
PHYSICAL REVIEW B 89, 125104 (2014)

Nonequilibrium noise in transport across a tunneling contact between ν = 2
3 fractional

quantum Hall edges

O. Shtanko,1,2 K. Snizhko,2,3 and V. Cheianov3

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Physics Department, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine

3Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
(Received 24 October 2013; published 10 March 2014)

In a recent experimental paper [Bid et al., Nature 466, 585 (2010)] a qualitative confirmation of the existence
of upstream neutral modes at the ν = 2

3 quantum Hall edge was reported. Using the chiral Luttinger liquid theory
of the quantum Hall edge we develop a quantitative model of the experiment of Bid et al. A good quantitative
agreement of our theory with the experimental data reinforces the conclusion of the existence of the upstream
neutral mode. Our model also enables us to extract important quantitative information about nonequilibrium
processes in Ohmic and tunneling contacts from the experimental data. In particular, for ν = 2

3 , we find a
power-law dependence of the neutral mode temperature on the charge current injected from the Ohmic contact.
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I. INTRODUCTION

The quasi-one-dimensional edge channels supported by
fractional quantum Hall (FQH) states have for a long time
attracted attention of both theorists and experimentalists.
During the 1980s models emphasizing role of edge states
for FQH transport developed into a powerful field-theoretical
framework of a chiral Luttinger liquid (CLL) [1]. A very rigid
mathematical structure of the latter led to a number of non-
trivial predictions such as fractionally charged quasiparticles,
and excitations with anyonic or even non-Abelian statistics.
Some of these predictions have been tested experimentally
while others still pose a challenge to experimentalists.

One of the milestones in the experimental studies of the
FQH effect is the recently reported observation [2] of the
neutral current (a transport channel which does not carry
electric charge) at the edge of the ν = 2

3 FQH state. The ν = 2
3

state is one of the simplest for which the CLL theory is not
consistent without a neutral current. Moreover, the predicted
flow direction of this current is opposite to the electrons’
drift velocity [3,4] and thus contradicts intuition based on the
magnetic hydrodynamics [5].

Apart from the detection of the upstream neutral mode, the
design of the experiment, Ref. [2], gave access to a significant
amount of quantitative data characterizing the system [2,6].
This motivates the present work, where a detailed quantitative
description of the experiment is developed basing on the
minimal ν = 2

3 edge model worked out in [3,4] and supported
by numerical simulations of small systems [7,8]. Within the
developed framework we analyze the data of [2] in order to
(a) check its consistence with the minimal ν = 2

3 edge model
quantitatively and (b) extract new information about ν = 2

3
edge physics.
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While we find excellent agreement of our theory with the
experimental data of Ref. [2], we would like to remark that
a number of alternative theories have been proposed recently
in order to explain other experimental results such as those
of Ref. [9]. These theories extend the minimal ν = 2

3 edge
model by introducing new physics, such as edge reconstruction
[10] or bandwidth cutoffs [11], at some intermediate energy
scale. Such extensions can be incorporated into our framework.
However, as they contain additional unknown parameters, their
comparison against experiment can only be insightful with
more independent experimental data.

II. DESCRIPTION OF THE EXPERIMENT

Here we briefly discuss the experiment [2] where the
upstream neutral currents at the quantum Hall (QH) edge were
investigated.

Figure 1 shows a sketch of the experimental device. The
green (color online) region is the AlGaAs heterostructure with
the light-green showing where the 2DEG (two-dimensional
electron gas) is actually present. The sample is in the transverse
magnetic field so that the filling factor is 2

3 and the correspond-
ing quantization of the Hall conductivity is observed. Green
arrows show the direction of the electrons’ drift velocity which
coincides with the flow direction of the charge transporting
channel (charged mode). Yellow patches represent Ohmic
contacts. The purple rectangular pads on top of the sample
are the gates which allow one to make a constriction which
plays the role of tunneling junction (denoted as quantum point
contact (QPC) in the figure). Contacts Ground 1 and Ground 2
are grounded. Source N and Source S are used to inject electric
current into the device. Measurements of electric current and
its noise are performed at Voltage probe.

The idea of the experiment is as follows. Suppose a current
In is injected into Source N. If the edge supports only one
chirality (counterclockwise) then anything injected into Source
N will be absorbed by Ground 1 and have no effect on Voltage
probe. However, if we assume that there is a neutral mode
flowing clockwise, information about the events in Source N
carried by the neutral mode may reach QPC. In QPC such
information may be transmitted to the opposite edge and
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FIG. 1. (Color online) Scheme of the experimental device. Con-
tacts Ground 1 and Ground 2 are grounded. Source N and Source S
are used to inject some electric current into the system. Measurement
of the electric current and its noise is performed at the Voltage probe.

then transported to Voltage probe by the charged mode. In
particular, let us assume that the injection of the current In

excites the neutral mode flowing out of Source N towards QPC.
Due to the tunneling across QPC of quasiparticles having both
charged and neutral degrees of freedom, the neutral mode
excitations will be converted into the current noise at Voltage
probe. Thus, the presence of the counterpropagating neutral
mode implies that the noise observed at Voltage probe should
depend on the current In. Such a dependence was reported
in [2].

The observation of the theoretically predicted upstream
neutral mode is a very important qualitative result. However,
experimental techniques and numerical data reported in [2] go
far beyond this achievement, providing a lot of implicit quan-
titative information about current fractionalization in Ohmic
contacts, transport along the QH edges, and quasiparticle
tunneling across the QPC. In order to effectively utilize this
quantitative information one needs an analytical theory of the
experiment based on the modern understanding of the FQH
edge. The goal of this work is to discuss the results of [2]
within such a theoretical framework.

III. THEORETICAL PICTURE OF THE EXPERIMENT

Our theoretical description of the experiment has three key
ingredients: the effective theory of the quantum Hall edge, a
model of the QPC, and phenomenological assumptions about
the interaction of the Ohmic contacts with the QH edge. The
former two are based on the standard theoretical framework
which we briefly review in the next section. In this section
we focus on the general picture of the experiment, paying
particular attention to the assumptions regarding the Ohmic
contacts.

