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Abstract

Several very effective exact algorithms have been developed for ve-
hicle routing problems with time windows. Unfortunately, most of
these algorithms cannot be applied to instances that are defined on
road networks, because they implicitly assume that the cheapest path
between two customers is equal to the quickest path. Garaix and co-
authors proposed to tackle this issue by first storing alternative paths
in an auxiliary multi-graph, and then using that multi-graph within
a branch-and-price algorithm. We show that, if one works with the
original road network rather than the multi-graph, then one can solve
the pricing subproblem more quickly, in both theory and practice.

Keywords: Vehicle routing, combinatorial optimization, bi-criteria
shortest paths.

1 Introduction

Vehicle Routing Problems (VRPs) are a much-studied class of combinato-
rial optimization problems, and several books have been written about them
(e.g., [3, 25, 26, 39]). Many VRPs arising in practical applications involve re-
strictions on the time at which service begins at the customers. Well-known
examples include the Traveling Salesman Problem with Time Windows or
TSPTW [4], the Multiple Traveling Salesman Problem with Time Windows
or m-TSPTW [14, 37], and the Vehicle Routing Problem with Time Windows
or VRPTW [15, 38]. Good surveys on such problems include [10, 17].

As mentioned in the above-mentioned books and surveys, there are
several effective exact algorithms available to solve such time-constrained
VRPs, some of which are capable of routinely solving instances with up to
around 100 customers to proven optimality. There are also several effective
heuristics that are able to provide good solutions for even larger instances.
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Unfortunately, and surprisingly, most of these algorithms are based on
a key assumption that is not guaranteed to hold in the real world. This
assumption is that, for all ordered pairs (i, j) of nodes (that represent either
depots or customers), one is provided with two numbers: ¢;;, the cost of
traveling from 7 to j, and ¢;;, the time taken to travel from i to j. In reality,
however, many VRPs are concerned with the routing of vehicles on road
networks. In a real-life road network, the cheapest path between two points
is unlikely to be the same as the quickest path. Therefore, to model and
solve time-constrained VRPs on road networks correctly, one should take
into account the trade-off between travel costs and travel times.

This issue was explained in detail in a recent paper by Garaix et al. [23],
who proposed to remedy the situation as follows. First, in a pre-processing
stage, they solve a series of bicriteria shortest path problems in the road
network. This yields, for each pair of customer and/or depot nodes in the
road network, a set of paths that completely represent the cost-time trade-
off. These paths are stored in an auxiliary multi-graph. Then, they use a
traditional branch-and-price algorithm, but solve the pricing subproblem on
the multi-graph rather than the original road network. Finally, dynamic
programming is used to convert the optimal solution into a collection of
feasible routes in the road network.

Although the approach of Garaix et al. [23] is elegant, it does require
the use of specialised techniques for constructing the multi-graph, solving
the pricing problem, and converting the solution. Moreover, as we explain
in Section 3, constructing and storing the multi-graph can take exponential
time and space in the worst case. These considerations led us to develop
more ‘natural’ algorithms for the pricing subproblem, that work directly on
the original road network. It turns out that these natural algorithms, as
well as being simpler, are faster in both theory and practice.

The paper is organized as follows. In Section 2, we review the relevant
literature. In Section 3, we present a result about the size of the multi-
graph. In Section 4, we present our first pricing routine, which is designed
for the case of ‘elementary’ routes. We also show that we obtain, as a by-
product, an exact algorithm for the ‘road network’ version of the TSPTW.
In Section 5, we present our second pricing routine, for the case in which
‘non-elementary’ routes are permitted, and show that it is faster (in the
worst case) than the one of Garaix et al. [23]. In Section 6, we show that it
is faster also in practical computations. Finally, some concluding remarks
appear in Section 7.

2 Literature Review

We now review the relevant literature. Subsection 2.1 deals with the TSPTW,
m-TSPTW and VRPTW, Subsection 2.2 covers VRPs on road networks,



and Subsection 2.3 focuses on VRPs with time windows on road networks.

