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Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO2)
concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from
vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such
disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of
the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing
aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale
monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on
belowground CO2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more
than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter
addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase
in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due
to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher
than predicted and it is possible that this ‘extra’ CO2 was a result of priming effects, i.e. stimulation of the decomposition of
older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter
production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in
tropical forests.

Citation: Sayer EJ, Powers JS, Tanner EVJ (2007) Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere. PLoS
ONE 2(12): e1299. doi:10.1371/journal.pone.0001299

INTRODUCTION
Changes in litter quantity as a consequence of global climate

change are becoming increasingly likely; recent FACE experi-

ments have shown that litterfall increases with elevated atmo-

spheric CO2 concentrations [1–5] and predicted changes in

rainfall distribution patterns [6] and temperature [7] may also

affect litterfall by altering leafing phenology. As litterfall represents

a major pathway for carbon and nutrients between vegetation and

soil it seems likely that changes in aboveground litter production

will have consequences for belowground processes. However,

despite the increasing recognition that research on terrestrial

ecosystem dynamics needs a combined aboveground-belowground

approach [8], the potential impact of changes in litterfall on

belowground carbon dynamics has been largely ignored [9].

Tropical forests are a critical component of the global carbon

cycle as they store 20–25% of the global terrestrial carbon [10,11].

Ongoing debates about whether tropical forests are a source or

sink for atmospheric carbon have led to increased interest in the

belowground components of their carbon cycle [12] because they

also contribute almost 30% to global soil carbon storage [13]. Soil

respiration from root and heterotrophic respiration alone releases

approximately 80 Pg of carbon into the atmosphere per year to

which tropical and subtropical forests contribute more than any

other biome [14]. Recent studies have investigated the direct

effects of elevated CO2 [15], rising temperature [16,17], and

fertilizer [18–20] on soil carbon cycling but we know very little

about how soil respiration will be affected by the predicted

changes in aboveground production caused by global climate

change. We believe that an increase in aboveground litterfall may

have a large impact on belowground carbon and nutrient cycling,

as annual litterfall is closely correlated with soil respiration on a

global scale [21,22], and the amount of litter on the forest floor

also affects soil nutrient status, soil water content, soil temperature,

and pH [9], all of which can influence soil respiration rates. To

investigate this, we conducted an experiment consisting of large-

scale monthly litter removal (L-) and litter addition (L+) treatments

in a lowland tropical forest. Our results show that an increase in

aboveground litterfall caused a disproportionate increase in soil

respiration, reduced the amount of carbon allocated to fine root

biomass and thus has the potential to cause substantial losses of

carbon belowground.
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RESULTS

Soil respiration
Soil respiration showed a seasonal pattern with low rates

(c. 130 mg C m22h21) in the dry season and much higher

rates (c. 260 mg C m22h21) in the wet season. There was no

effect of litter manipulation during 2003, the first year of

treatments, but from May 2004 (17 months after litter manipu-

lation commenced), respiration from the mineral soil in the litter

removal (L-) plots was on average 20% lower than in the control

(CT) plots (Fig. 1).

From the second year of treatments, litter addition increased

respiration from the mineral soil more than litter removal

decreased it. On average, soil respiration in the litter addition

(L+) plots was 43% higher than in the controls and the increase

was significant or marginally significant in eleven out of twelve

months while respiration in the L- plots was significantly lower

than the CT plots in only two out of twelve months (Fig. 2). The

smallest increase in the L+ plots relative to the CT plots was

during the dry season (20% in January 2006; Fig. 2), while the

greatest increases were observed during the dry-to-rainy season

transition (69% in May 2004 and 64% in May 2007; Fig. 2). The

Figure 1. Soil respiration from February 2003 to July 2007 in litter manipulation treatments in tropical rainforest. Soil respiration rates were
measured over bare soil in all treatments; squares are controls, triangles are litter addition treatments, and circles are litter removal treatments; error
bars show standard errors of means for n = 5.
doi:10.1371/journal.pone.0001299.g001

Figure 2. Differences in soil respiration between litter manipulation treatments and controls in tropical rainforest. The differences are calculated
as a percentage of the average respiration measured in the control plots for each month; grey bars are litter addition plots and white bars are litter
removal plots; a star above a bar denotes a significant treatment effect (P,0.05) compared to the controls, a circle above a bar denotes a marginally
significant treatment effect (P,0.065) compared to the controls.
doi:10.1371/journal.pone.0001299.g002

Litterfall Boosts Soil CO2

PLoS ONE | www.plosone.org 2 December 2007 | Issue 12 | e1299



strong increase in soil respiration in the L+ plots was sustained

until the end of the study in July 2007 (Fig. 1).

