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Abstract

In oceanography, there is interest in determining storm season changes for logistical rea-

sons such as equipment maintenance scheduling. In particular, there is interest in capturing

the uncertainty associated with these changes in terms of the number and location of them.

Such changes are associated with autocovariance changes. This paper proposes a frame-

work to quantify the uncertainty of autocovariance changepoints in time series motivated

by this oceanographic application. More specifically, the framework considers time series

under the Locally Stationary Wavelet framework, deriving a joint density for scale processes

in the raw wavelet periodogram. By embedding this density within a Hidden Markov Model

framework, we consider changepoint characteristics under this multiscale setting. Such a

methodology allows us to model changepoints and their uncertainty for a wide range of

models, including piecewise second-order stationary processes, for example piecewise Mov-

ing Average processes.

Keywords: Changepoints; Hidden Markov Models; Locally Stationary Wavelet pro-

cesses; Oceanography; Sequential Monte Carlo.
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1 Introduction

In oceanography, historic wave height data is often used to determine storm season changes.

Identifying such changes in season provides a better understanding of the data for oceanogra-

phers which may help them in planning future maintenance work of equipment such as offshore

oil rigs. Changes in autocovariance structure are associated with these storm season changes

and thus variance (Killick et al., 2009) and autocovariance changepoint methods (Killick et al.,

2013) are employed in determining these changes. However, there is often uncertainty and

ambiguity associated with these changes, such as their number and location, which traditional

changepoint methods often fail to capture. This paper thus proposes a methodology in which

changes in autocovariance structure are considered and the uncertainty associated with such

changes is captured explicitly.

Work in changepoint detection and estimation has focused on detecting changes in mean,

trend (regression), variance, and combinations thereof; see Chen and Gupta (2000) and Eckley

et al. (2011) for overviews. However, changes in autocovariance can also occur, although there

is comparatively little changepoint literature dedicated to such changes. In addition, different

changepoint methods often provide different changepoint estimates, for example the number

and location of changepoints, and many fail to capture explicitly the uncertainty of these esti-

mates. As Nam et al. (2012b) argue, there is consequently a need to assess the plausibility of

estimates provided by different changepoint methods in general. Quantifying the uncertainty

of changepoints provides one method of doing so for this autocovariance setting.

Methods for detecting and estimating changes in autocovariance have recently been pro-

posed. Davis et al. (2006) propose the Automatic Piecewise Autoregressive Modelling (Au-

toPARM) procedure which models observed time series as piecewise AR processes with varying

orders and AR coefficients. Changepoints are identified via optimisation of the minimum de-

scription length criteria which provides the best segmentation configuration. However the as-

sumption of piecewise AR processes is a strong assumption and may not always be appropriate.

Uncertainty is implicitly captured via asymptotic arguments in obtaining consistent estimates

of the changepoint locations, conditional on the number of changepoints being known, and thus

not reported explicitly.

Cho and Fryzlewicz (2012) consider identifying changepoints in periodograms of the time
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series. Periodograms describe the autocovariance structure of a time series in the frequency

domain. Specifically, Cho and Fryzlewicz (2012) consider modelling time series under the Lo-

cally Stationary Wavelet (LSW) framework. Under this framework, the Evolutionary Wavelet

Spectrum (EWS) describes the autocovariance structure of a time series at different scales (fre-

quency bands) and locations. Autocovariance changepoints in the time series thus correspond

to changes in the scale processes of the EWS and vice versa. Changepoint analysis now focuses

on identifying changepoints in these scale processes. Cho and Fryzlewicz (2012) (CF) analyse

each scale process independently for changepoints via a non-parametric test statistic, and then

combine changepoint results from each scale to obtain a single set of results for the observed

time series. The non-parametric test statistic places less restriction on the time series considered

although several tuning parameters are required under this approach and so care is required.

In general, the wavelet-domain and the LSW framework potentially allow new types of models

and data to be considered which are not feasible in the time-domain. This includes moving

average processes.

Figure 1 illustrates the phenomenon of obtaining different changepoint results when the

aforementioned changepoint methods are applied to the wave height data. This paper conse-

quently attempts to address this discrepancy in changepoint results by providing a methodology

which explicitly yields the uncertainty of any autocovariance (second-order) changes provided.

If uncertainty regarding changepoints is given, then it is possible to decide as to whether a

time point that is deemed a changepoint is almost certain to be so, or whether a changepoint

is likely to have occurred within an interval, but the exact location within the interval is much

less certain.

[Figure 1 about here.]

Building upon the existing wavelet-based approach of Cho and Fryzlewicz (2012), we model

the time series as a LSW process and perform our analysis using the wavelet periodogram, an

estimate of the EWS. We derive a joint density for scale processes of the raw wavelet periodogram

which can be embedded into a Hidden Markov Model (HMM) framework, a popular framework

to model non-linear and non-stationary time series. This HMM framework allows a variety of

existing changepoint methods to potentially be applied (for example changes in state in the

Viterbi sequence (Viterbi, 1967)), with our focus being that of quantifying the uncertainty of
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changepoints as proposed in Nam et al. (2012b).

Time-domain HMMs are currently unable to model some time series with changing autoco-

variance structures without some approximation taking place. This includes piecewise moving

average processes. Our work thus proposes a wavelet based HMM framework such that time

series exhibiting piecewise autocovariance structures can be considered more actively. As such,

this framework allows us to quantify explicitly the uncertainty of second-order structure change-

points, an aspect which is not considered in existing changepoint methods.

The structure of this paper is as follows: Section 2 reviews the statistical background that the

proposed methodology is built upon. Section 3 explains the proposed framework and modelling

approach. Section 4 applies the proposed framework to a variety of simulated data and the

oceanographic data as presented in Figure 1. Section 5 concludes the paper.

