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Abstract

Lateral transshipments are a method of responding to shortages of stock in a network of

inventory-holding locations. Conventional reactive approaches only transship to meet imme-

diate shortages. The paper proposes hybrid transshipments which exploit economies of scale

in moving additional stock between locations to prevent future shortages in addition to meet-

ing immediate ones. The setting we consider is motivated by the case of retailers who operate

networks of outlets supplying car parts via a system of periodic replenishment. It is pioneering

in the literature in featuring a stochastic model for demand which is non-stationary and permits

general patterns of dependence between the many item types available for sale. It also allows

for the application of both lost sales and backorder penalty costs. The generality of our setting

makes the work widely applicable. We develop an easy-to-compute quasi-myopic heuristic

for determining how enhanced transshipments should be made. We obtain simple character-

isations of the heuristic and demonstrate its strong cost performance in both small and large

networks in an extensive numerical study.

Keywords: Multi-Item Inventory Control, Lateral Transshipments, Dynamic Programming

1 Introduction

In modern inventory networks increased information offers inventory managers the opportunity

to pool risk through cooperation between replenishment points. Lateral transshipments are stock

movements between locations in the same echelon of an inventory system. This transportation

of goods can be used to rebalance stock proactively across the system or to address shortages

reactively as they occur.

When a reactive transshipment is triggered in response to a shortage, conventional policies

only meet the immediate shortfall. Stock is moved from a location with a surplus to the one ex-

periencing the shortage. However, in many practical scenarios a large proportion of the associated
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vehicle, fuel and labour costs are independent of the amount transshipped. When this is the case,

conventional reactive approaches ignore potential economies of scale which may make it bene-

ficial to transship more than is required to meet the immediate shortfall in order to reduce the

risk of future shortages. The rebalancing of stock achieved thereby has hitherto been associated

with proactive approaches to transshipment. The latter have conventionally reallocated the entire

network’s inventory at isolated time points. While such approaches can be beneficial, the infras-

tructure required to support a large number of locations interacting simultaneously can make this

costly, especially in networks with a large geographical spread. Focussing stock rebalancing on

pairs of locations significantly reduces this burden. The paper proposes a hybrid approach which

exploits the above potential for cost savings by using transshipments to rebalance stock between

pairs of locations when a shortage occurs in one of them. Since the triggering mechanism is as for

conventional reactive transshipments, the additional implementation overhead is minimal.

Transshipments have been studied in a variety of scenarios. An application context of particu-

lar interest to us is the sale of car parts including tyres, shock absorbers and exhaust systems from

networks of depots which typically also have facilities for undertaking repairs. Common features

of such networks include the following: stock replenishment is from a central depot which sends

out large trucks on tours to resupply parts of the network. The determination of such tours will

involve many problem features which lie outside of our model and we shall suppose throughout

that the periodicity of each location’s replenishment is fixed. The nature of the replenishment pro-

cess means that it is unlikely that all depots in the network would be replenished on the same day.

Depots are usually located in centres of population where rents are high and space for inventory is

limited. Hence space constraints may be such that inventory levels are forced lower than an (un-

constrained) economic analysis might indicate. This feature in part fuels the need for the pooling

of inventory across the network. Demand for items is likely non-stationary as well as stochastic.

For example the demand pattern at weekends may well be different from that during the working

week. Further, individual customers are unlikely to require a single item. Individual demands will

typically be for several of each of several item types.
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The model considered in the paper, which assumes the periodic review and replenishment

of stock, develops the reactive transshipment model of Archibald et al. (2010) in a way which

captures the features mentioned in the preceding paragraph. It is pioneering in the literature in

the generality of its characterisation of demand. Demand instances are assumed to occur in a

non-stationary manner, while individual customer requirements (how many of each item type) are

drawn from a general joint distribution. This is a huge advance over the customary assumption

of a stationary Poisson process of singleton demands for one item type only. Hence the work not

only delivers significant cost savings over current proposals but is also relevant to a wider range of

practical scenarios.