2.1 Standard VRPs with time windows

The TSPTW is defined as follows [4]. Let G be a complete directed graph
with vertex set V' = {0,1,...,n} and arc set A. Vertex 0 represents the
depot and the other vertices represent customers. For each (i,j) € A we are
given a cost ¢;; and a traversing time ¢;;. Each customer 7 has a time window
[ei, £;] and a service time s;. Service at customer ¢ must start no earlier than
e; and no later than ¢;. If the vehicle arrives at customer ¢ before e;, it has
to wait. The vehicle departs from the depot at time 0 and must return to
the depot by time 7. The objective is to find a minimum cost route that
services each customer once and satisfies the time window requirements. It
is usually assumed that all costs and times are positive integers.

The m-TSPTW is identical to the TSPTW, except that there are several
vehicles and each customer must be visited by exactly one vehicle [14, 37].
The VRPTW is similar, except that each customer i has a positive integral
demand ¢; and the total load of each vehicle must not exceed some positive
integral capacity @ [15, 16].

Exact approaches to the TSPTW include, e.g., dynamic programming
(DP) [20], hybrid DP / branch-and-bound [6], constraint programming [35]
and branch-and-cut [2, 12]. Exact approaches to the multi-vehicle problems
include, e.g., Lagrangian relaxation [29], branch-and-cut [33], branch-and-
price [8, 14, 16, 21|, branch-cut-and-price [13, 28, 30] and, very recently,
hybrid DP / dual ascent / branch-and-bound [5].

All of the exact approaches to the multi-vehicle problems are based, ei-
ther explicitly or implicitly, on set covering or set partitioning formulations.
The set covering formulation takes the form

min Y req Crir (1)
st. D eqtirdr > 1 (Vie V\{0}) (2)
Ar €40,1} (Vr € Q), (3)

where €2 denotes the set of all feasible routes for a single vehicle, ¢, denotes
the cost of route r, A, is a binary variable taking the value 1 if and only if a
vehicle uses route r, and a;- is a binary constant, taking the value 1 if and
only if customer i is serviced by route r. The set partitioning formulation
is identical, except that the inequalities (2) are changed to equations. (If
the costs and times obey the triangle inequality, which is usually the case
in practice, this change affects neither the optimal solution, nor the lower
bound from the LP relaxation.)

Since |2| can be exponentially large, if one wishes to solve the LP re-
laxation of (1)—(3) exactly, it must be solved via column generation, i.e,
the variant of the simplex method in which columns of negative reduced



cost are generated on-the-fly via pricing routines. The pricing subproblem
is strongly NP-hard [18], but can be solved in pseudo-polynomial time if
one permits non-elementary routes, i.e., routes that visit customers more
than once [14, 16]. The resulting enlargement of the column set  does not
change the validity of the set covering / partitioning formulations, but it
weakens the lower bound obtained when one solves the LP relaxation. As
a compromise, one can forbid some non-elementary routes but not others

(e.g., [5, 13]).

2.2 Routing on road networks

All of the approaches mentioned in the previous subsection assume that the
instance is defined on a complete directed graph. Most VRPs arising in
practice, however, take place on road networks. It is usually possible to
transform a VRP on a road network into a VRP on a complete graph, via
a series of shortest-path computations (e.g., [1, 11, 22]). Nevertheless, it
can be preferable to work with the original road network, in an attempt to
exploit any properties, such as sparsity or planarity, that it may have (e.g.,
[11, 22, 31, 32]).

Much of the literature on VRPs on road networks has been concerned
with so-called arc routing problems, in which the customers are located
along the edges or arcs of the network, rather than at nodes. For brevity,
we do not review the arc routing literature here, and refer the reader to
the book [19]. We mention however that the paper [32], concerned with
the so-called Capacitated Arc Routing Problem (CARP), can be viewed as a
companion paper to the present one. It shows that pricing for the CARP can
be performed more quickly if one works on the original road network rather
than on a complete graph. The pricing routines presented in [32] are however
quite different from the ones presented here. In particular, the routine for
elementary routes in [32] is based on integer programming, whereas the one
we present in Section 4 is based on dynamic programming. Moreover, the
routine for non-elementary routes in [32] is slower and more complex than
the one we present in Section 5, due to the fact that the vehicle load does
not change when an edge is traversed.