Our theoretical model of the experiment is illustrated in
Fig. 2. Each edge supports one counterclockwise charged
mode and one clockwise neutral mode. The two edges
approach each other in the QPC region where the tunneling of
the quasiparticles between the edges occurs. Our quantitative
theory is developed for the case of weak quasiparticle
tunneling. The Ohmic contacts are shown as rectangles.
We assume that any excitations of neutral and charged modes
are fully absorbed by the Ohmic contacts they flow into. We

FIG. 2. (Color online) Theoretical picture of the experiment. The
injected current In “heats” the neutral mode of the upper edge to
the temperature Tn. Equilibration processes between the charged and
the neutral modes lead to the charged mode temperature T ′

n = Tn.
Both modes at the lower edge have the temperature of the en-
vironment: T ′

s = Ts = T0. Tunneling of the quasiparticles at the
constriction induces extra noise in the charged mode of the lower
edge which is detected at the Voltage probe. Injection of the current
Is only changes the chemical potential of the charged mode of the
lower edge.

further assume strong equilibration mechanisms at the edge
so that the hydrodynamic description can be used. That is,
each edge can be characterized by local point-dependent ther-
modynamic variables including the charged mode chemical
potential μ(c), the charged mode temperature T ′ and the neutral
mode temperature T , and any other thermodynamic variables
arising due to the existence of extra conserved quantities. We
assume that in the absence of currents (In = 0 and Is = 0)
the edges are in equilibrium with the environment so that
all modes’ temperatures are equal to the base temperature T0

and the chemical potentials are equal to zero. Away from this
state the temperatures and chemical potentials are unknown
functions of In and Is , and other thermodynamic variables are
assumed to be unaffected by the injection of currents In, Is .
The functions μ(c)(In,Is), T (In,Is), T ′(In,Is) for each edge are
defined by the interaction of the Ohmic contact with the edge,
however no predictive theoretical model of such interaction is
known today. As we show, these functions can be inferred from
the experimental data under some plausible phenomenological
assumptions.

We assume that there is a strong heat exchange between
the modes at each edge. In this approximation the local
temperatures of the two modes coincide at each point along the
edge: Tn = T ′

n, Ts = T ′
s . Moreover, following [2] we assume

that the lower edge temperature is equal to the base temperature
(Ts = T ′

s = T0); that is, the electric current Is injected by the
Ohmic contact Source S does not induce any nonequilibrium
noise to the lower edge charged mode.

IV. FORMALISM OF THE EDGE FIELD THEORY

In this section we give a brief overview of the CLL
formalism [1,12,13] which is believed to provide the effective
theoretical description of a fractional QH edge. We then focus
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on a particular edge model relevant to the experiment [2]. We
conclude this section by a discussion of the model Hamiltonian
describing the tunneling of quasiparticles between the QH
edges.

A. General formalism1

Abelian QH edge theories are usually formulated in
terms of bosonic fields ϕi(x,t), where t is time and x is the
spatial coordinate along the edge. Each field ϕi represents
an edge mode. Suppose that we have N edge modes and
correspondingly N fields ϕi with i = 1, . . . ,N . Then the
dynamics of the edge is described by the effective action2

S = 1

4π

∫
dx dt

∑
i

(−χiDxϕiDtϕi − vi(Dxϕi)
2

+ qiε
μνaμ∂νϕi), (1)

where vi ∈ R+ are the propagation velocities, χi = ±1
represent chiralities of the modes (plus for the clockwise
and minus for the counterclockwise direction), and aμ(x,t)
is the electromagnetic field potential at the edge. Covariant
derivatives are defined as Dμϕi = ∂μϕi − χiqiaμ. The
coupling constants qi provide information on how the electric
charge is distributed between the modes. The symbol εμν

denotes the fully antisymmetric tensor with μ,ν taking values
t and x (or 0 and 1 respectively) and εtx = ε01 = 1.

Conservation of total electric current in the whole volume
of a 2D sample leads to the condition [12,13]∑

i

χiq
2
i = ν. (2)

The electric current at the edge is

Jμ = δS

δaμ

= 1

2π

∑
i

qiε
μνDνϕi + ν

4π
εμνaν. (3)

In the presence of the electric field it is not conserved:

∂μJμ = − ν

4π
εμν∂μaν �= 0, (4)

which is a manifestation of the inflow of the Hall current from
the bulk.

In the absence of the electric field aμ(x,t) = 0 the current
is conserved and has the form

Jμ = 1

2π

∑
i

qiε
μν∂νϕi, ∂μJμ = 0. (5)

In the rest of this section we assume that aμ(x,t) = 0.
Beyond the electric current one can also define neutral

currents

Jμ
n = 1

2π

∑
i

piε
μν∂νϕi, ∂μJμ

n = 0, (6)

1In this and the following sections we put e = � = kB = 1 unless
the opposite is stated explicitly. Here e is the elementary charge, � is
the Planck constant, and kB is the Boltzmann constant.

2In fact, the action (1) has to be used with care because its chiral
nature imposes implicit constraints on the external perturbation aμ.
This problem does not emerge in the Hamiltonian formalism used in
[12].

with vector p = (p1, . . . ,pN ) being linearly independent of
vector q = (q1, . . . ,qN ).3

The quantized fields ϕi can be presented as follows:

ϕi(x,t) = ϕ0
i + 2π

L
π0

i Xi + i

∞∑
n=1

√
2π

Lk

× (ai(k) exp(−ikXi) − a
†
i (k) exp(ikXi)), (7)

where Xi = −χix + vit , k = 2πn/L, n ∈ N; L → ∞ is the
system size, ai(k) and a

†
i (k) are the annihilation and the

creation operators respectively, and ϕ0 and π0 are the zero
modes:

[ai(k),a†
j (k′)] = δij δkk′ ,

[
π0

i ,ϕ0
i

] = −iδij . (8)

The fields ϕi obey the commutation relation of chiral
bosons:

[ϕi(x,t),ϕj (x ′,t ′)] = −iπsgn(Xi − X′
i) δij . (9)

The edge supports quasiparticles of the form

Vg(x,t) =
(

L

2π

)−∑
i g2

i /2

: exp

(
i
∑

i

giϕi(x,t)

)
: , (10)

which are important for the processes of tunneling at the
QPC. The notation : · · · : stands for the normal ordering,
g = (g1, . . . ,gN ), and gi ∈ R are the quasiparticle quantum
numbers.

Among the quasiparticle fields there has to be a field
representing an electron which is the fundamental constituent
particle:

ψ(x,t) =
(

L

2π

)− ∑
i a2

i /2

: exp

(
i
∑

i

aiϕi(x,t)

)
: , (11)

ai ∈ R. Minimal models of the QH states of Jain series ν =
N/(2N ± 1) have N electron operators each representing a
composite fermion Landau level:

ψα(x,t) =
(

L

2π

)−∑
i e2

αi/2

: exp

(
i
∑

i

eαiϕi(x,t)

)
: ,

eαi ∈ R. (12)

The electron fields have to satisfy the following constraints:

{ψα(x,t),ψα(x ′,t)} = 0,

ψα(x,t)ψβ(x ′,t) ± ψβ(x ′,t)ψα(x,t) = 0, α �= β (13)

[J 0(x,t),ψα(x ′,t)] = δ(x − x ′)ψα(x,t),

where J 0 is charge density operator defined in Eq. (5), {· · · }
denotes the anti-commutator, and a plus or minus sign in the
second equation can be chosen independently for each pair
(α,β); α,β = 1, . . . ,N .

