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Abstract

This research evaluates the identification of group structure in social
networks through the latent class model and a new Bayesian model com-
parison method for the number of latent classes. The approach is applied
to a well-known network of women in Natchez Mississippi. The latent
class analysis reproduces the group structure of the women identified by
the original sociologists.
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1 Introduction

This paper investigates a statistical model for groups in a social network, which
until recently has not been a major focus of analysis in the field. A recent
major review of statistical modelling work in the field has been published by
Goldenberg, Zheng, Fienberg and Airoldi (2009). In their summary Chapter 6
they conclude:

Despite the many advances in network modeling over the last decade,
there remains a host of unresolved issues. ... We feel that, from a
statistics or machine learning perspective, the biggest breakthroughs
are to be made in the areas of inference and dynamic modeling. Cre-
ating a model or perhaps fixing an existing one in such a way that
provides realistic generative and inference mechanisms which can
identifiably infer parameters of a large real world network would
make a great contribution to the statistical network modeling com-
munity.

This paper addresses the identification of actor groups within the framework of
a two-mode or bipartite network of actors attending events, through a statistical
model in which the groups of actors are represented by latent classes, which are
not directly observable, but which can be probabilistically reconstructed from
the event attendance patterns of the actors.

In this process several questions are of critical importance:

• how many groups can be identified;

• the nature of the membership of the groups, for example whether individ-
uals belong to one or to many groups;

• the nature of the event attendance patterns in the groups;

• whether other non-latent class models might give a better representation
of the data.

We address these questions in a Bayesian framework, and use recent develop-
ments in Bayesian model comparisons to illuminate the choice among possible
models. To show the application of the approach we use a famous data set
from Davis, Gardner and Gardner (1941) analysed many times, as reported in
Freeman (2003).

2 The Natchez women network

We give a detailed discussion of a simple social network which has attracted a
remarkable amount of interest, and a wide variety of approaches (21 different
analyses are reported and compared in Freeman 2003).

It comes from a sociological study of social interactions among women in
Natchez, Mississippi in the 1930s, reported in Davis, Gardner and Gardner
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(1941, hereafter DGG). The book reported a comparative study of social class
in black and white society. One aspect of the study was to assess the formation
or existence of “cliques”, defined by the joint participation of groups of women
in attending common events. The network table (Figure 1) which has caused
so much interest to later analysts is reproduced from Davis et al; it gives the
presence (x) or absence (...) of 18 women at 14 events. The women are named
and numbered by DGG, and the events are dated from newspaper reports at
the time.

Figure 1: DGG Table 1

The question of interest to analysts is how to describe the nature of the
association among the women, and in particular to identify, as far as possible,
subsets of the women which form coherent groups or cliques, using only their
attendance at the events as data. It would help this identification if we knew
more about the social events than just their dates, but no further information
about them is given. We do know that these events were not the unique social
events of the reported days, as DGG report that other women also attended
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events on the same days, but not the events in this table.

2.1 The adjacency matrix

To perform any analysis we express the table elements mathematically through
the link or tie variable Yij , with the presence of woman i at event j defining
Yij = 1, and her absence from the event defining Yij = 0. We use n to denote
the number of rows – women – and r to denote the number of columns – events.
The resulting table, shown in Table 2 is the adjacency matrix, denoted by Y.

Marginal totals (T) have been added to the table, giving the total number
of events attended by each woman, and the total number of women attending
each event.

W\E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 T
1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 8
2 1 1 1 0 1 1 1 1 0 0 0 0 0 0 7
3 0 1 1 1 1 1 1 1 1 0 0 0 0 0 8
4 1 0 1 1 1 1 1 1 0 0 0 0 0 0 7
5 0 0 1 1 1 0 1 0 0 0 0 0 0 0 4
6 0 0 1 0 1 1 0 1 0 0 0 0 0 0 4
7 0 0 0 0 1 1 1 1 0 0 0 0 0 0 4
8 0 0 0 0 0 1 0 1 1 0 0 0 0 0 3
9 0 0 0 0 1 0 1 1 1 0 0 0 0 0 4
10 0 0 0 0 0 0 1 1 1 0 0 1 0 0 4
11 0 0 0 0 0 0 0 1 1 1 0 1 0 0 4
12 0 0 0 0 0 0 0 1 1 1 0 1 1 1 6
13 0 0 0 0 0 0 1 1 1 1 0 1 1 1 7
14 0 0 0 0 0 1 1 0 1 1 1 1 1 1 8
15 0 0 0 0 0 0 1 1 0 1 1 1 0 0 5
16 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2
17 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2
18 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2
T 3 3 6 4 8 8 10 14 12 5 4 6 3 3 89

Table 2: Event attendance

From the adjacency matrix Y we can construct two other symmetric matrices
of interest: the n × n “woman-by-woman” matrix W = YY′, and the r × r
“event-by-event” matrix E = Y′Y.
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W 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
2 7 6 6 3 4 4 2 3 2 2 1 2 2 2 1 0 0
3 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
4 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
5 4 2 2 0 2 1 0 0 1 1 1 0 0 0
6 4 3 2 2 1 1 1 1 1 1 1 0 0
7 4 2 3 2 1 1 1 2 2 1 0 0
8 3 2 2 2 2 2 2 1 2 1 1
9 4 3 2 2 3 2 2 2 1 1

10 4 3 3 4 3 3 2 1 1
11 4 4 4 3 3 2 1 1
12 6 6 5 3 2 1 1
13 7 6 4 2 1 1
14 8 4 2 2 2
15 5 2 1 1
16 2 1 1
17 2 2
18 2

Table 3: Women connections

E 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3 2 3 2 3 3 2 3 1 0 0 0 0 0
2 3 2 3 3 3 2 3 2 0 0 0 0 0
3 6 4 6 5 4 5 2 0 0 0 0 0
4 4 4 2 3 3 2 0 0 0 0 0
5 8 6 6 7 3 1 0 0 0 0
6 8 5 7 4 1 1 1 1 1
7 10 8 9 3 2 4 2 2
8 14 9 4 1 5 2 2
9 2 4 3 5 3 3

10 5 2 5 3 3
11 4 2 1 1
12 3 3 3
13 3 3
14 3

Table 4: Event connections

These “one-mode” networks show the connections between pairs of women
through the numbers of events they have jointly attended, and the connec-
tions between pairs of events through the numbers of women jointly attending
them.

