in , which displays localization on orbit 0. The middle panels
show the resonance at = −k a 43.47 0.20in , which is localized on orbit 1. The bottom
panels refer to the resonance at = −k a 35.99 0.15in ; in this case, the state is localized on
both orbits.



been reported for quantum maps. However, in quantum maps these resonances do not organize
into chains. We thus now proceed to the analysis of this additional aspect.

3.2. Interaction and correlations of resonance chains

Looking at the resonances in figure 1, the chain structure is the most striking feature. As
discussed in the introduction, such resonance chains are a common feature of open quantum
mechanical systems with ballistic classical mechanics, or analogous wave-optical systems.
While these chains are commonly associated with classical orbits, we now show that one can
develop a much more detailed understanding by considering the interactions of the chains, and
complement these with the correlations of the resonance states along the chains.

The interactions occur in the form of systematic crossings of pairs of chains that are
otherwise well separated. We focus on the two chains of long-lived resonances (shown in more
detail in the top panel of figure 5), which display a systematic pattern of crossings in the region
of <k aRe 100n , while a merging with the chains of originally short-lived resonances is
observed at larger k aRe n . Since we consider the spectrum of the A2 symmetry-reduced three-
disk system, no further symmetries exist that could be responsible for the crossings of chains.
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Figure 4. The same as in figure 3, but for the short-lived resonance at
= −k a 54.87 0.71in , and with an additional panel (bottom right) showing a close-up

of the ECS distribution (now placed bottom left). The phase-space distributions now
avoid the trapped set. In the close-up, the orange areas are the forward and backward
trapped sets of order two, while the black circles indicate the position of some higher-
order periodic orbits.



We have already seen that the states along these chains of long-lived states localize in the
regions around the fundamental orbits (see figure 3). One reason why the visual impression of
these chains is that strong is the fact that the spacing Δ kaRe between consecutive resonances
in each chain is almost constant, and approximately equal to 1.5 (see the middle panel of
figure 5). This value corresponds to a length of π =a a/1.5 2.094 , which has been observed
[50, 57] to coincide well with half the length =L a/2 20 and =L a/2 2.131 of the fundamental
periodic orbits in the symmetry-reduced system. However, figure 3 already suggests that the
chains do not simply arise from a WKB-quantization of one of these orbits. The three resonance
states shown there belong to the same (red) chain, but localize either on orbit 0, on orbit 1, or on
both orbits. Thus it is not possible to associate one chain to a single orbit only.

A more detailed inspection of the resonance spacings in figure 5 supports this observation.
The spacings generally do not coincide exactly with the spacing π= =k a a L2 / 1.570 0 and

π= =k a a L2 / 1.471 1 expected from the fundamental orbits, but oscillate between these two
values, which are indicated by the dashed horizontal lines. Only close to the crossings of the red
and blue chains do the spacings approach k0 and k1. An example of this is the situation at the
position of the vertical black line. The ECS distributions of the states on each chain closest to
the crossings are shown in figure 6. As already seen in the the top and middle panels of figure 3,
such states are strongly localized on the regions around a fundamental orbit, but now we can
confirm that the orbit is selected corresponding to the observed resonance spacing.

At positions where the resonance chains separate from each other, the resonance spacings
take values between k0 and k1. This agrees with the localization pattern observed in the bottom
panel of figure 3. As a matter of fact, we see that the spacings themselves form chains and
display systematic crossings. This explains why states on the same chain can be localized on
either of the two fundamental orbits (see again the top and middle panels of figure 3), and
indeed suggests the existence of systematic oscillations in the localization pattern.
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Figure 5. The resonance spacings Δ kaRe (middle panel) and the phase-space
asymmetry defined in equation (16) (lower panel) for the resonances of the two chains
of long-lived resonances (highlighted in blue and red in the upper panel). The vertical
line marks the position of a crossing near =k aRe 46n . The two horizontal dashed lines
in the middle panel indicate the expected resonance spacing for a WKB quantization of
the two fundamental orbits, 0 and 1.



In order to quantify the localization on the fundamental orbits, we introduce the quantity



 

∫

∫
=

∪

k
H q p dqdp

H q p q p
Asym( )

( , )

( , ) d d
. (16)n

n

n

ECS

ECS

0
(1)

0
(1)

1
(1)

This measures the asymmetry of the projection of the ECS distribution onto the subsets
 1

(1) and  0
(1) of the first-order trapped set, associated with orbits 0 and 1. The dependence of

this quantity on k aRe n is shown in the bottom panel of figure 5. As expected, near the crossing
of resonance chains the asymmetry approaches the extremal values of 0 and 1, indicating
complete localization on  0

(1) or  1
(1). In between these values the asymmetry indicates

localization in both of these regions. Overall, the asymmetry displays oscillations that coincide
very well with the oscillations of the resonance spacings. Similar oscillations are observed in
the Poincaré–Husimi distribution. This is verified in figure 7, which shows the Poincaré–Husimi
distributions of consecutive resonances on both chains while moving along the chains.

