
HyperCat is an open, lightweight JSON-based hypermedia catalogue format for exposing
collections of URIs. Each HyperCat catalogue may expose any number of URIs, each with
any number of RDF-like triple statements about it. HyperCat is simple to work with and allows
developers to publish linked-data descriptions of resources.

HyperCat is designed for exposing information about IoT assets over the web. It allows a
server to provide a set of resources to a client, each with a set of semantic annotations.
Implementers are free to choose or invent any set of annotations to suit their needs. A set of
best practices and tools are currently under development. Where implementers choose
similar or overlapping semantics, the possibilities for interoperability are increased.

The HyperCat specification was created as part of the Technology Strategy Board (TSB)
funded, IoT Ecosystem Demonstrator project which consisted of 8 consortia all developing an
IoT ecosystem demonstrator around a IoT hub.

The specification is the work of the Interoperability group which had representation from all 8
IoT Ecosystem demonstrator projects representing approximately 40 Universities and Industry
partners including Lancaster university. \Authorship rests with the Interoperability Group.

This document is a subset of the internal “Interoperability \Action Plan” and represents the
public specification which has been made available for dissemination. It has been placed in
the Lancaster University ePrint archive to aid dissemination.

More details on the TSB funded IoT Ecosystem Demonstrator can be found at:

https://connect.innovateuk.org/web/internet-of-things-ecosystem-demonstrator

This cover page is not part of the original document

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

This document is the “specification” part of a wider “Interoperability Action Plan” document.

3.0 High Level Architecture

y⤀ull interoperability尀 for all of the “things” within the Internet of Things is a massive undertaking, beyond
the scope of this demonstrator. For most developers, what is more important is access to the data
their individual implementations which produce and an understanding of what that data represents.
The goal of this project is to provide and demonstrate that interoperability at this level is possible.

A simplified view of the IoT is given below. Each consortium member will be implementing one or
more hubs, which communicate with their underlying devices to feed data, and possibly expose
actuators and control points to the hub (1). Each hub can then interact with applications which can
discover these resources and access them (2). Hubs may also communicate with other hubs (3),
although this will be through the same interface. The agreed focus of this interoperability demonstrator
is Interface 2:

The following section defines the specification for Interface 2, which will be provided in at least one hub
implemented by each consortium. Each consortium will also develop at least one application to access
data from another hub.

Because of the limited timescale for this project, the details of security and commercial access are
considered out of scope, but may be developed independently by consortium members.

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

4.0 Core Interoperability Specification

4.1 Identity

The identity of Apps and Hubs will be URI’s.

4.2 Catalogues

Applications access data on another hub by means of a catalogue which shall be implemented on
every hub which allows one or more applications to access it. A catalogue is a specific type of resource
representing an unordered collection of resource items. Each item in a catalogue refers to a single
resource by its URI, which may itself be a further catalogue.

All compliant hub servers MUST provide a catalogue with zero or more items at {BASE URL}/cat.

A compliant hub server MUST return a response to a valid catalogue request, even if the catalogue

has zero items available for that request.

A catalogue is represented by a JSON document of MIME type

application/vnd.tsbiot.catalogue+json containing a single catalogue object.

All resource URIs in a catalogue MUST be unique within the catalogue, so they can be referred to

individually. The same resource MUST NOT appear more than once in the same catalogue object’s

items (even if the entries have different metadata).

A catalogue MAY provide metadata for itself and MAY provide metadata for each catalogue item.

4.3 Catalogue Object

A catalogue object is a JSON object.

A catalogue object MUST contain all of the following properties:

Property Name Meaning Property Value
“items” List of items JSON array of zero

1
 or more item

objects
“item-metadata” An array of metadata objects

describing the catalogue object
JSON array of metadata objects

1. An empty catalogue will not expose any data, hence does not allow any useful interoperability.

4.3.1 Item Object

An “items” object is a JSON object, which MUST contain all of the following properties:

Property Name Meaning Property Value
“href” Identifier for the resource item URI as a JSON string
“i-object-metadata” An array of metadata objects

describing the resource item
JSON array of metadata objects

The metadata array MUST contain a metadata object for each of the mandatory metadata object

relationships.

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

The metadata array MAY contain multiple metadata objects with the same rel (and val) properties

(metadata is a bag/multiset of features).

4.3.2 Metadata Object

A metadata object is a JSON object which describes a single relationship between the parent object

(either the catalogue or catalogue item) and some other entity or concept denoted by a URI.