The woman-by-woman matrix W is given in Table 3; its diagonal elements
are the numbers of events attended by each woman.

The event-by-event matrix E is given in Table 4. The diagonal elements of E
are the numbers of women attending each event. The upper-right off-diagonal
block of zeros shows that no woman attended an event from the set 1-4 and
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an event from the set 10-14: these sets of events attracted different groups of
women. The zeros in the W matrix are more scattered, but women 17 and 18
did not attend any event with women 2 and 4-7, and woman 5 did not attend
any event with women 8, 11, 12 and 16-18.

While the one-mode “networks” of event-by-event and woman-by-woman
matrices are useful, we do not use them in the modelling approach, as they both
lose information from the original adjacency matrix, which we model directly.
Visualisations of the two-mode and the one-mode women networks illustrate
this. Figure 2, from http://jung.sourceforge.net/applet/southern.html

gives two visualisations of the Natchez women and event connections. In the
left two-mode graph, the placing of events attended (blue squares), separated
by the groups of women attending them (red circles), clarifies the connections
to some extent: the events in the centre are those attended by women from both
groups.

In the right graph, the one-mode woman-by-woman network is shown, with
the thickness of connecting lines corresponding to the number of events jointly
attended. There is no clear grouping of women visible.

Figure 2: Southern women and events

2.2 The meaning of a group

A fundamental question which has to be addressed first is what we mean by
a group, in this social context. We should first note than even the word for
this subset of actors is not consistent across research fields: it is also called
community, clique and class.
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As Doreian, Batagelj and Ferligoj (2005) note, there has been an extraor-
dinary number of definitions of the group concept. Their formulation (op. cit.
p.4) is

... we consider a group to be two or more individuals who are inter-

dependent through sustained interaction. (authors’ emphasis)

Since interdependent is not defined, and sustained implies a continuing struc-
ture of the group, and since our analyses are generally of only one observation
of the network, we give a weaker definition. We adopt, as a working definition
of a group in the Natchez women context, an identifiable subset of women who

tend to attend the same events. We do not yet define this tendency, or how it
is to be used to establish the group structure. This will be considered after we
examine the 21 existing analyses of this table.

2.3 The 21 analyses

Before we develop statistical models for Table 2, we should note that many
analyses of the table do not use a statistical model, but use other combinatorial
or algebraic methods for its analysis. The approaches used in these analyses are
given without explanation or exposition in Table 5; full details of the approaches
can be found in Freeman (2003).

An additional complication is that DGG gave two tables for the Natchez
women event attendance, which are inconsistent. Freeman (2003) identified this
inconsistency and checked the 21 analyses for their consistency with DGG’s
Table 1, re-doing the analyses, or asking the original authors to redo their
analyses, for those which had used DGG’s Table 2. We summarise his analyses
in Table 5. They are ordered by time; where the same authors appear with (1),
(2) or (3) these refer to different methods given in the same paper.

2.4 The gold standard

We first describe the analysis by DGG, since they carried out the research; as
Freeman (2003) quoted from Davis and Warner (1939):

they drew on “records of overt behavior and verbalizations, which
cover more than five thousand pages, statistical data on both rural
and urban societies, as well as newspaper records of social gatherings
...”

DGG both assigned women to groups and determined their positions within
the groups, which they described as core, primary and secondary, though these
terms were not defined. They divided the women into two overlapping groups:
1-9 in Group 1 and 9-18 in Group 2; woman 9 was assigned to both groups.
Women 1-4 and 13-15 were core members, 5-7 and 11-12 were primary, and 8-10
and 16-18 were secondary.
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Authors Method

Davis, Garner and Garner (1941) Interviews

Phillips, Conviser (1972) Minimised entropy over groups

Breiger (1974) Eliminated connected events from the event x event

matrix

Breiger, Boorman, Arabie (1975) Alternately clustered rows and columns

Doreian (1979) Algebraic topology

Bonacich (1991) Correspondence analysis

Freeman (1992) Analysed woman x woman matrix

Freeman (1993) (1) Genetic algorithm for woman x woman matrix

Freeman (1993) (2) Genetic algorithm for woman x woman matrix

Freeman, White (1993) (1) Galois lattice analysis

Freeman, White (1993) (2) Galois lattice analysis

Everett, Borgatti (1993) Regular graph colouring

Borgatti, Everett (1997) (1) One-mode bipartite matrix analysed for bicliques

Borgatti, Everett (1997) (2) One-mode bipartite matrix, tabu search algorithm

Borgatti, Everett (1997) (3) Two-mode matrix analysed by genetic algorithm

Skvoretz, Faust (1999) Exponential random graph (p*) model

Osbourn (1999) All-purpose clustering and pattern-recognition

algorithm

Roberts (2000) SVD of doubly normalised adjacency matrix

Newman (2001) Weighted proximities

Table 5: Analysis methods for Table 2

Woman 9 was assigned to both groups because in interviews she was claimed
by both groups. It is clear from Table 2 that woman 9 attended events 7, 8 and
9 which were attended by women from both groups.

We may regard this analysis as a gold standard, in the sense that the authors
had vastly more information than subsequent analysts, and so the extent to
which their analysis and group structure is paralleled or replicated by other
approaches is a measure of the success of the approach, of course on just this
data set.

We summarise in Table 6 the group assignments reported by Freeman (2003)
for all the approaches. They are re-ordered so that the approaches giving the
same assignments are grouped together.

