
REVIEW

Assessing the utility of statistical adjustments for

imperfect detection in tropical conservation science

Cristina Banks-Leite1,2*, Renata Pardini3, Danilo Boscolo4, Camila Righetto Cassano2,5,

Thomas P€uttker3, Camila Santos Barros2 and Jos Barlow6,7

1Grand Challenges in Ecosystems and the Environment, Department of Life Sciences, Imperial College London,

Silwood Park Campus, Ascot SL5 7PY, UK; 2Departmento de Ecologia, Instituto de Biociências, Universidade de S~ao

Paulo, Rua do Mat~ao, 101, trav. 14, S~ao Paulo, SP 05508-090, Brazil; 3Departmento de Zoologia, Instituto de

Biociências, Universidade de S~ao Paulo, Rua do Mat~ao, 101, trav. 14, S~ao Paulo, SP 05508-090, Brazil;
4Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeir~ao Preto, Universidade de S~ao Paulo -

USP, Av. Bandeirantes 3900, Ribeir~ao Preto 14040-901, Brazil; 5Departamento de Ciências Biol�ogicas, Universidade

Estadual de Santa Cruz, Campus Prof. Soane Nazar�e de Andrade, Km 16 - Rodovia Jorge Amado, Ilh�eus, BA

45662-900, Brazil; 6Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; and 7Museu

Paraense Em�ılio Goeldi, Av. Magalh~aes Barata 376, Bel�em, Par�a CEP 66040-170, Brazil

Summary

1. In recent years, there has been a fast development of models that adjust for imperfect

detection. These models have revolutionized the analysis of field data, and their use has

repeatedly demonstrated the importance of sampling design and data quality. There are, how-

ever, several practical limitations associated with the use of detectability models which restrict

their relevance to tropical conservation science.

2. We outline the main advantages of detectability models, before examining their limitations

associated with their applicability to the analysis of tropical communities, rare species and

large-scale data sets. Finally, we discuss whether detection probability needs to be controlled

before and/or after data collection.

3. Models that adjust for imperfect detection allow ecologists to assess data quality by esti-

mating uncertainty and to obtain adjusted ecological estimates of populations and communi-

ties. Importantly, these models have allowed informed decisions to be made about the

conservation and management of target species.

4. Data requirements for obtaining unadjusted estimates are substantially lower than for detect-

ability-adjusted estimates, which require relatively high detection/recapture probabilities and a

number of repeated surveys at each location. These requirements can be difficult to meet in large-

scale environmental studies where high levels of spatial replication are needed, or in the tropics

where communities are composed of many naturally rare species. However, while imperfect detec-

tion can only be adjusted statistically, covariates of detection probability can also be controlled

through study design. Using three study cases where we controlled for covariates of detection

probability through sampling design, we show that the variation in unadjusted ecological esti-

mates from nearly 100 species was qualitatively the same as that obtained from adjusted estimates.

Finally, we discuss that the decision as to whether one should control for covariates of detection

probability through study design or statistical analyses should be dependent on study objectives.

5. Synthesis and applications. Models that adjust for imperfect detection are an important part

of an ecologist’s toolkit, but they should not be uniformly adopted in all studies. Ecologists

should never let the constraints of models dictate which questions should be pursued or how the

data should be analysed, and detectability models are no exception. We argue for pluralism in

scientific methods, particularly where cost-effective applied ecological science is needed to

inform conservation policy at a range of different scales and in many different systems.
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Introduction

Imperfect detection is a problem common to all ecological

studies, and researchers should always try to minimize the

effects of covariates on detection probability. While in the

past the influence of such covariates has been mostly con-

trolled through study design, the use of models that esti-

mate and control for detection probability has become

increasingly common in ecology and conservation science

(Boulinier et al. 1998; Gu & Swihart 2004; K�ery & Schmid

2004; Gibson 2011; Archaux, Henry & Gimenez 2012).

Given the rapid growth in the use of these statistical meth-

ods, we believe it is timely to briefly review the main known

advantages of models that control for imperfect detection

and compare these with a novel assessment of their practi-

cal limitations. We here intend to do so from the perspec-

tive of tropical conservation science, where cost-effective

research is urgently needed to inform robust management

(Metzger 2009; Ferreira et al. 2012).