We now return to node routing. The following ‘road network’ version of
the TSP was defined in [11, 22, 34]. We are given:

e an undirected road network G = (V, E),
e a specified depot node, say node 0,
e a set of customer nodes C' € V '\ {0},

e a cost ¢, for each e € E.



The task is to find a minimum-cost tour, starting and ending at the depot,
that passes through each customer node at least once. Nodes may be visited
more than once, and edges may be traversed more than once, if desired.
(Note that nodes in V' \ (C' U {0}) represent road junctions.)

Following [11, 31], we call the above variant of the TSP the Steiner
TSP. In [9, 22], the Steiner TSP is formulated as an integer program with
O(|E|) variables and an exponential number of constraints, and solved with
cutting planes and branch-and-bound. In [31], it is formulated as an integer
program with only O(|E|) variables and constraints, and solved via plain
branch-and-bound.

Several generalisations of the Steiner TSP were also presented in [31]. Of
relevance to us is the Steiner version of the TSPTW. This is like the Steiner
TSP, but each customer i € C' now has a time window [e;, ¢;] and a service
time s;, and the vehicle must leave the depot at time 0 and return by time
T. One can easily define Steiner versions of the m-TSPTW and VRPTW
in a similar way. (In [31], the graph G was assumed to be undirected, but
one can also allow it to be directed, or mixed.)

2.3 Routing on road networks with time windows

Unfortunately, VRPs on road networks become significantly harder to model
and solve when time windows are present. Indeed, in [31], we were able to
formulate all problems considered as integer programs with only O(|E|)
variables and constraints, except the Steiner TSPTW. The reason for this
phenomenon is as follows: for the other problems considered in [31], it is
never optimal for a vehicle to traverse an edge more than once in any given
direction. When time windows are present, this is no longer true.

As mentioned in the introduction, another key paper in this regard is
Garaix et al. [23]. They point out that, when time windows are present, one
cannot always transform a ‘road network’” VRP into a standard VRP. This
is because in a real-life road network the cheapest path between two points
is unlikely to be the same as the quickest path.

To see this, consider the simple road network displayed in Figure 1.
Suppose the depot is located at node 0,and the customers are located at
nodes 2 and 4. Also suppose that we have (undirected) edges rather than
(directed) arcs, for simplicity. For each of the seven edges, the corresponding
traversing cost and time are displayed in parentheses. Between the depot
and node 4, the cheapest path costs 2 and takes 4 time units, and the
quickest path costs 4 and takes 2 time units. So there is no unique way to
define cgo and tge. A similar consideration applies to the paths between the
two customers.

Garaix et al. proposed to remedy the situation with a three-phase proce-
dure. In the first phase, they solve a series of bicriteria shortest path prob-
lems in G, in order to compute, for each ordered pair of nodes in {0}uC, a
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Figure 1: Example of a possible road network G.
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Figure 2: Corresponding multi-graph.

complete and non-redundant set of efficient (or non-dominated, or pareto-
optimal) paths. (A variety of algorithms exist for generating such complete
sets; see [36].) A (loopless and directed) multi-graph is then constructed,
which has node set {0} U C and, for each ordered pair of nodes, a set of
parallel arcs, representing the corresponding complete set. (Figure 2 is the
multi-graph corresponding to the road network in Figure 1, but with edges
instead of arcs, for clarity.)

In the second phase, Garaix et al. formulate the problem as a set covering
problem with a variable for each feasible route in the multi-graph, and solve
it by branch-and-price. In the third and final phase, the optimal set covering
solution is converted into an optimal solution for the original problem, via
dynamic programming.