3The conserved neutral currents can give rise to neutral modes’
chemical potentials μ(n); thermodynamic quantities dual to the neutral
charges. In the main text, as we pointed out in the previous section,
we assume that these neutral chemical potentials are not involved in
the experiment we are going to analyze. However, for the sake of
generality we include them in formulas in Appendices A and E.
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For the parameters eαi in Eq. (12) these constraints imply

eα · eα ∈ 2Z + 1, eα · eβ ∈ Z, q · eα = −1, (14)

where we defined eα = (eα1, . . . ,eαN ) and q = (q1, . . . ,qN )
with qi being the coupling constants from the action (1), and
the operation A · B ≡ ∑N

i=1 χiAiBi .
Equations (14) have many inequivalent solutions each

defining a topological QH class. It is convenient to parametrize
these classes with the help of the K matrix:

Kαβ = eα · eβ. (15)

Consider now a QH fluid corresponding to a particular
solution {e1, . . . ,eN } of Eqs. (14). The spectrum of the
quasiparticles (10) present in the model is determined from the
requirement of mutual locality with all the electron operators:

ψα(x,t)Vg(x ′,t) + sVg(x ′,t)ψα(x,t) = 0, (16)

where s is either +1 or −1 depending on the particular
quasiparticles.

This leads to the following restrictions on the parameters
gi in Eq. (10):

g · eα = nα ∈ Z, α = 1, . . . ,N, (17)

where g = (g1, . . . ,gN ). The set of numbers nα completely
defines the properties of a quasiparticle operator.

For the following considerations two quantum numbers of
the quasiparticle operator (10) are of particular importance:
the electric charge Q and the scaling dimension δ. They are
given by

Q(n) = q · g =
∑
αβ

K−1
αβ nβ, (18)

δ(n) = 1

2

∑
i

g2
i . (19)

B. The minimal model the ν = 2
3 QH edge

Here we use the general principles discussed above to obtain
the minimal model of the ν = 2

3 QH edge. This model emerges
from different semi-phenomenological theoretical approaches
to the QH edge [14,15] and is the most likely candidate to
describe this fraction [8].

First, we note that it is impossible to satisfy the constraints
(2) and (14) assuming that N = 1. For N = 2 we choose the
charge vector4

q = (
√

2/3,0) (20)

and chiralities

χ1 = 1, χ2 = −1. (21)

4Note that there exists an infinite freedom in the choice of the vector
q giving rise to infinitely many physically inequivalent theories.
However, as it was shown in [3,4] by perturbative RG analysis, the
choice (20) leads to a theory stable against disorder scattering.

TABLE I. Parameters of the most relevant excitations in the
minimal model of the ν = 2

3 QH edge [see Eqs. (10), (17), (18),
and (19)].

Type g1 g2 Q δ

1
√

1/6
√

1/2 1/3 1/3
2

√
1/6 −√

1/2 1/3 1/3
3

√
2/3 0 2/3 1/3

Then equations (14) lead to an infinite one-parameter family
of solutions:

e1 =
(

−
√

3

2
,

√
3

2
+ 2m + 1

)
, (22)

e2 =
(

−
√

3

2
, −

√
3

2
+ 2m + 1

)
, (23)

where m = −1,0,1,2, . . . .
The electron operators have the smallest scaling dimension

for m = −1, which gives

e1,2 =
(

−
√

3

2
, ±

√
1

2

)
(24)

and the K matrix

K =
(

1 2
2 1

)
. (25)

This defines the minimal model of the ν = 2
3 QH edge.

The quasiparticle spectrum of the model is defined by
Eq. (17). The parameters of the three excitations which are
most relevant for tunneling across the QPC are given in
Table I.

We find it convenient to define the neutral current (6) with

p = (0,−1). (26)

C. Tunneling of quasiparticles across the QPC

Wherever the two QH edges approach each other at a
distance on the order of the magnetic length processes of
quasiparticle exchange between the edges are possible. It
is widely accepted [12,16,17] that such processes can be
described by adding the following term to the Hamiltonian:

HT =
∑

g

ηgV
(u)†

g (0,t)V (l)
g (0,t) + H.c., (27)

where the superscripts (u),(l) label quantities relating to the
upper and the lower edge respectively; for simplicity we
assume that tunneling occurs at the origin. In the case of
weak tunneling across the bulk of the QH state the sum
runs over all quasiparticles in the model. However, at small
energies quasiparticles with the smallest scaling dimension
δ(g) have the largest tunneling amplitude ηg, thus giving the
most important contribution.
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V. CALCULATION OF OBSERVABLE QUANTITIES

In this section we derive analytical expressions for two
observable quantities as functions of the experimentally
variable parameters. These quantities include the tunneling
rate that is the ratio of the current tunneling across the QPC
to the Source S current Is and the excess noise in the Voltage
probe which is the noise in the Voltage probe in the presence
of currents In, Is less the equilibrium noise at In = Is = 0. We
further demonstrate that it is advantageous to consider the ratio
of these quantities rather than each separate one. This way the
influence of nonuniversal physics of the tunneling contact can
be reduced.

Our expressions for the excess noise and the tunneling
rate, presented in Eqs. (40)–(46), are in full agreement with
Eqs. (10) and (11) of Ref. [18].

A. Tunneling rate

As it was mentioned in the previous section, the most
important contribution to the tunneling processes is due to
the most relevant excitations. Such excitations are listed in
Table I, and we restrict our considerations to these excitations
only. To this end we introduce the following notation ψi (x,t) =
Vgi

(x,t) where gi , i = 1,2,3 are the three most relevant
quasiparticle vectors given in Table I.

The tunneling Hamiltonian can then be written as

HT =
3∑

i=1

ηiAi(t) + η∗
i A

†
i (t), (28)

Ai(t) = ψ
(u)†
i (0,t)ψ (l)

i (0,t) (29)

where the superscripts (u),(l) label quantities relating to the
upper and the lower edge respectively and ηi are unknown
complex phenomenological parameters.

We calculate the tunneling current within the second-order
perturbation theory in the tunneling Hamiltonian. The detailed
derivation can be found in Appendix B. The resulting tunneling
rate is given by the Kubo formula:

r =
∣∣∣∣IT

Is

∣∣∣∣ =
∣∣∣∣∣ 1

Is

∑
i

|ηi |2Qi

∫ ∞

−∞
dτ 〈[Ai(τ ),A†

i (0)]〉
∣∣∣∣∣ , (30)

where IT is the tunneling current and Is is the current
originating from Source S. Apart from r , paper [2] uses
t = 1 − r .