Soil temperature and soil water content
Soil temperature (0–100 mm depth) varied very little throughout

the year; litter removal decreased soil temperature by c. 0.5uC
relative to the CT and L+ plots during the rainy season only in

2003 and 2004 (P = 0.002); soil temperature did not differ between

the L+ and CT plots except in June and July 2007, when it was

0.3uC (P = 0.019) and 0.4uC higher (P = 0.002), respectively, in the

L+ plots. Soil water content from 0–60 mm depth was not affected

by litter manipulation in any season or year.

Fine root and microbial biomass
Fine root biomass in the mineral soil (0–100 mm depth) was 37%

lower in the L+ plots than in the CT plots in June and July 2004,

after 19 months of litter addition and removal treatments

(P,0.01; Fig. 3) and 28% lower in August 2006, after 41 months

(P = 0.05; Fig. 3). There was no significant difference in fine root

biomass between CT and L- plots in either year.

Total microbial C and N (0–100 mm depth) had decreased by

23% in the L- plots relative to the control treatment in August

2004 (P = 0.011 and P = 0.003 for C and N, respectively; Fig. 4a)

and microbial N in the L- plots was 18% lower than in the CT

plots in June 2006 (P = 0.006; Fig. 4b).

Litter addition had no significant effect on microbial biomass C

and N in either year.

DISCUSSION
We attribute the lack of significant responses in soil respiration to

the experimental treatments during the first year to a combination

of two factors: firstly we started treatments during the dry season

when decomposition is limited by the lack of moisture [23] and

secondly, we did not include the litter layer in our measurements

of soil respiration. Thus, we would not expect CO2 efflux from the

mineral soil to be affected by our treatments until decomposition

processes were sufficiently advanced to affect the input of carbon

and nutrients to the mineral soil.

The 20% reduction in soil respiration observed in the litter

removal treatment from the second year of treatments until the

end of the study is similar to the 28% decrease reported in plots in

young regrowth forest in Brazil after one year of litter removal,

where controls included the litter layer in CO2 efflux measure-

ments [24], but lower than the 51% decrease after seven years of

litter removal in lower montane forest in Puerto Rico [25]. We can

attribute the decrease in our study principally to a reduction in

heterotrophic respiration due to the withdrawal of fresh substrate,

as there were no differences in fine root biomass in the upper

100 mm of the mineral soil between CT and L- plots in 2004 or in

2006 (Fig. 3). Furthermore, we found no significant differences in

soil water content between treatments and the small (#0.5uC) and

inconsistent differences in soil temperature were unlikely to affect

soil respiration.

We expected an average increase of 20% in soil respiration in

the L+ plots during the period from May 2004 to July 2007, as

CO2 efflux from the mineral soil decreased by this percentage in

the L- plots. However, soil respiration in the L+ plots was on

average 43% higher than the controls and therefore 23% higher

than expected by the addition of litter alone. Furthermore, this

increase was sustained from May 2004 until the end of the study in

July 2007 (Fig. 2). The increase in soil respiration in the L+ plots is

considerable and greater than the effects of fertilization with

150 kg ha21 yr21 of phosphorus in a study in Costa Rica [20].

While fertilization treatments are thought to boost soil respiration

by removing the nutrient limitation of decomposition processes

[20,26], and increasing microbial biomass [26], we found no

Figure 3. Fine root biomass in the mineral soil (0–100 mm) in litter
manipulation treatments in tropical rainforest. CT is control, L+ is
litter addition, L– is litter removal; error bars show standard errors of
means for n = 5; different letters above bars indicate a significant
difference between treatments at P,0.05. Data for 2004 has been
previously published in a different form [25].
doi:10.1371/journal.pone.0001299.g003

Figure 4. Microbial biomass in the mineral soil (0–100 mm) in litter
manipulation treatments in tropical rainforest. Data are given as
microbial carbon and nitrogen in a) August 2004, and b) June 2006; CT
is control, L+ is litter addition, L– is litter removal; error bars show
standard errors of means for n = 5; different letters above bars indicate a
significant difference between treatments at P,0.05.
doi:10.1371/journal.pone.0001299.g004
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increase in leaf litter decomposition rates in our L+ treatments

[27], and no changes in microbial biomass C or N (Fig. 4a,b).