This review is structured in the following way: (1) we

briefly introduce some of the terminology and concepts

related to imperfect detection and review the major benefits

of models that adjust for detection probability. (2) We

assess whether these analyses are applicable to all data sets

and objectives, discussing some of the limitations of apply-

ing these models to rare species, species-rich communities

and studies requiring many spatial replicates. (3) We exam-

ine whether the use of statistics is more powerful than con-

trolling for the effects of covariates on detection probability

through a carefully planned study design. Our evaluation is

based on field data from three different studies and focusses

on models that are used for obtaining adjusted estimates of

occupancy, abundance or species richness. Finally, we dis-

cuss when to control for covariates of detection probability

through study design or through statistical analyses.

It is not our intention to discourage the use of models

that adjust for imperfect detection: every analysis or

method has advantages and disadvantages, and researchers

should decide what is best for answering each particular

question. We here call for pluralism in one’s choice of scien-

tific methods. As the mathematical ecologist Gauch (1982)

once wrote: ‘To say that one research approach is better, in

general, than another is of equivalent mentality to saying

that a pH meter is more powerful than a microscope’.

The uses of models that adjust for imperfect
detection

For decades, researchers have used models that take into

account the capture history of individuals of targeted spe-

cies to estimate abundance, survival and other demo-

graphic rates (Otis et al. 1978; Lebreton et al. 1992).

More recently, these models have been extended to pro-

vide estimates of occupancy, species richness and relative

abundance that are adjusted for imperfect detection

(Boulinier et al. 1998; Mackenzie & Kendall 2002; Mac-

kenzie et al. 2002; Royle & Nichols 2003).

Imperfect detection occurs when a species or individual

is present but is not detected (i.e. when detection proba-

bility, or P, is <1), and if ignored, imperfect detection

leads to an underestimate of individual or species occur-

rence and to a potential bias in results obtained from eco-

logical studies (Mackenzie et al. 2006). Estimates that are

adjusted for detection probability, or P-adjusted esti-

mates, have become very popular as they can also control

for the influence of covariates of detection probability,

such as variation in climatic conditions over time, envi-

ronmental variables among sampling sites, behavioural

differences among individuals/species or variation in den-

sity across species. Another major benefit of these models

is that they provide an estimate of the uncertainty present

in the observation process. Failure to estimate and deal

with uncertainty can lead to poor conservation and man-

agement decisions (Regan et al. 2005).

The use of models that adjust for imperfect detection,

or detectability models, has brought much needed atten-

tion to the importance of study design and data quality.

Moreover, they have advanced the field of population

ecology and allowed informed decisions to be made about

the conservation and management of target species, such

as salamanders in the Great Smoky National Park, fritil-

lary butterflies in the Swiss Alps and tigers in Myanmar

(Bailey, Simons & Pollock 2004; Mackenzie et al. 2006;

Cozzi, Mueller & Krauss 2008; Lynam et al. 2009; Rotella

et al. 2009; Regan, Chades & Possingham 2011).

The applicability of models that adjust for
imperfect detection to tropical conservation
science

ANALYSING RARE SPECIES

Ecological communities in the tropics are composed of

many naturally rare species (Hubbell 2001), which compli-

cates the use of models that control for imperfect detec-

tion. The Biological Dynamics of Forest Fragments

Project (BDFFP), which is the largest and longest-running

project in the tropics (Ferraz et al. 2007; Laurance et al.

2011), provides an excellent illustration of these problems.

During 13 years of avifaunal surveys, the project captured

nearly 50 000 individuals from 178 bird species, an unusu-

ally large data set for tropical regions. Nonetheless, only

55 species were considered to be sufficiently detected to

have their occupancy estimated (Ferraz et al. 2007); in
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other words, 70% of the species were too rare to be anal-

ysed with detectability models.

But what is a rare species? The definition of rarity often

varies with study system and taxa (Rabinowitz 1981; Yu

& Dobson 2000), and while it is undeniable that species

that were only captured once or twice in such a large

sample effort are rare, few would consider a species to be

rare if it failed to occur in at least eight out of 11 sites,

one of the criteria used by Ferraz et al. (2007). In fact,

many of these supposedly rare species could easily have

their presence/absence or number of captures/observations

analysed under a generalized linear model (GLM)

approach. Models that adjust for imperfect detection

require an extra axis of information when compared to a

GLM, as they also require a certain number of recaptures

or observations over time. Thus, when a species or indi-

vidual is poorly detected, detectability models may not

converge to a solution even for a species occurring across

50% of the sites (Welsh, Lindenmayer & Donnelly 2013).

Paradoxically, this means that models that adjust for

imperfect detection are most effective when a species or indi-

vidual is commonly detected, yet in this situation there is

less need to adjust for imperfect detection because the raw

data already indicate if or when the species/individual is

present. In theory, the main advantage of these analyses

arises when the probability of detection is low, as the model

gauges the uncertainty that exists in the data regarding

whether the species or individual was absent or not detected,

and then uses this measure to adjust the levels of occurrence

or abundance. When detection probability is low, however,

P-adjusted estimates present very large confidence intervals

(Welsh, Lindenmayer & Donnelly 2013), which means that

analyses that adjust for imperfect detection fail to provide

precise estimates when they are needed the most.

