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Abstract Wireless Mesh Networks (WMNs) are

increasingly deployed to enable thousands of users to

share, create, and access live video streaming with different

characteristics and content, such as video surveillance and

football matches. In this context, there is a need for new

mechanisms for assessing the quality level of videos

because operators are seeking to control their delivery

process and optimize their network resources, while

increasing the user’s satisfaction. However, the develop-

ment of in-service and non-intrusive Quality of Experience

assessment schemes for real-time Internet videos with

different complexity and motion levels, Group of Picture

lengths, and characteristics, remains a significant chal-

lenge. To address this issue, this article proposes a non-

intrusive parametric real-time video quality estimator,

called MultiQoE that correlates wireless networks’

impairments, videos’ characteristics, and users’ perception

into a predicted Mean Opinion Score. An instance of

MultiQoE was implemented in WMNs and performance

evaluation results demonstrate the efficiency and accuracy

of MultiQoE in predicting the user’s perception of live

video streaming services when compared to subjective,

objective, and well-known parametric solutions.

Keywords Video streaming � Quality of experience �
Video quality estimator � Wireless mesh networks

1 Introduction

The last few years have witnessed a phenomenal growth in

the wireless industry, both in terms of multimedia mobile

technology and its human-centric subscribers. The current

trends and demands in wireless communications require the
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delivery of real-time video applications over heterogeneous

wireless networks with Quality of Experience (QoE) [1, 2]

support. Video streaming will provide new sources of

income for network operators and content providers, since it

will be a major application in future wireless systems and a

key factor in ensuring their success [3, 4]. At the same time,

users have been producing, sharing, and accessing thousands

of video services on wireless devices.

Real-time multimedia traffic consists of one or more

media streams with different spatial and temporal (motion

and complexity) video activities and features. A Group of

Picture (GoP) is a group of successive pictures within a

coded video stream and composed of a combination of

three frame types for the compressed video streams,

namely I (Intra-coded), P (Predictive-coded), and B (Bidi-

rectionally predictive-coded) frames. It is important to

highlight that not all video frames are equal or have the

same degree of importance from the user’s point-of-view.

For instance, depending on the video motion and com-

plexity levels (e.g., a small moving region of interest on a

static background or fast-moving sports clips) and the GoP

length, the impact of a packet lost in the Human Visual

System (HVS) may or may not be annoying [5].

Different types of wireless technologies, such as Wire-

less Mesh Networks (WMNs) [6], can be used to deliver a

wide range of real-time video streaming services to a large

number of users. However, video streaming produces a

degraded performance in wireless systems, including in

WMNs, due to network/channel impairments, such as

packet loss [7, 8]. Understanding and modeling the rela-

tionship of network impairments, video characteristics, and

human experiences by using wireless quality level assess-

ment schemes are key requirements for the delivery of

visual content in multimedia mobile networks, such as

football matches and other live multimedia events [9]. The

operators that assess the QoE of real-time video services

have a significant advantage by being able to strike an ideal

balance between network provisioning, video codec con-

figuration, and user’s experience.

Solutions for assessing the QoE of a video service can be

organized as subjective or objective [10], where the latter is

hard to implement in real-time. Objective video media

quality assessment technologies are categorized into several

parametric model types [9], where packet-layer schemes

have been gaining attention due to their high accuracy and

low processing. Packet-layer models predict the perceived

video quality level based on information about the IP and

video codec headers, such as frame type and packet loss rate

(without decoding the video flow). The impact on user

perception of video flows is influenced by the number of the

edges (spatial information—complexity level) in the indi-

vidual frames and by the type and direction of movement

(temporal information—motion level) in a GoP. However,

existing solutions have not been implemented and evaluated

in multimedia wireless systems, or presented inaccurate

results from the user’s experience, because, mainly, they do

not consider the video motion and complexity levels in their

assessment procedures.

This article extends our previous work [11] with a

modular and parametric packet-layer wireless video quality

estimator, called MultiQoE. MultiQoE uses IP and MPEG

packet header information to predict the quality level of a

variety of videos (different genres and content), which

reduces the system complexity and processing. Without

decoding the videos, MultiQoE estimates the quality of

level live video sequences by orchestrating and mapping

information on networks’ impairments, videos’ character-

istics, and users’ perception into a predicted Mean Opinion

Score (MOS). In contrast to existing works, MultiQoE also

uses information on motion and complexity levels of the

video frames in a GoP to improve the system accuracy.

Simulation experiments with the assistance of real viewers

were carried out to demonstrate the benefits and evaluate

the efficiency of MultiQoE in a wireless mesh multimedia

network. The results show that MultiQoE predicts the

quality level of a set of videos closest to the human

experience when compared to other widely-used QoE

video quality estimator models, such as the Peak Signal-to-

Noise Ratio (PSNR) [12], Video Quality Metric (VQM)

[13], Structural Similarity Index Metric (SSIM) [14], and

Pseudo-Subjective Quality Assessment (PSQA) [15].

The remainder of the article is structured as follows.

Section 2 describes the related works. The MultiQoE pro-

posal is explained in Sect. 3. Section 4 presents the test

environment, scenario, implementations, and simulation

results. Some concluding remarks are summarized in Sect. 5.

2 Related works

The ITU-R Recommendation BT.500 [16] has defined

subjective assessment as the most reliable system of Video

Quality Assessment (VQA). Subjective methods measure

the overall perceived video quality, under well-defined and

controlled conditions, by asking observers to evaluate

videos [17]. However, subjective assessment is cumber-

some, expensive, and unsuitable for in-service and real-

time applications [18, 19]. The most widely-used sub-

jective scheme for video quality evaluation is MOS [16,

20] which is recommended by the ITU-Telecommunication

(ITU-T) Standardization Sector. The MOS rates the video

quality on a scale of 1–5, where 5 is the best possible score.

