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Semiclassical singularities from bifurcating orbits
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We investigated numerically, for a generic quantum systarkicked top, how the singular behavior of
classical systems at bifurcations is reflected by their quantum counterpart. Good agreement is found with
semiclassical predictions.
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[. INTRODUCTION about this operator is most conveniently extracted from the
traces tiF", wheren plays the role of discretized time. The
The semiclassical approach allows to obtain spectral inanalogue of Gutzwiller's trace formula has been derived by
formation about quantum systems from properties of classiTabor[13], who found the relation
cal periodic orbits. The most famous example of this
guantum-classical correspondence is Gutzwiller's trace for-

K B n=rng
mula for completely chaoti¢hyperbolig autonomous sys- n_ No e T
tems[1], which expresses the density-of-states as a sum of k= ,;, |2_trM|1/2eX 1S Y2/ @

contributions from periodic orbits.
Generic systems are neither hyperbolic nor integrable, but
have a mixed phase space in which regions of stability cobetween the traces and the periodic orbits of the correspond-
exist with chaotic dynamics. Characteristic for the mixeding chaotic classical map. For convenience we denote here
phase space is the ubiquity of bifurcatidi#s3]. The contri-  the inverse Planck’s constant iy *=J. The sum is made
butions of Gutzwiller type diverge when orbits bifurcate andup of all orbits of primitive(first returr) period ny with n
have then to be replaced by uniform approximatiGwlec-  =ngr andr an integer. Theth return of an orbit is charac-
tive contributions of the bifurcating orbjt§3—9]. The ensu- terized by the actio®=rSy, trace of the monodromy matrix
ing semiclassical amplitude is finite &t- 0, even directly at  (linearized map M=Mg, and the Maslov indexy=r 1y,
the bifurcation, and diverges with a power lawi ™" as#h (which for elliptic orbits satisfies a slightly more involved
—0, wherev is called the singularity exponent. This pecu- composition law under repetitions
liar singularity has been studied recently in the context of Equation(1) is valid for completely chaotic systems. In
spectral fluctuation§10,11]. A full solution has been given such systems, the Lyapunov exponextef all periodic or-
in Ref.[11], which accounts also for more complex bifurca- bits are positive. The eigenvalues of the monodromy matrix
tions of higher codimension, which are classically nongeM, are e**o, hence the semiclassical amplitudes
neric, but are nevertheless relevant in the quantum realm. o« (sinhA/2)~* are finite.
In view of the recent progress, a test of the semiclassical The mixed phase space accommodates also elliptic orbits,
predictions for generic quantum systems close to bifurcationfor which the eigenvalues dfl, are e“'“o. This gives the
is called for. In this paper we test the predictions for theamplitudeAx=(sinw/2) * for the rth repetition of the orbit.
kicked top[12], a periodically driven system with one degree The stability anglew=r w, increases linearly with the rep-
of freedom, which is also representative for autonomous sysetition number, and either by a suitable choice @i of an
tems with two freedoms. We devise a filtering technique thagxternal control parameter, the amplitulecan become ar-
allows to extract contributions of individual groups of bifur- bitrarily large. The contribution of an individual orbit even-
cating orbits. The singularity exponentis found to corre- tually diverges whenw/27 is an integer, hence whea,
spond well to the theoretical predictions. =2mn/m, with n, m integers (taken relatively primg
The paper is organized as follows: In Sec. Il we formulateNormal-form theory[2] shows that this is precisely the con-
the problem and describe how the singularity exponents dition for a bifurcation, the coalescence of two or more pe-
are derived. In Sec. Ill we present numerical results for theiodic orbits. The type of bifurcation depends onm with m
kicked top. Section IV contains our conclusions. =1 the tangent bifurcatiorm= 2 the period-doubling bifur-
cation,m= 3 the period-tripling bifurcation, and so forth.
Catastrophe theoryl14] further reveals that the diver-
gence of Eq(1) at a bifurcation comes from an inadmissible
stationary-phase approximation, and provides uniform ap-
Periodically driven systems are stroboscopically de-sproximations that regularize the singular behavi8r9].
scribed by a unitary Floquet operater Spectral information Close to a bifurcation one has to replace contributions of