3 Drawbacks of the Multi-Graph Approach

Although the branch-and-price approach of Garaix et al. [23] performs rea-
sonably well in practice, it seems both simpler and more natural to work
with the original road network G rather than the multi-graph. Moreover,
the time and space requirements of the multi-graph approach can be very
high in the worst case. Specifically:



e Computing complete sets from a source node to all other nodes takes
O(|A| T) time (see [36]). Therefore, computing complete sets for all
ordered pairs (7, j) with ¢ and j in CU{0} will take O(|C||A|T) time.

e For a given ordered pair (i,7), the cardinality of a complete set can
be as large as T' [27]. So the number of arcs in the multi-graph can be
exponential in the encoding length of T'.

e Converting the solution for the transformed problem into a solution
for the original problem takes O(m|A|T) time, where m is the number
of vehicles used.

In fact, the situation is even worse than this, as shown by the following
theorem.

Theorem 1 The multi-graph can contain O(|C|* T) arcs, even if the origi-
nal graph G contains only O(|C| logT) arcs.

Proof. Suppose initially that |C| = 1, i.e., there is just a single customer.
Let & be any positive integer. Construct a graph G* as follows. The vertex
set is {0,...,2k}, where 0 is the depot and 2k is the customer. For i =
1,...,k, the arc set A contains the arcs (i—1,7), (i—1,i+k) and (4,7 + k),
together with arcs in the opposite direction. The arcs (i — 1,7) have cost
2 + 27! and time 1. The arcs (i — 1,4 + k) have cost 1 and time 1. The
arcs (i,7 + k) have cost 1 and time 2¥. For each of these arcs, the arc going
in the opposite direction has the same cost and time. (Figure 3 shows the
graph G3, but with pairs of opposite arcs shown as edges, to aid clarity.)

By construction, for any integer ¢ between 0 and 2 — 1, there is a path
from 0 to 2k in G* that has time k+t and cost 2k + 2% —1 —¢. Each of these
paths is non-dominated. If we set T = 2¥*1, then each of these paths is
also feasible, and therefore corresponds to an arc from 0 to 2k in the multi-
graph. The multi-graph also contains analogous arcs from 2k to 0. Thus,
the multi-graph contains 281 = T arcs, yet G¥ contains only 3k = O(logT)
arcs. This proves the result for |C] = 1.

To prove the result for |C| > 1, create |C| copies of the graph G*, one
for each customer, and merge them into a single graph, by identifying the
depot nodes. Now, between any pair of customers, for any integer ¢t between
0 and 2¥+1 — 2, there is a non-dominated path between the customers that
has time 2k + ¢. (It suffices to concatenate a non-dominated path from the
first customer to the depot, of time k + [¢/2], with a non-dominated path
from the depot to the other customer, of time k + [t/2].) Moreover, if we
set T = 2¥%2 then each of these paths is feasible, and therefore corresponds
to an arc in the multi-graph. Thus, the multi-graph contains ©(|C|?T') arcs,
yet the original graph contains only 3k|C| = O(|C| logT) arcs. O
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Figure 3: The graph G, with costs and times.

The above considerations suggest that it may be better to work directly
with the original road network G rather than with the multi-graph. So,
suppose we have an instance of the ‘Steiner’ m-TSPTW or VRPTW, and
consider once again the set covering formulation (1)-(3). In the Garaix et
al. approach, €2 is assumed to contain all feasible routes in the multi-graph.
We propose instead to assume that  contains all feasible routes in G. It
is important to note that this change in the definition of €2 has no effect
on the cost of the optimal solution to the set covering problem, nor on the
lower bound from its LP relaxation. Indeed, given any feasible route in the
multi-graph, there is a corresponding feasible route in G of no greater cost
that services the same set of customers, and vice-versa.

We remark that it is always valid to use set covering rather than set
partitioning when working on G. Indeed, if an optimal solution to the set
covering problem corresponds to a set of routes that collectively service a
customer more than once, we can always take one of the routes that services
that customer, and modify it so that the vehicle passes through the given
customer node without actually servicing the customer. The modified route
remains feasible and has the same cost as the original route. Repeating this
procedure, if necessary, we obtain an optimal set of routes that collectively
service each customer exactly once. (Incidentally, the same argument shows
the validity of using set covering in the multi-graph approach.)