In summary, key contributions of the paper include:

1. The introduction of a hybrid approach to transshipment which meets shortages and rebal-

ances stock in a periodic review setting;

2. Its pioneering consideration of non-stationary compound stochastic demand for several item

types;

3. Characterisations of the structure of the hybrid transshipment policies developed;

4. A numerical lower bound on achievable costs for some cases in which locations are replen-

ished simultaneously;

5. An extensive numerical study in which considerable cost benefits from both the hybrid ap-

proach and from modelling generality are evidenced. Our numerical evidence suggests that

our hybrid proposal closes a large part of the suboptimality gap left by purely reactive ap-

proaches.

In Section 2 we review the existing literature in the context of our model which we describe

in detail in Section 3. Section 4 is the analytical heart of the paper. There we develop our hybrid

transshipment heuristic in our non-stationary multi-item type setting. We also develop some sim-

ple characterisations of the structure of the policy and discuss the issue of replenishment levels.

Further, an easily computed numerical lower bound is developed for the cost rate achievable in
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some contexts in which all locations are replenished simultaneously. The simulation study de-

signed to evaluate the performance of the new policy is outlined in Section 5. Results elucidate the

considerable performance gain achieved over existing approaches.

2 Literature

Research on transshipments in inventory networks has primarily focussed on their use in the con-

text of stationary demand for a single item type. The broad approach taken to transshipping has

been reactive, proactive or a hybrid of the two. We now consider these approaches in turn.

Much of the literature on reactive transshipments assumes periodic replenishment. Krishnan

and Rao (1965) assume demand is met at the end of each review period, so transshipments can be

arranged after all demand for the period has been observed. Taking a similar approach to the mod-

elling of demand, Robinson (1990) shows that an order-up-to policy is optimal while Lien et al.

(2011) explore optimal network configurations. In many situations customers require, or at least

value, immediate service. An assumption that demand for a period can be observed before trans-

shipments are planned is plainly not always appropriate. Archibald et al. (1997) allow multiple

transshipments in each review period. A location makes a transshipment request whenever a short-

age occurs, but transshipment requests are not always met (a situation known as partial pooling).

The form of an optimal replenishment and transshipment policy is established for networks with

two locations. Çömez et al. (2012) characterise an optimal transshipment policy for two locations

in a similar setting with positive replenishment and transshipment lead times. Archibald (2007)

and Archibald et al. (2010) also consider reactive transshipments whenever a shortage occurs, but

develop heuristic policies that can be applied to networks of any size. The current work extends

the latter inter alia by introducing a proactive element into the transshipment policies considered

and through its much more general setting of non-stationary demand for many item types.

There are several other inventory problems that are related to the reactive transshipment prob-

lem. These generally arise in a multi-product setting where substitution with products of higher

specification (Rao et al., 2004; Xu et al., 2011) and allocation of stocks of unfinished products
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(Swaminathan and Tayur, 1998) or common components (Gerchak and Henig, 1986) serve a sim-

ilar purpose to transshipments. Of particular relevance to the current work, Xu et al. (2011) use a

non-stationary compound Poisson process to model demand for two mutually substitutable prod-

ucts. Products in this stream of work correspond to locations in transshipment research, so the

problems addressed correspond to single item transshipment problems. In contrast, the current

work considers a multiple item transshipment problem. A further fundamental distinction between

this literature and the current work is that the nature of the problems considered provide no incen-

tive for proactive action and decisions about which items to ’transship’ and in what quantity are

purely reactive. They thus stand in some contrast to the exploration of hybrid transshipment which

is the focus of the current paper.

Research on proactive transshipment focuses predominantly on periodic replenishment. It is

possible to think of proactive transshipments as including an element of reactive transshipment in

the sense that they aim to rebalance inventory to best satisfy existing shortages and future demand

(Lee et al., 2007). However in most cases, transshipment is only allowed at fixed points in each

review period (Gross, 1963; Lee et al., 2007). The approach of Agrawal et al. (2004) is closest

in spirit to the current work as the timing of transshipment is determined dynamically. However,

in contrast to the current work, only one proactive transshipment is allowed per period and inven-

tory is redistributed across all locations. These papers all demonstrate some benefit from stock

rebalancing which purely reactive approaches do not exploit.

Reactive and proactive transshipments have also been considered in the context of continuous

review replenishment, but this is of less relevance to the current work which focuses on periodic

review. For a more detailed review of the transshipment literature, the reader is referred to Paterson

et al. (2010).