Another issue arising with the analyses of rare and

poorly detected species is that their fitted probabilities are

often found to be equal to one (Welsh, Lindenmayer &

Donnelly 2013), a result that would generally suggest that

the species is in effect widespread. In practice, this means

that researchers are confronted with the following decision

on how to interpret their results, given their choice of

analyses. If unadjusted estimates are used, rare species

could be interpreted as observed in only a few sites but,

due to imperfect detection, they are likely to occur in other

areas. If P-adjusted estimates are used, rare species could

instead be interpreted as occurring everywhere, although

with great uncertainty. In areas where most species are rare

and when there is a need to provide answers for multiple

species, negative consequences for endangered species may

potentially occur if the latter interpretation is chosen.

COMMUNITY-LEVEL STUDIES IN SPECIES-R ICH AREAS

It is obviously difficult to analyse a truly rare species at

the population level regardless of whether imperfect detec-

tion is accounted for or not, and caution while interpret-

ing the results is paramount in either case. However, rare

species do not necessarily need to be analysed at the pop-

ulation level to provide ecological information. Unad-

justed community metrics such as species richness, total

abundance, community structure and composition can be

calculated using data from all species, irrespective of their

rarity, and these metrics can provide useful inferences

about the conservation value and management of ecologi-

cal systems (Barlow et al. 2007a; Pardini et al. 2010). This

is particularly important for community-level studies as

these usually employ a generic technique to maximize the

number of species detected, so their data set will always

contain many rare or poorly detected species.

Community models adjust for imperfect detection at the

species level, so often P-adjusted community estimates can

only be calculated from a small percentage of the commu-

nity (e.g. 30–35%; Ferraz et al. 2007; Ruiz-Guti�errez, Zip-

kin & Dhondt 2010). Moreover, Ferraz et al. (2007) only

obtained P-adjusted estimates for 30% of species because

these authors estimated species occupancy, which allows

one to work with much coarser data than P-adjusted esti-

mates of abundance. It is doubtful whether it would be pos-

sible to calculate adjusted abundance estimates for more

than a handful of species, even with the longest-running

surveys in the tropics. For those without access to such a

large data set, fitting occupancy models is already a chal-

lenge. A search on the Web of Knowledge for ecological

studies on the topic ‘occupancy’, combined with either

‘detectability’ or ‘detection probability’, revealed a total of

121 studies that were cited >10 times. Of these, 95% were

either from the temperate zone (n = 77), theoretical

(n = 11) or had focussed on a single tropical species (n = 7,

see Appendix S1 in Supporting Information). So, in the tro-

pics, researchers wishing to use P-adjusted measures of

community are often restricted to focussing on small pro-

portion of commonly detected species (Ferraz et al. 2007;

Ruiz-Guti�errez, Zipkin & Dhondt 2010).

THROWING OUT THE BABY WITH THE BATHWATER: THE

RISK OF FOCUSSING ON GENERALISTS

While it is certainly desirable to obtain P-adjusted ecolog-

ical estimates and a measure of uncertainty, detectability

models may have important negative consequences when

applied to community or species-rich data. Species that

are widespread and commonly observed are often general-

ists that tolerate a wide range of anthropogenic distur-

bance. For instance, we looked whether there is a

correlation between commonness or rarity and species

sensitivity to human disturbance using information from

more than 3000 bird species from South America (Stotz

et al. 1996). The trend was clear – among the species that

are commonly observed, there were 403 species that are

weakly sensitive to habitat disturbance, while only 54 spe-

cies were highly sensitive (Table 1). Across rare birds, 96

species were highly sensitive, while only 10 had low sensi-

tivity to habitat disturbance (Table 1). These results rein-

force the notion that analysing only the most common
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species in a data set is likely to yield misleading results

(Pardini et al. 2010; Banks-Leite, Ewers & Metzger 2012).

The effects of environmental changes are thus likely to be

strongly underestimated if analyses are restricted to the

commonly detected generalist species, leading studies to

predict more optimistic conservation outcomes than the

reality (Banks-Leite, Ewers & Metzger 2012).

THE TRADE-OFF BETWEEN TEMPORAL AND SPATIAL

REPLICATION

Accuracy and precision of P-adjusted estimates is highly

dependent on the number of repeated site-specific surveys.