All metadata objects MUST include all of the following properties:

Property Name Meaning Property Value
“rel” A relationship between the parent

object and a target noun,
expressed as a predicate (verb)

URI of a relationship as a JSON
string

“val” The entity (noun) to which the rel

property appliesJSON string
(optionally URI of concept or
entity). Where URLs are used,
they MAY be relative. Relative
links MUST be interpreted as in
RFC 1808. MAY be empty.

The metadata object {“rel”:”urn:X-tsbiot:rels:isColour”, “val”:”blue”} MUST be

interpreted as saying the parent object is of colour blue.

4.3.3 Mandatory Metadata Relationships

All arrays of metadata must include all of the following relationships:

rel value Meaning val value

“urn:X-

tsbiot:rels:hasDescriptio

n:en”

Resource has a human readable
description in English

Description as a JSON string

In addition, all top-level metadata objects (child of catalogue object) MUST include all of the following

relationships:

rel value Meaning val value

“urn:X-

tsbiot:rels:isContentType”
Data provided by resource is of
given type

"application/vnd.tsbiot.ca

talogue+json"

4.3.4 Optional Metadata Relationships

A metadata object MAY include any or all of the following relationships where applicable:

rel value Meaning val value

“urn:X-

tsbiot:rels:isContentType

”

Data provided by resource
SHOULD be of given type

RFC2046 MIME type as JSON
string (eg. “text/csv”)

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

“urn:X-

tsbiot:rels:hasHomepage”
A reference to a human readable
web page concerning the resource

URL as a JSON string

“urn:X-

tsbiot:rels:containsConte

ntType”

This catalogue contains resources
of given content type. Only
meaningful for metadata objects
contained by or pointing to
catalogue objects

RFC2046 MIME type as JSON
string (eg. “text/csv”)

“urn:X-

tsbiot:rels:supportsSearc

h”

This catalogue supports a search
mechanism. Only meaningful for
metadata objects contained by or
pointing to catalogue objects

URI of a defined search
mechanism as a JSON string
(see section 4.4)

4.4 Catalogue Search

Catalogues may be searched (filtered) to find items matching a specified set of metadata.

If a catalogue provides a search capability it MAY advertise it to a client through having a “urn:X-

tsbiot:rels:supportsSearch” metadata relation.

In future, other search mechanisms may be defined. At present, only the simple search mechanism is

specified.

4.4.1 Simple Search Mechanism

A catalogue MAY advertise that it supports the simple search mechanism by providing the metadata

relation “urn:X-tsbiot:rels:supportsSearch”/“urn:X-tsbiot:search:simple” in a

catalogue object’s metadata.

A simple search is performed by providing a query string (http://tools.ietf.org/html/rfc1738) to a

catalogue. If multiple search parameters are supplied, the server MUST return the intersection of

items where the all search parameters match in a single item, combining the parameters with boolean

AND.

A simple search searches only a single catalogue resource. It does not include other linked or nested

catalogues.

All query parameters MUST be URL encoded. All query parameters are optional.

Parameter Meaning Allowed Value
rel Any metadata relation URI as a JSON string
val Any metadata value URI as a JSON string
href A resource URI URI as a JSON string

Examples

Given the following catalogue:

{

 "item-metadata":[

 {

 "rel":"urn:X-tsbiot:rels:isContentType",

 "val":"application/vnd.tsbiot.catalogue+json"

http://tools.ietf.org/html/rfc1738

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

 },

 {

 "rel":"urn:X-tsbiot:rels:hasDescription:en",

 "val":""

 },

 {

 "rel":"urn:X-tsbiot:rels:supportsSearch",

 "val":"urn:X-tsbiot:search:simple"

 }

],

 "items":[

 {

 "href":"http://A",

 "i-object-metadata":[

 {

 "rel":"urn:X-tsbiot:rels:1",

 "val":"1"

 },

 {

 "rel":"urn:X-tsbiot:rels:2",

 "val":"2"

 },

 {

 "rel":"urn:X-tsbiot:rels:3",

 "val":""

 }

]

 }

]

}

The following query strings would all return a catalogue containing the one item above:

?rel=urn:X-tsbiot:rels:1

?rel=urn:X-tsbiot:rels:2

?rel=urn:X-tsbiot:rels:3

?val=1

?val=2

?val=

?rel=urn:X-tsbiot:rels:1&val=1

?rel=urn:X-tsbiot:rels:3&val=

The following query strings would all return a catalogue with no items:

?rel=urn:X-tsbiot:rels:4

?val=3

?rel=urn:X-tsbiot:rels:1&val=2

?rel=urn:X-tsbiot:rels:1&val=

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

4.5 Catalogue Operations

Operations to create, read, update and delete individual items within a catalogue are defined.