B. Excess noise

Noise spectral density of the electric current flowing into
the Voltage probe (see Fig. 2) can be calculated as the Fourier
transform of the two-point correlation function of the current
operator I ,

S(ω) =
∫ ∞

−∞
dτ exp(iωτ )

1

2
〈{�I (0),�I (τ )}〉, (31)

where {· · · } denotes the anticommutator, and �I = I − 〈I 〉.5

5We must note here that there are two conventions concerning the
definition of the noise spectral density. While some authors (see, e.g.,

It is convenient to separate the operator I of the full current
flowing to the Voltage probe into I0 + IT with I0 = Jμ(l)

(x = −0,t = 0)|μ=1=x being the spatial component of the
operator Jμ(x,t) defined in Eq. (5), which represents the
electric current flowing along the lower edge just before the
tunneling point, and IT being the tunneling current operator.
Then the noise can be represented as follows:

S(ω) = S00(ω) + S0T (ω) + S0T (−ω) + ST T (ω), (32)

Sab(ω) =
∫ ∞

−∞
dτ exp(iωτ )

1

2
〈{�Ia(0),�Ib(τ )}〉, (33)

with �Ia = Ia − 〈Ia〉; indices a,b take values 0 and T .
We are interested in the low-frequency component mea-

sured in the experiment. To a good approximation this can be
replaced by the zero-frequency component S(ω = 0). Within
the second-order perturbation theory we find

S00(0) = ν

2π
Ts, (34)

ST T (0) =
∑

i

|ηi |2Q2
i

∫ ∞

−∞
dτ 〈{Ai(0),A†

i (τ )}〉, (35)

S0T (0) = 1

2

∑
i

|ηi |2Qi

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′

× 〈{�I0(0),[Ai(τ
′),A†

i (τ )]}〉. (36)

We remind the reader that Ts is the lower edge temperature in
the neighborhood of the QPC. These formulas are derived in
Appendix C.

The contribution S00 is the Johnson-Nyquist noise of the
lower edge. If we restore e, �, and kB we see that S00(0) =
kBTs/R, R = 2π�/(νe2) = h/(νe2). Since the Voltage probe
contact not only absorbs the lower edge charged mode but
also emits another charged mode which flows to the right
of it, the actual Nyquist noise measured in the contact will
be SJN (0) = 2kBTs/R, in agreement with general theory of
Johnson-Nyquist noise. The factor of 2 difference from the
Nyquist noise expression used in [2] is due to the noise spectral
density definition as discussed in footnote 5.

Following [2] we define the excess noise

S̃(0) = S(0) − Seq(0), (37)

where Seq is the equilibrium noise spectral density (i.e.,
the noise when Is = 0 and In = 0, meaning that the edge
temperatures are equal to the base temperature: Ts = Tn = T0).
It turns out that Seq(0) = S00(0) resulting in

S̃(0) = 2S0T (0) + ST T (0). (38)

This fact is proven in Appendix D using the explicit formulas
for S0T (0), ST T (0) obtained in Appendices C1 and C2.

[19]) use the same definition as we do, others (see, e.g., [2,20]) adopt
the definition which is twice as large as ours. Thus our results must
be multiplied by 2 in order to be compared with the data of [2].
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C. Noise to tunneling-rate ratio6

Expressions (30), (35), and (36) depend on the tunneling
constants ηi . It is well known (see, e.g., [21–23] and references
therein) that the tunneling amplitudes ηi in electrostatically
confined QPCs strongly depend on the applied bias voltage in a
nonuniversal way, probably due to charging effects. Therefore
one would like to exclude this dependence from the quantities
used for comparison with experiment.

Consider the ratio of the excess noise to the tunneling rate:

X = S̃(0)

r
= eIs

∑3
i=1 θiFi∑3
i=1 θiGi

= eIs

F1 + θF3

G1 + θG3
, (39)

where θi = |ηi |2(vc/vn)2[(gi )2]2
, θ = θ3/(θ1 + θ2), vc and vn are

the propagation velocities of the charged and the neutral mode
respectively, and e is the elementary charge. The number
(gi)2 is presented in the column g2 of Table I for each of
the three excitations enumerated by i. Functions Fi and Gi

(see Appendices B, C1, C2 and E) represent contributions of
different excitations to the excess noise and tunneling current
respectively. In particular, the excess noise is given by

S̃(0) = 4e2(πTs)4δ−1

�4δ+1v4δ
c

∑
i

θiFi, (40)

and the tunneling rate is equal to

r = 4e(πTs)4δ−1

Is�
4δ+1v4δ

c

∑
i

θiGi. (41)

The explicit form of these functions is presented below.
Note that F1 = F2 and G1 = G2:

Gi = sin 2πδ

∫ ∞

0
dt

Qiλ
2δ sin Qijst

(sinh t)2δ (sinh λt)2δ
, (42)

Fi = FT T
i cos 2πδ − 2

π
F 0T

i sin 2πδ, (43)

FT T
i = Q2

i lim
ε→+0

(
ε1−4δ

1 − 4δ
+

∫ ∞

ε

dt
λ2δ cos Qijst

(sinh t)2δ (sinh λt)2δ

)
,

(44)

F 0T
i =

∫ ∞

0
dt

Q2
i λ

2δ t cos Qijst

(sinh t)2δ (sinh λt)2δ
, (45)

js = Is

I0
, I0 = ν

e

h
πkBTs = ν

e

h
πkBT0, (46)

where λ = Tn/Ts , Tn is the local upper edge temperature at
QPC, Ts = T0 is the local lower edge temperature at QPC, e

is the elementary charge, h = 2π� is the Planck constant, kB

is the Boltzmann constant, ν = 2
3 is the filling factor, and the

scaling dimension δ and the quasiparticle charges in the units
of the elementary charge Qi can be found in Table I.

6In this section we restore the elementary charge e, the Planck
constant � = h/2π , and the Boltzmann constant kB in order to
simplify use of our formulas for comparison with experimental data.

1. Remarks on nonuniversality in the noise to tunneling-rate ratio

It is easy to see that if any one quasiparticle dominates
tunneling (for example, if θ → ∞) then the unwanted nonuni-
versal dependence of the tunneling amplitudes on the applied
bias voltage does not enter the expression (39). If we assume
that the SU(2) symmetry of the edge [3,4] is for some reason
preserved at the tunneling contact so that |η1|2 = |η2|2 = |η3|2,
then again the nonuniversal behavior of the tunneling am-
plitudes does not enter the expression X; moreover, in this
case finding θ allows us to determine the vc/vn ratio. In
general, though, θ may exhibit some nonuniversal behavior.
Anticipating results, we can say that, surprisingly, θ does not
seem to exhibit any strong dependence on Is or In.

For the following considerations we also give the large-Is

asymptotic behavior of the noise to tunneling-rate ratio (39)
which we derive using Eqs. (42)–(46):

Xλ,θ (Is)
∣∣
Is→∞ = Q1e|Is |1 + θ (In,Is)(Q3/Q1)4δ+1

1 + θ (In,Is)(Q3/Q1)4δ

= e

3
|Is |1 + 27/3θ (In,Is)

1 + 24/3θ (In,Is)
. (47)

This asymptotic expression can give the reader an idea as to
the effect introduced by the nonuniversal function θ (In,Is).
One can see, for example, that the gradient of the asymptote
increases by a factor of 2 as θ increases from zero to infinity.