It should be noted that in the tests, observers tend to avoid

scores at the extreme end of the scale (1 or 5) due to the

influence of psychological factors [21]. However, MOS is

not suitable for real-time video assessment approaches.
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In ITU-T Study Group (SG) 12, there is a study [22] on

the non-intrusive objective parametric and well-structured

QoE assessment models (e.g., G.OMVAS [22], P.NAMS

[23] and P.NBAMS [24] as planning, packet-layer and bit

stream models, respectively) that can predict the perceptual

impact of network impairments on video applications,

considering the kind of impairment caused by both trans-

mission and video compression issues [7, 25]. The pre-

diction is based on packet header information [26, 27] and

prior knowledge of the media stream [28]. However, in

practice, existing solutions [22–27] have not been imple-

mented and validated in wireless multimedia systems,

where the mapping of packet/network information into

MOS is required. MultiQoE follows the ITU-SG 12 rec-

ommendations, defines its specific input video/packet/net-

work parameters, and validates an accuracy parametric

video quality estimator solution for multimedia WMNs.

The most popular objective quality inference techniques

include PSNR [12], VQM [13], and SSIM [14]. Although

attempts to assess coding quality have often focused on

estimating the PSNR, the PSNR by itself, does not always

correlate well with perceived quality of the HVS [25, 28,

29]. PSNR can only be computed once the image is

received, which is not appropriate for real-time prediction

systems [29–31].

VQM provides a better indication of perceptual quality

than PSNR [32]. In general, VQM’s ability to loosely

classify a sequence as ‘very poor’ or ‘very good’ is accu-

rate, but it often fails to distinguish sequences that share

similar levels of degradation. The VQM evaluation results

vary from 0 to 5, where 0 is the best possible score.

Another well-known metric is called SSIM, which is based

on a frame-to-frame measurement of three components

(luminance, contrast, and structural similarity). The SSIM

index is a decimal value between 0 and 1, where 0 means

there is no correlation with the original image, and 1 means

it has exactly the same image. However, both VQM and

SSIM metrics cannot be used in real-time and perform

poorly compared to MOS.

A non-intrusive QoE parametric scheme, called PSQA,

has been used to predict the quality level of videos flows

[15]. The authors included a Random Neural Network

(RNN) model (together with its learning algorithms) to

assess the quality level of videos in real-time based on a set

of parameters, including frame type, frame rate, and packet

loss rate. The proposed solution was originally proposed to

improve the understanding of Quality of Service (QoS)

factors in multimedia engineering without an in-depth

understanding of actual user experience (lack of QoE

support).

To assess the QoE of Multiple Description Coding

(MDC) videos over multiple overlay paths, the proposal

[33] was compared to subjective (e.g., MOS), objective

(e.g., PSNR), and non-intrusive parametric approaches

(e.g., PSQA). MDC-PSQA extends PSQA, together with

QoE prediction, by also using the GoP length and the

percentage losses of the I, P, and B frames in a GoP.

However, it only considers one video (Foreman—no

motion and complexity variation), which makes the system

less accurate in assessing the quality level of videos with

different characteristics, such as those expected for the

Internet. Furthermore, visual quality metrics must be tested

on a wide variety of visual contents and distortion types

before meaningful conclusions can be drawn from their

performance.

As presented in [5], the impact of the video quality level

on HVS is highly influenced by the number of the edges

(spatial information—complexity level) in the individual

frames and by the type and direction of movement (tem-

poral information—motion level). However, in contrast to

MultiQoE, the PSQA mechanism and its extensions do not

consider a set of diverse videos (they use only one video)

with different levels of spatial temporal activities during

their training and prediction procedures which reduce the

system accuracy for measuring the quality level of (many)

Internet videos.

Another proposal investigates the dependence of video

quality on numbers, expressed as MOS for a given set of

QoS network parameters [34]. This work investigates the

impact of key frames on the quality perceived by users in

wireless systems. Unlike MultiQoE, it only considers one

video flow (and not videos with different motion and

complexity levels) and does not take the GoP length into

account, which is an important input in a QoE evaluation

system.

The solution proposed by Khan et al. [35] has classified

videos into groups representing different content types

(using a combination of temporal and spatial levels) and

extraction features, by means of cluster analysis. Based on

the content type, the video quality (in terms of MOS) was

predicted from the network parameters (e.g., packet error

rate) and application-level parameters (e.g., transmission

bit rate and frame rate) by using Principal Component

Analysis (PCA). In contrast to MultiQoE, the proposed

solution measures the video quality level by applying the

average PSNR to all the decoded frames which performs

poorly compared to MOS. Other extensions of this work [3,

36, 37] failed to provide satisfactory MOS results because

PSNR was still used to correlate the video’s characteristics

and network’s impairments into human scores.

Few works have analyzed the impact of the distribution

of videos with different motion and complexity levels over

wireless networks according to the human’s perception

(e.g., 38, 39). It is clear that the accuracy and performance

of a non-intrusive parametric QoE video quality estimator

is largely dependent on the video characteristics, including
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GoP length, frame type in a GoP, motion and complexity

vectors. A QoE video quality estimator also requires a good

mapping technique to correlate the video content features

and wireless network’s impairments in the human scores,

such as a cluster-based Artificial Neural Network (ANN)

approach [40].

ANN has the ability to learn complex data structures and

approximate a given continuous mapping. ANNs work fast

(after a training phase) even with large amounts of data

[41] and approximate a continuous mapping to any arbi-

trary degree of accuracy as expected for QoE-aware video

prediction schemes. This means that they are suited to

learning the salient characteristics of human perception

[41] during the video quality estimation process. Existing

image quality assessment schemes have demonstrated the

benefits and feasibility of ANN-based models in predicting

the quality level of images (not videos) [41–46].