2 Statistical Background

Let y1, . . . , yn denote a potential non-stationary time series, observed at equally spaced discrete

time points. We assume that the non-stationarity arises due to a varying second-order structure

such that for any lag v ≥ 0, there exists a τ such that

Cov(Y1, Yv) = . . . = Cov(Yτ−1, Yτ−v) 6= Cov(Yτ , Yτ−v+1) = . . . = Cov(Yn−v+1, Yn),

and that the mean remains constant. In situations where the mean is not constant, pre-

processing of the data can be performed. We refer to τ as a changepoint. Changes in second-

order structure can be constructed easily; for example by a piecewise autoregressive moving

average (ARMA) process.

One approach in modelling time series exhibiting non-stationarity such as changes in mean

and variance is via Hidden Markov Models (HMMs). For overviews of HMMs, we refer the

reader to MacDonald and Zucchini (1997) and Cappé et al. (2005). The use of HMMs pro-

vides a sophisticated modelling framework for a variety of problems and applications including

changepoint analysis (for example Chib (1998), Aston et al. (2011)) and thus forms one of the

many building blocks in our proposed methodology. Within a HMM framework, we have the

observation process {Yt}t≥1 which is dependent on an underlying latent finite state Markov

chain (MC), {Xt}t≥0 ∈ ΩX with |ΩX | < ∞. The states of the underlying MC can repre-
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sent different data generating mechanisms, for example, “stormy” and “non-stormy” seasons

in the oceanographic application we are interested in. Under the HMM framework, the obser-

vations, Y1:n ≡ (Y1, . . . , Yn) are conditionally independent given the underlying state sequence

X0:n ≡ (X0, . . . , Xn).

However as Frühwirth-Schantter (2005) observes, a time-domain based HMM framework is

not suitable for directly modelling time series data arising from piecewise ARMA models as

the entire underlying state sequence needs to be recorded for inference. In order to apply the

desired HMM framework for such data, an alternative approach is required. In this paper,

we investigate the potential of transforming the problem to an alternative domain, namely the

wavelet domain.

2.1 Locally Stationary Wavelet Processes

Wavelets are compactly supported oscillating functions which permit a time series or func-

tion to be equivalently represented at different scales (frequency bands) and locations. We

refer interested readers to Vidakovic (1999), Percival and Walden (2007) and Nason (2008) for

comprehensive overviews of wavelets in statistics and time series analysis. Due to the time

localisation properties of wavelets, they are a natural method to use when considering change-

points and discontinuities in time series. Hence, in recent years, they have been used to detect

changes in means (Wang, 1995), changes in variance (Whitcher et al., 2000) and changes in

autocorrelation structure (Choi et al., 2008).

The Locally Stationary Wavelet (LSW) framework is a popular wavelet based modelling

framework for non-stationary time series arising from a varying second-order structure, includ-

ing all piecewise second order stationary processes (Nason et al., 2000), which has already seen

application in changepoint detection (but without associated quantification) in Cho and Fry-

zlewicz (2012) and Killick et al. (2013). Following Fryzlewicz and Nason (2006), we adopt the

following definition of a LSW process,

Definition 1. {Yt}nt=1 for n = 1, 2, . . . , is said to be a Locally Stationary Wavelet (LSW)

process if the following mean-square representation exists,

Yt =
∞∑
j=1

∑
k∈Z

ψj,k(t)Wj

(
k

n

)
ξj,k (1)

5



where j ∈ N and k ∈ Z denote the scale and location parameters respectively. ψj = {ψj,k}k∈Z is

a discrete, real-valued, compactly supported, non-decimated wavelet vector with support lengths

Lj = O(2j) at each scale, with ψj,k(t) = ψj,k−t, the wavelet shifted by t positions. ξj,k is a

zero-mean, orthonormal, identically distributed incremental error process.

For each j ≥ 1, Wj(z) : [0, 1]→ R is a real valued, piecewise constant function with a finite

(but unknown) number of jumps. Let Nj denote the total magnitude of the jumps in W 2
j (z), the

variability of function W 2
j (z) is controlled so that

•
∑∞

j=1Wj(z) <∞ uniformly in z.

•
∑J

j=1 2jNj = O(log n) where J = blog2 nc.

By definition, an LSW process assumes Yt has mean zero for all t. The motivation for the

LSW framework is that observed time series are often non-stationary over the entire observed

time period (globally), but may be stationary if we analyse them in shorter time windows

(locally). Analogous to classical Fourier time series analysis, the Evolutionary Wavelet Spectrum

(EWS), W 2
j ( kn), j = 1, 2, . . ., characterises the second-order structure of the LSW process, Yt,

up to the choice of wavelet basis. Note in particular that under this definition, the EWS is

piecewise constant.

Given an observed time series {Yt}nt=1, an estimate of the EWS can be obtained by consid-

ering the square of the empirical wavelet coefficients from a non-decimated wavelet transform

(NDWT) of the series . That is,

W 2
j

(
k

n

)
≈ Ij,k = D2

j,k =

(
n∑
t=1

ψj,k(t)Yt

)2

(2)

This is referred to as the raw wavelet periodogram in the literature. Nason et al. (2000) es-

tablished that this raw form of the wavelet peridogram is a biased estimator of the EWS, the

(asymptotic) form of the bias being described by the inner product matrix of discrete autocorre-

lation wavelets. Whilst in general it may be preferable to use an (asymptotically) unbiased form

of the periodogram for general inference, within the changepoint context which we consider, Cho

and Fryzlewicz (2012) establish that every breakpoint in the autocovariance structure results

in a breakpoint in the (raw) periodogram. Hence, for the purposes of this article, it suffices to

focus our inference based on this (biased) periodogram.
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For a sequence of random variables, Y1:n, we denote the corresponding raw wavelet peri-

odogram as I1:n. This is a multivariate time series consisting of J = blog2 nc components at

each location, with each component denoting a different scale. i1:n = d2
1:n denotes the empirical

raw wavelet periodogram corresponding to observed time series y1:n.