Zhao et al. (2008) consider reactive and proactive transshipment in a single model. Their

production based model uses a conventional reactive transshipment when shortages occur but also

separately allocates new stock when it is produced. Hybrid transshipments of the type considered

in this paper have previously only been considered by Paterson et al. (2012). That study had rather
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different applications in mind and featured an approach to stock replenishment based on continuous

review of stock levels rather than the periodic review featured here. The methods used are quite

different from those in the current work. Further, Paterson et al. (2012) utilised a simple compound

Poisson model for the demand of a single item type only.

We are unaware of any contributions in the literature which match the generality of our mod-

elling of demand. Very few consider either non-stationary demand or many item types. Herer

and Tzur (2001, 2003) do consider time-varying demand but it is deterministic. Hence they can

plan for fully known future demand in a manner which is not possible in a stochastic setting. In

Archibald et al. (1997), replenishment decisions for many item types are linked via a constraint

on storage space while in Wong et al. (2005) and Kranenburg and van Houtum (2009) there is a

linking constraint on average service time. The concluding paragraphs of the Introduction empha-

sise the generality of our stochastic non-stationary multi-item model for the demand experienced

at locations in the network. This generality both represents a huge advance on previous work and

also has great relevance for applications.

3 Inventory System Model

We consider a network with N locations, each of which carries an inventory of X distinct item

types. Locations are replenished periodically from a central depot. The review period for location

i is Ti and hence all item types at i are replenished at times t∗i + nTi, n ∈ �, where t∗i ∈ [0,Ti) is the

time of the first replenishment at i after 0. For reasons given in the Introduction the replenishment

periods Ti, 1 ≤ i ≤ N, will be taken as given and fixed throughout the paper. Distinct locations

across the network may have different review periods and so locations are not assumed to replenish

simultaneously. We deploy the notation ti(t) for the time from some arbitrary t ∈ �+ until the next

replenishment at i. Should a replenishment epoch for location i occur at some time t∗i + nTi,

the inventory of each item type x is restored to the level Six
(
t∗i + nTi

)
. The dependence of the

replenishment levels upon the time at which replenishment occurs can be exploited in cases where

the non-stationarity of the demand is very strong. See Section 4.4 for further comments on the
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determination of the order-up-to levels Six
(
t∗i + nTi

)
, n ∈ �. Until then, we shall regard them as

fixed. Due to the dependence of the replenishment levels on time, it is theoretically possible for

the inventory level of an item at a replenishment epoch to exceed the intended replenishment level.

For the purposes of the model we develop, it is assumed that any excess inventory at a location

is removed during ”replenishment”. In practice this situation would be extremely rare and so this

assumption will not have a significant impact on the performance of the heuristics developed.

Each location experiences stochastic demand. At location i customers arrive according to

a non-homogeneous Poisson process with rate at time t given by λi(t). We assume that suc-

cessive demands at location i are independent and identically distributed. We shall use Di ≡

(Di1,Di2, . . . ,DiX) for the random X-vector denoting a single customer demand at location i, with

Dix denoting the size of a single customer’s demand for item type x. Plainly P
(

X∑
x=1

Dix ≥ 1
)

= 1. We

shall use the notation fid ≡ P (Di = d) for the multivariate probability mass function for location i

demands and write

fix ≡ P (Dix ≥ 1) =
∑
{d:dx≥1}

fid (3.1)

for the probability that a single customer at location i demands (at least) one item of type x. Should

such a demand occur, we refer to the customer as an x-customer. A customer may be an x-customer

for several distinct x. The probability mass function for the size of demands for item type x from

x-customers is denoted by

fixd ≡ P (Dix = d | Dix ≥ 1) =

∑
{d:dx=d} fid

fix
. (3.2)

The above implies that x-customers arrive at location i according to a non-homogeneous Poisson

process whose rate at time t is fixλi(t) with the size of x-demand from individual x-customers

determined by the mass function { fixd, d ≥ 1}, the latter having finite mean and variance µix and

σ2
ix respectively. Additionally, we use f n

ixd for the derived probability that n x-customers together

demand exactly d of item type x at location i.