Many existing works only use simple objective QoE

metric to validate their proposals or fail to take into

account the fact that videos have different levels of motion

and complexity. Another advantage of MultiQoE is the use

of a Multiple ANN (MANN) correlation approach to map

video’s characteristics, human’s perceptions, and net-

work’s impairments into a predicted MOS with results

close to human scores. MANN has been successfully used

for QoS/QoE assessment schemes [3, 47, 48] and yielded

better results than RNN and other techniques. MultiQoE

has a realistic assumption that not all packets are equal or

have the same degree of importance which are key

parameters to determine the extension of the video

impairment, as discussed in [5, 49] (see Sect. 3.5).

3 MultiQoE

MultiQoE is a modular and flexible in-service parametric

approach to predict the quality level of different video

sequences, where it can be configured with any wired or

wireless technologies with low complexity and high

accuracy. However, due to the popularity of WMNs, the

remainder of this article will present the use of MultiQoE

in a multimedia WMN environment.

An instance of MultiQoE can be obtained by following the

procedures defined in five main components. Each of them is

designed to complete single or multiple tasks for the mod-

eling of the quality evaluation model. The components of

MultiQoE are illustrated in Fig. 1 and are as follows:

(i) Source Video Database, (ii) Network Transmission; (iii)

Subjective Quality Assessment and Distorted Video Data-

base; (iv) Measurement Model of Factors Affecting Quality;

and (v) Correlation of Video Characteristics, Human Expe-

rience, and Network Impairments into MOS.

The Source Video Database (Component 1) classifies

typical Internet videos according to their spatial and

Fig. 1 MultiQoE components (see in annex as recommended by the journal)
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temporal characteristics. The video content characteristics

taken together with the percentage of losses of I, P, and

B frames of a certain GoP (to improve the system accuracy,

each ANN is responsible for videos with a specific GoP

length, such as 10, 20, or 30) are used by Component 4

(Measurement Model of Factors Affecting Quality) to

identify the video motion and complexity levels as well as

the impact of the transmission on the video frames. At the

same time, it is important to keep a distorted video data-

base composed of videos delivered (as expected to be

received/viewed by humans) in real/simulated networks

(such as WMNs).

The Component 2 (Network Transmission) is responsi-

ble for transmitting all videos in wireless networks (with

different congestion levels, errors, and impairments), get-

ting information on packet loss and delay of video frames.

The output of this component is important to create a

distorted video database, where the videos experienced

different network impairments, as well as measure the

percentage of losses of the I, P, and B frames in a GoP as

specified in Component 4. In the Component 3 (Subjective

Quality Assessment and Distorted Video Database), a

panel of humans evaluates all distorted videos (following

the ITU recommendations) to define/score their MOS.

Finally, Component 5 uses a MANN to correlate video’s

characteristics, human’ experience, and network’s impair-

ments into a predicted MOS.

3.1 Component 1: source video database

This component is responsible for maintaining videos with

different features in a video database using a content

classifier to classify the spatial and temporal characteristics

of the videos. Information about spatial (edges and colors)

and temporal (movement speed and direction) activity has

been widely recognized as a key metric that can be used as

input for VQA [50].

MultiQoE uses uncompressed sequences of natural

scenes that are available in [51] to set up a video source

database, containing video scenes of different characteris-

tics ranging from very small movements (e.g., a small

moving region of interest on a static background) to fast-

Fig. 2 Snapshots of the selected videos (see in annex as recommended by the journal)
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moving sports clips. All flows have realistic streaming

sequences, with different types (e.g., news and football

matches) and levels of complexity and motion, represent-

ing typical examples of content that are either distributed

by providers, created/shared by end-users, and made

available on the Internet.

Figure 2 shows one frame from each video used for this

instance of MultiQoE. The videos are commonly used by

many related works [52] and by the Video Quality Experts

Group (VQEG) in many QoE experiments. Other videos

with different resolution, durations, and characteristics can

be easily included in MultiQoE. For instance, Component 1

could be composed of real user-generated Youtube or

content-generator media videos. The network administrator

can configure MultiQoE in accordance with his/her video

features, network technologies, and business models.

For this proposal, MultiQoE uses 10 representative

MPEG-4 digital videos, in YUV 4:2:0 format with a

duration varying from 10 to 12 s to avoid the forgiveness

effect. Owing to a restricted bandwidth, the test sequences

only contain video flows and all of them were displayed in

a native resolution of 352 9 288 pixels and 25 frames per

second (fps).

The MPEG standard [53] defines three frame types for

the compressed video streams, namely I, P, and B frames.

The successive frames between two succeeding I frames

define a GoP. A GoP pattern is characterized by two

parameters as follows: GoP (N, M), where N is the I to

I frame distance and M is the I to P frame distance. The

encoding/decoding correlation between the frames, in

particular, the B and P frames, depends on the respective

preceding and succeeding I or P frames.

With a given video codec, the GoP structure and length

can be configured according to the test plans. For this use

case, the internal GoP structure was fixed by using two

B frames for each P frame, as is the case in typical video

streaming (IBBP pattern). Notice that there is no fixed

default value for the GoP length, but the typical minimum

and maximum values for resolution industrial video, such

as MPEG-2 videos, are between 10 and 20. Therefore, we

configured GoP lengths of 10, 20, and 30 in our

experiments.

MultiQoE uses a content classifier as a function to

classify the spatial and temporal characteristics of the

videos as presented in Table 1. It is important to extract the

Discrete Cosine Transform (DCT) coefficients and the

Motion Vector (MV) sizes of the videos [54] without

decoding the video payload. The content classifier carries

out an evaluation of content-aware quality, which differ-

entiates between the influence of video content character-

istics and the perception of video quality. For instance, the

Table 1 DCT coefficients and MV of the selected videos

Video I Frames P Frames B Frames

DCT coefficients DCT coefficients MV DCT coefficients MV

Akiyo 80,104 9,213 488.5 1,340 308.1

Container 80,977 8,627 759.7 1,598 452.1

Hall 73,084 8,512 716.8 2,071 386.7

Mother 67,100 8,287 1,131.6 988 703.4

News 70,802 9,792 893.7 1,894 683

Silent 76,399 8,429 1,055.7 1,364 911.2

Mobile 88,911 22,310 1,473.2 7,583 971.1

Flower 82,163 24,479 1,374.2 7,325 998.9

Coastguard 39,682 26,302 1,969.8 8,600 3,091.8

Football 42,394 14,213 1,743.7 2,820 877.9

Fig. 3 Tree diagram based on a cluster analysis (see in annex as

recommended by the journal)
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video called Mobile has the largest DCT coefficients, and

thus, the highest spatial complexity, while the video

Football has the largest motion vector and the highest

temporal activity.