Il. SEMICLASSICAL CONTRIBUTIONS
AT BIFURCATIONS
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individual orbits by collective contributions in the trace for- J. This allows us to test the predictions for a bifurcation of
mula, of the form higher codimension. The normal form|ig,9]

o pu N _ o] _a132 132 _ A2
A:% od'foz 46U (1. o)exdi J0(.6)], (@ d(1,¢")=S,— el —al®¥xos 3p—bl1¥%sin3p—cl?. (7)

The tangent bifurcation takes place &t 9(a?+b?)/32c,

with the “amplitude function”¥ and the “phase function” while the period-tripling bifl_Jrcation_ occurs at=0. Fore
@ both depending on the type of bifurcation under consider-=2=b=0 one has to consider an integral of the form
ation. Here we have used canonical polar coordingtes
which parametrize the phase space of the classical map as

o0 2

Jf dlf d¢exdidl?]=J¥?, (8)
0 0

p=\2Ising, q=12Icosg, &)

and obtaing'=1/2. Fore, a, b# 0 we obtain the two scaling
giving for the differentials ¢g dg=dI d ¢. The phase func- parametersu,=1/2 and u,= u,=1/4 that characterize the
tion is a local approximation to the generating functionsemiclassical range of the bifurcation in parameter space.
S(g’,p) of the classical mapq,p)—(q’,p’). Right at the
bifurcation the amplitude function reduces Yo=1, while

the phase function is given by simple normal forms. For lll. NUMERICAL RESULTS

generic bifurcations we haé&,6,7| We now turn to the numerical investigation of the semi-
classical singularities at bifurcations for the periodically
d=S,—-sq—aq’—bp? (m=1), kicked top[12]. The dynamics consists of a sequence of

rotations and torsions, with Floquet operator

d=S-sq’~ag’~bp? (m=2),

) F:eXp<—i K jz—iaj>exp(—iﬂj)
d=S,—¢el—al®?cos3p (m=3), 2j+17z Tz y
Cky s, s
d=S,—el—al’—bl%cos4p (m=4). X ex _|—2j+1‘Jx_|a2‘Jx- 9)

Heree is the bifurcation parametdbifurcations take place
ate=0), while Sy, a, andb can be regarded as constants. At SRR ]
the bifurcation £=0) we can rescale the integration vari- t©r relation[J; Jj]=iejJc. The phase space is a sphere
ablesq, p for m=1,2 orl for m=3, such that the combina- because the square of the angular momendtimj(j+1) is
tion J® appearing in the exponent of E() becomes inde- conserved. The role o_f th_e inverse Planck’s constant is
pendent ofJ. What remains is a-dependent prefactor in Played byJ=j+1/2, which is equal to one-half of the Hil-

front of a J-independent integral. This gives<J” with [6] bert space dimension. The semiclassical limit is reached by
sendingJ—<. We fix the rotation parameteis;=0.8, 8

=1, a,=0.3, and use the torsion strengtkge=k and k,
=k/10 to control the degree of chaos of the classical map.
5) The system is integrable fok=0 and displays well-
v=13 (m=3), v=12 (m=4). developed chaos frok=5.
The quantum-mechanical evaluationfefis described in
For e#0 the integral remaing independent if one also Ref.[12]. We computed the traces of the Floquet operator
rescales the bifurcation parameter according #&  and separated the contributions of differéciusters of or-

The angular momentum operatcf},syy,Z obey the commuta-

»y=1/6 (m=1), v=1/4 (m=2),

=gJ* [11], with bits by evaluating the action spectruithe Fourier transfor-
mation of the trace with respect to the inverse of Planck’s
p=2/3 (m=1), =12 (m=2), constant [15},
©®) Jmax
pu=1/3 (m=3), wu=1/2 (m=4). TO)(S)= - 2 trFN(j)e~1(+12S (1)

Jmax— J mint 1 1= Imin

These exponents determine the semiclassical range of the

bifurcations in parameter space. where the differenceq.—jmin determines the resolution in
The casem=3 is special in the sense that period-tripling S (j min=21.j max=2100). The results for parameters close to

bifurcations are usually accompanied by a tangent bifurcadifferent types of bifurcations are shown in Fig. 1.