Both the HMM and LSW frameworks are powerful tools in modelling different types of non-

stationary time series. A natural question to thus ask is whether it is possible to combine the

two frameworks such that HMM-based changepoint methods can be applied within the LSW

framework. The hybrid framework would thus allow us to consider changes in second-order

structure through the LSW framework, whilst applying a multitude of existing HMM-based

changepoint methods (for example Chib (1998), Aston et al. (2011) and Nam et al. (2012b)).

Section 3 proposes a framework in which this can be achieved.

3 Methodology

As previously described, our goal is to quantify the uncertainty of autocovariance changepoints

for a time series by considering its spectral structure. Quantities of interest include the change-

point probability P (τ = t|y1:n) (CPP, the probability of a changepoint at time t), and the

distribution of number of changepoints within the observed time series P (NCP = nCP |y1:n).

Other changepoint characteristics such as joint or conditional changepoint distributions are

also available using the proposed methodology.

The raw wavelet periodogram characterises how the second-order structure evolves over

time. Thus, we perform analysis on the periodogram to quantify the uncertainty of second-

order changepoints. This is achieved by modelling the periodogram via a HMM framework, and

quantifying the changepoint uncertainty via an existing HMM approach (Nam et al., 2012b).

In proposing the new methodology, several challenges need to be addressed.

Firstly, the multivariate joint density of Ik is unknown and needs to be derived. This density

also captures the dependence structure introduced by the use of the NDWT in estimating the

periodogram. The derivation of this joint density and its embedding in a HMM modelling

framework is detailed in Section 3.1. As the model parameters, θ, associated with the HMM

framework are unknown, these need to be estimated and we turn to Sequential Monte Carlo

samplers (SMC, Del Moral et al. (2006)) in considering the posterior of the parameters. These
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model parameters can be shown to be directly associated with the EWS. An example SMC

implementation is provided in Section 3.2. Section 3.3 details some aspects concerning the

computation of the distribution of changepoint characteristics. Section 3.4 provides an outline

of the overall proposed approach.

There are many advantages to considering the observed time series under the LSW frame-

work. In particular, time series exhibiting piecewise second-order structure can be more readily

analysed under this framework compared to a time-domain approach. For example, for a piece-

wise moving average process, the associated EWS has a piecewise constant structure at each

scale; a sparser representation where the discontinuities can be analysed with fewer issues po-

tentially arising. This sparser representation is not possible in the time-domain and is thus one

of the attractions of the LSW framework.

By combining the use of wavelets in conjunction with a HMM framework, we can systemati-

cally induce a dependence structure in the HMM framework compared to choosing an arbitrary

dependence structure in the time-domain.

We assume in this paper that the error process in the LSW model is Gaussian, that is

ξj,k
iid∼ N(0, 1). This leads to Yt being Gaussian itself and is commonly referred to as a Gaussian

LSW process. Recall from Section 2.1 that our EWS is piecewise constant. That is,

W 2
j

(
k

n

)
=

H∗∑
r=1

w2
j,r1Wr(k) j = 1, . . . , J, (3)

where w2
j,r are some unknown constants, and Wr, r = 1, . . . ,H∗ is an unknown disjoint par-

titioning of 1, . . . , n over all scales j simultaneously. Each Wr has a particular EWS power

structure associated with it, such that consecutive Wr have changes in power in at least one

scale. H∗ denotes the unknown number of partitions there are in the EWS (and hence also in

the raw periodogram), and ultimately corresponds to the segments in the data and in turn the

number of changepoints.

We now propose the LSW-HMM modelling framework in quantifying the uncertainty of

autocovariance changepoints under the assumptions outlined above.

3.1 LSW-HMM modelling framework

Recall that an estimate of the EWS is provided by the square of the empirical wavelet coefficients

under a NDWT (Equation 2). We consider modelling the raw wavelet periodogram across
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location k over the different scales j. We adopt the convention that j = 1 is the finest scale, and

j = 2, . . . , J as the subsequent coarser scales (where J = blog2 nc). Within-scale dependence

induced by the NDWT can be accounted for by the HMM framework. We refer to the collection

of J periodogram coefficients at a particular time point as Ik = {Ij,k}j=1,...,J (random variable)

and d2
k = {d2j,k}j=1,...,J (observed, empirical) from here onwards. We next turn to deriving the

joint density of Ik.

3.1.1 Distribution of Ik

Recall that since we have assumed an LSW model and Gaussian innovations, Yt is Gaussian

with mean zero. By performing a wavelet transform, the wavelet coefficients Dj,k are Gaussian

distributed themselves with mean zero. As is well documented in the literature (see Nason

et al. (2000)), the use of NDWT induces a dependence structure between neighbouring Dj,k.

We consider in particular, Dk = {Dj,k}j=1,...,J , the coefficients across J scales considered at a

given location, k. Thus,

Dk ∼ MVN(0,ΣD
k ) k = 1, . . . , n,

where ΣD
k specifies the covariance structure between the wavelet coefficients at location k across

the J scales. Section 3.1.2 discusses how ΣD
k can be computed from the spectrum W 2

j ( kn).

As Ik = D2
k = (D2

1,k, . . . , D
2
J,k), the following result can be established.

Proposition 1. The density of Ik is,

g(d2
k|ΣD

k ) = g(d21,k, . . . , d
2
J,k|ΣD

k )

=
1

2J
∏J
j=1 |dj,k|

∑
a1,...,aJ={+,−}

f

(
a1|d1,k|, . . . , aJ |dJ,k|

∣∣∣∣0,ΣD
k

)
, (4)

where f(·|0,ΣD
k ) is the joint density corresponding to MVN(0,ΣD

k ).