MultiQoE uses a hierarchical clustering system based on

nearest-neighbor Euclidean distance to classify the video

content with similar spatial and temporal levels (i.e.,

according to the DCT and MV sizes). Figure 3 illustrates

the cluster/multilevel hierarchy that was obtained after all

the video transmissions, and shows how the videos were

grouped in levels of proximity based on the DCT coeffi-

cient and the MV sizes. In accordance with the linkage

distance, each video in the hierarchical tree is linked to the

video or group that is most similar to it. MultiQoE uses

three of the largest linkage distances to determine the

cluster divisions in the data set (indicated by the red line in

Fig. 3) and produce three clusters with high values of

content similarity.

In this article, the videos were divided into three groups

with the number of clusters being adjusted to different

scenarios or application requirements. The number of

clusters is specified so that a balance can be maintained

between the effectiveness and complexity of the modeling

process. The name of the clusters gives an indication of the

aspects of the content in the videos that are most prevalent;

however, an exhaustive classification is beyond the scope

of this article. Furthermore, the number of clusters created

can vary in accordance with the objectives of the system.

On the basis of what is shown in Fig. 3, and an analysis

of the DCT coefficients and MV sizes, it is possible to

classify the three clusters (see Table 2) as Low Spatial

Temporal (LST), High Spatial Medium Temporal (HSMT),

and Medium Spatial High Temporal (MSHT). Videos with

small regions of interest and a static background compose

the LST cluster. The HSMT cluster has videos where the

camera is in constant motion and the scenes provide much

more visual information. Finally, the MSHT cluster con-

tains videos with fast camera or background motions and

has scenes with an average amount of visual information.

3.2 Component 2: network transmission

The Component 2 generates congestions/errors/impair-

ments in multimedia networking environments, by using a

network simulator (could be a testbed or network emula-

tor). Thus, it will be possible to understand and model the

relationship between network’s impairments and user

experience on the delivered/received video flows. The

Component 3 uses the output of this component to maintain

a database with videos transmitted over wireless links with

different congestion rates and errors, as expected in real

systems. Each received video is linked to a table with

information about the losses of its I, P, and B frames.

To validate Component 2, WMN scenarios were simu-

lated on the basis of the topology of a real testbed located

at the Federal University of Para (UFPA) WMN backbone,

in Amazon/Brazil, as shown in Fig. 4.

UFPA has dozen buildings distributed on its main

campus. The physical characteristics of the campus, such

as the number of trees and riverside setting, added to the

fact that city of Belem/Amazon area experiences the high

atmospheric humidity and frequent and often intense

rainfall, make it a more challenging scenario than some of

those described in the literature [55] for studying mesh

networks. To represent a real scenario, a wireless device

that was placed at random in the network simulation set up

and received real videos transmissions from one source.

Table 2 Characteristics and classification of the clusters

Video Video features Cluster type

Akiyo, container,

hall, mother, news

and silent

Small moving region of

interest on a static

background

Low spatial

temporal

(LST)

Mobile and flower Contiguous camera and

motion; scenes with

many small details

High spatial

medium

temporal

(HSMT)

Coastguard and

football

Fast camera motion or a

rapidly shifting

background

Medium spatial

high temporal

(MSHT)

Fig. 4 UFPA mesh backbone (see in annex as recommended by the

journal)
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Each video streaming transmission starts by following a

Poisson distribution.

The Gilbert-Elliot model, based on a two-state Markov

chain, was used to generate loss in the WMN scenarios.

Although important, the focus of the article is not on the

transmission channel model. Congestion levels of up to

95 % were applied in the network (as shown in Fig. 5),

where most of the videos experienced a network loss of up

to 10 %, while a few had a loss of more than 50 %.

Moreover, 900 experiments were carried out in the above

scenarios to investigate the impact of different network’s

impairments on the quality level of different videos. Thus,

it is possible to have a large and heterogeneous distorted

video database, with videos transmitted over wireless links

with different rates of congestion and errors.

It is well known that the loss propagation, as well as the

impact on the user’s experience caused by a packet drop-

ped/error depend on the type of the frame in which the loss

occurs, and on the GoP structure (as explained in Sect. 3.1).

If an I or P frame is affect by loss, the loss propagates until

the next I frame. If a B frame is affected, the loss does not

propagate, except if it serves as a reference-point in the

context of hierarchical coding [27, 56]. Thus, MultiQoE

uses the percentage of losses of the I, P, and B frames, the

GoP structure, and video content characteristics as input for

the video quality estimator.

3.3 Component 3: subjective quality assessment

and distorted video database

Upon generating a video distorted database, an evaluation

scheme had been carefully implemented to assess the

quality level of the videos by conducting subjective

experiments. The experiments were carried out by asking a

panel of observers to classify the quality level of distorted

videos by means of the test method laid down by the rel-

evant ITU recommendations [57]. There are several rec-

ommendations [16–18] that stipulate strict conditions that

have to be complied with to carry out subjective tests.

For the subjective test evaluation, MultiQoE uses the

Single Stimulus (SS) method of ITU-R BT.500 [16] and a

sample of 55 observers to collect the MOS results. They

had normal vision and their ages ranged from 18 to 45. In

the SS studies, the videos are only shown to the observers

one at a time. MultiQoE uses a SS paradigm because it is

ideally suited to a large number of video experiments [58].