Furthermore, litter addition decreased fine root biomass in the

mineral soil by 37% in 2004 [28] and 30% in 2006 (Fig. 3). Fine

roots contribute the bulk of root respiration [29–30], root

respiration is proportional to root biomass [31], and it typically

makes up at least 30% of total soil respiration in the tropics [31–

34]; consequently the lower fine root biomass in the L+ plots

would effectively reduce soil respiration by c. 11%. The expected

increase in soil respiration in the L+ plots due to litter addition and

reduced fine root biomass would therefore only be c. 9% relative to

the controls. Thus, measured soil respiration was 34% higher than

expected from the extra litter and reduced root biomass (Fig. 5). This

suggests that litter addition, besides increasing the amount of readily

degradable carbon, may also cause substantial losses of CO2 from

the soil. It is likely that this extra CO2 production is attributable to

priming effects, the enhanced microbial decomposition of older,

more recalcitrant soil organic matter by the addition of fresh organic

matter [35,36]. Strong pulses of soil respiration have previously been

observed in lowland tropical rainforest during the dry-to-rainy

season transition and were interpreted as a ‘natural priming effect’

caused by large amounts of water-soluble carbon leaching from the

litter that had accumulated during the dry season [20]. Our study

shows that additional leaf litter has the potential to sustain priming

effects throughout the year.

Estimated annual soil respiration rates were 15.3 t C ha21 yr21,

19.0 t C ha21 yr21, and 13.7 t C ha21 yr21 for the CT, L+, and L-

treatments, respectively. Thus, the soil carbon lost to the

atmosphere in our litter addition treatment is at least 4.4 t C

ha21 yr21and may be as high as 6.5 t C ha21 yr21 (23% and 34%,

respectively, of expected soil respiration in the L+ plots).

Laboratory incubations have demonstrated that repeated addi-

tions of fresh organic matter to soil induce greater priming effects

than a single addition [37,38] and that increased decomposition of

soil organic matter continued even when the added fresh organic

matter had been completely depleted [39]. We therefore expect

that chronic increases in litterfall will induce a substantial release

of soil carbon in the medium term.

Thus, we show for the first time that increased aboveground

litter production in response to global climate change may trigger

priming effects and convert considerable amounts of soil carbon to

atmospheric carbon dioxide.

MATERIALS AND METHODS

Site description
The study was carried out as part of an ongoing long-term litter

manipulation experiment to investigate the importance of litterfall

in the carbon dynamics and nutrient cycling of tropical forests.

The forest under study is an old-growth moist lowland tropical

forest, located on the Gigante Peninsula (9u069N, 79u549W) of the

Barro Colorado Nature Monument in Panama, Central America.

The soil is an oxisol with a pH of 4.5–5.0, with low ‘available’

phosphorus concentration, but high base saturation and cation

exchange capacity [28; 40–41]. Nearby Barro Colorado Island (c.

5 km from the study site) receives a mean annual rainfall of

2600 mm and has an average temperature of 27uC [42]. There is

a strong dry season from January to April with a median rainfall of

less than 100 mm per month [43]; almost 90% of the annual

precipitation occurs during the rainy season. Fifteen 45-m645-m

plots were established within a 40-ha area (500-m6800-m) of old-

growth forest in 2000. In 2001 all 15 plots were trenched to a

depth of 0.5 m in order to minimize lateral nutrient- and water

movement via the root/mycorrhizal network; the trenches were

double-lined with plastic and backfilled. Starting in January 2003,

the litter (including branches #100 mm in diameter) in five plots

was raked up once a month, resulting in low, but not entirely

absent, litter standing crop (L- plots). The removed litter was

immediately spread on five further plots, approximately doubling

the monthly litterfall (L+ plots); five plots were left as controls (CT

plots). The assignment of treatments was made on a stratified

random basis, stratified by total litterfall per plot in 2001, i.e. the

three plots with highest litterfall were randomly assigned to

treatments, then the next three and so on.

Soil respiration
In October 2002 four measurement sites were established in each of

the 15 plots; collars made of PVC pipe of 108 mm inner diameter

and 44 mm depth were placed 12.5 m into the plot, measured from

the centres of each of the fours sides of the plot. The collars were sunk

into the soil to 10 mm depth and anchored using small plastic tent

pegs, which were attached to the collars by cable binders and sunk

diagonally into the ground to avoid channelling water into the soil

under the collars. The collars were left undisturbed throughout the

experiment. Soil respiration from the mineral soil was measured in

the collars in February, March, May, June, September and October

of 2003, and April, May, and September of 2004 using an infra-red

gas analyser (IRGA) Li-6400 with an Li-6400-9 soil chamber

attachment (LI-COR, Lincoln, USA). The ambient CO2 level was

determined for each site individually and measurements started at

5 ppm below the ambient CO2 level. Three measurements were

taken over each collar at each time and the values were averaged to

give one value per collar per time.