The observed localization patterns suggest the existence of systematic correlations of the
states of interacting chains. Resonances at similar kaRe belonging to different chains tend to
have phase-space representations that avoid each other; in figure 7, this is manifested in a
clockwise shift of the support on the backward trapped set as one moves along the resonance
chain. On the other hand, a finite number of correlations is expected as one compares
resonances on interacting chains at different kaRe .

To quantify such correlations, we study the averaged pairwise overlap

∫∑Δ =
+ − Δ

=
+C n H q p H q p q p( )

1
max 1 min

( , ) ( , ) d d (17)ij
n

n
i

n n
j

min

max
( ) ( )

of Poincaré–Husimi representations displaced by a fixed number Δn of resonances along the
chains. Here, i and j label the different chains, so that the case i = j corresponds to an
autocorrelation function while ≠i j signifies cross-correlations. We weighted the overlaps by
taking the square root, as the distributions already correspond to a probability density.
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Figure 6. The ECS distribution of resonances at = −k a 45.60 0.21in and
= −k a 46.44 0.22in , sitting closest to the crossing of resonance chains indicated by

the vertical line in figure 5.
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Figure 7. Poincaré–Husimi distributions of consecutive resonances belonging to the red
chain (left column) and the blue chain (right column). These resonances are marked by
the black crosses in the upper panel.



Figure 8 shows (in the left panel) the correlation functions for resonances in the range
⩽ ⩽ka50 Re 100, where chain 1 (blue in figure 1) interacts with chain 2 (red), but is well

separated from chains 3 and 4 (orange and pale green, respectively). The autocorrelation
function ΔC n( )11 starts at a maximum and then displays oscillations that correspond well to the
oscillations in figure 5, with the first minimum arising at the distance at which the localization
pattern of the resonance states shifts between the two fundamental orbits. As expected, the
cross-correlation function ΔC n( )12 with the interacting chain shows a complementary oscillatory
behavior, while correlations C13 and C14 are small.

So far we have focused our discussion on the pairwise interaction of the two chains of
longest-lived resonances, which are well separated from the other chains for <kaRe 100.
However, the fact that the level spacing along the chains is approximately constant, together
with the fractal Weyl law predicting an exponent of the counting function strictly greater than
one, implies that successively more and more chains have to merge from the short-lived to the
long-lived regime. Such a first merging is observed around ≈kaRe 100, after which all four
chains become entangled. Indeed, the interactions become very rich, and it is difficult to follow
the chains individually through some of the crossings. As seen in figure 5, both the resonance
spacings as well as the asymmetry of the phase-space localization then display a more erratic
behavior. The effect on the correlation functions is illustrated in the right panel of figure 8,
which is obtained from the resonances in the range ⩽ ⩽ka100 Re 200. There is an indication
of complementary oscillations in the auto-correlation function ΔC n( )11 and the cross-correlation
function C14, while in general the cross-correlations with all the chains are now of similar
magnitude.

As the merging of different chains is responsible for the fractal Weyl law, it should come
along with a better resolution of the fractal trapped set—and indeed figure 9 shows that in the
regime where the four chains have already merged, the resonance states on all four chains
populate the classical trapped set, and thus can be classified as long-lived. Furthermore, one
observes that these distributions already bend around different regions of the second-order
trapped set, which is an indication that the phase-space resolution at this frequency is already
high enough to resolve the second-order trapped set.

This increasing population of states on the classical trapped set has been previously
observed in quantum maps, where this effect has been identified as the key mechanism behind
the fractal Weyl law; our observations are a strong indication that this picture applies also to
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Figure 8. Correlation functions C11, C12, C13 and C14, defined in equation (17), calculated
in the range ⩽ ⩽ka50 Re 100 (left) and ⩽ ⩽ka100 Re 200 (right).
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Figure 9. The ECS distributions of the four nearby resonances at ≈k aRe 195n from
four different chains (indicated by crosses in the upper panel; see in particular the zoom-
in in the lower right corner). The black lines again show the borders of the forward and
backward trapped set of order one. The light blue rectangles indicate the trapped set of
order two. One can see that the four states fill the trapped set of order one
complementarily and already bend around the structures of the order two trapped set.



autonomous systems. However, since quantum maps generally do not display resonance chains,
the detailed pathway via the interaction and merging of chains is a unique additional feature of
autonomous systems.