tion, so close in parameter space that the semiclassical con- The contribution at give of orbits pertaining to a given

tribution given above, loses validity for accessible values ofpeak can be obtained by an inverse Fourier transformation,
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FIG. 1. The action spectrum
|T(M(S)|? for the kicked top close
to different types of bifurcations.
For the inverse Fourier transfor-
mation (11) we restrict theS inte-
gration to the intervals of width
AS around the centers of the peaks
Sgit,» eliminating in this way the
contributions from other periodic
orbits.(a) n=1, k=2.6. The large
peak atSg;; comes from orbits that
are involved in a tangent bifurca-
tion at k=2.5. (b) n=2, k=2.3,
a1=1.39, close to the period-
doubling bifurcation ak=2.1. (c)
n=3, k=2, close to two period-
tripling bifurcations at k=1.85
(left peak and k=1.97 (right
peak. (d) n=4, k=1.2. The large
peak arises from orbits involved in
a period-quadrupling bifurcation
at k=1.0. (The orbits of the
smaller peak are also involved in a
period-quadrupling bifurcation, at
k=1.2)

bifurcation isy=0.2636(theoretically,ry=1/4). Back to the
original value@;=0.8, we find for the period-quadrupling
bifurcation atk=1.0 the exponent=0.5734(theoretically,

Now we turn to period-tripling bifurcations, which are

typically accompanied by a tangent bifurcation, so close in
parameter space, that one has to treat the situation as a bifur-
cation of higher codimension. For the kicked top, an angular
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where the integral over actior&is restricted to an interval
AS around the cente®g;; of the peak. This eliminates con-
tributions of other periodic orbits.

Our goal is a purely quantum-mechanical test of the semi-
classical predictions, which does not require any classical
information, as the precise values of control parameters at
the bifurcation. In order to achieve this we tune the control
parametek to the value that maximizes thfe The parameter
k of the maximum approaches the true bifurcation point with
the exponenju, Eq. (6). The maximal contribution is of the
same order of magnitude as the contribution at the bifurca-

tion, and is also less sensitive to changes in the parameters.

We extract the exponenisfrom logarithmic plots of the
maximal |A| versusJ, shown in Fig. 2. In all cases we find
good agreement with the theoretical predictions. For a tan-
gent bifurcation atk=2.5, the observed exponent is
=(0.1866 (theoretically, v=1/6). Two different period-

momentum of aboud= 10> would be needed for separating
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FIG. 2. Logarithmic plots versus inverse Planck’s consfaot

the maximal(in parameter spagecontributions|A| of orbits in-
volved in the bifurcations of Fig. 1, calculated by Ed.l). (a)

doubling bifurcations appear &t=2.8 and produce overlap- Tangent bifurcation. The averagdotted ling gives the exponent
ping peaks in the action spectrum. We separated them by=0.1866.(b) Period-doubling bifurcationy=0.2636.(c) Period-
changinga; to «;=1.39, moving in that way one of the tripling bifurcation of higher codimension;=0.5327.(d) Period-
period-doubling bifurcations tk=2.1. The exponent for this quadrupling bifurcationp=0.5734.
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the orbits in the “period-tripling plus tangent” bifurcation at ing to »=0. It follows from Eq.(2) that the exponent for
k=1.85. The same is true for a similar sequence of bifurcabifurcating orbits falls into the range<Ov<<1. As a conse-
tions atk=1.97. For the much smaller values #that we quence, the semiclassical contribution of bifurcating orbits is
use here, we have the unique opportunity to test the exponedbminant when parameters are close enough to the bifurca-
for a case of higher codimension. As before, the result tion point. On first sight this seems to require a careful tun-
=(.5327 (for the bifurcations atk=1.85) is close to the ing of the parameters. From the perspective of spectral sta-

theoretical expectation=1/2. tistics, however, a careful tuning often turns out to be
unnecessary10,11. Some quantities are dominated by bi-
V. CONCLUSIONS furcating orbits as the consequence of a competition between

different sort of bifurcations, in which each bifurcationenters

We have studied the asymptotic behavior for~0 of  with weight given by the exponents and . A numerical
periodic-orbit contributions to semiclassical trace formulas,nyestigation of this competition is challenging.

around points in parameter space where orbits bifurcate. For
the most common types of bifurcations the theoretically pre-

dicted power—lavy divergen_cef'f" was testeq numerical_ly_ ACKNOWLEDGMENTS
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