There is almost unanimous agreement that women 1-7 and 9 belong to the
first group, and women 10-15 belong to the second group. Women 8 and 16-18
are less clearly identified – some analyses combine them into the two groups
above, some leave them unassigned, and one has three groups, with women 8
and 16 unassigned. The Osbourn analysis is notably different from the others.
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Authors Group 1 Group 2 Group 3 Ungrouped

Davis, Garner and Garner (1941) 1-9 9-18

Phillips, Conviser (1972) 1-9 10-18

Bonacich (1990) 1-9 10-18

Freeman (1993) (1) 1-9 10-18

Borgatti, Everett (1997) (2) 1-9 10-18

Borgatti, Everett (1997) (3) 1-9 10-18

Roberts (2000) 1-9 10-18

Freeman, White (1993) (1) 1-9, 16 10-18

Breiger, Boorman, Arabie (1975) 1-7, 9 8, 10-18

Newman (2001) 1-7, 9 8, 10-18

Breiger (1974) 1-7, 9 10-13 14-15, 17-18 8, 16

Doreian (1979) 1-7, 9 10-15 8, 16-18

Everett, Borgatti (1993) 1-7, 9 10-15 8, 16-18

Borgatti, Everett (1997) (1) 1-7, 9 10-15 8, 16-18

Freeman (1992) 1-7, 9 10-16 8, 17-18

Freeman, White (1993) (2) 1-7, 9 10-15, 17-18 8, 16

Skvoretz, Faust (1999) 1-9 10-15, 17-18 16

Freeman (1993) (2) 1-7 8-18

Osbourn (1999) 1-16 17-18

Table 6: Group assignments for analysis methods in Table 5

In none of these analyses is woman 9 assigned to both groups; apart from the
Freeman (1993) (2) analysis, she is always assigned to the first group.

The strength of membership assessments were expressed in terms of “core”
or “periphery” which are qualitative and difficult to quantify. We do not discuss
these, though we point out the value of the modelling approach we follow in its
provision of a probability of group membership which conveys a similar idea.

3 Statistical models

3.1 Models for a random process

A striking feature of the 21 analyses is the breadth of approaches used, and
their variety. Only one of these approaches – the p* analysis of Skvoretz and
Faust (1999) – used a statistical model, the exponential random graph model

described below, though the model itself did not address specifically the group
structure of the ties.

We consider the presence or absence of a woman at an event as a random

process – her attendance was determined by a possibly large number of factors
unknown to us, so we represent the process outcome as a Bernoulli random

variable, taking the value Yij = 1 with probability pij , and Yij = 0 with proba-
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bility 1− pij . The probability of the pattern of “responses” {yij} given the set
of probabilities {pij} over all women and all events, assuming independence of
event attendance both within and among women, is

Pr[{yij} | {pij}] =
∏

i

∏

j

p
yij

ij (1− pij)
1−yij .

We can bring the women and event structures into the model in several ways.

3.2 The null model – the Solomonoff-Rapoport random
graph model

This is a single-parameter model, giving a constant probability pij = p for every
woman attending every event. The model is due originally to Solomonoff and
Rapoport (1951), but is often attributed to Erdös and Rényi (1959). It has no
substantive interest in general, providing only a baseline for comparison with
informative models.

3.3 The “saturated” model

This model is just a re-statement of the general model, with the event attendance
probabilities completely unrelated parameters pij , in general different for every i
and j. We aim to improve on this model, and the null model, with parsimonious
models.

3.4 The Rasch model

The Rasch model is widely used in item response theory (IRT) in psychology.
Applied to a network, it is expressed through row and column parameters:

• Each woman i has a propensity θi to attend any event.

• Each event j has an attractiveness φj to any woman.

• Women attend events independently, and independently of each other.

• The Rasch model is a main effect or additive model, in women and events,
on the logit scale:

logit pij = log

(
pij

1− pij

)
= θi + φj .

The model has no group structure for women, and so plays the role of a
baseline model for comparison with models with group structure.

A simpler model is the Rasch event model which is defined to be

logit pij = log

(
pij

1− pij

)
= θ + φj .
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This model has a separate parameter for each event but a common propensity
parameter for all women. However the common propensity parameter is con-
founded with one of the event parameters, so it is simpler to omit it from the
model.

3.5 The exponential random graph model (ERGM)

The general form of the class of (homogeneous) exponential (log-linear) random
graph models is as follows (Robins, Pattison, Kalish and Lusher 2006):

Pr[{yij}] = (1/κ)exp

[
K∑

k=1

ηkzk(y)

]

where

• the summation is over K configuration types – different structures of the
outcomes yij ;

• ηk is the parameter corresponding to configurations of type k;

• zk(y) = zk({yij}) is the network statistic: the function of the outcomes
yij corresponding to configuration type k;

• κ = κ(η1, ..., ηk) is a normalizing constant to ensure that the model defines
a proper probability distribution.

The ERGM structures did not until recently (Handcock, Raftery and Tantrum
2007) contain any explicit grouping of actors.

3.6 Example – the Rasch model

For the Rasch model we have

Pr[{yij}] =

n∏

i=1

r∏

j=1

p
yij

ij (1− pij)
1−yij

= exp





n∑

i=1

r∑

j=1

[yij log pij + (1− yij) log(1− pij)]





= exp





n∑

i=1

r∑

j=1

[
yij log

pij
1− pij

− log(1− pij)

]


= exp





n∑

i=1

r∑

j=1


yij(θi + φj)−

n∑

i=1

r∑

j=1

log(1 + eθi+φj )







=
1

κ
exp




n∑

i=1

yi+θi +
r∑

j=1

y+jφj


 , κ =

n∏

i=1

r∏

j=1

(
1 + eθi+φj

)
.

11



So the Rasch model is a special case of the ERGM, with two sets of network
statistics yi+ and y+j – the marginal sums across events and women. These
marginal sums are reproduced by the woman and event factors in the model
fitted by maximum likelihood.

3.7 The latent class model

The use of this model in social networks is recent (Snijders and Nowicki 1997,
Nowicki and Snijders 2001) but it is very well-established in sociology for con-
tingency table analysis, from Lazarsfeld and Henry (1968) and Goodman (1974)
onwards.

The model specifies a K-class latent structure for women; the classes are
distinguished by different sets of event attendance probabilities among classes,
but identical attendance probabilities within classes. The class structure is not
however observed; it is implied and identified by the women’s different patterns
of event attendance. Within each class k the model fitted is a restricted Rasch
model, with class-and event-specific event attendance parameters and a class-
specific woman propensity parameter; the overall model is a mixed restricted

Rasch model. The formal model is

Pr[{Yij} | k, i, {qjk}] =

r∏

j=1

q
yij

jk (1− qjk)
1−yij

Pr[{Yij} | i, {qjk}] =

K∑

k=1


πk

r∏

j=1

q
yij

jk (1− qjk)
1−yij




Pr[{Yij} | {qjk}] =

n∏

1=1





K∑

k=1


πk

r∏

j=1

q
yij

jk (1− qjk)
1−yij







logit qjk = θk + φjk.