4. Quantum graph model of resonance chains

In this section we present a quantum graph model which provides a phenomenological
explanation of our numerical findings on interacting resonance chains in the three-disk system,
focusing on the regime of pairwise crossings for <kaRe 100. The model can be motivated by
inspecting the semiclassical cycle expansion of the zeta function and therefore reproduces the
salient features of the resonance spectrum. However, being based on a quantum graph it also
allows us to extract wave function information, which illuminates the origin of the semiclassical
localization on the short periodic orbits and the k-dependent correlations between the resonance
states.

The semiclassical zeta function provides a quantization condition based on the periodic
orbits in the system [43, 45, 58]. In the cycle expansion, the contributions of these orbits are
truncated in a manner that accounts for the relations between long orbits and combinations of
short orbits in the system.

The semiclassical zeta function of the A2-symmetry reduced three-disk system up to
second order in the cycle expansion reads [45]

ζ
Λ Λ Λ Λ Λ

= + − + −−
− −

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k( ) 1

1
e

1
e

e 1
e . (18)kL kL

k L L L
k L L1

0

i

1

i
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01 0 1

i ( )0 1

01 0 1

0 1

Here, the three shortest primitive periodic orbits appear, with the two fundamental ones
denoted by 0 and 1 of the first order and the only second-order orbit denoted by 01. These orbits
are illustrated in the left panel of figure 10, which displays the fundamental domain of a
desymmetrized version of the system exploiting the A2 symmetry. All the properties of these
orbits: their lengths =L a40 , =L a4.271 , =L a8.3201 , and their stabilities Λ = 9.900 ,
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Figure 10. The panel on the left shows a schematic representation of the fundamental
domain of the three-disk system ( =R a/ 6) and the three shortest periodic orbits (solid
lines: fundamental orbits 0 (orange) and 1 (blue); dashed lines: their shadowing orbit
01). Right: the semiclassical resonances obtained from the cycle expansion equation
(18) (top panel), as well as the corresponding resonance spacings, Δ kRe n (bottom
panel).



Λ = 11.771 , and Λ = 124.0901 refer to this desymmetrized system. Note that + ≈L L L0 1 01 and
Λ Λ Λ≈0 1 01. The principle that the properties of longer orbits are well approximated by
combinations of shorter ones is the central idea of the cycle expansion, leading to an extremely
fast convergence [45].

The zeros of ζ− k( )1 give the semiclassical resonances of the system, which are known
[45, 50] to coincide well with the exact quantum mechanical ones, except for the first few. In
the right panel of figure 10 we present the semiclassical resonances for the second-order cycle
expansion and find two chains of resonances (which is connected to the fact that

≈ ≈L L L /20 1 01 ; see the discussion at the end of this section). For <kaRe 100, where the
two chains of longest-lived resonances are isolated from the other resonance chains, we see, as
already reported [50, 57], an excellent agreement (compare figure 1). For larger kaRe , where
four chains interact with each other, higher orders in the cycle expansion have to be used (cf
discussion in [50, 57]).

In quantum graphs, orbits of shorter length naturally combine into composite orbits of
longer length [58]. Thus, we consider a graph composed of two edges of length l0 and l1, on
which orbits 0 and 1 are localized (see figure 11), connected by a node that approximately
combines these orbits into the longer orbit 01. The nodes at the left and right ends of the
graph describe leakage out of these orbits. Quantum-mechanically, these end nodes are
described by reflection coefficients r0 and r1, while the node connecting both edges can be
characterized by a 2 × 2 coupling matrix S, which can be seen as a subblock of a scattering
matrix which includes further leakage out of these periodic orbits. We parameterize this
(nonunitary) matrix as

= ( )S r t
t r , (19)

where r and t are complex numbers.
Each edge supports counter-propagating plane waves with wave function

ψ = + −+ −a kx a kxexp (i ) exp ( i )
p p p , with p = 0 on edge 0 (− < <l x 00 ) and p = 1 on edge 1

( < <x l0 1). The matching conditions at the three nodes of the quantum graph read
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Figure 11. Open quantum graph model consisting of two coupled edges of length
=l L /20 0 and =l L /21 1 , leaky end nodes described by reflection coefficients r0 and r1,

and a connecting node described by a coupling matrix S (see equation (19)). The
coefficients −a0 ,