VI. COMPARISON WITH THE EXPERIMENT

In this section we compare our analytical results with the
experimental data.

The following data are available from the paper [2]: the
transmission rate t = 1 − r dependence on the currents In and
Is (Fig. 3(a) of [2]), the dependence of the excess noise at
zero frequency on the currents In and Is (Fig. 3(a) of [2]) and
the dependence of the excess noise at zero frequency on the
current In for Is = 0 (Fig. 2 of [2]).

FIG. 3. (Color online) Excess noise to tunneling-rate ratio as a
function of the current Is . Shown are experimental points and fits
thereof by theoretical curves for different values of the current In.
The legend shows the In value in nA for each curve (plot symbol).
Fitting parameters λ and θ are defined independently for each value
of In.
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TABLE II. Results of fitting the experimental points from
Fig. 3(a) of [2] by the function Xλ,θ (Is) defined in Eq. (39). Fitting
parameters λ and θ are defined independently for each value of current
In. �λ and �θ are standard deviations of λ and θ respectively.

No. In (nA) λ �λ θ �θ

1 0.0 1.00 0.53 0.04
2 0.5 4.48 0.19 0.44 0.03
3 1.0 6.16 0.15 0.35 0.02
4 1.5 7.32 0.17 0.30 0.02
5 2.0 8.65 0.13 0.36 0.03

It is a well known problem (see, e.g., [21–23] and references
therein) that the dependence of the transmission rate t on the
current Is does not have the form predicted by the minimal
model of tunneling defined in Eqs. (28) and (29). A possible
explanation is the nonuniversal dependence of the tunneling
amplitudes ηi on Is due to electrostatic effects. As discussed
in the previous section this problem can be avoided in simple
cases by considering the ratio of the excess noise to the
tunneling rate r = 1 − t . However, in the present case a certain
degree of non-universality remains due to the nonuniversal
function θ (In,Is). The theoretical expression for the noise to
tunneling-rate ratio Xλ,θ (Is) is given by Eq. (39), where λ =
Tn/Ts is the ratio of the two edges’ temperatures. Neither θ ,
nor λ can be calculated theoretically and we will deduce them
from fits of the experimental data. We assume that λ depends
on In but not on Is ; we also assume that the nonuniversal
behavior of the tunneling amplitudes does not lead to any
significant dependence of θ on the currents In,Is . While
the former assumption is physically plausible in the weak
tunneling regime, the latter one is motivated by our intention
to reduce the number of fitting parameters as much as we can.

In Fig. 3 the results of fitting Xλ,θ (Is) to the experimental
data taken from Fig. 3(a) of [2] are shown. Optimal fits are
found for each set of points corresponding to a given value of

FIG. 4. (Color online) Excess noise to tunneling-rate ratio as a
function of the current Is . Shown are experimental points and fits
thereof by theoretical curves for different values of the current In.
The legend shows the In value in nA for each curve (plot symbol).
Fitting parameter λ is defined independently for each value of In.
Parameter θ is set to θ = θmean = ∑

i θi/5 = 0.39.

TABLE III. Results of fitting the experimental points from
Fig. 3(a) of [2] by the function Xλ,θ (Is) defined in Eq. (39). Fitting
parameter λ is defined independently for each value of current In for
fixed θ = θmean = ∑

i θi/5 = 0.39. �λ is the standard deviation of λ.

No. In (nA) λ �λ

1 0.0 1.00
2 0.5 4.62 0.18
3 1.0 5.98 0.14
4 1.5 6.99 0.17
5 2.0 8.55 0.11

In with θ and λ being fitting parameters. The corresponding
values and standard deviations of fitting parameters are shown
in Table II. For In = 0 we have set λ = 1 by definition.

As one can see from the Table II, the values of θ do not
vary significantly. Thus we repeat the fitting procedure with θ

equal to the mean of the five values and λ being the only fitting
parameter. The resulting fits and values of λ are presented in
Fig. 4 and Table III. As one can see the fits remain good, thus
we cannot reliably find the extent of deviation of θ from a
constant value with the available experimental data.

Table III gives us some data on the dependence of Tn =
λTs = λT0 on the current In. We further investigate this by
fitting it with the following function:

Tn = T0(1 + C |In|a), (48)

where C and a are fitting parameters. The resulting fit is
shown in Fig. 5. The corresponding values of fitting parameters
are a = 0.54(5), C = 5.05(13) nA−a . This disagrees with the
claim of Ref. [18] that the experimental data are consistent
with a linear Tn dependence on In. We cannot analyze the
source of this discrepancy because Ref. [18] does not contain
sufficient detail as to how the comparison with the experiment
was done.

Using the phenomenological dependence (48) it is possible
to predict the noise to tunneling-rate ratio at any Is , In without

FIG. 5. (Color online) Excess temperature of the upper edge
Tn − T0 as a function of the current In. Comparison of the points
obtained from the data in Table III with the fit of these points by
formula (48) is shown.

125104-7



O. SHTANKO, K. SNIZHKO, AND V. CHEIANOV PHYSICAL REVIEW B 89, 125104 (2014)

FIG. 6. (Color online) Excess noise to tunneling-rate ratio for
Is = 0 as a function of current In. Experimental points are taken
from Fig. 2 of [2] for the tunneling rate r ≈ 0.2. The theoretical
curve is obtained for θ = θmean = ∑

i θi/5 = 0.39. The values of λ

are given by Eq. (48). No fitting procedure is involved.

any further fitting procedures (we still take θ = θmean = 0.39).
So we can test the formula (48) by comparing the theoretical
prediction of Xλ,θ (Is) to another data set. We take the
experimental data for the excess noise S̃(0) dependence on In

for Is = 0 from Fig. 2 of the paper [2] for t = 1 − r = 80%.
The resulting comparison of the noise to tunneling-rate ratio X

is shown in Fig. 6. An excellent agreement of theoretical curves
and experimental points gives an independent confirmation of
the result (48).

VII. DISCUSSION

In this section we discuss the results of the comparison
of theoretical predictions with the experimental data, and
emphasize some important aspects of our analysis.

The good quality of the fits shown in Fig. 4 suggests that the
minimal model of the ν = 2

3 quantum Hall edge is consistent
with the experimental data. Note that the existence of good
fits is not trivial because of the following reasons. The number
of fitting parameters is small; namely, two fitting parameters
are used to get Fig. 3, only one is used for Fig. 4 and no
fitting parameters are involved in obtaining Fig. 6. Moreover,
our theory imposes strong constraints on the shape of the
function Xλ,θ (Is) in the whole region of parameters λ, θ . For
example, as can be seen from Eq. (47), the gradient of the
large Is asymptote of the curve Xλ,θ (Is) varies between e/3
and 2e/3 as θ increases from zero to infinity. The fact that the
experimental curve lies between these bounds is nontrivial.