As in the case of the standard m-TSPTW and VRPTW [14, 16], one
can if desired enlarge the column set €2 so that non-elementary routes are
permitted. In the ‘Steiner’ context, this corresponds to permitting routes in
G that service some customers more than once. (Recall that even elementary
routes in G are permitted to pass through nodes more than once, regardless
of whether or not they are customer nodes.) In the following two sections,
we present pricing routines for the Steiner m-TSPTW and Steiner VRPTW
for the cases of elementary and non-elementary routes, respectively.

4 Pricing Elementary Routes

In this section, we present an exact pricing routine for the Steiner m-
TSPTW, for the case in which only elementary routes are permitted. We



also show how to adapt it to the Steiner VRPTW. We will see that these
routines are much faster than the analogous routines based on the multi-
graph. Throughout, we assume for simplicity of notation that the graph
G is directed, with node set V and arc set A. The routines can be easily
modified for the case in which G is undirected or mixed.

For a given Q' C (Q, suppose that the LP relaxation of the formulation
(1)=(3) has been solved, but only using columns in . For each i € C, let
m; > 0 be the dual price of the corresponding constraint (2) in the solution
to the relaxation. The reduced cost of the variable A, for a route r € Q\
is equal to its true cost c¢,, minus ZieC a;rmi. We now show that, in the
case of the Steiner m-TSPTW, one can find routes of negative reduced cost
in O <2IC| A T) time.

Forall S C C,allie Vandall 0<t<T,let f(S,i,t) denote the
reduced cost of the cheapest feasible path in G (if any) that starts at the de-
pot, services every customer in S exactly once, possibly visiting other nodes
in V along the way, and ends at node i at time ¢. (If no such feasible path
exists, we view f(S,4,t) as being infinite.) Also, for any given node i € V,
let n (i) denote the set of forward neighbors of i in G, by which we mean
the set of nodes j for which the arc (i, j) exists in A. One can then compute
f(S,i,t) for all feasible triples (S,i,t) as follows:

Set f(0,0,0) = 0.
Fort=0,...,T do:
For all i € V do:
For all S C C do:
For all j € n* (i) such that t +#;; < T do:
If £(S,i,t) + ¢ < f(S,j,t +tij),
Set f(S,4,t +tij) to f(S,4,t) + &;-
For all j € n*(i) N (C\ S) such that t +#;; < e; do:
IE f(S,0t) + ¢ — 5 < F(SULG} €5+ 85),
Set f(SU{j},j,e; +s;) to f(S,i,t) + &; — 7.
For all j € n* (i) N (C\ S) such that e; <t +1t;; < {; do:
If f(S,i,t) + éij —m; < f(SU{G}, 4.t + iy + 55),
Set f(SU{j},j,t+ti; + ;) to f(S,i,t) + & — ;.

In this DP algorithm, the three inner loops involving j correspond, re-
spectively, to (i) travelling from i to j without servicing j, (ii) travelling
from i to j, waiting, and then servicing j, and (iii) travelling from i to j
and servicing j immediately. When the DP terminates, any pair (S,¢) with
f(S,0,t) < 0 corresponds to a column with negative reduced cost. To con-



struct such a column one simply traces the path backward from the end
state (S,0,t) to the initial state (,0,0).

Note that, for a given ¢ and S, each arc in A is examined no more than
three times. Since there are at most T+ 1 choices for ¢ and 2/€! choices for
S, the running time is O (2‘C| |A|T ), as claimed. Although this running

time is exponential in |C], it compares very favourably with the running
time that would be obtained if one used the multi-graph. Indeed, in that
case, to compute f(5,1,t) for a given S, i and ¢, one would have to examine
every arc in the multi-graph whose head is ¢ and whose tail is in S\ {i}.
From the proof of Theorem 1, this would take O(|C|T') time. Since there
are O (2‘C|) choices for S, O(|C|) choices for i, and T choices for ¢, the DP
would take O (2/€1(C|2 T2) time.

As usual with DP algorithms (e.g., [8, 13, 20, 21]), some simple tests can
be used to eliminate states from consideration. For example, suppose that
we pre-compute, for all i € V '\ {0}, the time taken to travel from node i
to the depot, via a quickest path. Then one can eliminate the state (.5, 1,t)
if the time taken to travel from ¢ to the depot exceeds T — t. Even with
such additional tests, however, the algorithm can be expected to be viable
for large values of |C| only if the time windows are very narrow. This is
because pricing typically has to be performed many times in a branch-and-
price algorithm.