+a0 ,
−a1 and +a1 are the amplitudes of plane waves running up and down

the two edges.
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This set of equations admits non-zero solutions only if k satisfies
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leading to the quantization condition of the quantum graph.
We now observe that this condition approximately matches up with the cycle expansion

expression equation (18). In order to translate between both models, we write =− −e k L L Li ( )01 0 1  k( )
and set r = 1 (the motivation for this choice is discussed at the end of this section). One can then
express all the parameters of the quantum graph in terms of the parameters of the cycle
expansion. In particular, we find =l L /20 0 , =l L /21 1 , so that orbit 0 corresponds to running up
and down edge 0, orbit 1 corresponds to running up and down edge 1, and orbit 01
approximately corresponds to running up and down the whole graph. Furthermore,
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Let us now exploit the implications of the correspondence between the cycle expansion
and the quantum graph. Including the full k-dependence of all parameters, both produce the
same resonance spectrum (see figure 10). Note that from ≈ +L L L01 0 1, the function  k( ) is
only slowly varying. Thus it is justified to locally neglect the k dependence and approximate
 ≈k( ) const. This approximation would also be the natural choice for the quantum
graph model as it corresponds to a k-independent scattering matrix. Setting  to a generic
complex value with | | ≈k( ) 1 (illustrated for  = − +0.63 i0.79 in the top panel of
figure 12(a)), we can indeed reproduce the typical crossing of resonance chains displayed both
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Figure 12. Panel (a) shows the resonance chains of the quantum graph for a generic k-
independent value  = − +0.63 i0.79, corresponding to the typical scenario where the
oscillations of kIm n (top) are out of phase with the oscillations of Δ kRe n (middle) and
0 (bottom). The black dots mark the resonances, for which the Husimi distributions are
presented in figure 13. Panel (b) illustrates the special case  = −1, where these
quantities all oscillate in phase.



by the cycle expansion (see figure 10) as well as by the full numerical results of the three-disk
system (see figure 1, in the range < <ka0 Re 100). Furthermore, we also reproduce the
oscillations of Δ k aRe n , with the maxima and minima coinciding with the crossings of the
chains (middle panel of figure 12(a)). This behavior is observed for almost all choices of  .
Only for  | | ≪ | |Im Re do we observe a deviation from the generic behavior as shown in
figure 12(b) for  = −1, where the crossings of the chains are now enforced at the crossings of
Δ k aRe n . Moreover, the amplitude of the oscillations in the resonance chains is then much
reduced, while the amplitude of oscillations in Δ kaRe remains the same (note the different
scales in panel (a) and (b)). This effect can also be found in the exact numerical results (and in
the cycle expansion) in the region ∼kaRe 65, which corresponds to the exceptional value
 ≈ −(65) 1. The chains of the exact quantum resonances have an extra crossing in this region
and smaller oscillation amplitudes, while the oscillations in Δ kaRe are not affected.

Another aspect that sets the quantum graph model apart from the cycle expansion is that it
contains information on the resonance wave functions. This information is extracted by
determining the amplitudes + − + −a a a a( , , , )0 0 1 1 from equation (20), with =k kn set to a solution of

the quantization condition (21). We normalize the coefficients such that ∫ ψ =
−

x x( ) d 1
l

l 2

0

1
, and

then define  ∫ ψ=
−

x x( ) d
l0

0 2

0

,  ∫ ψ= = −x x( ) d 1
l

1 0

2
0

1
as the probabilities to be

situated on edge 0 or edge 1, respectively. The bottom panels of figures 12(a) and (b) show 0

for the two resonance chains. In both cases, the oscillations of 0 remain in phase with the
oscillations in Δ kRe n. This agrees well with the behavior of the similarly defined asymmetry
parameter (16) in the three-disk system, shown in figure 5.

This qualitative agreement also extends to the behavior of the Husimi functions. The
Husimi functions are now defined by a convolution of the wave function with a conventional
coherent state,

ψ∝H q p c( , ) ,n
B

q p k n( , ),Re

2

n

where

∝ − − −c x( ) e e .q p k
k x q kp x q

( , ),

1
2

( ) i ( )2

The Husimi functions are normalized to ∫ =q p H q pd d ( , ) 1n
B , while the definition of the

correlation function coincides with equation (17). For illustration, some Husimi functions of
resonances in the quantum graph are shown in figure 13. The chosen resonances (marked by
black dots in figure 12) once more illustrate the oscillating localization behavior on the two
edges. Furthermore, the auto-correlations and cross-correlations (see figure 14) display the
expected complementary oscillations, analogously to figure 8.