Proof. This is based on a change of variables argument detailed further in Section 1 of Supple-

mentary Material.

We can thus use the joint density of wavelet coefficients, Dk, to deduce the joint density for the

squared wavelet coefficients Ik = D2
k. A similar joint density can be computed if we consider each

scale process of the periodogram, Ij = {Ij,k}nk=1, although the order of computation increases

exponentially.
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3.1.2 Computing ΣD
k

We next turn to the problem of accounting for the dependence between the coefficients, induced

by a NDWT, which feeds into the joint densities of Dk and Ik. Recall that the EWS characterises

the autocovariance structure of the observation process for any orthonormal incremental process

as follows (Nason et al., 2000):

Cov(Yt, Yt−v) =
∑
l

∑
m

W 2
l

(m
n

)
ψl,m(t)ψl,m(t− v).

It is possible to compute this autocovariance quantity without knowing the entire EWS due to

the compact support of wavelets.

As the following proposition demonstrates, the autocovariance structure of the observations

also feeds into the covariance structure of the wavelet coefficients.

Proposition 2. For a LSW process, the covariance structure between specific wavelet coeffi-

cients of a NDWT, Dj,k is of the following form:

Cov(Dj,k, Dj′,k′) =
∑
t

∑
v

ψj,k(t)ψj′,k′(t− v)Cov(Yt, Yt−v). (5)

Proof. See Section 2 of Supplementary Material.

We can thus deduce the covariance structure for the wavelet coefficients Dk, ΣD
k , from the EWS.

Again, due to the compact support associated with wavelets, only a finite number of covariances

in the summation are needed to evaluate this quantity. Consequently, the entire EWS does not

need to be known to calculate the covariance between the wavelet coefficients.

One can show that to compute ΣD
k , the covariance structure of the wavelet coefficients at

location k, the power from locations k − 2(Lj − 1), . . . , k for scale j = 1, . . . , J needs to be

recorded where Lj denotes the number of non-zero filter elements in the wavelet at scale j (see

Section 3).

3.1.3 The HMM framework

Having derived a joint density for the wavelet periodogram, we now turn our attention to

the question of how this can be incorporated appropriately within a HMM framework. The J

multivariate scale processes from a raw wavelet periodogram can be modelled simultaneously via

a single HMM framework with the derived multivariate emission density. That is, at location
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k, we consider Ik = {Ij,k}j=1,...,J , and model it as being dependent on a single underlying,

unobserved Markov chain (MC), Xk, which takes values from ΩX = {1, . . . ,H} with H =

|ΩX | <∞,

p(xk|x1:k−1, θ) = p(xk|xk−1, θ) k = 1, . . . , n (Transition)

Ik|{X1:k−1, I1:k−1 = d2
1:k−1} ∼ g(Ik = d2

k|xk−2(LJ−1):k, θ) k = 1, . . . , n (Emission)

The HMM framework assumes that the emission density of Ik is determined by the latent

process Xk, such that the process follows the Markov property and the I1:n are conditionally

independent given X1:n. This latter remark allows us to account for the within-scale dependence

induced by a NDWT. H denotes the number of underlying states the latent MC, Xk, can

take and corresponds to different data generating mechanisms, for example “stormy” and “non-

stormy” seasons in the motivating oceanographic application. Under our setup, this corresponds

to the number of unique power configurations over the disjoint partitioningW1, . . . ,WH∗ . That

is H ≤ H∗ is the number of states that generate the H∗ partitions, with some partitions

possibly being generated by the same state. We assume in our analysis that H is known a

priori, as we want to give a specific interpretation to the states in the application, that of

“stormy” or “non- stormy”seasons. Typically, in more general time series, this is not the case,

and recent methods to estimate H include Robert et al. (2000), Mackay (2002), Chopin (2007)

and Zhou et al. (2012). In particular, we advocate the SMC based method proposed by Nam

et al. (2012a), which expands upon the SMC samplers framework outlined in this manuscript

to estimate the posterior distribution for the number of states. This requires no additional cost

if various parameter posteriors are being approximated, each assuming a different number of

states being present. It is worth mentioning that even though the order of the HMM needs to

be chosen a priori the methodology is reasonably robust to the choice of the order. Indeed, as

shown in Nam et al. (2012a), model selection to choose this order can be implemented given

the algorithm used in the underlying analysis proposed here. In addition, we assume that the

underlying unobserved MC, Xk, is first order Markov, although extensions to an q-th order

Markov Chain are permitted via the use of embedding arguments.

The state-dependent emission density, g(Ik|Xk−2(LJ−1):k), is that proposed in Equation 4,

with the covariance structure ΣD
k being dependent on Xk−2(LJ−1):k. Rather than estimating

entries of ΣD
k directly, we instead estimate the powers, w2

j,r as in Equation 3, that feed directly
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into and populate ΣD
k . More specifically, we estimate state-dependent powers w2

j,r in

W 2
j,Xk

(
k

n

)
=

H∑
r=1

w2
j,r1[Xk=r] j = 1, . . . , J. (6)

This state-dependent power structure is equivalent to the piecewise constant EWS as in Equa-

tion 3. As Xk is permitted to move freely between all states of ΩX , we are able to reduce the

summation limit in Equation 3 to H from H∗. Returning to previous power configurations in

the EWS is therefore possible, with a change in state corresponding to a change in power in at

least one scale. ΣD
k is dependent on the underlying states of Xk from times k− 2(LJ − 1), . . . , k

(see Section 3) and thus the order of the HMM is 2LJ − 1.

