Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

Bosse, Jim and Tovee, Peter and Huey, B. D. and Kolosov, Oleg (2014) Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies. Journal of Applied Physics, 115 (4). ISSN 0021-8979

Full text not available from this repository.

Abstract

Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ls time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only direct comparing results within areas on the order of few lm2 unless calibrated directly or comparing with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Applied Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100
Subjects:
?? ULTRASONC FORCE MICROSCOPY, UFMUFMULTRASOUNDHFMHETERODYNE FORCE MICROSCOPYATOMIC FORCE ACOUSTIC MICROSCOPYHOLOGRAPHICNEAR-FIELDSUBSURFACEMATERIALS CHARACTERISATIONNANOTECHNOLOGYNANO-SCIENCEPHYSICS AND ASTRONOMY(ALL) ??
ID Code:
69172
Deposited By:
Deposited On:
16 Apr 2014 08:13
Refereed?:
Yes
Published?:
Published
Last Modified:
21 Sep 2023 01:43