To conclude this section we briefly discuss two general features of the quantum
graph model. First, we note that the mapping of parameters in equation (22) is not unique; it
relies on our choice to set r = 1. With this choice, the reflection coefficients r0 and r1 depend only
on the properties of orbit 0 and orbit 1, respectively, which appears natural as one could
consider the limit of a system in which these orbits are independent of each other (this
corresponds to a putative system with t = 0, where the two edges are not coupled). This
particular choice of r = 1 also implies that the scattering matrix between the two edges is not
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unitary. Recall, however, that we only find exact correspondence with the cycle expansion
when we take the k-dependence of the matching coefficients into account. Thus our k-
independent scattering matrix corresponds to an approximation of the scattering matrix which
has already been meromorphically continued away from the real axis, and it is therefore natural
that it is nonunitary. In principle, however, the mapping is not unique, since the parameters in
the quantum graph can be scaled as α α α α→ − −r t r r r t r r( , , , ) ( , , , )0 1

1
0

1
1 , for some (possibly

complex) constant α, without changing the quantization condition (21). The wave amplitudes
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Figure 13. Husimi functions for the 8th (left) and 16th (right) resonance of the two
resonance chains (top and bottom), for the same parameters as in figure 12(a) (where the
resonances are marked by black dots). The lengths l0 and l1 as well as the position of the
connecting node are indicated by vertical lines. The horizontal lines mark the classical
values of = ±p 1.

Figure 14. Correlations C11 and C12 of the Husimi functions in the quantum
graph model, with the same parameters as in figure 12(a) ( − =max min 30).



then scale according to α α→+ − + − + − + −a a a a a a a a( , , , ) ( , , , )0 0 1 1 0 0 1 1 (modulo overall normal-

ization, ∫ ψ =
−

x x( ) d 1
l

l 2

0

1
). Therefore, this freedom affects only the relative weight of the two

counter-propagating components on each edge, and does not mix the amplitudes of different
edges. Indeed, we verified that the probabilities 0 and the correlations of the Husimi function
become insensitive to this freedom in the translation once kRe is large, as is the case
throughout the region of interest.

Secondly, it is worth pointing out that the fact that we describe two interacting resonance
chains is not directly related to the existence of two edges in the quantum graph. The actual
origin of the two chains is the fact that ≈l l0 1. In general, we observe that +n 1 chains appear
when ≈l nl1 0, indicating a surprising richness of the resonances in this simple quantum
graph (see figure 15). By extension, we would expect to find a similar richness of resonance
chains in quantum chaotic systems in which the leading order of the cycle expansion is given by
the interaction of two short orbits of approximately commensurable length. Possible candidates
fulfilling this requirement are non-symmetric three-disk systems or Schottky surfaces [28].

5. Conclusions

In this article, we linked the properties of interacting resonance chains in an autonomous open
quantum-chaotic system, the three-disk system, to underlying phase-space structures consisting
of trapped sets and periodic orbits. This allowed us to show that modulations and correlations of
various spectral and spatial properties of the states along the chains arise from the interplay
between different periodic orbits. Furthermore, we found first indications that the successive
merging of resonance chains in the semiclassical limit is connected to the increasing phase-
space resolution of the trapped set, thereby connecting the ubiquitous phenomenon of resonance
chains with a fundamental physical mechanism that is also at play in the fractal Weyl law.
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Figure 15. Resonance chains of the quantum graph with the same stabilities as in
figure 10, =l 20 and k-independent  = − +0.63 i0.79, and different l1. =l 4.251 (top)
and =l 6.51 (bottom), which corresponds to n = 2 and n = 3, leading to three and four
chains respectively.



At the wave numbers accessed in this work, only the first order of the trapped set becomes
clearly resolved. It is therefore desirable for future works to delve deeper into the semiclassical
limit where higher orders can be resolved. Only in this regime does one encounter the full range
of questions related to the spectral gaps of semiclassical [32, 43, 59–62] and random-matrix
[63–65] origin (recently observed in experiments [48]), mode non-orthogonality [65–71]
(determining the line widths of microcavity lasers [72–74]), and local spectral statistics
(presently far better understood in systems that obey random-matrix theory [75–77], which,
however, cannot explain the fractal Weyl law as it assumes a vanishing Ehrenfest time [78]).
Similarly, we restricted the analysis of the cycle expansion to the second order in stability and
the graph to two edges, which limits our phenomenological analogy with quantum graphs to
periodic interactions of chains. Finally, it is also desirable to confirm the general picture
developed here for other systems, including systems with two fundamental orbits of different
near-commensurability for which the simple quantum-graph model already predicts interactions
of a larger number of chains.