Since the propensity parameters θk and the attendance parameters φjk are both
indexed by class k, as in the Rasch model above they are not separately iden-
tifiable without some constraints. We follow the simpler course of omitting the
propensity parameters θk and working directly with the event attendance prob-
abilities qjk. The model is then a mixture of class- and event-specific product-
Bernoullis, with attendance probabilities qjk for women in class k attending
event j. (For K = 1, the one-latent-class model is identical to the Rasch event
model discussed above.) This allows much simpler computation of maximum
likelihood estimates, and of posterior distributions in the Bayesian analysis. The
probability that woman i is in class k may depend on woman covariates xi.

The model parameters πk and qjk do not have to be known or specified; they
can be estimated by now-standard methods, discussed below. An important
question is how to specify the number of classes K; this is discussed at length
below.
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3.8 The multiple membership model

In the Natchez network woman 9 was claimed by both groups – she had multiple

group membership. The latent class model can be generalised to allow for this a
priori, by defining a set of class membership probabilities for each actor, rather
than an exclusive class membership. The resulting analysis is more complicated
(see for example Airoldi, Blei, Fienberg and Xing 2008). While the formality of
the latent class single membership may appear restrictive, the posterior proba-
bilities of class membership obtained from the maximum likelihood or Bayesian
analysis of the latent class model allow for uncertainty in the class member-
ship without the requirement of a formal representation of prior uncertainty, or
multiple membership, and this is adequate for our aim.

3.9 The latent space model

The latent class model has recently been generalised further into a latent space

model (Hoff, Raftery and Handcock 2002 and Handcock, Raftery and Tantrum
2007). Actors are located in a latent Euclidean space of unknown dimension,
and in this space are clustered into latent groups using a multivariate normal
mixture distribution based on the positions of the actors in the latent space,
which are indicated by their binary connections. This requires two levels of
latency, and several difficult-to-verify assumptions. As will be seen, the much
simpler latent class analysis is adequate for our aim.

4 The latent class model likelihood

Statistical models are estimated, assessed and compared through the model

likelihood. We have a model f({yij} | λλλ) for data {yij}, depending on model
parameters λλλ. The likelihood is

L(λλλ) = L(λλλ | {yij}) = f({yij} | λλλ).

For the latent class model with K classes, the likelihood follows immediately
from the mixture model specification above:

L(λλλ) =
n∏

1=1





K∑

k=1


πk

r∏

j=1

q
yij

jk (1 − qjk)
1−yij





 ,

with λλλ = ({qjk}, {πk},K).

4.1 Maximum likelihood for mixtures

For simplicity of exposition of maximum likelihood we consider a less general
mixture model with K components for data y1, ..., yn:

f(y | θ1, ..., θK , π1, ..., πK ,K) =

K∑

k=1

πkfk(y | θk),
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where the θk are the component-specific parameters.
The Bayesian and likelihood analyses of this model, and of latent class mod-

els, are greatly facilitated by the EM approach (Dempster, Laird and Rubin
1977) through the (counterfactual) complete data likelihood, in which we con-
struct the likelihood for the “complete data set” of the response variables yi
and the component indicator variables Zik, with Zik = 1 if observation i comes
from component k, and Zik = 0 otherwise.

The complete data likelihood and log-likelihood are

CDL = Pr[{yi}, {Zik}]

= Pr[{yi} | {Zik}] · Pr[{Zik}]

=
n∏

i=1

K∏

k=1

[fk(yi | θk)]
Zik ·

n∏

i=1

K∏

k=1

πZik

k

CDℓ =

n∑

i=1

K∑

k=1

Zik log[fk(yi | θk)] +

n∑

i=1

K∑

k=1

Zik log(πk).

Maximizing the log-likelihood can be achieved by alternately finding the
conditional expectation of the complete data log-likelihood given the observed
data yij and the current parameter estimates (the E step), and maximizing this
conditioned complete data log-likelihood to get the next parameter estimates
(the M step).

In the E step the unobserved data (the Zik) in the complete data log-
likelihood are replaced by their conditional expectations given the observed data
and the current parameter estimates. Since the Zik have a (marginal) multino-
mial distribution M(1;π1, ..., πK), their conditional distribution for case i given
the observed data will again be multinomial, M(1;π1i, ..., πKi), with expecta-
tions (“posterior” probabilities given the observed data) πki. So the conditional
expected log-likelihood and its derivatives are

E[CDℓ] =

n∑

i=1

K∑

k=1

πki log[fk(yi | θk)] +

n∑

i=1

K∑

k=1

πki log(πk)

∂E[CDℓ]

∂θk
=

n∑

i=1

πki

∂ log[fk(yi | θk)]

∂θk
,

∂E[CDℓ]

∂πk

=

n∑

i=1

[
πki

πk

−
πKi

πK

]
,

since πK = 1− π1 − ...− πK−1.
So the score equations for the expected complete data log-likelihood

∂E[CDℓ]

∂θk
= 0
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are weighted versions of the score equations for each component parameter sepa-
rately, where the weights are the posterior probabilities of component member-
ship – the “data fractions” in each component. The EM algorithm alternates
between estimating the component parameters given the current posterior prob-
abilities, and computing the posterior probabilities given the current parameter
estimates.

The same results (without the EM interpretation) are obtained by direct
maximization of the observed data likelihood – the real likelihood. We do not
give details.

4.2 Number of components

Determining the number of components in a finite mixture (or the number of
latent classes in a latent class model) raises difficult inferential questions. Com-
parisons between models using the likelihood ratio test based on differences of
the frequentist deviance −2 logLmax for each model are straightforward asymp-
totically for nested models, subject to some regularity conditions:

• the models should have their ML estimates within (not on the boundary
of) the parameter space;

• the parameters should not be boundary (origin or termination) parameters
for the space of the tie variables;

• the sample should be large enough for the log-likelihood in the model
parameters to be approximately quadratic.

When we are comparing models with K and K − 1 classes in a finite mix-
ture, although the models are nested, the second regularity condition fails, as
the restricted model has to have one of the πk set to zero, a boundary value.
Alternatives to the likelihood ratio test have been proposed, and a detailed
comparison of some of these approaches for determining the number of classes
in various latent class models was made in Nylund, Asparouhov and Muthen
(2007), using sample sizes of 200, 500 and 1000.