We remark that to adapt the above pricing routine to the Steiner VRPTW
it suffices to introduce an additional state variable ¢, representing the cumu-
lative load of the partial path, and add another ‘for’ loop in which ¢ ranges
from 0 to ). The running time does however then increase by a factor of Q.

To close this section, we observe that the above pricing routine can easily
be converted into an exact algorithm for the Steiner TSPTW. Indeed, if we
set m; to zero for all j € C' and run the routine, then the cost of an optimal
Steiner TSPTW solution is given by:

min {f(C,0,t)},

0<t<T

and one can construct such an optimal solution by tracing the path backward
from the optimal final state to the initial state ((,0,0). The running time
remains unchanged at O (2'0‘ |/~1] T ) We imagine that, with the addition of
some standard state-elimination and dominance tests (as in [20]), this could
lead to a viable solution algorithm for the Steiner TSPTW, provided the

time windows are reasonably narrow. We are not aware of any other exact
algorithm for the Steiner TSPTW.
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5 Pricing Non-Elementary Routes

In this section, we present exact pricing routines for the Steiner m-TSPTW
and VRPTW, for the case in which non-elementary routes are permitted.
Once again, we will see that the routines are much faster than the analogous
routines based on the multi-graph.

The new pricing routine for the Steiner m-TSPTW is similar to the one
described in the previous section, but we drop the index S from the state,
since we no longer need to keep a record of which customers have already
been serviced. Accordingly, for all i € V and all 0 < t < T, let f(i,t) denote
the reduced cost of the cheapest feasible path (if any) that starts at the
depot, services any customers any number of times, possibly visiting other
nodes in V along the way, and ends at node i at time ¢. One can compute
f(i,t) for all ¢ and ¢ as follows:

Set £(0,0) = 0.
Fort=0,...,T do:
For all i € V do:

For all j € n* (i) such that t +#;; < T do:
If f(i,t) + &5 < f(j,t+£ij),
Set f(j,t +ti;) to f(i,t) + &;.
For all j € n*(i) N C such that ¢t +#;; < e; do:
IE f(i,t) + & — w5 < f4,e5 + 55),
Set f(j,e; + ;) to f(4,t) + &; — ;.
For all j € n* (i) N C such that e; <t +#;; < {; do:
If f(i,t) + Cij — w5 < (.t + Ly + 55),
Set f(j,t +ti; +55) to f(i,t) + ¢ — ;.

The explanation of this DP routine is similar to that given in the previous
section. When it terminates, any ¢ with f(0,¢) < 0 corresponds to a column
with negative reduced cost.

This DP routine is easily seen to run in O(JA| T) time. As we will
show in the next section, this is fast enough to be practically useful. It also
compares very favourably, again, with that which would be obtained with
the multi-graph approach, which can easily be shown to be O (]C'|2 TQ).

As in the previous section, state-elimination and dominance tests could
improve the practical performance of the routine, and one can adapt the
routine to the Steiner VRPTW, at the cost of increasing the running time
by a factor of Q.
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6 Computational Experiments

In this section, we report on some computational experiments. Subsection
6.1 explains how we created a collection of sparse graphs for use in the
experiments. Subsection 6.2 is concerned with the construction of the multi-
graph and Subsection 6.3 is concerned with the pricing routines.

6.1 Construction of sparse graphs

To begin with, we constructed ten sparse, undirected graphs, each with its
own edge costs. This was done using a similar procedure to the one used
in our earlier paper [31], which was specifically designed to produce graphs
that resemble real life road networks. In detail, the following was done for
n € {50,100, 150,200, 250} and then for n = {100, 200, 300,400, 500}:

1. Set V. ={1,...,n} and E = 0.
Place the n nodes at random in a circle of radius 10y/n.

Define the set of potential edges P = {{i,j}:1<i < j<n}.