Acknowledgments

We thank S Nonnenmacher, A Bäcker and B Eckhardt for helpful discussions. This work was
supported by the Forschergruppe 760 ‘Scattering systems with complex dynamics’. TW
acknowledges the financial support of the ‘German National Academic Foundation’, UK, the
support by the CNRS-INP via the program PEPS-PTI, and CP and HS the support by EPSRC
via grant EP/J019585/1 ‘Orbit-Based Methods for Multielectron Systems in Strong Fields’.

References

[1] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
[2] Nazarov Y V and Blanter Y M 2009 Quantum Transport: Introduction to Nanoscience vol 12 (Cambridge:

Cambridge University Press) p 45
[3] Gmachl C, Capasso F, Narimanov E, Nöckel J, Stone A, Faist J, Sivco D and Cho A 1998 Science 280 1556
[4] Harayama T and Shinohara S 2011 Laser Photonics Rev. 5 247–71
[5] Altmann E G, Portela J and Tél T 2013 Rev. Mod. Phys. 85 869
[6] Novaes M 2013 J. Phys. A 46 143001
[7] Nonnenmacher S 2011 Nonlinearity 24 R123
[8] Casati G, Maspero G and Shepelyansky D L 1999 Physica D 131 311
[9] Sjöstrand J 1990 Duke Math. J. 60 1

[10] Zworski M 1999 Inventiones mathematicae 136 353
[11] Lu W T, Sridhar S and Zworski M 2003 Phys. Rev. Lett. 91 154101
[12] Guillopé L, Lin K K and Zworski M 2004 Commun. Math. Phys. 245 149
[13] Nonnenmacher S and Zworski M 2005 J. Phys. A 38 10683
[14] Sjöstrand J and Zworski M 2007 Duke Math. J. 137 381
[15] Schomerus H and Tworzydło J 2004 Phys. Rev. Lett. 93 154102
[16] Strain J and Zworski M 2004 Nonlinearity 17 1607
[17] Christianson H 2007 Canad. J. Math. 59 311
[18] Ramilowski J A, Prado S D, Borondo F and Farrelly D 2009 Phys. Rev. E 80 055201(R)
[19] Pedrosa J M, Carlo G G, Wisniacki D A and Ermann L 2009 Phys. Rev. E 79 016215
[20] Kopp M and Schomerus H 2010 Phys. Rev. E 81 026208

New J. Phys. 16 (2014) 033029 T Weich et al

24

http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1126/science.280.5369.1556
http://dx.doi.org/10.1002/lpor.200900057
http://dx.doi.org/10.1103/RevModPhys.85.869
http://dx.doi.org/10.1088/1751-8113/46/14/143001
http://dx.doi.org/10.1088/0951-7715/24/12/R02
http://dx.doi.org/10.1016/S0167-2789(98)00265-6
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.1007/s002220050313
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1007/s00220-003-1007-1
http://dx.doi.org/10.1088/0305-4470/38/49/014
http://dx.doi.org/10.1215/S0012-7094-07-13731-1
http://dx.doi.org/10.1103/PhysRevLett.93.154102
http://dx.doi.org/10.1088/0951-7715/17/5/003
http://dx.doi.org/10.4153/CJM-2007-013-4
http://dx.doi.org/10.1103/PhysRevE.80.055201
http://dx.doi.org/10.1103/PhysRevE.79.016215
http://dx.doi.org/10.1103/PhysRevE.81.026208