MacKenzie & Royle (2005) provide a table of the number

of surveys that should be conducted at each site given the

probability of detection and true occupancy of the species.

If the probability of detection is high (P ≥ 0�7), the opti-

mum number of surveys to conduct at each site is 2–3,

but if the probability of detection is low (P = 0�1), the

suggested number of surveys to conduct at each site can

be as high as 34 (MacKenzie & Royle 2005). Studies that

do not perform such optimum number of surveys fail to

fit occupancy models to data, resulting in highly variable

outcomes and unstable fitted occupancy probabilities

(Welsh, Lindenmayer & Donnelly 2013).

Although temporal replication (i.e. representation) is

undoubtedly important (even in relatively aseasonal areas:

Barlow et al. 2007b; Banks-Leite et al. 2012), there is a

trade-off between the number of locations that can be sur-

veyed and temporal repetitions per location due to logisti-

cal, expertise and financial constraints (Guillera-Arroita,

Ridout & Morgan 2010). For instance, in Study 3 (see

below), we sampled birds in 65 sites for an average of

5 days per site, and our results showed that the average

detection probability across species was 0�12, and the

average occupancy was found to be 0�47. According to

MacKenzie & Royle (2005), the appropriate number of

temporal repetitions for Study 3 should have been 17–

18 days per site. If we assume that the total budget for

the project is fixed, increasing the number of repetitions

from five to 17–18 days per site would have led to a

reduction in the number of spatial replicates from 65 to

18, thus precluding our ability to address conservation-rel-

evant questions (Banks-Leite et al. 2011; Banks-Leite,

Ewers & Metzger 2012; Lira et al. 2012). This example

shows just how impractical it is to study the effects of

environmental change by conducting a large-scale study

as well as a large number of surveys per site.

In many cases, it is questionable whether spatial resolu-

tion should be sacrificed over temporal replication to

obtain improved estimates for only a limited number of

species. For instance, habitat and climate change are the

main drivers of biodiversity loss (Millennium Ecosystem

Assessment 2005), but the effects of environmental change

are not the same across regions or biomes. Instead, they

are dependent on many factors, such as landscape con-

text, original habitat structure, land use type, spatial scale

of interest, altitude, latitude, among many other variables

(Gardner et al. 2009). Hence, the most pressing questions

in conservation science require large-scale investigations

(Gardner et al. 2009; Ferreira et al. 2012; Ramage et al.

2012). Unfortunately, this has not always been success-

fully achieved in ecological science, constraining our abil-

ity to gather a good understanding of these processes and

to provide useful management recommendations (Ramage

et al. 2012). Obtaining P-adjusted estimates of occurrence

for a few (generalist) species in a few sites is unlikely to

guide the development of effective policies in such species-

rich environments.

To summarize, models that adjust for imperfect detec-

tion are likely to have low applicability to community-

level studies from the species-rich tropics because a large

number of species are rare. The consequences of such

shortcomings are potentially dangerous if researchers

ignore the large uncertainties associated with adjusted

estimates obtained for species with low detection rates, or

if community patterns are biased by the responses of a

few common and generalist species. Moreover, if the focus

of the study is on the effects of large spatial scale environ-

mental change, models that adjust for imperfect detection

are not always a viable or desirable option.

The need for models that adjust for imperfect
detection

IMPERFECT DETECTION NEEDS TO BE CONTROLLED

EITHER ‘BEFORE OR AFTER’ DATA COLLECTION, AND

NOT ‘BEFORE AND AFTER’

Unadjusted estimates are often underestimates of the true

abundance, occupancy or species richness. Such underesti-

mation can have a strong influence on the quality of

information used to guide management actions such as

hunting quotas or endangerment listings (White 2005;

Mackenzie et al. 2006). In this context, there is a clear

importance of controlling for imperfect detection to

obtain an estimate of species occupancy or abundance

that is closer to what would be achieved with a census of

the entire population. The aim of many ecological studies,

however, is not to obtain an absolute ecological estimate

for a given species; most often the aim is to investigate

Table 1. Contingency table showing the number of Neotropical

bird species represented in each category of sensitivity to human

disturbances and abundance. Data were obtained from Stotz

et al. (1996)

Abundance

Sensitivity

Low Medium High

Common 403 220 54

Fairly common 373 749 306

Uncommon 71 350 299

Rare 10 80 96
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the effects and the interactions of environmental factors

on populations and communities. This is similar to say

that, in the case of a regression model, the interest lies in

obtaining a measure of the strength and direction of an

ecological effect rather than the intercept.