A consequence of allowing composite multivariate demand is that shortages may be of more

than one piece of inventory and/or of more than one item type. However, in the description of our
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methodology in the next section we shall assume, in line with previous work, that transshipments

come from a single location. This constraint derives principally from practice in that coordinating

movements from more than one location can considerably complicate operating the policy. Further,

we shall allow transshipments which meet only part of a current shortage. For some specific cases

such as vehicle tyres, a complete set may be required or none at all. An indication will be given in

Section 4 following (4.19) of how our methodology may be extended to allow transshipments of

more complex structure and/or to meet an ’all or nothing’ demand requirement.

Several costs are involved in the operation of an inventory network and most play a role in

determining the potential benefit of a transshipment. The only cost exogenous to a transshipment

decision is the initial cost to purchase a piece of inventory and we assume this to be constant for

each item type across the system. Holding costs are incurred at location i for items of type x at a

rate hix per unit of stock and per unit of time. Further, penalty costs are incurred whenever demand

cannot be met immediately. Two methods of penalising unmet demand are considered. If unmet

demand is assumed to be lost from the system, then a one-off cost of Lix per unit of unmet demand

of item type x is incurred at location i. Alternatively, the demand can be backordered with a penalty

cost bix which is incurred per unit of item type x and per unit of time the item remains out of stock.

We are able to address both cost structures. Finally, the cost associated with each transshipment

from location i to location j has two elements: a fixed cost per transshipment R f
ji, and a cost per

unit of item type x transshipped, Ru
jix.

4 Development and analysis of the hybrid transshipment heuristic

To develop a heuristic for transshipment decisions (from where and how much) we broadly fol-

low Axsäter (2003) and Paterson et al. (2012) in their espousal of a quasi-myopic approach to an

otherwise intractable problem. This is explained in Section 4.2. Under this approach all decisions

are taken in the light of an assumed future for the system which has no transshipments. Expressed

technically, the dynamic transshipment policy produced is obtained by performing a single dy-

namic programming policy improvement step from a no transshipment policy. In order to give
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effect to this we need to be able to compute the expected costs incurred under a no transshipment

policy. We proceed to this in the next subsection.

4.1 Expected costs incurred in the absence of transshipments

In what follows we use ILix for the inventory level of item type x at location i at some arbitrary time

t ∈ �+ (deemed the current epoch) and t + s, s ≤ ti(t) for some future time no later than location

i’s next replenishment. We write ILi ≡ (ILi1, ILi2, . . . , ILiX) for the vector of inventory levels of all

item types at i and denote by vi {ILi, t, s} the expected inventory costs incurred at location i during

the time interval (t, t + s) under an assumption that no transshipments are made in the interim.

Before proceeding further, we note that, notwithstanding the fact that demands across distinct

item types may well be correlated, the fact that the expectation operator is linear means that we

have an additive decomposition of total costs into terms which give contributions from individual

item types. Hence, we have

vi {ILi, t, s} =

X∑
x=1

vix {ILix, t, s} , (4.1)

where

vix {ILix, t, s} = vix {ILix, t, s; hold} + vix {ILix, t, s; lost} + vix {ILix, t, s; back} (4.2)

expresses the decomposition of the total costs per item type into costs due to the holding of inven-

tory (first term on the rhs of (4.2)) and costs associated with not being able to meet demand (second

and third terms). In the case of the latter, unmet demand incurs a lost sales cost per item and/or a

cost per item and time unit if demand is backordered. We adopt the model (4.2) for generality and

simplicity. In practice we either have Lix > 0, bix = 0 ∀i, x (lost sales model) or Lix = 0, bix > 0

∀i, x (backordered sales model). Please note that if bix > 0 any inventory level ILix may be neg-

ative, this corresponding to a number of currently backordered items, we use IL+
ix ≡ max (ILix, 0)

and IL−ix = max (−ILix, 0).

In order to compute vix {ILix, t, s; hold} we further disaggregate into a sum with a contribution

from each of the ILix units of stock of type x present at location i at time t, considered in the order
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in which they are demanded to obtain

vix {ILix, t, s; hold} =

ILix∑
j=1

E
(
holding cost from the jth unit of type x inventory

)
=

ILix∑
j=1

j∑
n=1

E
(
holding cost from the jth unit of type x inventory |

jth unit demanded by the nth x-customer
)
· Pn

ix j,

(4.3)

where we use Pn
ix j for the probability that the jth unit of type x inventory is demanded by the nth

x-customer at location i after time t. Please note that the quantities Pn
ix j may be easily recovered

from the quantities f m
ixd defined in Section 3.