[21] Ermann L and Shepelyansky D L 2010 Eur. J. Phys. B 75 299
[22] Ermann L, Chepelianskii A D and Shepelyansky D L 2011 Eur. J. Phys. B 79 115
[23] Pedrosa J M, Wisniacki D, Carlo G G and Novaes M 2012 Phys. Rev. E 85 036203
[24] Körber M J, Michler M, Bäcker A and Ketzmerick R 2013 Phys. Rev. Lett. 111 114102
[25] Wiersig J and Main J 2008 Phys. Rev. E 77 036205
[26] Schomerus H, Wiersig J and Main J 2009 Phys. Rev. A 79 053806
[27] Eberspächer A, Main J and Wunner G 2010 Phys. Rev. E 82 046201
[28] Borthwick D 2013 arXiv:1305.4850
[29] Potzuweit A, Weich T, Barkhofen S, Kuhl U, Stöckmann H J and Zworski M 2012 Phys. Rev. E 86 066205
[30] Keating J P, Novaes M, Prado S D and Sieber M 2006 Phys. Rev. Lett. 97 150406
[31] Nonnenmacher S and Rubin M 2007 Nonlinearity 20 1387
[32] Nonnenmacher S and Zworski M 2009 Acta Mathematica 203 149
[33] Keating J P, Nonnenmacher S, Novaes M and Sieber M 2008 Nonlinearity 21 2591
[34] Nazmitdinov R G, Sim H S, Schomerus H and Rotter I 2002 Phys. Rev. B 66 241302
[35] Bulgakov E N and Rotter I 2006 Phys. Rev. E 73 066222
[36] Wiersig J 2003 Phys. Rev. A 67 023807
[37] Lebental M, Lauret J S, Zyss J, Schmit C and Bogomolny E 2006 Phys. Rev. A 75 033806
[38] Dubertrand R, Bogomolny E, Djellali N, Lebental M and Schmit C 2006 Phys. Rev. A 77 013804
[39] Wiersig J and Main J 2008 Phys. Rev. E 77 036205
[40] Ryu J W and Kim S W 2013 arXiv:1305.6698
[41] Berry M and Mount K 1972 Rep. Prog. Phys. 35 315
[42] Gaspard P and Rice S A 1989 J. Chem. Phys. 90 2225
[43] Gaspard P and Rice S A 1989 J. Chem. Phys. 90 2242
[44] Gaspard P and Rice S A 1989 J. Chem. Phys. 90 2255
[45] Cvitanović P and Eckhardt B 1989 Phys. Rev. Lett. 63 823
[46] Lu W, Rose M, Pance K and Sridhar S 1999 Phys. Rev. Lett. 82 5233
[47] Pance K, Lu W and Sridhar S 2000 Phys. Rev. Lett. 85 2737
[48] Barkhofen S, Weich T, Potzuweit A, Stöckmann H J, Kuhl U and Zworski M 2013 Phys. Rev. Lett. 110

164102
[49] Ermann L, Carlo G G and Saraceno M 2009 Phys. Rev. Lett. 103 054102
[50] Wirzba A 1999 Phys. Rep. 309 1
[51] Cvitanović P and Eckhardt B 1993 Nonlinearity 6 277
[52] Trefethen L 1997 SIAM Review 39 383–406
[53] Wigner E P 1932 Phys. Rev. 40 749
[54] Husimi K 1940 Proc. Phys. Math. Soc. Jpn. 22 264–314
[55] Crespi B, Perez G and Chang S 1993 Phys. Rev. E 47 986
[56] Bäcker A, Fürstberger S and Schubert R 2004 Phys. Rev. E 70 036204
[57] Cvitanović P, Vattay G and Wirzba A 1997 Classical, Semiclassical and Quantum Dynamics in Atoms

(Heidelberg: Springer Verlag) pp 29–62
[58] Kottos T and Smilansky U 1999 Ann. Phys. NY 274 76
[59] Ikawa M 1988 Ann. Inst. Fourier 38 113
[60] Naud F 2014 Invent. Math. 195 723
[61] Naud F 2005 Ann. Sci. Ecole Norm. Sup. 38 116
[62] Petkov V and Stoyanov L 2010 Anal. PDE 3 427
[63] Fyodorov Y V and Sommers H J 1997 J. Math. Phys. 38 1918–81
[64] J Sommers H, Fyodorov Y and Titov M 1999 J. Phys. A 32 L77
[65] Schomerus H, Frahm K, Patra M and Beenakker C 2000 Physica A 278 469
[66] Chalker J T and Mehlig B 1998 Phys. Rev. Lett. 81 3367–70
[67] Fyodorov Y and Mehlig B 2002 Phys. Rev. E 66 045202