In September 2005 new measurement sites were set up adjacent to

those established in 2002. PVC collars of 200 mm diameter and

120 mm depth were sunk into the ground to 20 mm and anchored

with tent pegs as described above. The collars were set up two

months before starting measurements and were left undisturbed

throughout the experiment. Soil respiration was measured over the

new collars in November and December 2005, January, March,

April, May, and June 2006, and May, June and July 2007 using the

Li-8100 soil CO2 flux system (LI-COR, Lincoln, USA). The ambient

Figure 5. Comparison of predicted and observed soil respiration in
litter manipulation plots in tropical rainforest. Differences are
expressed as percentages of the mean rate measured in controls from
May 2004 to July 2007; CT is control, L+ is litter addition, L– is litter
removal.
doi:10.1371/journal.pone.0001299.g005
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CO2 level was determined for each site automatically and one

measurement of 2 minutes duration was taken over each collar. As

our main research aim was to determine whether the amount of litter

on the forest floor affects respiration from the mineral soil, leaf litter

was removed from the collars prior to all measurements; great care

was taken not to disturb the underlying mineral soil, and the litter

was replaced once the measurements had been completed.

All measurements were made during 1–3 days each month

between 8.00 h and 14.00 h. If measurements could not be

completed in one day, they were made over consecutive days

whenever possible, but no measurements were taken during or

immediately following heavy rainfall. When measurements were

taken over several days, an equal number of plots per treatment

was measured each day; the plot means (four collars per plot) were

used for statistical analysis of treatment effects.

Annual respiration rates were estimated by obtaining a daily

mean each for the rainy and dry seasons from the data collected,

multiplying the daily mean by the average number of days in each

season (135 days for the dry season, 230 days for the rainy season),

and then summing the obtained values.

Soil temperature and soil water content
Soil temperature was recorded during respiration measurements in

2003, 2004, 2006, and 2007 within 0.5 m of the collars using the

IRGA’s integrated soil temperature probe inserted to a depth of

100 mm. Volumetric soil water content was measured from 0–

60 mm depth using a thetaprobe (Delta-T Devices, Cambridge,

UK), which was calibrated to the soil type in the plots following

the procedure described by Delta-T. Due to technical problems,

volumetric soil water measurements were not made in 2004 or

2005 and only in April in 2006. Gravimetric soil water content was

determined in May, June, and August 2004, and in January and

June 2006 from four 20-mm diameter soil cores per plot, taken

from 0–100 mm depth; volumetric soil water content was then

calculated from the gravimetric measurements.

Fine root and microbial biomass
The biomass of fine roots (#2 mm diameter) from 0–100 mm

depth in the mineral soil was determined in June and July 2004

from ten randomly located 51-mm diameter soil cores per plot

[25], and in June 2006 from seven randomly located soil cores per

plot; live and recently dead fine roots were carefully separated

from the soil by washing in a 0.5-mm mesh sieve and then dried to

constant weight in the oven at 70uC.

Total microbial biomass of the mineral soil was measured in

August 2004 and June 2006 (during the rainy season). Four soil

cores were taken from 0–100 mm depth at the four corners of the

inner 20-m620-m in each plot using a 20-mm diameter punch-

corer; the cores were bulked to give one sample per plot.

Subsamples were taken to determine soil gravimetric water

content and total microbial biomass was determined by the

fumigation extraction method [44–45]. Briefly, pairs of unfumi-

gated and chloroform-fumigated (exposed to chloroform for three

days in the dark) soil samples were shaken in 0.5 M K2SO4 for one

hour, filtered through Whatman No. 1 filter paper, and frozen

until analyzed. Total organic carbon (TOC) and total nitrogen in

the extracts were measured simultaneously on a TOC VCPH/

CPN Total Organic Carbon and Nitrogen Analyzer (Schimadzu,

Kyoto, Japan). Total microbial carbon and nitrogen were

estimated as the difference between fumigated and unfumigated

samples (expressed on an oven-dry mass basis), divided by

appropriate conversion factors [44–45].

Statistical analyses
Using mean values per plot (i.e n = 5 for each treatment and

control) differences among treatments in soil respiration rates, soil

temperature, and soil moisture were investigated by separate

repeated measures ANOVAs for each year. Fine root biomass and

microbial biomass C and N were analysed with one-way ANOVAs

for each year separately. Where treatment effects were found to be

significant or marginally significant (P,0.07), post-hoc compari-

sons were made using Fisher’s LSD test. All analyses were carried

out in Genstat 7.2 (VSN International Ltd., Hemel Hempstead,

UK).
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