The fact that the gradient of the large Is asymptote of the
curve Xλ,θ (Is) does not coincide with the limiting values of
e/3 and 2e/3 provides an indirect confirmation of the presence
of more than one quasiparticle species taking part in tunneling.
Indeed, in the case of a single quasiparticle species of charge Q,
the asymptote gradient would equal Q. From considerations
similar to the flux insertion argument [24, Sec. 7.5] one can
deduce that the natural ν = 2

3 fractional charges are integer
multiples of e/3. Interpreting the asymptotic behavior of the

noise to tunneling-rate ratio in terms of a single quasiparticle
tunneling, one would get an unnatural value of Q lying
between e/3 and 2e/3. The minimal model of the ν = 2

3 edge
explains this contradiction in a natural way: the experimentally
observed “charge” is a weight average of the charges of
two equally relevant quasiparticles with weights defined by
nonuniversal tunneling amplitudes’ ratio θ . This gives an extra
argument in favor of the minimal model of the ν = 2

3 edge with
the K matrix (25). A similar point was made in paper [11] in
relation to the experiment [9].

Note, that the minimal model analyzed here can also be
regarded as the low-energy limit of the extended models
proposed in Refs. [10,11]. At higher energies both extended
models predict tunneling contact physics to be dominated by a
quasiparticle with charge e/3. Since we do not see this in our
analysis, we conclude that either the extended physics is not
present in the system or occurs above the energies probed in
the experiment of Ref. [2].

It should, however, be emphasized that the minimal ν = 2
3

edge model alone is not sufficient to describe the present
experiment. Extra assumptions are needed to model the
nonuniversal physics of Ohmic contacts, edge equilibration
mechanisms, and the tunneling contact. Such assumptions
have been discussed throughout the text, and here we sum-
marize them:

(i) injection of electric current into an Ohmic contact
induces nonequilibrium noise in the neutral mode but not in
the charged mode;

(ii) injection of electric current into an Ohmic contact does
not induce a shift in the neutral mode chemical potential [that
is, the thermodynamic potential dual to the neutral charge
defined through Eqs. (6) and (26)];

(iii) strong equilibration of the charged and the neutral
modes takes place along the edge resulting in some current-
dependent local temperature of the edge;

(iv) the tunneling contanct can be modeled by the minimal
tunneling Hamiltonian (28) with tunneling amplitudes depend-
ing on the edge chemical potential in some nonuniversal way.

While these phenomenological assumptions are plausible,
they may not be accurate. Moreover, their validity may depend
on the experimental conditions.

The theoretical framework presented here enables a more
detailed experimental investigation and refinement of our
understanding of nonequilibrium processes at the edge. For
example, in the present work we use experimental data
to establish a phenomenological law (48) describing the
dependence of the neutral mode temperature at the QPC on
the current In (see Figs. 5 and 6). Recently there has been
some theoretical progress in understanding of the interaction
of Ohmic contacts with the quantum Hall edge [25]. However,
at present a complete theoretical predictive model of Ohmic
contacts is still missing, and the information on the neutral
mode heating may contribute to its development.

It is also interesting to note that we do not find any
significant dependence of the ratio of the tunneling amplitudes
of different species of quasiparticles on the currents In, Is

(see discussion of Figs. 3 and 4). This is surprising since the
tunneling amplitudes themselves appear to vary significantly
to explain the tunneling rate dependence on Is observed in [2].
This fact suggests the existence of a mechanism which ensures
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roughly equal participation of all three quasiparticles species
in the tunneling. It is known [3,4] that disorder scattering at the
edge enforces the SU(2) symmetry between the quasiparticle
species. A similar mechanism might be responsible for the
discussed phenomenon.

We emphasize that our theoretical predictions are derived in
the limit of perturbatively weak tunneling of the quasiparticles.
Therefore, the tunneling rate at which the comparison with the
experimental data is made should be small enough so that our
theory remains valid, but large enough in order to minimize
statistical errors of the noise to tunneling-rate ratio.

VIII. CONCLUSIONS

Using the chiral Luttinger liquid theory of the quantum
Hall edge we develop a quantitative model of the experiment
reported in [2]. This model enables us to extract important
quantitative information about nonequilibrium processes in
Ohmic and tunneling contacts from the experimental data.
In particular, for ν = 2

3 , we find a power-law dependence of
the neutral mode temperature on the charge current injected
from the Ohmic contact. We also find a surprising behavior of
quasiparticle tunneling amplitudes which may be a signature
of the SU(2) symmetry in the quasiparticle tunneling across
the QPC.
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APPENDIX A: USEFUL ONE-EDGE
CORRELATION FUNCTIONS

Here we give explicit expressions for the correlation
functions at a single edge without tunneling (described by
the minimal model for ν = 2

3 defined in the main text) which
are used to calculate the quantities of experimental interest. In
all the correlation functions of this appendix we assume the
infinite system size limit L → ∞.

The two-point correlation function of quasiparticle opera-
tors is equal to

〈V †
g (x1,t1)Vg′ (x2,t2)〉 = 〈V−g(x1,t1)Vg′(x2,t2)〉

= δg,g′
∏

p=c,n

Fp(x1 − x2,t1 − t2 − iε,g),

(A1)

Fp(x,t,g) = (πT )g
2
p

(ivp sinh πT Xp)g
2
p

exp (iQ(p)μ(p)Xp/vp),

(A2)

where Vg(x,t) is a quasiparticle excitation operator defined
in Eq. (10), g = (g1,g2) = (gc,gn) is the excitation vector,
p enumerates charged (c or 1) and neutral (n or 2) modes,

Xp = −χpx + vpt , χp and vp are the mode chirality and
velocity respectively which enter the action (1) (in our case
χ1 = −χ2 = 1), and T is the temperature of the edge. The
electric charge Q(c) = Q = g′

1

√
ν, ν = 2

3 , and μ(c) = μ is the
chemical potential of the charged mode at the edge. It coincides
with the chemical potential of the Ohmic contact where the
charged mode originates. The neutral charge Q(n) = g′

2 and
the chemical potential μ(n) do not enter the formulas in the
other sections as we assume μ(n) = 0, though, in principle,
injection of the current from an Ohmic contact could shift the
neutral mode chemical potential. We have also introduced an
infinitesimally small positive number ε → +0.

The electric current along the edge in equilibrium is given
by the average of the current operator Jμ=1 defined in Eq. (5):

〈J 1(x,t)〉 = χcvc〈J 0(x,t)〉

= −vc

√
ν

L

〈
π0

(c)

〉 = χc

ν

2π
μ(c) = ν

2π
μ(c) (A3)

in agreement with the quantization law of Hall
conductance [26].