Although imperfect detection per se cannot be con-

trolled by study design without conducting a census (i.e.

the survey of every single individual or species), research-

ers have always used their knowledge on the study system

to list potential covariates of detection probability and

plan the sampling design to minimize their influence. This

process usually requires a lot of effort in the field through

rigorous standardization of methods across sampling

units. Nonetheless, it is widely accepted in the literature

that even a well-planned study will not sufficiently control

for confounding factors (e.g. Mackenzie et al. 2006),

because unmeasured variables could still be affecting

detection probability and leading to biased estimates of

ecological responses to a given environmental factor.

Ecologists are now being strongly encouraged to use a

posteriori statistical models that adjust for detection prob-

ability irrespective of having planned a rigorous sampling

design (Boulinier et al. 1998; Gu & Swihart 2004; K�ery &

Schmid 2004; Gibson 2011; Archaux, Henry & Gimenez

2012).

Studies using P-adjusted estimates found that species

richness increases with area, that isolation is detrimental

to biodiversity and that rain forest species prefer to forage

inside forests (Ferraz et al. 2007; Ruiz-Guti�errez, Zipkin

& Dhondt 2010; Boscolo & Metzger 2011; P€uttker et al.

2011, 2013), which are the same findings and the same

implications to conservation reported in studies that only

controlled for covariates of detection probability through

careful sampling design (Barlow et al. 2007a; Ewers,

Thorpe & Didham 2007; Boscolo & Metzger 2009; Pardi-

ni et al. 2010; Banks-Leite et al. 2011). Thus, it is still an

open question to what extent estimates of ecological

responses to environmental factors derived from P-

adjusted models differ from those derived from unad-

justed models, when covariates of detection probability

are purposefully controlled before data collection. We

explored this question by reanalysing data on almost 100

species from three independent studies conducted in the

Atlantic Forest of Brazil, where particular care was given

during sampling design to control for covariates that

could influence detection probability.

CASE STUDIES: ARE P -ADJUSTED ESTIMATES

DIFFERENT TO UNADJUSTED ESTIMATES WHEN

COVARIATES OF DETECTION PROBABIL ITY ARE

CONTROLLED DURING DATA COLLECTION?

Study 1: large mammals in cacao agroforests

Main aim. To investigate how the use of agroforests by

large mammals is affected by the record rate of domestic

dogs.

Data and sampling design. The study was developed in

cacao plantations located in an agroforestry mosaic in

southern Bahia, Brazil. Data on native mammals and

domestic dogs were collected with camera-traps in 30 sites

(see Fig. S1 in Appendix S1, Supporting Information).

Two camera-traps were placed in each site, one on the

ground and one in the understorey (3–4 m above ground

level). Data collection was conducted during four surveys

of 3 months each, equally divided in summer and winter

from 2007 to 2009. At each survey, sites were grouped

into three blocks, and all 10 sites within a block were

simultaneously sampled within 1 month, and all 30 sites

were sampled within 3 months (Cassano, Barlow & Pardi-

ni 2014).

Analysis. We used single-season occupancy models (Mac-

kenzie et al. 2006) to estimate the effect of the record rate

of domestic dogs on site occupancy (w) by mammal spe-

cies. For each species, we constructed a set of five candi-

date models. All candidate models had w as a function of

domestic dog record rate (number of days with records of

domestic dogs divided by the number of sampling days)

and detection probability (P) either constant or modelled

as a function of one of the following survey variables:

sampling effort (in trap-days), block (1 to 3), season (win-

ter 9 summer) and survey number (1 to 4). We used gen-

eralized linear models to investigate the influence of

domestic dog record rate on unadjusted estimates of spe-

cies occurrence. We used model selection based on the

Akaike Information Criterion corrected for small samples

(AICc) to compare the set of candidate occupancy models

(Burnham & Anderson 2002).

Results. We obtained 1694 records of 20 native mammals.

However, we were able to estimate w and P just for nine

species that were recorded in six or more sites. The influ-

ence of domestic dog on site occupancy differed among

species (Fig. 1). For all analysed species, the set of plausi-

ble models included one or more covariates of detection

probability (Table S1 in Supporting Information), show-

ing that P was dependent on survey number (observed for

six species), season (three species), sampling effort (two

species) and block (two species). Average P across species

was 0�47 (Table S2 in Supporting Information). Despite

the strong influence of different covariates on detection

probability, no significant difference was observed

between modelled w and unadjusted occurrence, as 95%

confidence intervals overlapped (Fig. 1) (Table S1 in Sup-

porting Information).

Study 2: small mammal population size in continuous

forest

Main aim. To assess monthly variation in population size

of four neotropical small mammals.