Now choose a time τ ∈ (t, t + s). Recall that the number of x-customers arriving at location i

during the interval (t, τ) has a Poisson distribution with mean

Λix(t, τ) ≡ fix

τ∫
t

λi(u) du. (4.4)

It follows that the probability that the nth x-customer after t arrives during the interval (τ, τ + δτ)

has the form qix(n, t, τ) δτ + o(δτ) where

qix(n, t, τ) = fixλi(τ)
(
Λix(t, τ)

)n−1

(n − 1)!
exp {−Λix(t, τ)} . (4.5)

We can now evaluate the expression in (4.3) by conditioning on the time at which the nth x-customer

after t arrives to obtain

E
(
holding cost from the jth unit of type x inventory |

jth unit demanded by the nth x-customer
)

= hix ·
(
Aix(n, t, s) + s · Bix(n, t, s)

)
,

where

Aix(n, t, s) =

t+s∫
t

(τ − t) · qix(n, t, τ) dτ (4.6)

and

Bix(n, t, s) = 1 −

t+s∫
t

qix(n, t, τ) dτ =

n−1∑
m=0

(
Λix(t, t + s)

)m

m!
exp {−Λix(t, t + s)} . (4.7)
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Substituting into (4.3) we now have that

vix {ILix, t, s; hold} =

ILix∑
j=1

j∑
n=1

hix ·
(
Aix(n, t, s) + s · Bix(n, t, s)

)
· Pn

ix j. (4.8)

A similar analysis readily yields that

vix {ILix, t, s; lost} =

∞∑
j=IL+

ix+1

j∑
n=1

Lix ·
(
1 − Bix(n, t, s)

)
· Pn

ix j. (4.9)

Write Dix(t, s) for the demand for x-items at location i between times t and t+s. It is straightforward

to show that the expression in (4.9) may alternatively be expressed as

∞∑
j=IL+

ix+1

Lix · P
(
Dix(t, s) ≥ j

)
,

which may be well approximated by a corresponding finite sum
Mix(t,s)∑
j=IL+

ix+1
where Mix(t, s) is chosen to

make P
(
Dix(t, s) ≥ Mix(t, s)

)
sufficiently small. In practice we choose

Mix(t, s) = E
(
Dix(t, s)

)
+ 3

√
var

(
Dix(t, s)

)
= µix · Λix(t, t + s) + 3

√(
µ2

ix + σ2
ix

)
· Λix(t, t + s).

For the backorder costs a similar argument to that involving the above calculation of holding costs

is needed to compute vix {ILix, t, s; back}. Each unit of potential excess x-demand incurs a backorder

cost over the period between the corresponding x-customer arrival time and t + s. Further, x-items

already on backorder at t incur backorder costs over the entire period. This gives

vix {ILix, t, s; back} = bix ·

 ∞∑
j=IL+

ix+1

[
s −

j∑
n=1

(
Aix(n, t, s) + s · Bix(n, t, s)

)
· Pn

ix j

]
+ s · IL−ix

 , (4.10)

which may also be well approximated by a finite sum. We can now use (4.8) - (4.10) to obtain

(4.2) and hence recover the key quantity vi {ILi, t, s} from (4.1).

4.2 Development of the hybrid heuristic via DP policy improvement

We consider a scenario in which the system has inventory levels {(IL jx), 1 ≤ x ≤ X, 1 ≤ j ≤ N}

at some time t ∈ �+ when a demand di which cannot be fully met from local stock arises at
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location i. Hence dix > ILix for some x. We denote by zi the vector of excess demand at i, namely

(ILix − dix)−, 1 ≤ x ≤ X. Our range of actions is considerable. We may transship from any single

location with stock and we may transship any quantities which do not exceed the stock levels at

the sending location. Alternatively, we may choose not to transship at all and incur costs for lost

sales and/or backordered demand at i. Our definition of excess demand includes any outstanding

backorders at location i (i.e. when ILix < 0). We assume that items in a transshipment are used

to clear backorders and/or meet the current demand before building inventory to help in meeting

future demand. One minor constraint we impose is that we never transship so much stock of any

type that the corresponding inventory level at the receiving location exceeds its next replenishment

level. Our approach to decision-making is to choose the sending location/inventory type quantities

(if any) for the transshipment to minimise the expected costs incurred over any large horizon H

under an assumption that no transshipments are made following the current decision. This is in the

spirit of Axsäter (2003) and Paterson et al. (2012).