The two-point correlation function of quasiparticle opera-
tors with the current operator inserted is given by

〈J 1(x0,t0)V †
g (x1,t1)Vg′ (x2,t2)〉

= 〈V †
g (x1,t1)Vg′(x2,t2)〉 ×

(
〈J 1(x0,t0)〉 + Q(c)χcπT

2πi

× [coth πT (Y0 − Y1) − coth πT (Y0 − Y2)]

)
, (A4)

where Yi = t − χcx/vc + iκi . κ0 = 0, κ1 = κ → +0 is an
infinitesimally small positive number, κ2 = κ1 + ε, and ε is
the same as in the two-particle correlation function.

Finally, the current-current correlation function is

〈J 1(x0,t0)J 1(x1,t1)〉 = 〈J 1(x0,t0)〉〈J 1(x1,t1)〉

+ ν

(2π )2

(πT )2

[i sinh πT (Y0 − Y1)]2
, (A5)

where Yi = t − χcx/vc + iκi , κ0 = 0, κ1 = κ → +0 is an
infinitesimally small positive number.

APPENDIX B: TUNNELING CURRENT

Here we present a derivation of the expressions for the
tunneling current IT and the tunneling rate r .

The tunneling current can be defined as the time derivative
of the total charge at the lower edge:

IT = d

dt
Q(l) = i[H,Q(l)] = i[HT ,Q(l)], (B1)

Q(l) =
∫ ∞

−∞
J 0(l)(x,t)dx. (B2)

Here J 0(l) is the lower edge charge density operator J 0 defined
in Eq. (5), H is the full system Hamiltonian, and HT is the
tunneling Hamiltonian (28). Using the latter we get an explicit
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expression

IT ,int(t) = i
∑

i

Qi(ηiAi(t) − η∗
i A

†
i (t)), (B3)

where Qi are the quasiparticle charges Q in Table I and Ai

are the operators defined in Eq. (29). This is the tunneling
current operator in the interaction picture with interaction
HT (which is emphasized by the subscript “int”). We
calculate the expression for the tunneling current operator
in the Heisenberg picture within the perturbation theory
in HT :

IT (t) = IT ,int(t) + i

∫ t

−∞
dτ [HT (τ ),IT ,int(t)] + O(|ηi |3)

= i
∑

i

Qi(ηiAi(t) − η∗
i A

†
i (t)) −

∑
i,j

Qi

∫ t

−∞
dτ

× [ηjAj (τ ) + η∗
jA

†
j (τ ),ηiAi(t) − η∗

i A
†
i (t)]

+O(|ηi |3). (B4)

The observed tunneling current is then

〈IT (t)〉 =
∑

i

Qi |ηi |2
∫ t

−∞
dτ 〈[Ai(τ ),A†

i (t)]

− [A†
i (τ ),Ai(t)]〉 + O(|ηi |3). (B5)

We have used the relationships 〈Ai(t)〉 = 〈Aj (τ )Ai(t)〉 = 0,
〈A†

j (τ )Ai(t)〉 ∝ δij .
It can be checked with explicit correlation functions

(A2) that the integral of each of the summands in the
formula (B5) is convergent. Thus, one can split them and
manipulate separately. Using time translational invariance of
the correlation functions in both summands and changing
sign of the integration variable in the second one we finally
get

〈IT (t)〉 =
∑

i

Qi |ηi |2
∫ +∞

−∞
dτ 〈[Ai(τ ),A†

i (0)]〉 + O(|ηi |3),

(B6)

which leads to the expression (30) for the tunneling
rate r .

Starting from the expression (B6) for the tunneling current
expectation value and using the explicit form of the correlation
functions (A1) and (A2), we obtain up to corrections of
O(|ηi |3)

〈IT (t)〉 = 2i
∑

i

Qi |ηi |2v−4δ
c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dτ

× (πTn)2δ(πTs)2δ sin Qi�μτ

[i sinh πTn(τ − iε)]2δ[i sinh πTs(τ − iε)]2δ
,

(B7)

where Tn = T (u) is the upper edge temperature, Ts = T (l)

is the lower edge temperature, �μ = μ(c,u) − μ(c,l) is the
difference of the chemical potentials of the upper and the
lower edges’ charged modes, the numbers (gi)1, (gi)2 are
presented in the columns g1, g2 respectively of Table I for

each of the three excitations enumerated by i, and δ is the
scaling dimension of the excitations presented in the column
δ of Table I, and ε → +0 is an infinitesimally small positive
number.

For 0 < δ < 1/2 the last formula can be further
simplified:

IT = 〈IT (t)〉 =
∑

i

4Qi |ηi |2v−4δ
c

(
vc

vn

)2[(gi )2]2

sin 2πδ

×
∫ +∞

0
dτ

(πTn)2δ(πTs)2δ sin Qi�μτ

(sinh πTnτ )2δ(sinh πTsτ )2δ
.

(B8)

APPENDIX C: NOISE

In this section we derive expressions for the noise spectral
density S(ω) at zero frequency ω.

The operator I (t) of the full current flowing to the Voltage
probe can be presented as a sum of the tunneling current IT (t)
defined in Eq. (B4) and the current I0 flowing along the lower
edge just before the QPC:

I (t) = I0(t) + IT (t), (C1)

I0(t) = J 1(l)(x = −0,t), (C2)

here I (t) and I0(t) are operators in the Heisenberg picture.
The noise spectral density S(ω) defined in Eq. (31) then

separates into four terms, see Eqs. (32) and (33), where the
identity Sab(ω) = Sba(−ω) following from the time transla-
tional invariance of the correlation functions has been used.

Using Eq. (A5) one obtains

S00(ω = 0)

= 1

2

ν

(2π )2

∫ ∞

−∞
dτ

(πT (l))2

(i sinh πT (l)(−τ − iε))2 + c.c.

= ν

2π
T (l), (C3)

where T (l) is the lower edge temperature, and ε → +0 is an
infinitesimally small positive number. This is the identity (34).

Since 〈Ai(t)〉 = 0, ST T (ω) can be expressed in the following
way up to corrections O(|ηi |3):

ST T (ω) =
∫ ∞

−∞
dτ exp

(
iωτ

)1

2
〈{IT (0),IT (τ )}〉. (C4)

Using 〈Aj (τ )Ai(t)〉 = 0, 〈A†
j (τ )Ai(t)〉 ∝ δij and neglecting

terms O(|ηi |3) we further simplify this expression to

ST T (ω) = 1

2

∑
i

Q2
i |ηi |2

∫ ∞

−∞
dτ exp(iωτ )

×〈{Ai(0),A†
i (τ )}〉 + c.c., (C5)

which at ω = 0 is equivalent to Eq. (35) due to the time
translational invariance of the correlation functions.
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Moving to S0T (ω), we find up to the corrections O(|ηi |3) that

S0T (ω) = 1

2

∑
i

Qi |ηi |2
∫ ∞

−∞
dτ

∫ τ

−∞
dτ ′ exp(iωτ )〈{�I0(0),[Ai(τ

′),A†
i (τ )] − [A†

i (τ
′),Ai(τ )]}〉. (C6)

In analogy with the calculation of the tunneling current expectation value, the integral of each of the two summands in the last
formula is convergent, thus we can manipulate the two summand integrals separately. Changing the order of integration and
renaming τ ↔ τ ′ in the second summand we arrive at the expression (36) for ω = 0.