Additionally, it significantly reduces the amount of time

needed to conduct the study (given that there is a fixed

number of subjects), compared to a Double Stimulus (DS)

study [17].

Within a voting time of up to 5 s, observers assess the

video quality level by selecting a score in the range of 1–5

which is combined with the quality scale (Bad; Poor; Fair;

Good and Excellent). The study comprised a set of

sequences shown in random order for each observer, as

well as for each session. The Absolute Category Rating

(ACR) method collects the opinions of the observers [16],

because it provides a better replication of the streaming

scenario in the real world [58] and is suitable for large-

scale experiments that involve a large number of video

flows.

For each video in the database, the mean score, �ujkr, was

calculated by:

�ujkr ¼
1

N

XN

i¼1

uijkr

where uijkr: score of observer i for test condition j, video

sequence, k, repetition r. N: number of observers.

In the next stage, all the mean scores obtained are

combined with a confidence interval, which is derived from

the standard deviation and the size of each video. Multi-

QoE uses a 95 % confidence interval which is given by

�ujkr � djkr; �ujkr � dijkr;
� �

where

djkr;¼ 1; 96
Sjkrffiffiffiffi

N
p

The standard deviation for each video, Sjkr, is given by

Sjkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

�ujkr � ujkr

ðN � 1Þ

r

After calculating all the scores, the video database is

prepared to program (be an input) the MANN. Figure 6

shows a histogram that displays the obtained MOS scores.

The score 3 (fair) is the value that is most often selected by

the evaluators (35.79 %), while the grade 2 (poor),

30.21 %, and 4 (good), 16.53 % are the second choice and

Fig. 5 Percentage of losses for each network interval (see in annex as

recommended by the journal)
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third choice respectively. Finally, 15.16 % of the observers

said that the video is bad and 2.32 % excellent,

respectively.

Observers consistently reacted strongly to high levels of

loss and tended to avoid extreme scores (such as 5) for any

video (the typical score is 3, fair), even if there was very

little or no distortion compared to that of the original video

[59]. However, the observers did not hesitate to rate a video

extremely poor (score of 1) if the video was seriously

impaired or the artifacts on the screen were barely visible.

The information given here is important because it explains

some of the results found in MultiQoE, where the subjects

tend to evaluate the quality level of videos as fair.

Video QoE involves both application and user-oriented

assessments. The viewer’s individual interests, quality

expectation, and service experience, are among the con-

tributing factors to the perceived quality [25]. In general,

human experience greater feelings of intensity in adverse

situations than those that please them. In other words,

observers are quick to criticize and slow to forgive. MOS

takes less time to fall when distortions appear than to rise

when distortions disappear [43]. Subjective quality

depends significantly on where the lost packets are located

and the nature of the related video content [28]. Since

perception tests are time-consuming, costly, and unable to

allow the quality to be assessed during real-time service

operations, instrumental assessment methods are often

preferred [27].

The test platform is a Desktop PC with Intel Core i5,

4 GB RAM, and a 2100 LCD monitor. The videos were

played in the center of the monitor against a neutral gray

background. A software was used to show the video

sequences and collect the user scores. The distance from

the eyes of the participants to the monitor was set at five

times the height of the video sequence, as recommended by

ITU. The seats were also adjusted so that the eyes of the

participants were more likely to be at the same horizontal

and vertical level as the center of the monitor.

The information available into the distorted video

database (Component 3) will be used by Component 5

(MANN) to correlate the impact of network’s impairments

(informed by Component 4) on different video sequences

from the HVS point-of-view.

3.4 Component 4: measurement model of factors

affecting quality

MultiQoE uses the percentage of losses of the I, P, and

B frames, the GoP structure, and video content features as

input for the video quality estimator (Component 5—

MANN). During the transmission of MPEG-4 videos, the

dropping of packets (e.g., collisions, fading, or buffer

overflow) carrying I, P, or B frames has a different visual

impact on the delivered video. First of all, if the network

discards one IP packet that contains the content of an

I frame, the resulting distortions will be spread to all the

dependent frames within the same GoP [60]. Second, if the

content of the dropped packet belongs to a P frame, the

impairments will spread to the remainder of the GoP.

Third, if the dropped packet belongs to a B frame, the

damage will only affect this frame. MultiQoE can be easily

configured to estimate the quality level of videos encoded

with different codecs and not only MPEG, where the sys-

tem must be adapted to GoP structure and frame depen-

dency of the codec.

Depending on the levels of spatial and temporal activi-

ties carried out in the video sequence, a GoP is composed

of video frames with different sizes. For instance, video

sequences with larger I frames (e.g., videos with high

spatial complexity, such as Mobile video, like those dis-

played in Table 1) will be split up into several IP packets/

frames to be transmitted over the network. Hence, the

packet dropping probability of an I frame increases and has

a different impact on the user’s perception. The same

process occurs in P and B frames for videos with high

temporal complexity (e.g., the Football video). The GoP

length has a strong influence in the composition of the

MPEG flow as shown in Fig. 7. In the case of the GoP 10,

the videos Akiyo, Coastguard, Hall, Mother, News, and

Silent are mostly composed of I packets. The proportion of

P and B frames dramatically increases when the GoP

length is increased to 20 and 30. Owing to the difference in

the visual impact of the I, P, and B frames, the increase of

GoP length affects the degree of influence that the network

impairments have on video perception.

Figure 8 demonstrates the PCC correlation between the

selected parameters and MOS for the LST, MSHT, and

HSMT clusters. In the case of the LST cluster, the highest

correlation obtained is between MOS and the loss of an

I frame (68.0 %). Thus, the results show that for videos

with low levels of spatial and temporal complexity, the

I frame has a higher impact on the user’s perception.