Here, θ denotes the model parameters that need to be estimated which consists of the

transition matrix P and the aforementioned state-dependent power W 2 = {W 2
·,1, . . . ,W

2
·,H},

where W 2
·,r = {w2

j,r}Jj=1 for all r ∈ ΩX , is associated with the emission density. Transition

parameters are also of interest in their own right as they also provide information into the long

run occurrence rates of changepoints, via standard Markov chain arguments.

We can partition the model parameters into transition and emission parameters, θ =

(P,W 2). As θ is unknown, we turn to SMC samplers (Del Moral et al., 2006) for their es-

timation. As in many applications including the oceanographic one here, it is likely that data

within segment types (stormy or non-stormy) are similar. The advantage of using an HMM

approach is that estimation of segmental parameters then uses the combined information across

all data classified as being of the same type. Section 3.2 outlines an example implementation

in approximating the posterior of θ, p(θ|d2
1:n).

3.2 SMC samplers implementation

This section outlines an example SMC implementation in approximating the parameter pos-

terior, p(θ|d2
1:n, H) via a weighted cloud of N particles, {θi, U i|H}Ni=1, since θ = (P,W 2) is

unknown. θi indicates a potential parameter particle (a configuration of θ) with associated

weighting U i. SMC samplers provide an algorithm to sample from a sequence of connected dis-

tributions via importance sampling and resampling techniques (Del Moral et al., 2006). Defining

l(d2
1:n|θ,H) as the likelihood, and p(θ|H) as the prior of the model parameters, we can define
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the following sequence of distributions,

πb(θ) ∝ l(d2
1:n|θ,H)γbp(θ|H) b = 1, . . . , B, (7)

where {γb}Bb=1 is a non-decreasing tempering schedule such that γ1 = 0 and γB = 1. The se-

quence of distributions thus introduces the effect of the likelihood gradually such that we even-

tually sample from the parameter posterior of interest. We sample initially from π1(θ) = p(θ|H)

either directly or via importance sampling, and continually mutate and reweight existing sam-

ples from the current distribution to sample the next distribution in the sequence. Resampling

occasionally occurs to maintain stability in the approximation. Under the HMM framework,

this does not require sampling the underlying state sequence due to the exact computation

of the likelihood via the Forward-Backward Equations (Baum et al., 1970), which leads to a

reduction in Monte Carlo sampling error.

Section 5 provides a detailed outline of the example SMC implementation used within our

framework. The general points to note are that we consider the transition probability row

vectors, pr, r = 1, . . . ,H constructing transition matrix P independently from the inverse state

dependent powers 1
w2

j,r
, j = 1, . . . , J, r = 1, . . . ,H. The re-parametrisation of the state dependent

powers to its inverse is analogous to the re-parametrisation of variance to precision (inverse

variance) in typical time-domain models. In practice, the series we consider will all contain

at least a small portion of variation, and as such issues regarding zero or infinite power for

particular frequencies will not arise. We initialise by sampling from a Dirichlet and Gamma

prior distribution respectively for transition probability vectors and state dependent powers, and

mutate according to a Random Walk Metropolis Hastings Markov kernel on the appropriate

domain for each component. There is a great deal of flexibility within the SMC samplers

framework with regards to the type of mutation and sampling schemes from the prior. The

example implementation presented is in no way the only implementation or optimal with respect

to optimising mixing and acceptance rates. However, this design provides results which appear

sensible without a great deal of manual tuning.

3.3 Exact changepoint distributions

Having formulated an appropriate HMM framework to model the periodogram d2
1:n, and ac-

counting for unknown θ via SMC samplers, it is now possible to compute the changepoint
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distributions of interest. Conditioned on θ, exact changepoint distributions, such as P (τ (kCP) =

t|d2
1:n, θ,H), can be computed via Finite Markov Chain Imbedding (FMCI) in a HMM frame-

work (see Aston et al. (2011) and references therein). The exact nature refers to the fact that

the distributions are not subject to sampling or approximation error, conditioned on θ. The

FMCI framework uses a generalised changepoint definition such that sustained changes in state

are permitted, which corresponds to the sustained nature of seasons lasting at least a few time

periods. The sustained nature is captured via the following definition,

Definition 2. A changepoint to a regime occurs at time t when a change in state persists for

at least kCP time periods. That is

Xt−1 6= Xt = . . . = Xt+j (8)

where j ≥ kCP − 1.

We say a changepoint-out-of the regime corresponding to state s ∈ ΩX is said to have occurred

at time t′ when Xt has not been in state s for k′CP time periods. That is

Xt′−j 6= s ∀ 0 ≤ j ≤ k′CP − 1. (9)

This definition generalises the changepoint-out-of the regime k′CP = 1, considered in Aston

et al. (2011). Under this changepoint definition, the changepoint problem becomes a waiting

time distribution problem for runs in the underlying state sequence. The framework is flexible

and efficient such that a variety of distributions regarding changepoint characteristics can be

computed. In particular, probabilities can be calculated for changes to have occurred within a

region rather than at a specific point. By considering the probability of a changepoint within

an interval around a location, one can obtain probabilistic statements about the existence of

a changepoint occurring within a region. Comparing across regions obtained, one can thus

identify the most probable regions of change.

3.4 Outline of Approach

An outline of the final algorithm is as follows:

1. Perform a NDWT to time series y1:n, n = 2J , J ∈ N to obtain the wavelet periodogram.

2. Let d2
1:n denote the corresponding J multivariate time series from the periodogram.
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3. Assuming H underlying states, model d2
1:n by a HMM framework with the corresponding

joint emission density. This density accounts for the dependence structure between scale

processes.