The “naive likelihood ratio test”, assuming the validity of the asymptotic
χ2 distribution, performed very poorly, with test sizes of the 5% level test of K
to K − 1 classes typically around 25%. The bootstrap likelihood ratio test, in
which the critical value of the test is assessed by bootstrapping samples from the
fitted K − 1 class model, performed uniformly well. The Bayesian Information
Criterion (BIC) was the best of the evaluated information criteria, though it
performed badly with the smallest simulation sample size of 200, and unequal
proportions in the latent classes. Since the sample size is very small in the
network we are discussing, it is not clear how the bootstrap likelihood ratio test
and the BIC would perform.

An important difficulty in mixture analysis is the occurence of multiple local

maxima of the likelihood. This occurs because different membership structures
of the observations may give very similar maximized likelihoods. As the number
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of components in the mixture increases, the number of local maxima may also
increase.

The possibility of local maxima is usually allowed for by using multiple ran-

dom starting values for the component memberships, and choosing the best of
these to continue the EM iterations. This does not guarantee that the chosen
“best” starting configuration gives the global maximum of the likelihood, nor
does it allow the assessment of the closeness of other local maxima to the global
maximum. If several local maxima are very close, then they need to be consid-
ered jointly in the interpretation of the parameter estimates and the component
membership probabilities.

We investigate this issue in the analyses which follow by using 100 random
starting assignments, and then iterating them all through 500 EM iterations to
convergence, to determine the number of important local maxima in the 100
analyses. (The number of possible random assigments of the n observations to
K classes is very large, of the order of Kn, so 100 random assignments is a
tiny fraction of the possible number. The point is to investigate local maxima.)
We do not need to investigate all the local maxima: a difference of 7 or more
in frequentist deviances between the global and a local maximum is a ratio of
maximized likelihoods of 0.03, which is sufficiently small to eliminate the local
maximum from consideration. We discuss this further in the Bayesian analysis
below.

5 Maximum likelihood for the latent class model

Maximum likelihood in the Rasch and latent class models is well-documented in
many places, and implemented in many programs. For the latent class model,
we have (with yi = {yij}),

L(λλλ) =

n∏

1=1





K∑

k=1

πk

r∏

j=1

q
yij

jk (1 − qjk)
1−yij



 ,

∂ logL

∂qjk
=

n∑

i=1

πki(yij − qjk)

πki =
πk

∏r

j=1 q
yij

jk (1 − qjk)
1−yij

∑K

ℓ=1 πℓ

∏r

j=1 q
yij

jℓ (1− qjℓ)1−yij

q̂jk =
n∑

i=1

πkiyij/
n∑

i=1

πki,

π̂k =

n∑

i=1

πki/n.

The maximum likelihood estimates of the qjk, given the current weights πki,
are weighted version of those for the product-Bernoulli model in each class. In
latent class analysis for the Natchez women, the posterior probabilities of class
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membership can provide a formal classification of women to classes, based on
the MAP (maximum posterior probability) – the “most probable” class, or more
informatively, they provide the degree of certainty or degree of membership, of
each woman in each class.

5.1 Frequentist analysis of the Natchez women

The frequentist deviances for the null model, the Rasch event model and the
full Rasch women + event model are 327.29, 286.29 and 256.17. Assuming
quadratic log-likelihoods in the model parameters, the models can be compared
by the likelihood ratio test, giving test statistics of 41.00 with 14 degrees of
freedom for null vs event and 30.12 with 18 degrees of freedom for event vs
full. The full Rasch model is strongly preferred over the two simpler models; in
particular, both women and events show large and significant effects. However
we have no effective test of goodness of fit of the Rasch model against the
saturated model, for the latter model with a parameter for each (i, j) pair has
a frequentist deviance of zero by definition, because the fitted values for this
model are exactly equal to the observed values.

We extend the Rasch model to the latent class models. We summarise in
Table 7 the best frequentist deviances (over the random starting values) for
latent class models with up to five classes. For the two-class model, there are
three local minima of the deviance in the 100 random starting assignments. The
global minimum is found from 95 assignments. The next-best local minimum is
16 deviance units below the best, and can be ignored.

For the three-class model, there are more than 10 local minima of the de-
viance in the 100 starting assignments, though only one is within 7 deviance
units of the best. The global minimum of 182.87 is only 0.87 better than the
second-best of 183.74. The inferior minimum moves woman 10 from class 3 to
class 2.

For the four-class model, 81 of the 100 deviances are within 7 of the best.
This may represent cases of very slow convergence to the global minimum (or
a smaller set of local minima) but at least some of the differences are due to
different assignments of women to classes which are nearly consistent in their
representation of the data.

For the second-best minimum, woman 9’s probability 0.92 of being in class
3 is moved to class 4, with the same probability. Woman 16 in class 3 has
a small probability 0.08 of being in class 4. Table 8 gives the ML estimates
of the event attendance probabilities (to 2dp) for each number of classes from
the best deviances, and Table 9 gives the ML estimates of the class posterior
probabilities.

A critical question is how to assess the number of classes which should be
reported. Here the likelihood ratio test does not help us, for two reasons:

• while the models with increasing numbers of classes are nested, a necessary
regularity condition fails, as described above;
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Model deviance # params
Null 327.29 1
Rasch 256.17 32

Rasch event 286.29 14
K = 2 208.00 29
K = 3 182.87 44
K = 4 169.08 59
K = 5 155.98 74

Table 7: Frequentist deviances

K 1 2 3 4 5

k 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

1 .17 .38 - .43 - - .42 - - - .50 .40 - - -
2 .17 .38 - .43 - - .42 - - - 1.00 .20 - - -
3 .33 .75 - .85 - - .85 .33 - - 1.00 .80 - - -
4 .22 .50 - .57 - - .56 .33 - - 1.00 .40 - - -
5 .44 1.00 - 1.00 - .12 1.00 1.00 - - 1.00 1.00 - .21 -
6 .44 .75 .20 .85 .33 .13 .85 .33 .33 .25 1.00 1.00 .24 .21 -
7 .56 .75 .40 .72 .67 .37 .72 1.00 .67 - .50 .80 .73 .41 -
8 .78 .88 .70 .86 .67 .75 .86 .67 .67 .50 1.00 .80 .76 1.00 -
9 .67 .38 .90 .29 1.00 .87 .29 .33 1.00 1.00 1.00 - .76 1.00 1.00

10 .28 - .50 - 1.00 .25 - - 1.00 - - - 1.00 .18 -
11 .22 - .40 - .33 .38 - - .33 - - - .48 - 1.00
12 .33 - .60 - 1.00 .38 - - 1.00 - - - 1.00 .38 -
13 .17 - .30 - 1.00 - - - 1.00 - - - .73 - -
14 .17 - .30 - 1.00 - - - 1.00 - - - .73 - -

Table 8: Class event attendance MLE probabilities q̂jk for the best deviances

• the data for each class become increasingly sparse as the number of class
parameters increases, since the sample size is fixed, so the log-likelihoods
for the models become increasingly non-quadratic with increasing K.