© 2014 The Authors. Journal of Applied Ecology © 2014 British Ecological Society, Journal of Applied Ecology, 51, 849–859
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Data and sampling design. Small mammals were sampled

in three trapping grids in a continuously forested land-

scape (Morro Grande Forest Reserve) in the State of S~ao

Paulo, Brazil. Each of the three grids encompassed 2 ha

and consisted of 11 parallel 100-m-long lines, 20 m apart,

with 11 trapping stations spaced every 10 m. In each trap-

ping station, a Sherman trap was placed on the ground,

and trapping stations of five alternated lines were addi-

tionally equipped with one 60-l pitfall trap per station,

connected to each other by a 50-cm-high plastic drift

fence. Small mammals were captured simultaneously in

the three grids during 21 monthly 5-day trapping sessions

from March 2008 to October 2009. Captured animals

were marked and released in the respective trapping loca-

tion. Trapping effort was 2640 trap nights per session,

adding up to 55 440 trap nights in total. See P€uttker et al.

(2011, 2013) for further details.

Analyses. We estimated monthly abundance, probabili-

ties of survival and capture and recapture probabilities

of the four most abundant small mammals (Fig. 2).

Estimates were obtained using Pollock robust design

model in the program MARK (White & Burnham

1999), by pooling capture histories of the three trapping

grids. Because our data sets did not allow for heavily

parameterized models, the estimation of population size

(N) was conditioned out of the likelihood using Hug-

gins’ closed-capture models within primary capture ses-

sions (Huggins 1991). We formulated 10 candidate

models differing in assumptions on survival probability

S, capture probability and recapture probabilities (Table

S3 in Supporting Information). In all models, capture

probability and recapture probabilities were assumed

constant within primary capture sessions. For each spe-

cies, we used monthly population size estimates

obtained by the most plausible model (lowest AICc) for

comparison with unadjusted estimates. Unadjusted esti-

mates were the number of individuals captured in each

primary capture session. We compared abundance esti-

mates between methods by Pearson’s product–moment

correlation.

Fig. 1. Predicted values (�CI) of the unadjusted estimates of occurrence and occupancy of 30 agroforests for nine large mammal species

as a function of domestic dog capture rate. Values calculated using the best fit occupancy model for each species (see Appendix S2 and

Tables S1 and S2 in Supporting Information).
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Results. We obtained 4065 captures of 1380 individuals

from 24 species, but only the four most common

species were captured frequently enough to obtain

P-adjusted estimates of population size. Mean estimated

population size differed among species, with Akodon

montensis reaching highest abundance (mean � SE esti-

mated = 31�6 � 3�2; number of individuals captured =
29�0 � 3�0), followed by Delomys sublineatus (18�0 �
2�1; 15�62 � 1�7), Euryoryzomys russatus (15�7 � 1�3;
11�7 � 1�1) and Marmosops incanus (11�3 � 1�7; 6�4 �
1�0), showing that the rank abundance of these species

remained the same with or without adjustments for

imperfect detection. The most plausible model indicated

a constant capture and recapture probability in only

one species (D. sublineatus, Table S3 in Supporting

Information), while in all other species the most plausi-

ble model indicated capture and recapture probabilities

varying between capture sessions (Table S4 in Support-

ing Information). Estimated capture probabilities were

below 0�2 in some months (Tables S3, S4 and S5 in

Supporting Information), resulting in low precision of

adjusted population size estimates (Fig. 2). Although

monthly variation in population size obtained by unad-

justed estimates differed occasionally from P-adjusted

estimates (i.e. months with low capture probabilities),

number of individuals captured and estimated popula-

tion sizes were highly correlated for the four species of

small mammals (Fig. 2).

Study 3: bird community in fragmented tropical

landscapes

Main aim. To estimate how species richness varies among

landscapes with different amounts of forest cover.

Data and sampling design. Field data were collected in

the State of S~ao Paulo, Brazil. Sampling was conducted

in six 10000-ha landscapes, three of which were frag-

mented but varied in the total amount of native rain

forest (roughly 10, 30 and 50% of forest cover), while

the remaining three had continuous forest cover,

approximately 90% cover (Fig. S2 in Appendix S1,

Supporting Information; Banks-Leite et al. 2011). In

each fragmented landscape, we sampled 17 to 19 forest

patches ranging from 2 to 150 ha, and 12 sites in the

continuous landscapes. Birds were sampled from 2001

to 2007, and mist nets were generally open from sunrise

to sunset. All captured birds were marked and released

in the vicinity. In total, we obtained over 7000 captures

from 140 bird species with a sampling effort of 41000

net-hours (each site was sampled from 3 to 9 times,

mean effort per site 637 net-hours, SD = 77).