= W N

For each {i,j} € P, let the cost ¢;; be the Euclidean distance between
the end-nodes, rounded up to the nearest integer.

o

Sort the potential edges in non-decreasing order of cost.

6. Examine each edge in P in turn. Insert it into E if both of the following
conditions are satisfied:

(a) It does not cross one of the edges already inserted into E.

(b) It does not form an angle of less than 60° with an edge that
has already been inserted into E and with which it shares an
end-node.

7. If~th§re are no isolated nodes in the resulting graph, output the graph
(V, E). Otherwise, repeat the procedure.

The only difference between this procedure and the one used in [31] is that,
in step 2, the circle is of radius 10y/n, rather than 100. This change was
made to ensure that the average edge cost is roughly the same across all
instances, which is closer to what happens in real life.

For each of the ten graphs, one node was selected at random to be the
depot. For the first five graphs, with n € {50,...,250}, each non-depot
node was then given a probability of 2/3 of being required. For the other
five graphs, with n = {100, ...,500}, the probability was set to 1/3.

Figure 4 shows the graph that was obtained for n = 300 and a probability
of 1/3. The required and non-required nodes are represented by small black
and white circles, respectively, and the depot is represented by the small
black square.
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Figure 4: Graph with n = 300 and |C| = 100.

6.2 Experiments with multi-graph construction

In our first set of experiments, we examined the complexity of multi-graph
computation in practice. Along the way, we also explored the effect of cor-
relations between the costs and travel times. Intuitively, one would expect
the number of edges in the multi-graph to increase as the correlation be-
tween costs and times decreases. Accordingly, for each of the ten graphs
we created three different sets of random travel times, with differing levels
of correlation with the costs: strong correlation, weak correlation and no
correlation. This was done as follows, for each instance:

e Let ¢ be the maximum edge cost.

e For each edge e € E, let r, be a random number uniformly distributed
between 0 and 1. Set:

— te = [0.9¢e + 0.1r¢] for strong correlation,
— te = [0.5¢ce 4 0.5r¢| for weak correlation,
— t. = [ré| for no correlation.
The formulae used here were intended to make the travel times of the same
order of magnitude as the costs.
For each of the resulting 30 cases, we computed the corresponding multi-
graph using an algorithm of our own. This consisted of calling a single-source

bi-criterion shortest-path subroutine |C| times, with each customer in turn
taking the role of the source node. The subroutine was a straightforward
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dynamic programming algorithm. Although our algorithm is fairly rudi-
mentary, its running time is O(|C| |E| T'), which matches that of the best
algorithms (see Section 3).

Table 1 shows the results obtained. The first three columns show the
number of nodes, edges and customers in each of the ten sparse graphs.
The next column shows the degree of correlation (strong, weak, none). The
following two columns show the number of edges in the multi-graph, and
the time taken to compute the multi-graph using our algorithm, in seconds.

We see that the number of edges in the multi-graph is rather high in all
cases. As expected, it increases as the correlation decreases, and increases as
|V, |E| and |C| increase. From the way the multi-graph is constructed, one
would expect the number of edges in the multi-graph to grow quadratically
in |C| and exponentially in |V| and |E|. This is consistent with the results
in the table.

The running times, on the other hand, are quite reasonable for these
instances. This suggests that the time taken to compute the multi-graph is
not an issue after all, although it could be, if the travel times were measured
to a higher precision.

6.3 Comparison of pricing routines

Next, we wished to compare the time taken to perform pricing (with non-
elementary routes permitted), when using either our algorithm (described in
Section 5), or the corresponding algorithm based on the multi-graph. Since
we expected the pricing time to depend on the width of the time windows,
for each of the thirty combinations mentioned in the previous subsection, we
created two Steiner m-TSPTW instances, with two different widths for the
time windows. Each customer node ¢ € C was assigned an integer service
time s; € [1,2] at random. A set of routes was then constructed in a greedy
way, so that each customer was serviced by exactly one vehicle. Finally,
time windows [e;, ¢;] were assigned to each customer such that the given
routes were feasible and such that either ¢; + 3 < ¢; < e; + 4 (for narrow
time windows) or e; + 10 < ¢; < e; + 15 (for wide time windows). The time
horizon T" was set to 3000 in all cases.