4. Account for the uncertainty of the unknown HMM model parameters, θ = (P,W 2), via Se-

quential Monte Carlo samplers. This results in approximating the posterior, p(θ|d2
1:n, H),

by a weighted cloud of N particles {θi, U i|H}Ni=1.

5. To obtain the changepoint probability of interest, approximate as follows. Let kCP denotes

the sustained condition under a generalised changepoint definition (Nam et al., 2012b),

and P (τ (kCP) = t|d2
1:n, θ

i, H) to be the exact changepoint distribution conditional on θi.

Then the changepoint probability is,

P (τ = t|y1:n) ≡ P (τ (kCP) = t|d2
1:n, H) ≈

N∑
i=1

U iP (τ (kCP) = t|d2
1:n, θ

i, H). (10)

That is, the weighted average of conditional exact changepoint distributions with re-

spect to different model parameter configurations. P (NCP = nCP |y1:n) ≡ P (N
(kCP)
CP =

nCP |d2
1:n, H) follows analogously.

Computationally, it is not possible to consider all J scales of the periodogram as the order of

the HMM increases exponentially (see Section 4 for further details). Consequently, we approxi-

mate by considering J∗ ≤ J finer scales of the periodogram, a common approach in time series

analysis (see for example Cho and Fryzlewicz (2012)). This restricts our attention to changes

in autocovariance structure associated at higher frequencies which seem more apparent in the

oceanographic data of interest. This should therefore not hinder our proposed methodology

with regards to the motivating application.

We assume that the choice of analysing wavelet used for the transform is known a priori,

and is the same as the generating wavelet. However, this is often unknown and we note that

wavelet choice is an area of ongoing interest with the effect between differing generating and

analysing wavelets for EWS estimation investigated in Gott and Eckley (2013).
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4 Results and Applications

We next consider the performance of our proposed methodology on both simulated and oceano-

graphic data.

We first consider simulated white noise and MA processes with piecewise second-order struc-

tures. In particular, white noise processes are considered and compared to a time-domain HMM

approach because this type of process can be modelled exactly in the time-domain. Hence our

proposed wavelet method should thus compliment it. The potential benefit of the proposed

wavelet approach is then demonstrated on piecewise MA processes in which an exact time-

domain HMM is not possible. In addition, we compare with estimates provided by AutoPARM

(Davis et al., 2006) and CF (Cho and Fryzlewicz, 2012), demonstrating that our methodology

performs on a par with them and the importance of quantifying the uncertainty of changepoints.

We also return to the motivating oceanographic application. In addition to quantifying the

uncertainty of the changepoints, we demonstrate concurrence with estimates provided by other

autocovariance changepoint methods and those provided by expert oceanographers.

4.1 Simulated Data

We consider simulated processes of length 512 and with defined changepoints (purple dotted

lines at times 151, 301 and 451). We compare our proposed method to a time-domain Gaussian

Markov Mixture model on the time series itself, regardless of how the data is actually generated.

In generating our results, the following SMC samplers settings have been used; N = 500

samples to approximate the defined sequence of B = 100 distributions. The hyperparameter

for the r-th transition probability vector, αr, is a H-long vector of ones with 10 in the r-th

position which encourages the underlying MC to remain in the same state. The shape and scale

hyperparameters for the inverse power parameters priors are αλ = 1 and βλ = 1 respectively. A

linear tempering schedule, that is γb = b−1
B−1 , b = 1, . . . , B, and a baseline line proposal variance

of 10 which decreases linearly with respect to the iteration of the sampler, are utilised.

We consider processes arising from two possible generating mechanisms in the time-domain,

and we thus assume H = 2 in our HMM framework, and kCP = 20, k′CP = 10 for the required

sustained change in state under our changepoint definition. J∗ = 3 scale processes of the

periodogram under a Haar LSW framework are considered, a computationally efficient setting
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under the conditions presented.

For the SMC implementation regarding the Gaussian Markov Mixture model, the following

priors were implemented: µr
iid∼ N(0, 10), 1

σ2
r

iid∼ Gamma(shape = 1, scale = 1), r = 1, 2.

4.1.1 Gaussian White Noise Processes with Switches in Variance

The following experiment concerns independent Gaussian data which exhibits a change in vari-

ance at defined time points. It is well known that the corresponding true EWS is W 2
j ( kn) =

σ2
k

2j
, j = 1, . . . , J . A change in variance thus causes a change in power across all scales simulta-

neously. No approximation is required under a time-domain approach, as this change can be

represented exactly. A single realisation of the data and corresponding changepoint analysis

are displayed in Figure 2. The top panel is a plot of the simulated data analysed with change-

point estimates provided by CF and AutoPARM denoted by the top blue and bottom red ticks

respectively. The second and third panel display the changepoint probability plot (CPP, the

probability of a changepoint occurring at each time) under the wavelet and time-domain ap-

proaches respectively. The fourth panel presents the distribution of the number of changepoints

from both approaches.

We observe that our proposed methodology has peaked and centred CPP around the defined

changepoint locations and provides similar results to the time-domain approach. This type of

CPP behaviour provides an indication of the changepoint location estimates. In some instances,

the wavelet approach outperforms the time-domain approach, for example the changepoint

associated with time point 301 is more certain. We note that there is some significant CPP

assigned to the first few time points under the wavelet approach. This arises due to a label

identifiability issue common with HMMs (see Scott (2002)), and the fact that the initialisation

associated with these labels was designed with the oceanographic application in mind, where

the initial storm season status is known. However, should this not be the case in another

application, a diffuse initialisation across all states could be used. However, under the known

initialisation setting, an additional changepoint is often detected at the start of the data in the

simulations and this is reflected in the changepoint distribution. Disregarding this artefact, we

observe that three changepoints occurring is almost certain under the wavelet approach. This

is in accordance with the time-domain approach and truth.
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[Figure 2 about here.]