Analysis. We estimated occupancy across the four forest

cover treatments (10, 30, 50 and 90%) for all 84 species

that occurred ≥ three sites, using a hierarchical commu-

nity model developed by Zipkin, Dewan & Royle

(2009). The predictor variable used for estimating occu-

pancy (w) was landscape cover (categorical), and the

predictor variables used for estimating P were forest

patch size and amount of sampling effort per survey

per site. Model parameters were estimated using a

Bayesian analysis, with vague priors, carried out in

WinBUGS (see model codes in Appendix S2, Support-

ing Information). At each forest cover treatment, P-

adjusted species richness was calculated as ∑w of all 84

species, and unadjusted species richness was calculated

as ∑ (occupied sites/sites sampled) for all 84 species.

Fig. 2. Monthly population sizes of three

Atlantic Forest small mammals estimated

by closed population estimates (circles,

solid line, �95% confidence intervals) and

unadjusted estimate (MNKA; triangles,

spotted line). Pearson’s correlation coeffi-

cient (r) and probability of significance for

each species are given in the upper right

corner. For Marmosops incanus, abun-

dance could not be estimated in November

and December 2008 as well as in October

2009 due to low capture probabilities (see

Appendix S2 and Tables S3, S4 and S5 in

Supporting Information).

© 2014 The Authors. Journal of Applied Ecology © 2014 British Ecological Society, Journal of Applied Ecology, 51, 849–859

To adjust or not to adjust for detectability? 855



Results. The Bayesian P-value of the model was estimated

at 0�33, which suggests that the hierarchical model provided

an adequate description of the data. Detection probability

was significantly affected by sampling effort (b = 0�09,
SD = 0�01) and patch area (b = 0�07, SD = 0�03), and spe-

cies-specific detection probabilities were in average

P = 0�12 (Table S6 in Supporting Information). The differ-

ence between w and unadjusted estimates of occurrence

increased at lower values of detection probability (Fig. 3),

which would suggest that unadjusted estimates are strongly

biased. However, the overall pattern of variation in species

occupancy was the same as the one observed for unadjusted

occurrence (Table S6 in Supporting Information). In the

landscapes with 10, 30, 50 and 90% forest cover, P-adjusted

species richness was 37�8, 36�6, 40�2 and 43�5, while unad-

justed species richness was 25�0, 24�5, 26�3 and 28�8, respec-
tively. In general, unadjusted and P-adjusted species

richness followed the same trend of variation as unadjusted

species richness, but corrected by a factor of 1/0�66.

SHOULD COVARIATES OF DETECTION PROBABIL ITY BE

CONTROLLED BEFORE OR AFTER DATA COLLECTION?

Although we criticize the dogmatic use of models that

adjust for imperfect detection, we strongly believe in the

importance of controlling for covariates of detection

probability in ecological studies. The similarity of results

obtained from P-adjusted and unadjusted estimates in the

three studies above was only found because we attempted

to control all known sources of bias and covariates of

detection probability prior to data collection. Thus, cova-

riates of detection probability must be controlled either

before or after data collection, and the question becomes

when should these covariates be controlled. In our opin-

ion, the answer to this question depends on the objectives

of a study.

Controlling for covariates through statistics or after data

collection

If the aim is to use ecological estimates for reserve or

game management, pest control or any other use that

requires robust absolute values or robust estimates of

uncertainty for a single species, then it is sensible to use

models that adjust for imperfect detection. First, unad-

justed indices are almost always underestimates, and

P-adjusted estimates are likely to be one step closer to the

true value. Secondly, specific objectives such as game

management allow one to tailor data collection to maxi-

mize species detection, thus allowing the use of detectabil-

ity models. Another study objective that likely requires

the use of P-adjusted estimates is when researchers are

analysing data collected by many observers with different

abilities, or data that were collated from several different

sources (such as Tingley & Beissinger 2012).

There is the risk, however, that an overreliance on sta-

tistics for adjusting covariates of imperfect detection can

also lead researchers to reduce their attention to the study

design. The fact that P-adjusted estimates are corrected

for imperfect detection does not mean that they are cor-

rect. In fact, it has been noted that there are situations in

which P-adjusted estimates are no more reliable than

unadjusted estimates (Welsh, Lindenmayer & Donnelly

2013). It is possible that the estimate was adjusted for

some important covariates but not others, or the study

design was so unbalanced that even the best of all statisti-

cal corrections will not suffice. In the same way that spu-

rious correlations may affect the detection of effects on

the response variable, researchers may also wrongly iden-

tify a spurious covariate of detection probability that

could adjust detection probability in undesired ways. Data

are only as good as the methods that were used to collect

them and not all biases can be fixed statistically, particu-

larly in heavily unbalanced study designs.