The deviance decrements with increasing K – the “naive likelihood ratio
test” statistics – do give some indication, however, as mentioned in the Nylund
et al paper: the 1-2 change of 78.29 for 15 parameters is very large, that for
2-3 of 25.13 is at the 0.048 level of χ2

15, and the 3-4 and 4-5 differences of
13.79 and 13.10 appear to be random noise. Nylund et al pointed out that
the overstatement of significance by the naive test means that if the deviance
difference is not significant at a conventional 5% level of the χ2 test, then it
will definitely not be significant by a better-controlled test with a correct test
size. With this interpretation, we would conclude that two classes are definitely
identified, three classes are questionable and more than three are not necessary.

The BIC comes to the same conclusion: penalising the deviance by p logn =
2.89 p gives K = 2 as the preferred model (this is also true for AIC). If we take
the two-class model as best supported by the data, the (ML estimates of the)
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K 2 3 4 5
i\k 1 2 1 2 3 1 2 3 4 1 2 3 4 5
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 .04 .96 .08 .92 1

10 1 1 1 1
11 1 1 1 .14 .86
12 1 1 1 1
13 1 1 1 1
14 1 1 1 1
15 1 1 1 1
16 1 1 1 1
17 1 1 1 1
18 1 1 1 1
π̂k .444 .556 .391 .278 .331 .393 .167 .273 .167 .278 .230 .270 .111 .111

Table 9: Probabilities π̂ki of class membership

posterior probabilities of class membership are all 1 or zero – the women appear
to be classified with certainty, with the same assignments (given in Table 9)
as given by Breiger, Boorman and Arabie (1975) and Newman (2001). Blank
entries in Table 9 represent probabilities less than 0.005.

The three-class model has the same assigments as Doreian (1979), Everett
and Borgatti (1993) and Borgatti and Everett (1997) (1), though their analy-
ses leave unclassified the women 8 and 16-18, whereas the latent class analysis
assigns them to a third class. This model also has estimated posterior prob-
abilities of class membership 1 or zero except for woman 9, who was claimed
by both classes in the DGG two-class analysis. In our two-class analysis she
is assigned to class 1 with probability 1, but in the three-class analysis she is
assigned to class 1 with probability 0.04 and class 3 with probability 0.96.

We revisit this assessment with a different approach, discussed in the next
section.

6 Bayesian analysis of the latent class model

6.1 Priors and posteriors

We augment the likelihood L(θ) by a prior distribution π(θ | φ) for the model
parameters θ depending in general on prior (“hyper-”) parameters φ, and use
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Bayes’s theorem to update the prior distribution to the posterior distribution

π(θ | y, φ):

π(θ | y, φ) =
L(θ) · π(θ | φ)∫
L(θ) · π(θ | φ) dθ

.

The denominator is a scaling term, depending on the data y and φ but not θ.
If the prior is flat – constant – then the posterior distribution is a simple

scaled version of the likelihood. Throughout this paper, following Aitkin (2010)
we use flat, reference or non-informative priors, to allow as far as possible the
data to determine the posterior distribution through the likelihood.

Inference about these parameters is through their posterior distributions,
commonly through the posterior mean, posterior median and other percentiles.
Credible intervals for the parameters follow from the posterior percentiles, in a
way familiar from frequentist inference but without any assumption of normality.
The posterior standard deviation is often quoted, though this is useful only for
normal posterior distributions.

6.2 Priors for the latent class models

We implemented the Markov chain Monte Carlo procedure in OpenBugs. For
the class-specific event attendance parameters qjk we used uniform priors, and
for the mixture proportions πk we used a slightly informative proper Dirichlet
prior.

We specified the sequence of conditionals:

class ∼ M(1;π1, ..., πK)

qjk | class k ∼ Beta(1, 1)

Pr[yij | class k] =

r∏

j=1

q
yij

jk (1− qjk)
1−yij

6.3 Posteriors of functions of data and parameters

One of the powerful features of Bayesian analysis is its ability to provide pos-
terior inference about complicated functions of the data and parameters. In
frequentist theory we have to rely on the delta method, or Taylor series expan-
sions, to obtain the asymptotic sampling distributions of non-linear functions
of the model parameters, especially ratios of parameters.

In Bayesian theory this is unnecessary: for posterior sampling inference
about a non-linear function g(θ) of the model parameters, we simply make
M random draws θ[m] of θ from π(θ | y), and substitute them into the function
g, to give M random draws g[m] = g(θ[m]).
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6.4 Posterior distribution of class membership probabili-
ties

A general problem with the use of posterior class membership probabilities from
Bayes’s theorem following the EM algorithm is familiar from the frequentist
analysis of other complex models. This is the problem of overstated precision

resulting from the substitution of ML estimates for true parameter values, with-
out any allowance for the imprecision of the ML estimates. In frequentist anal-
ysis this is forced on us by the complexity of the exact sampling distributions,
especially for non-linear functions of the parameters.

As described above, the posterior distributions of these quantities can be ob-
tained in theory from the random draws of the parameters. Recall that the pos-
terior probability of membership of case i in class k, in the generalK-component
mixture, is

πki =
πkfk(yi | θk)∑K

ℓ=1 πℓfℓ(yi | θℓ)
.

From the posterior distributions of θk and πk, we make M independent draws

θ
[m]
k and π

[m]
k and substitute them into πki to give M draws

π
[m]
ki =

π
[m]
k fk(yi | θ

[m]
k )

∑K

ℓ=1 π
[m]
ℓ fℓ(yi | θ

[m]
ℓ )

.