The results demonstrate that there is potential in providing an alternative method when

dealing with this type of data as the wavelet based method identifies changepoints near the

defined locations. However some differences and discrepancies do exist between the proposed

wavelet approach, the truth and time-domain approach. In particular, the CPP under the

proposed approach is slightly offset from the truth. However, these estimates are still in line

with what we might observe in the time series realisation and compares favourably to the

time-domain approach and existing approaches.

4.1.2 Piecewise MA processes - Piecewise Haar MA processes

The following scenario considers piecewise MA processes with changing MA order. We consider

in particular piecewise Haar MA processes where the coefficients of the MA process are the

Haar wavelet coefficients with a piecewise constant power structure in the EWS being present.

Such processes are the types of data that our proposed methodology should perform well on

and for which time-domain HMM methods require some approximation involving high (but

arbitrary and fixed) AR orders. In this case, we model the observed time series as a Gaussian

Markov Mixture in the time-domain (AR order is zero). This incorrect modelling approach is

also equally applicable when dealing with real data where the “true” model is unknown.

Stationary Haar MA processes have constant power structure in a single scale j′ of the EWS,

namely W 2
j ( kn) = 1[j=j′]σ

2, j′ ∈ {1, . . . , J}, and a Haar generating wavelet, where σ2 is the

time-domain innovation variance of the process. The equivalent time-domain representation of

this model is a MA(2j
′−1) process with innovation variance σ2 and MA coefficients determined

by the Haar wavelet at scale j′. Piecewise Haar MA processes can thus be constructed by

considering piecewise constant EWS. Changes in power across scales correspond to changes in

MA order and changes in power within-scales correspond to changes in variance of Yt. Nason

et al. (2000) remark that any MA process can be written as a linear combination of Haar MA

processes, with the wavelet representation often being sparse.

Figure 3 considers a single realisation of a change in order from MA(1) ↔ MA(7) and

constant variance σ2 = 1. These results show the real potential of the proposed method in

that the CPP are centred and peaked around the defined changepoint locations, with addi-
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tional changepoint potentially being present. The potential presence of additional changepoints

(more correctly, models where including additional changepoints allows an improved fit to this

particular finite sample data series over the true data generating process) is also reflected in

the distribution of the number of changepoints with probability assigned to these number of

changepoints. This reflects the nature of individual simulations, where the number of changes

varies dependent on the realisation. However, given the nature of the HMM, estimation of the

parameters is still across all segments rather than purely within any one individual segment. In

contrast to the wavelet approach, the time-domain method is unable to identify changepoints

due to the highly correlated nature and change of autocovariance present in the the data. This

thus demonstrates that there is an advantage in considering the changepoint problem in the

wavelet-domain over the time-domain, in light of incorrect model specification. Our method

also compares favourably with existing autocovariance changepoint methods.

[Figure 3 about here.]

Further piecewise MA simulations were performed with regards to changing variance, and

both changing variance and MA order simultaneously (results not shown here). Under such sce-

narios, the proposed methodology outperformed or compared favourably to the approximating

time-domain approach.

[Figure 4 about here.]

In assessing the performance of our methodology, Figure 4 displays summaries of the CPP

across 50 simulations for the two types of data considered. We observe that the proposed

methodology works well with the general CPP being peaked and centred around the defined

CP locations with no other possible changes detected. The small offset is due to the fact that

we are averaging skewed distributions, the skew arising from the fact that we insist on sustained

changes for detection, as is required in the Oceanographic example.

4.2 Oceanographic Application

We now return to consider the oceanographic data example introduced in Section 1. Clearly

there is ambiguity as to when storm seasons start and the number that have occurred. Hence
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there is particular interest in quantifying the uncertainty of storm seasons. We therefore apply

our proposed methodology to the data from a location in the North Sea.

The analysed data is plotted in the top panel of Figure 5 along with changepoint estimates

from existing change in autocovariance methods namely, Cho and Fryzlewicz (2012) (CF, top

(blue) ticks) and Davis et al. (2006) (AutoPARM, bottom (red) ticks). The data consists of

differenced wave heights measured at 12 hour intervals from March 1992 - December 1994 in a

central North Sea location.

The following inputs have been used to achieve the presented changepoint results in Figure 5:

J∗ = 2 corresponding to higher frequency time series behaviour (where changes are expected),

and H = 2 states have been assumed reflecting the belief that there are “stormy” and “non-

stormy” seasons. The same SMC samplers settings utilised in the simulated data analysis have

been used (N = 500 particles, B = 100 distributions, linear tempering schedule). Under a

sustained changepoint definition, kCP = 40 and k′CP = 30, have been used to reflect the general

sustained nature of seasons (seasons last for at least a few weeks). The initialisation reflected

the fact that the storm status of the data was known at the start.

Ocean engineers have indicated that it is typical to see two changes in storm season each

year occurring in the Spring (March-April) and Autumn (September-October). The results

displayed in Figure 5 concur with this statement; five and six storm season changes are most

likely according to the number of changepoints distribution, and with the CPP being centred

and peaked around these times. The uncertainty encapsulated by the number of changepoint

distribution demonstrates that there are potentially more or fewer storm seasons than five or

six, although these are less certain, along with the corresponding locations.

Results also concur with changepoint estimates from the other two methods, with our

method highlighting another possible configuration. A few discrepancies exist, for example the

changepoint estimated in the middle of 1993 according to CF and AutoPARM. These potential

changes in state do not seem sufficiently sustained for a change in season to have occurred and

thus our methodology has not identified them. Lowering the associated values of kCP and k′CP,

does begin to identify these as changepoint instances, in addition to others. Changes identified

in the middle of 1992 and end of 1994 by CF and AutoPARM are suspected to be due to an

insufficient number of states to account for these more subtle changes. HMM model selection
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methods may therefore be worth implementing, although the current two state assumption

corresponds directly to “stormy” and “non-stormy” seasons, allowing the model to be easily

interpreted by ocean engineers.