1. The T T term

Starting from the expression (35) for the T T component of the current noise and using the explicit form of the correlation
functions (A1) and (A2) we obtain up to corrections of O(|ηi |3)

ST T (0) = 2
∑

i

Q2
i |ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dτ

(πTn)2δ(πTs)2δ cos Qi�μτ

[i sinh πTn(τ − iε)]2δ[i sinh πTs(τ − iε)]2δ
, (C7)

where Tn = T (u) is the upper edge temperature, Ts = T (l) is the lower edge temperature, �μ = μ(c,u) − μ(c,l) is the difference of
the chemical potentials of the upper and the lower edges’ charged modes, the numbers (gi)1, (gi)2 are presented in the columns
g1, g2 respectively of Table I for each of the three excitations enumerated by i, and δ is the scaling dimension of the excitations
presented in the column δ of Table I, and ε → +0 is an infinitesimally small positive number.

For 0 < δ < 3/4 the last formula can be rewritten as

ST T (0) = 4
∑

i

Q2
i |ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2

cos 2πδ lim
ε→+0

(∫ +∞

ε

dτ
(πTn)2δ(πTs)2δ cos Qi�μτ

(sinh πTnτ )2δ(sinh πTsτ )2δ
+ ε1−4δ

1 − 4δ

)
. (C8)

2. The 0T term

Starting from the expression (36) for the 0T component of the current noise and using the explicit form of the correlation
functions (A1), (A2), and (A4), we obtain up to corrections of O(|ηi |3)

S0T (0) =
∑

i

Q2
i

2π
|ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dt

∫ +∞

−∞
dτ

i(πTn)2δ(πTs)2δ+1 cos Qi�μ(τ − t)

{i sinh πTn[τ − t − i(κ − ε)]}2δ{i sinh πTs[τ − t − i(κ − ε)]}2δ

× [coth πTs(−τ − iε) − coth πTs(−t − iκ)] + c.c., (C9)

where Tn = T (u) is the upper edge temperature, Ts = T (l) is the lower edge temperature, �μ = μ(c,u) − μ(c,l) is the difference of
the chemical potentials of the upper and the lower edges’ charged modes, the numbers (gi)1, (gi)2 are presented in the columns
g1, g2 respectively of Table I for each of the three excitations enumerated by i, and δ is the scaling dimension of the excitations
presented in the column δ of Table I, and ε → +0, κ → +0 are infinitesimally small positive numbers such that κ > ε.

It is tempting to integrate each of the two hyperbolic cotangents separately; however, the integrals of a signle cotangent diverge
as t and τ go to ±∞ with t − τ being finite. Yet, the integral of the difference of the two cotangents is absolutely convergent.
After a change of variables τ = t + y we get

S0T (0) =
∑

i

Q2
i

2π
|ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dy

∫ +∞

−∞
dt

i(πTn)2δ(πTs)2δ+1 cos Qi�μy

{i sinh πTn[y − i(κ − ε)]}2δ{i sinh πTs[y − i(κ − ε)]}2δ

× [coth πTs(−t − y − iε) − coth πTs(−t − iκ)] + c.c. (C10)

Since∫ +∞

−∞
dt[coth πTs(−t − y − iε) − coth πTs(−t − iκ)] =

∫ +∞

−∞
dt[coth πTs(t − y − iε) − coth πTs(t − iκ)]

= 1

πTs

ln
sinh πTs(t − y − iε)

sinh πTs(t − iκ)

∣∣∣∣
+∞

−∞
= −2[y − i(κ − ε)], (C11)

we get

S0T (0) =
∑

i

2Q2
i

π
|ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dy

−i(πTn)2δ(πTs)2δ+1[y − i(κ − ε)] cos Qi�μy

{i sinh πTn[y − i(κ − ε)]}2δ{i sinh πTs[y − i(κ − ε)]}2δ

=
∑

i

2Q2
i

π
|ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2 ∫ +∞

−∞
dy

−i(πTn)2δ(πTs)2δ+1y cos Qi�μy

{i sinh πTn[y − i(κ − ε)]}2δ{i sinh πTs[y − i(κ − ε)]}2δ
. (C12)
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For 0 < δ < 1/2 the last formula can be rewritten as

S0T (0) = −4
∑

i

Q2
i

π
|ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2

sin 2πδ

∫ +∞

0
dτ

(πTn)2δ(πTs)2δ+1τ cos Qi�μτ

(sinh πTnτ )2δ(sinh πTsτ )2δ
. (C13)

APPENDIX D: EXCESS NOISE

In the equilibrium (�μ = 0 and Tn = Ts = T0) one can
represent the integrals in formulas (C8) and (C13) in terms of
Euler gamma function, which leads to

ST T (0)|eq = 4
∑

i

Q2
i |ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2

cos 2πδ

×(πT0)4δ−1 1

2
√

π
�

(
1

2
− 2δ

)
�(2δ), (D1)

S0T (0)|eq = − 4

π

∑
i

Q2
i |ηi |2v−4δ

c

(
vc

vn

)2[(gi )2]2

sin 2πδ

× (πT0)4δ−1

√
π

4
cot (2πδ)�

(
1

2
− 2δ

)
�(2δ).

(D2)

Thus,

ST T (0)|eq + 2S0T (0)|eq = 0. (D3)

Taking into account that the Johnson-Nyquist noise of the
lower edge S00(0) does not depend on the currents In,Is , we
get the expression (38) for the excess noise S̃(0).

APPENDIX E: PUTTING THINGS TOGETHER

The expressions (39)–(46) for the ratio X of the excess
noise S̃(0) = ST T (0) + 2S0T (0) (38) and the tunneling rate
r = |IT /Is | (30) can be straightforwardly obtained using the
explicit expressions for IT , ST T (0), S0T (0) in formulas (B8),
(C8), (C13) respectively. We only changed the integration
variable τ → πTst and restored the fundamental constants:
the elementary charge e, the Planck constant h = 2π�, and
the Boltzmann constant kB .

We remind the reader that in the main text of the paper
we assumed the neutral mode chemical potentials of both
edges μ(n,u),μ(n,l) to be zero. However, if needed, the neutral
mode chemical potentials can be easily incorporated into
the formulas (42)–(45) by the substitution Qijst → (Qijs −
Q

(n)
i (μ(n,u) − μ(n,l)))t . The neutral charges of the quasiparti-

cles Q
(n)
i = (gi)2 are given in the column g2 of Table I.
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