To proceed we fix horizon H to be any real number in excess of max
j

T j. If the current excess

demand zi at location i occurring at time t is met in whole or in part through a transshipment of

u jix ≤ IL jx units of type x stock from j, 1 ≤ x ≤ X, then the costs to be incurred at both i and j

over horizon H may be computed under the assumption of no transshipments beyond the current

one. For sending location j this total expected cost over horizon H, namely over the time interval

(t, t + H), is given by the expression

R f
ji +

X∑
x=1

[
Ru

jix · u jix + v jx

{
IL jx − u jix, t, t j(t)

}
+ v j

{
t + t j(t), t + H

}
, (4.11)

where the quantities v jx{·, ·, ·} are computed as in subsection 4.1 and v j

{
t + t j(t), t + H

}
is the ex-

pected cost incurred at location j under no transshipments from the time of the first replenishment

after t (at time t + t j(t)) until the end of the horizon (at t + H). Please note that this latter quantity is

independent of the decision made at the current epoch t. The expression in (4.11) disaggregates the

total expected cost incurred at location j over horizon H into the immediate cost of the transship-

ment (first two terms), the subsequent expected inventory cost until the first replenishment (third
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term) and the expected cost from the first replenishment to the end of the horizon (fourth term).

Similarly, the total expected cost incurred over the horizon H at location i may be expressed as

X∑
x=1

[
Lix ·

(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ vi {t + ti(t), t + H} , (4.12)

where ĨLix(u jix) represents the inventory level of item x at location i after demand and transship-

ment. Under the lost sales model ĨLix(u jix) =
(
ILix + u jix − dix

)+
. However, under the backordered

sales model, inventory levels are not restricted to be positive and ĨLix(u jix) = ILix + u jix − dix. The

first term in (4.12) is the one-off cost associated with any unmet demand following transshipment

under the lost sales model. Under the backorder sales model, backorder costs for each item of

unmet demand apply for the remaining time until the next replenishment and these are absorbed

into the second term in (4.12).

Finally, for any location k , i, j which is not a party to the transshipment, the total expected

cost over the horizon H may be written

X∑
x=1

vkx

{
ILkx, t, tk(t)

}
+ vk {t + tk(t), t + H} . (4.13)

Hence, aggregating over locations using (4.11) - (4.13), the total expected cost incurred across the

entire network over horizon H may be expressed as

R f
ji +

X∑
x=1

[
Ru

jix · u jix + Lix ·
(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ v jx

{
IL jx − u jix, t, t j(t)

}
− vix

{
ILix, t, ti(t)

}
− v jx

{
IL jx, t, t j(t)

}]
+

N∑
k=1

[ X∑
x=1

vkx

{
ILkx, t, tk(t)

}
+ vk {t + tk(t), t + H}

]
. (4.14)

Note that the corresponding total expected cost of making no transshipment at t and subsequently

none throughout (t, t + H) is

X∑
x=1

[
Lix ·

(
IL+

ix − dix
)−

+ vix

{
ĨLix(0), t, ti(t)

}
− vix

{
ILix, t, ti(t)

}]
+

N∑
k=1

[ X∑
x=1

vkx

{
ILkx, t, tk(t)

}
+ vk {t + tk(t), t + H}

]
.

(4.15)

Our decision will be taken to secure the smallest possible value of the costs in (4.14) or (4.15).