However, a major issue in computing posterior distributions for any class-
specific parameter is label-switching. In the ML estimation of the model pa-
rameters, the class labelling of the K class parameter estimates is arbitrary,
and causes no confusion. However in the MCMC iterations, the class labelling
can vary during iterations and switch the class labels around, leading to class-
specific posteriors that are mixtures of the posteriors from each true class. This
can lead in the worst case to identical class-specific distributions for all the class
parameters, despite convergence.

We follow the approach of Sperrin et al (2010), in which the labels to be
attached to the M sets of posterior parameter draws are treated as missing data

and analysed with an EM algorithm. For the two-class Natchez women model,
there is almost no uncertainty about the draw labels, but there is considerably
more uncertainty with the three- or more class models. We discuss this below.

6.5 Posterior distribution of the model deviance

6.5.1 General models

A particularly useful application of the posterior sampling approach is to the
deviance. In Bayesian terms the deviance is D(θ) = −2 logL(θ). Since this is a
function of both θ and the data y, it also has a posterior distribution obtainable
in this way: given M random draws θ[m], we substitute them into the deviance
to give M random draws D[m] = D(θ[m]).
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A full discussion of this approach, and many applications of it, are given in
Aitkin (2010). Aitkin, Vu and Francis (2013) carried out a simulation study
to evaluate this approach, for both normal mixtures and Bernoulli latent class
models. For latent class models, identification of many classes required sub-
stantial sample sizes of actors in the simulations based on binary symptoms in
psychiatric patients. Our application here is to Bayesian model comparisons
of the number of latent classes. A normal mixture example can be found in
Chapter 9 of Aitkin (2010).

We have K possible models, consisting of latent class models with 1,..., K
classes, specified by K sets of model parameters θk containing the class pro-
portion parameters πk and the class-conditional event attendance parameters
qjk. For each class we obtain the posterior distribution of θk, and the conse-
quent posterior distribution of the deviance Dk. The deviance is unaffected by
label-switching, since it is a symmetric function of the class labels, and invariant
under their permutation.

The comparison of the class models is equivalent to the comparison of the
distributions of the class deviances. In large samples from regular models with
MLEs internal to the parameter space, the second-order Taylor expansion of
the deviance D(θ) about the MLE θ̂ gives the posterior distribution of the
model deviance, by a Bayesian version of the derivation of the asymptotic χ2

distribution for the likelihood ratio test statistic:

Dk(θk) ∼ Dk(θ̂k) + χ2
pk
,

where pk is the dimension of θk (Aitkin 2010 p. 53). It is notable that the
frequentist deviance is a location parameter for the posterior distribution of the
Bayesian deviance, which starts from the frequentist deviance, since this is the
minimised deviance over all possible parameter values.

As will become clear in the following analyses, the asymptotic result, if it
applies at all, is restricted to the simplest models: null, Rasch event and Rasch,
for which the parameter dimension is small compared to the number of ties.
For the mixture models, the actual posterior distributions depart from their
asymptotic forms in two respects, as described in Aitkin (2010 pp. 216-220):

• the distributions start from larger values than the frequentist deviances,
because with increasing parameter dimension it is increasingly difficult to
sample by chance the MLE; and

• the distributions are more diffuse than the χ2 distributions because the
parameter posteriors are skewed and/or heavy-tailed.

However, the deviance distributions can in many cases be stochastically or-

dered. There are several possibilities, which are illustrated in the next section
with the Natchez ladies network.

1. Complete stochastic ordering: the deviance cdfs are ordered and do

not cross (except merge at 0 and 1); then the leftmost distribution gives
the best-preferred model.
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2. Partial stochastic ordering: the leftmost distribution does not cross
the others, which may cross each other; then the leftmost distribution
gives the best-preferred model.

3. No stochastic order: some or all of the distributions cross.

We discuss these further, and give a procedure for discriminating the models,
with the analysis of the Natchez women data.

6.5.2 The saturated model

For the saturated model we can compute directly the deviance distribution. The
log-likelihood is

logLsat =
∑

i

∑

j

[yij log pij + (1− yij) log(1− pij)] ,

where each pij has its own posterior beta distribution, which assuming indepen-
dent uniform priors for all, gives B(2, 1) for yij = 1 and B(1, 2) for yij = 0. So
the deviance distribution Dsat for the saturated model is

Dsat = −2 ·
∑

i

∑

j

[yij logBij(2, 1) + (1 − yij) log(1−Bij(1, 2))] .

The distribution of 1−B(1, 2) is B(2, 1), so the saturated deviance distribution is
Dsat = −2

∑
i

∑
j logBij(2, 1), a sum of 2nr independent − logB(2, 1) random

variables, where n and r are the numbers of women and events.
The sum will be very accurately normal, summed over the large number nr

of cells of the table, so the deviance will be normal with

E[Dsat] = 2nr · E[− logB(2, 1)] = 2nr · (1/2)

= nr;

Var[Dsat] = 4n2r2 ·Var[− logB(2, 1)] = 4n2r2 · (1/4)

= n2r2;

SD[Dsat] = nr.

So for the table E[Dsat] = SD[Dsat] = 252. The very large variance of the
saturated deviance is a consequence of its very heavy parametrization and the
small amount of information about the pij in each Bernoulli outcome yij . The
saturated deviance distribution is so diffuse that its cdf will cross any other
well-fitting or poorly-fitting model deviance cdf – it is too diffuse to serve as a
baseline for well-fitting models. We do not further consider its use.

7 Bayesian analysis of the Natchez women

We initiated the Bayesian analysis with multiple searches for each K over 100
random starting assignments of women to classes, and choosing the class assign-
ment with the highest maximized likelihood to provide starting values for the
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MCMC analysis. This used Gibbs sampling for each K to alternate between
draws from the conditional posterior Beta and Dirichlet distributions of the
model parameters given the current latent class assignment draws, and draws
from the posterior multinomial distribution of the class assignment variables
given the current parameter draws.

We ran a burn-in of 10,000 runs and then made a further 10,000 runs from
which we sampled every 10th run to provide 1,000 draws from the parameter
posterior distribution for this K. The draws were then substituted into the K-
class deviance to give the deviance posterior, and the parameter draws were also
substituted, after analysis and identification of the parameter draw class labels,
into the class membership probabilities to give their posterior distributions for
each k = 1, ...,K.