Table 2 shows the results obtained for the resulting 60 instances. The
first four columns have the same meaning as before. The next four columns
show the time taken, in seconds, to solve the LP relaxation of the set covering
problem under various settings. The subscripts ‘n’ and ‘w’ indicate narrow
and wide time windows, respectively, and the subscripts ‘m’ and ‘o’ indicate
the multi-graph approach and our approach, respectively. All times include
the time taken to re-optimise the LPs after adding columns, but, for these
instances, the bulk of the time was spent pricing.

A first observation is that the pricing times are rather high in all cases.
This is because we only added one column after each pricing call, namely,
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V| |E| |C| Corr |E| Time (s)

50 69 33 S 674 0.5
W 903 0.5
N 1324 0.5
100 139 66 S 2850 2.2
W 5009 2.1
N 6892 2.2
150 215 100 S 5852 5.1
W 12765 5.1
N 18337 5.0
200 291 133 S 11641 9.0
W 31770 9.0
N 35617 9.1
250 367 166 S 18454 13.3
W 37585 13.9
N 56042 13.4
100 139 33 S 776 1.0
W 1241 1.0
N 1646 1.1
200 291 66 S 2857 4.3
W 6096 4.2
N 9708 4.3
300 442 100 S 7224 10.0
W 16030 9.9
N 23480 9.9
400 597 133 S 12946 18.1
W 32087 18.9
N 47359 18.7
500 744 166 S 23650 29.5
W 60824 29.5
N 79321 30.3

Table 1: Results on the construction of the multi-graph.
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V| |E| |C|] Corr Tom  Tho Twm  Two
50 69 33 S 8 2 10 3
W 13 3 10 3
N 32 6 32 7
100 139 66 S 103 23 216 29
W 301 49 294 35
N 504 59 518 75
150 215 100 S 974 122 760 126
W 1405 139 2344 198
N 7369 219 3713 208
200 291 133 S 17377 692 4854 569
W TTTT 479 11666 446
N 14151 588 12187 620
250 367 166 S 5613 457 4753 300
W 8415 720 10095 411
N 4596 381 14264 538
100 139 33 S 17 10 17 9
W 19 8 24 10
N 28 13 37 14
200 291 66 S 348 97 308 100
W 1043 223 697 161
N 999 129 796 120
300 442 100 S 1008 210 695 365
W 1875 259 1714 248
N 3692 340 2362 272
400 597 133 S 1457 300 2462 423
W 2055 194 4171 408
N 11011 380 7428 436
500 744 166 S 4554 795 7803 942
W 6643 620 12197 984
N 23220 1775 47820 1551

Table 2: Time taken by pricing routines on Steiner m-TSPTW instances.
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the one with the most negative reduced cost. One could probably reduce
the number of pricing iterations, and therefore the pricing time, if one added
many columns after each call. A second observation is that the pricing times
tend to be higher when time windows are wide. This is probably because
the cardinality of the column set €2 is larger when the windows are wider.

More importantly, for our purposes, it is clear that our approach is sig-
nificantly faster than the multi-graph approach. Moreover, the difference
seems to grow as the size of the original graph grows. In our view, this
demonstrates clearly that working on the original graph is preferable in
terms of running time, as well as in terms of ease of implementation.

7 Conclusion

Despite the vast research effort that has been put into VRPs with time
windows, most of the existing exact and heuristic solution algorithms cannot
be relied upon to give meaningful solutions when the original instance is
defined on a road network. The approach of Garaix et al. [23], based on
the computation of an auxiliary multi-graph, provides one way around this
difficulty. In this paper, we have shown that it is possible instead to work
with the original graph throughout, and that this can lead to significant
savings in computing time.

We leave to future research the development of a full branch-and-price
or branch-cut-and-price algorithm for the Steiner versions of the m-TSPTW
or VRPTW. We remark that in order to develop such algorithms one would
need to develop specialised branching rules that work on the original graph
rather than the multi-graph. For a discussion of this issue in the context of
the Capacitated Arc Routing Problem, see Bode & Irnich [7].
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