Controlling for covariates through experimental design or

before data collection

In other cases, it will be more sensible to control for co-

variates of detection probability before data collection.

This includes studies aiming at estimating ecological

responses to environmental factors (i.e. in which the

absolute value of ecological estimates is not the focus),

studies involving a large number of species, including

rare species or species difficult to detect, studies assessing

large spatial scales, snapshot studies or when several

sources of bias must be controlled. Controlling for cova-

riates of detection probability before data collection

allows controlling for more covariates of detection prob-

ability than it is feasible to fit a posteriori in a model.

For instance, for Study 3, we controlled for time of day,

season, extreme weather, habitat, slope, altitude, vegeta-

tion structure, proximity to rivers, proximity to forest

edge, matrix type, mist net brand and length and observer.

Fig. 3. Bias of unadjusted estimate, defined as the absolute differ-

ence from P-adjusted estimates (i.e. occupancy), increases at

lower levels of detection probability (P < ~0�15). Data points rep-

resent species-specific bias estimates calculated in each of the four

forest cover treatments (10, 30, 50 and 90%), and thus, there are

in total 336 data points (84 species 9 4 forest cover treatments).

Previous inspection of the data showed that the trend of increase

in bias did not vary among landscapes (see Appendix S2 and

Table S6 in Supporting Information).
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It would not have been possible to include all these

variables in a model without a very large number of

replicates. Moreover, as both methods are not mutually

exclusive, models that adjust for imperfect detection can

be used in addition to a standardized protocol to obtain

a measure of the influence of the covariates, P-adjusted

estimates and a measure of uncertainty for at least some

species. For this reason, when possible, it is always wise

to plan a study design to have an adequate number of

repeated surveys, to ensure that models that adjust for

imperfect detection can be used for at least a few spe-

cies. Finally, it is important to point out that unadjusted

estimates can also be dangerous for conservation and

management, especially if researchers are not mindful

that these are underestimates of the ecological estimates.

In summary, in the three studies, detection probability

was always <1 and accordingly P-adjusted estimates of

occupancy, population size and species richness were usu-

ally higher than unadjusted estimates (Table S5 in Sup-

porting Information) (Fig. 2). Nonetheless, the ecological

responses to analysed factors and conservation implica-

tions did not differ between statistically adjusted and

unadjusted models of occurrence/abundance. The consis-

tency of these results contrasts to the many examples

where unadjusted estimates provided different results to

P-adjusted estimates (e.g. Mackenzie et al. 2006; Tingley

& Beissinger 2012). Such disparate outcomes could be

attributed to the fact that the sampling design in the three

case studies was planned to minimize the effects of covari-

ates of detection probability, although it is difficult to

ascertain exactly how much attention was given to study

design in other examples where P-adjusted estimates pro-

vide different results. Covariates of detection probability

can bring a strong bias to results, and their effects can be

controlled either before or after data collection. The deci-

sion on whether to control for covariates of detection

probability is heavily dependent on the objectives of a

study and its ecological context.

CONCLUSION

There are advantages and disadvantages to the use of

models that control for imperfect detection. While the

advantages are appealing in many ecological contexts, we

outline several important limitations of these models that

are particularly relevant to tropical conservation science.

In a review of the application of methods that control for

imperfect detection on bird data, Johnson (2008) con-

cluded: ‘At present, no method of adjusting bird count

data appears to be effective for large-scale, multi-species

monitoring surveys’. We agree with Johnson’s statement

and suggest that the blind enforcement of the use of such

analyses could be detrimental to conservation science,

especially if researchers allocate more effort towards tem-

poral repetition rather than spatial coverage, or when a

large part of a data set is discarded due to model con-

straints. We do not believe that hard-won field data, often

on rare specialist species, should be uniformly discarded

to accord with statistical models.

Given a well-thought out and balanced sampling design,

we suggest that unadjusted estimates of single- and multi-

ple-species responses to ecological gradients can be just as

robust as estimates that were a posteriori controlled for co-

variates of detection probability. We strongly believe that

inferences derived from studies based on ecologist’s detailed

a priori knowledge of their system are likely to be more

valuable than those resulting from a poorly designed study

followed by a posteriori adjustments of detectability. Most

importantly, our main message is that one should always

use the best method available for the data on hand and for

the goals to be achieved.
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