We also ran a separate analysis for the Rasch model: we specified proper but
very diffuse normal priors for the woman and event parameters, and thinned
the 10,000 draws to 1,000 for the posterior deviance distribution. The deviance
distributions for K = 1, ..., 7 classes and the full Rasch model are shown in
Figure 3.
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Figure 3: Deviance distributions for latent class models and the Rasch model
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The one-class (event Rasch) and full Rasch models are both inferior to the
class models with K > 1, and can be excluded. The deviance distributions for
K = 2 and 3 improve substantially on the Rasch model, are very close and cross
each other at about the 50th percentile. From K = 4 onwards the deviance dis-
tributions move slowly to the right, and are stochastically ordered – the cdfs do
not cross. This movement is greater at higher percentiles, as expected from the
increasing “leans” of the distributions with increasing numbers of parameters.

So the two- and three-class models are preferred. It is clear that there
are at least two classes, but two and three classes are almost equally well-
supported. The deviance distributions for the 2- and 3-class, and the null,
event and full Rasch models are shown (solid curves) in Figure 4, with their
χ2 asymptotic forms (dashed curves) assuming quadratic log-likelihoods. The
frequentist deviances are shown as circles on the deviance axis. The crossing of
the deviance distributions for the 2- and 3-class models is much clearer. The
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Figure 4: A subset of the Natchez women deviances with asymptotic distribu-
tions and frequentist deviances

shapes of the distributions agree well with the asymptotic distributions in all
cases, but the location agreement deteriorates steadily, through an increasing
right shift of the empirical distributions away from the asymptotic distributions
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with increasing numbers of model parameters.
So the Bayesian approach through comparison of posterior deviance distri-

butions leaves us uncertain whether there are two or three classes. However we
have additional information which helps.

7.1 Posterior distributions of class membership

7.1.1 The 2-class model

We noted in the frequentist analysis that for the 2-class model there were two
local maxima of the likelihood in addition to the global maximum, and the
best of these was 16 (frequentist) deviance units worse than the global max-
imum. These local maxima can therefore be ignored in considering the class
membership probabilities.

We have for each draw m the parameter values θ[m], from which we can

compute the membership probability draws π
[m]
ki as described in §11.4. Kernel

densities of these probabilities are shown in Figure 5 for the 18 women. The
distributions are extremely concentrated for almost all the women – almost
spikes. The figures show the distribution of π2i + 1. The horizontal scale for
each woman is from 1 to 2 at the left end 1 for class 1 and zero for class 2. The
vertical scale is the kernel density ordinate. It is notable that the near-spikes
for women 1-6 are all at, or very near, the class 1 end, while those for women
10-18 are at, or very near, the class 2 end. However the near-spike for woman 9
is near the centre of the range, and those for women 7 and 8 diverge somewhat
from the end of the range.

These results are clarified by a different form of presentation of the posterior
distributions; namely those of the component indicator variables Zik used in the
MCMC analysis. For each indicator variable we summarise the M posterior
draws (0 or 1) by the proportion of 1s in the 1000 draws, giving a Bayesian

point estimate of the posterior probability of class membership. The resulting
proportions are given in Table 10.

It is now clear that:

• Woman 9 belongs to both classes.

• Woman 8 has some affinity with class 1, but much more with class 2.

• Woman 7’s degree of membership in class 1 is less than those of women
1-6.

These results clarify the differences in the 21 analyses over where woman 8
should be placed – she has some degree of membership in both classes. The
ambiguity of woman 9’s membership is in accord with the “gold standard”
which we described in Chapter 2.
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Woman # class 1 class 2
1 1 0
2 1 0
3 1 0
4 1 0
5 0.995 0.005
6 0.994 0.006
7 0.929 0.071
8 0.109 0.891
9 0.431 0.569
10 0.004 0.996
11 0 1
12 0 1
13 0 1
14 0 1
15 0.001 0.999
16 0.023 0.977
17 0.005 0.995
18 0.004 0.996

Table 10: Membership assignments

7.1.2 The 3-class model

For the three-class model, we noted in the frequentist analysis that there were
more than 10 local minima of the deviance in the 100 starting assignments,
though only one was within 7 deviance units of the best. The global minimum
of 182.87 deviance units was only 0.87 units better than the second-best of
183.74. The inferior minimum moved woman 10 from class 1 to class 2.

In the Bayesian analysis of this model, we found that label-switching could
not be completely eliminated by the EM “missing label” approach, partly be-
cause of the ambiguous classification of woman 10. For the best label configura-
tion, we computed the proportions of posterior draws of the component indicator
variables for classes 1, 2 and 3 for each woman. These are shown in triangular
(ternary) plot form in Figure 6, with jittering of the points perpendicular to the
lines.

Class 1 women are tightly packed around the class 1 apex, while class 2
women are more diffusely spread along the class 2 axes, with women 7, 8 and 9
in similar positions to the 2-class analysis, along the class 1 - class 2 axis. It is
striking that no woman has higher probability of being in class 3 than in classes
1 or 2.

The presence of the very close local and global maxima of the likelihood,
and the switching of woman 10 from class 1 to class 2 between these maxima
in the frequentist analysis, make clear that the 3-class model is unstable, and
no woman belongs to the third class with persuasive probability – this class is
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effectively empty.

8 Conclusions

The approach to sub-grouping of actors in social networks through latent class
modelling and analysis is successful in identifying the group structure of the
Natchez women, including the joint membership of both groups by woman 9;
it also explains the difficulty of classifying woman 8 in some of the other ap-
proaches.

The identification of the number of groups through the posterior distribu-
tions of the competing model deviances also appears to be successful. (A de-
tailed assessment of the performance of this approach in finite mixtures is given
in Aitkin, Vu and Francis 2013.)

One important point limiting the general adoption of this approach is that
it is computationally intensive for large networks, in the sense either of the
number of latent classes or the dimension of the adjacency matrix. For large
networks, variational Bayes methods, using approximations to the full posterior
distribution (of the parameters and indicator variables) with simpler structure,
have been found computationally effective, though the degree of agreement with
the full analysis has not been clearly established. A detailed description can be
found in Vu, Hunter and Schweinberger (2013).
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Figure 5: Natchez women 2-class membership (π2i + 1)
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Figure 6: Natchez women: ternary plot of 3-class membership
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