Figure 8 also reveals that the LST cluster has a high

Fig. 6 Histogram of the obtained MOS (see in annex as recom-

mended by the journal)
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correlation between MOS and the selected parameters.

Similarly in the case of the LST cluster, the HSMT cluster

has a high level of correlation between MOS and the video/

networks characteristics. On average, the MSHT cluster

obtained a correlation of 68.82 %.

Figure 8 also demonstrates that the correlation values

for the MSHT cluster are lower than HSMT and LST. This

result can be explained by the fact that the MSHT cluster is

composed of videos (Coastguard and Football) with the

highest level of temporal activities. This leads to a higher

number of P and B packets while the number of I packets

remains the same. Hence, in terms of traffic composition,

the MSHT cluster has a lower proportion of I packets for

all the GoP lengths (see Fig. 7). This reduces the impact of

the packets with an I frame that have to be dropped (as

shown in Fig. 8). The results also show that observers tend

to be more rigorous in their assessment of videos with a

high level of spatial and temporal complexity.

3.5 Component 5: correlation of video characteristics,

human experience, and network impairments

into a predicted MOS

Component 5 is responsible for achieving a predicted/final

MOS score by using a MANN to correlate video’s charac-

teristics, human’s experience, and network’s impairments into

MOS. MultiQoE performs well even with video flows not

presented in the source video database. This is possible

because MANN identifies patterns of video sequences (which

can be different from the training flows) and provides an

accurate prediction model in such scenarios. MultiQoE has

been tested and validated as a dynamic and content-aware

quality predictor to estimate the video quality of several types

of video sequence in realistic WMNs, without any interaction

with real viewers and with low complexity/processing.

MANNs have been used in many research areas to

address problems that include function approximation,

classification, and feature extraction, and allow complex

tasks to be broken down into smaller and specialized tasks

[61–63]. Each ANN is trained to become a specialist to

carry out a specific task of the prediction system (e.g., for

videos with a specific GoP length). Hence, it is possible to

explore the advantages offered by MANNs in tackling

problems that could not be solved with a single ANN.

Moreover, the MANNs have a greater capacity for gener-

alization, high performance, and providing an accurate

prediction model.

There are many parameters that affect video quality

level and their combined effect is unclear, but their rela-

tionships are thought to be non-linear [3]. ANNs can be

used to learn this non-linear relationship that mimics the

human perception of video quality. Thus, it is possible for

ANNs to predict a pattern of sequences that they have been

trained to deal with. The real challenge is to predict

sequences that were not followed by the network in its

training. With this goal in mind, the part of the videos that

will be used for training should have the capacity to sup-

port the network with enough power to extrapolate patterns

that may exist in other sequences [3], as demonstrated in

MultiQoE results.

Our analytical studies found that the GoP length has a

strong influence on the prediction of video quality, as

illustrated in Fig. 7. In this context, the GoP length was

selected as a key parameter and was divided into three

specialized ANNs. Each ANN was programmed with a

specific sub-database comprising GoP lengths of 10, 20,

Fig. 7 The influence of the GoP length on the video stream composition (see in annex)

Fig. 8 The input correlation obtained with MOS (see in annex as

recommended by the journal)
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and 30, to obtain better results. The reason for this is that

each ANN is responsible for mapping the quality level of

videos with a specific GoP length. Thus, each ANN has

outputs designed for a particular GoP length and in the case

of lengths between 10, 20, or 30, the final QoE estimate is

calculated by one ANN.

An optimal linear combination of a weighted sum was

constructed to yield a final result from the three outputs,

because this method achieves a higher degree of accuracy

than the single trained network. Another advantage is the

adjustment for optimal weights during the tests and the

training phases. The MANNfinal (generates a MOS as close

as possible to human scores) output is performed by:

MANNfinal ¼
Xp

j¼1

ajyj

where j is the number of ANNs. a is 0 or 1. y: is the ANN

output. ajyj: is the output-product of the j-th ANN. p: is the

number of ANNs composing the MANN. When the GoP

length of the incoming flow matches with a particular ANN

GoP length, its weight is 1 and the weights of the other

ANN GoPs are 0.

3.6 Implementation: use case in MPEG and SDN/

OpenFlow systems

MultiQoE uses information about the video’s characteris-

tics, network’s impairments, human’s experience, and a

MANN to predict the video MOS. MultiQoE collects the

video characteristics and network impairments by using a

deep packet inspector module. Video coding standards

(e.g., MPEG) specify the bitstream format and the decod-

ing process in a video sequence. Each flow starts with a

sequence header, followed by a GoP header, and then by

one or more coded frames. Each IP packet contains one or

more video frames.

The deep packet inspector examines the MPEG bits-

treaming and verifies which frame was lost in a GoP,

without decoding the video payload. The packet inspector

also collects information about the frame type and intra-

frame dependency, which are described in the video

sequence and GoP headers. MultiQoE uses a correlation

between DCT coefficients, MV, and frame size to define

the level of spatial and temporal video’s characteristics. To

reduce the computational cost of deep packet inspection

schemes, it is expected that in a near future the video codec

will provide additional information on the encoded flows

by using a video descriptor scheme (e.g., as proposed in the

recent MPEG DASH standard, named Media Presentation

Description (MPD)) to allow cross-layer multimedia net-

working solutions to improve the usage of network

resources and the user perception.

For the MANN training phase, MultiQoE collects the

experience of real subjects (e.g., MOS) by using an off-line

approach, where it asks a panel of viewers to grade the

quality level of distorted videos. Since the MultiQoE

MANN is trained with a set of video’s sequences, net-

work’s impairments, and MOS before its use, it will only

use information about the frame type and the percentage of

losses of I, P, and B frames of a GoP during its in-service

video estimator procedures, which aims to reduce the

processing time. MultiQoE can introduce an extra delay to

predict the video quality level with high accuracy, but

advanced filter, classification, and optimization techniques,

as well as cloud computing techniques can be used to

improve the system performance.