Operations to create, update and delete entire catalogues are NOT defined and are considered out of

scope.

4.5.1 Read Catalogue

To read an entire catalogue, a client MAY GET the catalogue URL.

On success, the server MUST return a JSON catalogue object, as defined in this document.

On success, the server MUST return an HTTP 200 status code.

Reading part of a catalogue is accomplished using Search (see section 4.4).

4.5.2 Create / Insert Catalogue Item

To add a new item to a catalogue, a client MAY POST an item object (JSON) to a catalogue URL.

The server MAY place the new item object in any catalogue it chooses. The ability for the server to

choose the catalogue allows a server to organise “uploaded” resource catalogues in any pattern it

wishes.

On success, the server MUST return an HTTP location header with the URL of the catalogue to which

the item was added.

On success, the server MUST return an HTTP 201 status code.

Creating an entire, new catalogue is not defined and is out of scope.

4.5.3 Read Catalogue Item

To read an individual item from a catalogue, a client MAY use the simple search mechanism defined in

section 4.4 .

4.5.4 Update Catalogue Item

To replace an existing item in a catalogue, a client MAY PUT or POST an item object to a catalogue

URL. To specify which existing item is to be replaced, the client MUST use a query parameter of href

with a value corresponding to a resource URI held in the catalogue.

On success, the server MUST respond with a status code of 200.

On success, the server MAY respond with the item object.

Updating an entire catalogue in a single operation is not defined and is out of scope.

Note that a POST operation can create or update an item, whereas a PUT will only update.

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

4.5.5 Delete Catalogue Item

To delete an item from a catalogue, a client MAY DELETE from a catalogue URL. To identify the item

to be deleted, the client MUST use a query parameter of href with a value corresponding to a

resource URI held in the catalogue.

On success, the server MUST respond with a status code of 200.

Deleting an entire catalogue, as opposed to individual items within a catalogue, is not defined and is

out of scope.

4.5.6 Security

All HTTP(S) requests may be authenticated with a key, which is a URI.

Keys may be presented in two ways (HTTP headers):

 x-api-key: KEY

 Authorization: base64(KEY:"")

How keys are generated, distributed and mapped to permissions in a hub are out-of-scope and

implementation specific.

4.6 HTTP Status Codes

All HTTP requests MUST return a valid response or an appropriate status code.

Unless otherwise specified, the server MUST return one of the following status codes to indicate the

cause of any failure:

Code Meaning

204 “No Response”

400 “Bad request” (e.g. malformed input)

409 “Conflict” (e.g. insert existing href)

401 “Unauthorised”

404 “Not found”

501 “Not implemented”

4.7 Extensibility

New forms of metadata MAY be added by defining new metadata relationships. A client encountering

an unknown metadata relationship SHOULD ignore it. Servers and clients are free to support different

sets of metadata relationships.

A new search method MAY be added, discovered and identified by defining a new value for the relation
urn:X-tsbiot:rels:supportsSearch

A new language or style for human readable descriptions MAY be added, discovered and identified by

defining a new urn:X-tsbiot:rels:hasDescription variant.

IoT Ecosystem Demonstrator
Interoperability Action Plan

Date: 17
th
 September 2013

Version: 1.1

A complete replacement catalogue object format MAY be implemented by declaring a new MIME type.

Old style catalogues may point to new style and vice versa without version ambiguity.

In addition to the properties and object structures specified in this document, a catalogue may contain

any number of other properties and objects as implementers see fit.

It is RECOMMENDED that ALL metadata extensions be confined to defining new valid rel/val data

pairs.

4.8 Best Practice

To help improve interoperability of data within hubs, members will work to define Best Practice for
metadata and resource formats, as well as any items identified as out of scope.

7.0 IP

All of the technical content within this document, primarily covering the catalogue and item

specifications, is deemed to be open. No member of the demonstrator will assert IP against the use by

any party of any such content described within this document.

8.0 Dissemination

In the spirit of interoperability, Consortia will work with the TSB to disseminate this specification and

provide access to open hubs to encourage further demonstration of the interoperability that is a key

factor of this project. It is anticipated that a high level dissemination plan covering the overall

interoperability will be produced to cover this.