[Figure 5 about here.]

5 Discussion

This paper has proposed a methodology for quantifying the uncertainty of autocovariance

changepoints in time series. This is achieved by considering the estimate of the Evolution-

ary Wavelet Spectrum which fully characterises the potentially varying second-order structure

of a time series. By appropriately modelling this estimate as a multivariate time series un-

der a Hidden Markov Model framework and deriving the corresponding multivariate emission

density which accounts for the dependence structure between processes, we can quantify the

uncertainty of changepoints. The uncertainty of autocovariance changepoints has not explicitly

been considered by existing methods in the literature.

While in this paper we have concentrated on quantification of uncertainty, it should be noted

that HMMs are widely used for changepoint detection, and if specific changepoint locations are

required, then any number of algorithms based on maximum a-posteriori or other criteria can be

used to make these choices. However, these locations will be subject to the inherent uncertainty

as demonstrated by the uncertainty found by the presented approach.

This methodology has been motivated by oceanographic data exhibiting changes in second-

order structure (corresponding to changes in storm season) where there is interest in the un-

certainty of storm season changes due to their inherent ambiguity. Our method has showed

accordance with various existing changepoint methods including expert ocean engineers. Our

methodology allows us to assess the plausibility and performance of changepoint estimates and

provide further information in planning future operations. A few discrepancies do exist between

the various methods, a potential result of the sustained changepoint definition implemented and

number of states assumed in our HMM. However, the settings used to achieve the results seem

valid given the oceanographic application and are more intuitive in controlling changepoint

results compared to abstract tuning parameters and penalisation terms in other changepoint
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methods.

It might be postulated that first order regression changes are responsible for the time series

observed, in which case methodology based on Jump Regression (Joo and Qiu, 2009; Qiu, 2005;

Qiu and Yandell, 1998) might be a possible approach. However, when changes in regression

using simpler models than jump regression were investigated (data not shown), these were found

to not particularly well capture the structure of the data. In many ways, this accords with the

oceanographic literature in that changes are expected in the second order structure (Killick

et al., 2009) rather than the first order regression structure.

Results on a variety of simulated data also indicate that the methodology works well in

quantifying the uncertainty of changepoint characteristics. Comparisons with a time-domain

approach demonstrate the real advantage of our proposed methodology lies in considering piece-

wise MA processes which are not readily analysed using the HMM framework in the time-domain

without some approximation taking place.

The current LSW framework assumes that the observed time series is mean zero and constant

with prior detrending occurring before analysis is performed. However, as non-stationarity

can also arise from changes in mean, future work would consider a modified version of the

LSW framework such that changes in mean are also accounted for. This would thus provide

a potentially powerful unified framework in which changes in mean and second-order structure

are analysed simultaneously.

Supplementary Material

Technical Material: The file Nametal tech.pdf provides further technical details for the the-

ory and algorithms. (PDF file)

Code for Simulations: The file Nametal code.tar.gz provides all the code and related docu-

mentation to produce the simulated examples in the paper (GNU zipped tar file)
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Figure 1: Changepoint estimates on wave height data from existing autocovariance changepoint
methods (CF= top (blue) ticks, AutoPARM= bottom (red) ticks). The plot highlights that
different changepoint methods will often provide different results, and thus there is a need to
account for the discrepancies in methods by quantifying the uncertainty.
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Figure 2: Changepoint results (CPP plot and distribution of number of changepoints) for sim-
ulated Gaussian white noise data with a change in variance (1 and 4). 1st panel presents the
simulated data analysed. The top (blue) ticks and bottom (red) ticks denote the changepoints
estimated by CF and AutoPARM respectively. 2nd and 3rd panel displays the CPP plots under
the wavelet and time-domain approaches respectively. 4th panel presents the distribution of
number of changepoints. The proposed methodology compliments the time-domain approach
and concurs with the truth.
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Figure 3: Changepoint results for piecewise Haar MA data with a change in order, constant
variance (change in power across scales → MA(1) ↔ MA(7), σ2 = 1). 1st panel presents the
simulated data analysed. The top (blue) ticks and bottom (red) ticks denote the changepoints
estimated by CF and AutoPARM respectively. 2nd and 3rd panel displays the CPP plots un-
der the wavelet and time-domain approaches respectively. 4th panel presents the distribution
of number of changepoints. The wavelet-domain approach is successfully able to identify the
defined changepoint locations, in addition to other changepoints. This is reflected in the dis-
tribution of the number of changepoints. The time-domain fails to identify the changepoint
characteristics however due to high autocorrelation present in the data and the change within
it.
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Figure 4: Summary of CPP from 50 simulations for the two types of data considered.. The
black bold line and the grey region denote the median and interquartile range of the CPP region
across 50 simulations.



1993 1994 1995

−
2

−
1

0
1

2
3

Time

D
iff

er
en

ce
d 

W
av

e 
H

ei
gh

t

1993 1994 1995

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ChangePoint Probability

Time

C
ha

ng
eP

oi
nt

 P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dist No. CPs

No. CPs

P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: Changepoint results for North Sea data. Top panel displays the analysed data and the
changepoint estimates from existing approaches (CF= top (blue) ticks, AutoPARM= bottom
(red) ticks). Middle and bottom panel display the CPP plot and distribution of number of
changepoints respectively under the proposed methodology. This corresponds to the start of
storm seasons and the number of them. Analysis considers the two finest scales of the wavelet
periodogram (J∗ = 2), and assumes two underlying states (H = 2) reflecting “stormy” and
“non-stormy” seasons.