A simple example of the implementation of MultiQoE in

real scenarios is described as follows. MultiQoE agents can

be configured in network devices (e.g., together with rou-

ters or access points) to estimate the quality of video

streams even when they have different encoding patterns,

genres, content types, and packet loss rates. In our future

work, with the help of Software Defined Networks (SDN),

such as OpenFlow, MultiQoE will be installed in SDN/

OpenFlow environments and orchestrate all of its control

modules/components in production systems. For instance,

MultiQoE can be placed as an external application module

and interacts with the OpenFlow controller in a network, by

using JavaScript Object Notation (JSON) or another

OpenFlow Application Programming Interface (API).

The OpenFlow protocol can capture information about

all video flows from the OpenFlow switches/routers in a

network and pass them to the MultiQoE application via an

OpenFlow controller, including information about packet

loss and frame type as proposed in a previous work [64].

Following the OpenFlow architecture, when a Packet_in

from a video packet is received by the controller, it sends

flowmod commands to the switches instructing them to

send the video packets to its destination and, at the same

time, a copy of the packets are forwarded to the MultiQoE

application. The packet inspector scheme connected to

OpenFlow switches/routers (or even linked to the controller

as proposed in [65] ) examines the packet header/MPEG bit

streaming and gets information about frame type and size.

Upon receiving all networking statistics from the Open-

Flow controller and (video) packet/header information

from the packet inspector, MultiQoE is able to trigger its

QoE video quality prediction system and provides a pre-

dicted MOS for each flow.

MultiQoE does not need the original video sequence to

estimate the video quality level, which reduces the com-

putational complexity and, at the same time, opens up the

possibilities of the video quality prediction deployment. To

improve the MultiQoE performance, the system is trained

with a large set of video sequences and network

Wireless Netw (2014) 20:1759–1776 1769

123



impairments before its use as recommended in [66]. When

MultiQoE is triggered, it starts its prediction procedures

without any interaction with real viewers, but with high

accuracy as presented in Sect. 4.

4 Performance evaluation

This section demonstrates the benefits of MultiQoE in a

practical environment. This was achieved by employing a

use case in an IEEE 802.11-based WMN system, which

was implemented together with MultiQoE, to measure the

quality level of real video sequences distributed in WMNs.

The efficiency of MultiQoE is compared to widely-used

QoE metrics such as PSNR, VQM and SSIM, as well as,

PSQA and MOS collected from real observers. Our results

also rely on two key estimation methods, namely Pearson

Correlation Coefficient (PCC) [67] and Mean Squared

Error (MSE) [31] as recommended by the VQEG [68, 69].

The simulated scenario uses the topology and charac-

teristics of the WMN backbone installed at the UFPA

campus in the Amazon/Brazil. The setting consists of

several buildings interspersed with parking areas and

woodland. The topology is composed of 6 mesh routers, 2

of which are gateways, as depicted in Fig. 4. In addition, a

mesh client was positioned to receive the video streaming

from either Gateway 1 (G1) or Gateway 2 (G2). The client

experienced different packet loss rates because during the

tests the user location and wireless resource conditions/

impairments were changed at random (up to 90 % of net-

work congestion—see Fig. 5). Ten widely used Internet-

based videos were chosen with different patterns and

characteristics (duration, content types, and GoP length) as

explained in Sect. 3.1.

The experiments were carried out by using Network

Simulator 2.34 [70], Evalvid Tool [71], MSU Video

Quality Measurement Tool [72], and the MANN was built

with the aid of Matlab. The distorted video database was

split into two subsets: one for training and another one for

testing the generalization performance of the trained sys-

tem. With this procedure, it is possible to make sure that

the set of videos of the training set and test set come from

disjoint video sequences with quite different video content.

Each selected video was simulated 90 times (by varying the

network packet loss rate and GoP lengths—10, 20, and 30)

to provide a large video database and this resulted in a total

of 900 videos.1 810 and 90 videos were randomly selected

from this database for the training and test databases,

respectively. Table 3 outlines other parameters used in the

experiments.

While conducting the subjective evaluation tests, we

followed the ITU-T MOS recommendations (with 55

observers) to obtain accurate results. The observers included

undergraduates, post-graduate students, and university staff.

The test platform is the same as that described in Sect. 3.4.

Figure 9a shows the results obtained when the WMN is

configured with MultiQoE. It can be observed that Multi-

QoE and MOS achieve similar scores, while PSQA does

not correlate well with MOS (Fig. 9b). The PSQA values

produce scores not close to the MOS line because the

parameters used as input (losses in I, P, and B frames and

Table 3 Simulation parameters configured in the simulator

Parameter Value

Frequency 2.4 GHz

IEEE model IEEE 802.11 g

Anttena type Omnidirectional

Anttena gain 12 dB

Anttena height 8 m

Video frame rate 25 frames/s

Packet loss model Gilbert-Elliot

Shadowing deviation 4.4

Fig. 9 MultiQoE versus PSQA versus MOS. a MultiQoE versus

MOS, b PSQA versus MOS (see in annex)

1 All videos used in the experiments are available in https://www.

youtube.com/channel/UCTp9d3EYjoERYbM5pMfImog.
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GoP length) and the correlation model based on a RNN, are

not enough to predict the quality level of the videos

accurately. Moreover, in contrast to PSQA, MultiQoE

improves the procedures for estimating video quality by

using the GoP length combined with a specific ANN (and

the spatial/temporal (clustered) activities of the videos) as

input for its correlation component. The results reveal that

videos with varying content features have a different

impact on the user’s perception even when the wireless

channel conditions are similar.

Figure 10a–c show the results of PSNR, SSIM, and

VQM, respectively, when compared with MOS. It is evi-

dent that there is a poor correlation between the objective

metrics and MOS scores and that this does not reflect the

user’s perception.