New J. Phys. 16 (2014) 033029 T Weich et al

25

http://dx.doi.org/10.1140/epjb/e2010-00144-0
http://dx.doi.org/10.1140/epjb/e2010-10774-7
http://dx.doi.org/10.1103/PhysRevE.85.036203
http://dx.doi.org/10.1103/PhysRevLett.111.114102
http://dx.doi.org/10.1103/PhysRevE.77.036205
http://dx.doi.org/10.1103/PhysRevA.79.053806
http://dx.doi.org/10.1103/PhysRevE.82.046201
http://arXiv.org/abs/1305.4850
http://dx.doi.org/10.1103/PhysRevE.86.066205
http://dx.doi.org/10.1103/PhysRevLett.97.150406
http://dx.doi.org/10.1088/0951-7715/20/6/004
http://dx.doi.org/10.1007/s11511-009-0041-z
http://dx.doi.org/10.1088/0951-7715/21/11/007
http://dx.doi.org/10.1103/PhysRevB.66.241302
http://dx.doi.org/10.1103/PhysRevE.73.066222
http://dx.doi.org/10.1103/PhysRevA.67.023807
http://dx.doi.org/10.1103/PhysRevA.75.033806
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevE.77.036205
http://arxiv.org/abs/1305.6698
http://dx.doi.org/10.1088/0034-4885/35/1/306
http://dx.doi.org/10.1063/1.456017
http://dx.doi.org/10.1063/1.456018
http://dx.doi.org/10.1063/1.456019
http://dx.doi.org/10.1103/PhysRevLett.63.823
http://dx.doi.org/10.1103/PhysRevLett.82.5233
http://dx.doi.org/10.1103/PhysRevLett.85.2737
http://dx.doi.org/10.1103/PhysRevLett.110.164102
http://dx.doi.org/10.1103/PhysRevLett.110.164102
http://dx.doi.org/10.1103/PhysRevLett.103.054102
http://dx.doi.org/10.1016/S0370-1573(98)00036-2
http://dx.doi.org/10.1088/0951-7715/6/2/008
http://dx.doi.org/10.1137/S0036144595295284
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRevE.47.986
http://dx.doi.org/10.1103/PhysRevE.70.036204
http://dx.doi.org/10.1006/aphy.1999.5904
http://dx.doi.org/10.5802/aif.1137
http://dx.doi.org/10.1007/s00222-013-0463-2
http://dx.doi.org/10.1016/j.ansens.2004.11.002
http://dx.doi.org/10.2140/apde
http://dx.doi.org/10.1063/1.531919
http://dx.doi.org/10.1088/0305-4470/32/5/003
http://dx.doi.org/10.1016/S0378-4371(99)00602-0
http://dx.doi.org/10.1103/PhysRevLett.81.3367
http://dx.doi.org/10.1103/PhysRevE.66.045202


[68] Keating J P, Novaes M and Schomerus H 2008 Phys. Rev. A 77 013834
[69] Poli C, Savin D V, Legrand O and Mortessagne F 2009 Phys. Rev. E 80 046203
[70] Fyodorov Y V and Savin D V 2012 Phys. Rev. Lett. 108 184101
[71] Savin D and De Vaulx J B 2013 Acta Phys. Pol. A 124 1074
[72] Patra M, Schomerus H and Beenakker C W J 2000 Phys. Rev. A 61 023810
[73] Schomerus H 2009 Phys. Rev. A 79 061801
[74] Chong Y D and Stone A D 2012 Phys. Rev. Lett. 109 063902
[75] Kuhl U, Höhmann R, Main J and Stöckmann H J 2008 Phys. Rev. Lett. 100 254101
[76] Poli C, Dietz B, Legrand O, Mortessagne F and Richter A 2009 Phys. Rev. E 80 035204
[77] Poli C, Luna-Acosta G A and Stöckmann H J 2012 Phys. Rev. Lett. 108 174101
[78] Schomerus H and Jacquod P 2005 J. Phys. A 38 10663

New J. Phys. 16 (2014) 033029 T Weich et al

26

http://dx.doi.org/10.1103/PhysRevA.77.013834
http://dx.doi.org/10.1103/PhysRevE.80.046203
http://dx.doi.org/10.1103/PhysRevLett.108.184101
http://dx.doi.org/10.12693/APhysPolA.124.1074
http://dx.doi.org/10.1103/PhysRevA.61.023810
http://dx.doi.org/10.1103/PhysRevA.79.061801
http://dx.doi.org/10.1103/PhysRevLett.109.063902
http://dx.doi.org/10.1103/PhysRevLett.100.254101
http://dx.doi.org/10.1103/PhysRevE.80.035204
http://dx.doi.org/10.1103/PhysRevLett.108.174101
http://dx.doi.org/10.1088/0305-4470/38/49/013

	1. Introduction
	2. Model and methods
	2.1. The three-disk system
	2.2. Calculation of scattering states
	2.3. Calculation of phase-space representations

	3. Numerical results
	3.1. Localization on classical phase-space structures
	3.2. Interaction and correlations of resonance chains

	4. Quantum graph model of resonance chains
	5. Conclusions
	Acknowledgments
	References