Further results show the benefits of MultiQoE in pre-

dicting the quality level of videos, by measuring the MSE

values of both MultiQoE and PSQA for each type of cluster

and GoP length (as shown in Fig. 11a, b). This analysis is

important since it reveals the performance of QoE esti-

mation methods for video clusters in scenarios with dif-

ferent congestion levels and packet loss rates. It is worth

noting that Fig. 11a shows that MultiQoE has the lowest

error, with only 1.08 9 10-3, for the LST cluster, while

PSQA has 4.18 9 10-3. It should also be pointed out that

Fig. 10 Video quality level vs. MOS. a PSNR versus MOS, b SSIM

versus MOS, c VQM versus MOS

Fig. 11 MSE for different clusters and GoP length. a MSE for each

cluster, b MSE for each GoP length
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MultiQoE has the best performance for clusters HSMT and

MSHT with 1.88 9 10-3 and 2.31 9 10-3 compared with

PSQA (5.19 9 10-3 and 6.98 9 10-3), respectively. Dis-

tortions in foreground areas, such as human faces in high

motion and complexity videos, caused lower subjective

ratings, while similar artifacts in the background went

unnoticed for videos with low motion and complexity

levels.

Figure 11b illustrates the performance of the MultiQoE

and PSQA for all GoP lengths. In the case of GoP 10, the

MSE results for MultiQoE and PSQA are 1.55 9 10-3 and

8.91 9 10-3, respectively. For GoP 20, MultiQoE presents

a MSE of 3.09 9 10-3, while PSQA only 3.77 9 10-3.

Finally, for videos encoded with GoP 30, the MultiQoE

MSE is only 0.081 9 10-3, while PSQA is 1.09 9 10-3.

For GoP 30, PSQA shows a better performance than

PSQA, because the drop of I frames had a great impact on

the video quality level. According to the MSE results, on

average, MultiQoE improves the accuracy of the system by

32.22 % when compared with PSQA.

Figure 12 illustrates the PCC values for MultiQoE,

PSQA, PSNR, SSIM, and VQM, where 1 indicates a per-

fect match between the predicted measurements and the

subjective ratings and 0 indicates no correlation. The PCC

coefficient obtained by MultiQoE is 0.922 (an improve-

ment of 7 % compared with PSQA). When the system is

configured to analyze the quality level of videos based only

on PSNR, SSIM, and VQM, the PCC values are 0.132,

0.331, and 0.376, respectively (Fig. 12). The results con-

firm that the objective metrics achieved are poor compared

with MOS, PSQA, and MultiQoE.

It can be observed that MultiQoE causes a low number

of errors with subjective ratings for a variety of videos

ranging from low activity such as Akiyo and News to high

activity sequences, such as Football and Coastguard.

MultiQoE also produces good results for video sequences

that combine both low-activity and high-activity scenes,

such as Silent and Flower. This is because MultiQoE uses

the GoP length and the spatial/temporal (clustered) activ-

ities of the videos as input for its correlation component.

After exploring the impact of all MultiQoE components

in multimedia wireless systems, we highlight the accuracy

of the video quality estimator in assessing the quality level

of real-time video sequences not (previously) included in

the video database. New experiments were carried out in

the same simulation scenarios (congestion levels and

number of repetitions—95 % confidence interval), where

one new MPEG4 video called Grandma was used in the

simulations.

On average, the PCC result obtained by MultiQoE is

0.892 for the Grandma flow. When the system is config-

ured to analyze the quality level of videos based only on

PSNR, SSIM, VQM, and PSQA, the PCC values are 0.124,

0.348, 0.416 and 0.821, respectively. The results confirm

that objective metrics perform poorly compared with those

of MOS, PSQA, and MultiQoE. When Grandma is inclu-

ded in the source database and trained off-line, the PCC

result is of 0.928. This is possible because, in addition to

the benefits of MANN in identifying patterns of video

sequences, which they were trained to deal with (as hap-

pened with Mother and Flower), and providing an accurate

prediction model, MultiQoE uses a set of feed-forward

back-propagation networks that are supplied with sub-

jective MOS scores. These parameters enable MultiQoE to

measure the quality level of videos even when they have

different encoding patterns, content types, and network

impairments/errors/congestions.

5 Conclusion

The evolution of wireless access technologies, services,

and protocols has created a plethora of new human-centric

environments featuring an ever-increasing amount of

wireless devices and multimedia content. QoE assessment

and control solutions allow network providers to keep and

attract new customers, while optimizing network resource

and enlarging their portfolios. Therefore, parametric in-

service QoE assessment models are needed to ensure the

success of multimedia wireless networks and have

attracted a lot of attention from both academia and

industry. MultiQoE provides a modular and non-intrusive

video quality estimator implemented over wireless mesh

systems that can be easily adapted to networks with dif-

ferent underlying technologies. MultiQoE works without

the need for any decoding which saves time and reduces

processing.

Fig. 12 Pearson correlation for whole proposal (see in annex as

recommended by the journal)
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Our experiments investigated the relationship between

video’s characteristics, human’s experience, network’s

impairments, and predicted MOS scores. On average, the

results show that MultiQoE has a high correlation with

MOS (0.922) and a low MSE 1.75 9 10-3, while PSQA

produced 5.45 9 10-3. The benefits of MultiQoE have also

been highlighted when compared with PSNR, VQM, and

SSIM. MultiQoE can be used together with optimization

and management schemes to improve the usage of network

resources, as well as system performance in key network-

ing areas, such as pricing, routing, or mobility.

In future works, large-scale experiments will be conducted

to investigate the impact of the proposed solution in networks

with many users and a large set of video flows. Thus, it will be

possible to analyze the MultiQoE computation cost to predict

the quality level of user and content-generated video

sequences over wireless networks with different channel

modules and errors. An OpenFlow prototype with Cloud

Computing support is being developed to evaluate the benefit

of MultiQoE in production multimedia networks.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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