13



To express this more succinctly, we develop the index ∆
(
u ji | di, ILi, IL j, t

)
to reflect the benefit

of making a transshipment of size u ji ≡
{
u jix, 1 ≤ x ≤ X

}
at time t from j to i when a demand di

results in a shortage at i and the inventory levels at i and j are ILi and IL j respectively. We write

∆
(
u ji | di, ILi, IL j, t

)
= R f

ji +

X∑
x=1

[
Ru

jix · u jix + Lix ·
(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ v jx

{
IL jx − u jix, t, t j(t)

}
− vix

{
ILix, t, ti(t)

}
− v jx

{
IL jx, t, t j(t)

}]
(4.16)

and

∆ (0 | di, ILi, t) =

X∑
x=1

[
Lix ·

(
IL+

ix − dix

)−
+ vix

{
ĨLix(0), t, ti(t)

}
− vix

{
ILix, t, ti(t)

}]
(4.17)

for the no transshipment index. Our hybrid transshipment heuristic mandates a decision at t to

achieve

min
{

min
j,u ji

{
∆

(
u ji | di, ILi, IL j, t

)
; ∆ (0 | di, ILi, t)

}}
, (4.18)

where the choice of u ji in the second minimisation in (4.18) is constrained by both the stock levels

at j and by the requirement that the stock levels at i should not go above Six

(
t + ti(t)

)
. Hence we

require that

0 ≤ u jix ≤ min
{
IL jx, Six

(
t + ti(t)

)
− ILix + dix

}
, 1 ≤ x ≤ X, and 0 < u jix for some x. (4.19)

If the minimum in (4.18) is achieved by ∆
(
0 | di, ILi, IL j, t

)
then no transshipment is made. Oth-

erwise, the transshipment uses the pair ( j∗,u∗ji) achieving the inner minimisation.

The above approach is flexible and can accommodate a range of important model variants. We

can, for example, easily extend the above to allow transshipments from more than a single location

while in Sections 4.3 and 4.5 we shall suppose that transshipments may be constrained by the

number or weight of items which may be included. Further, the possible ’all or nothing’ nature of

demand mentioned in Section 3 may be easily incorporated into the above by modifying costs in

the analysis to reflect the fact that the demand di will not be lost in total following a shortage if

and only if the triggered transshipment u ji satisfies ILix + u jix ≥ dix, 1 ≤ x ≤ X.
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In practice the above heuristic can be obtained with modest computational effort, especially

so when X, the number of item types, is small. We recommend an online implementation of the

minimisation in (4.18) which computes the key quantities ∆
(
u ji | di, ILi, IL j, t

)
and ∆ (0 | di, ILi, t)

as needed. An offline approach which created a library of such values up front would be hugely

wasteful. In the event of a shortage at some location i, the relevant values of di, ILi and t are

fixed and a search is prosecuted over locations j , i and transshipment profiles u ji. The building

blocks for the computation of ∆
(
u ji | di, ILi, IL j, t

)
are the availability of appropriate quantities of

the form vix

{
ILix, t, ti(t)

}
and v jx

{
IL jx, t, t j(t)

}
. To obtain the complexity of computing these quanti-

ties, we write Λ̂ix := max
n

Λix(t∗i + nTi, t∗i + (n + 1)Ti) for the maximum mean x-demand at location

i during any review period, with M̂ix := µix · Λ̂ix + 3
√(
µ2

ix + σ2
ix

)
· Λ̂ix and M̂ := max

i,x
M̂ix. The

discussion of the computation of the quantities vix

{
ILix, t, ti(t)

}
following (4.9) yields the conclu-

sion that their complexity is no worse than O
(
M̂2

)
. Further, from (4.16) we see that O(X) such

quantities are needed to compute ∆
(
u ji | di, ILi, IL j, t

)
for a single pair ( j,u ji). We now write

Ŝx := max
i,n

Six(t∗i + nTi) for the maximal replenishment level for items of type x at any location and

time. It is straightforward that to compute all of the quantities in (4.18) and to implement the min-

imisation requires no more than O
(
X
(
NM̂

X∏
x=1

Ŝx

)2
)

computations. In practice constraints on, for

example, the size of vehicles available to prosecute transshipments will mean that the number of

feasible u ji (where u ji is feasible if u jix x-items, 1 ≤ x ≤ X, can be carried in a single transshipment

from j to i) is much smaller than that calculation implies. Should F ji be the number of feasible

transshipments u ji from j to i and F̂ := max
j,i

Fji then no more than O
(
X
(
NM̂F̂

)2
)

computations

would be needed to implement an appropriate form of (4.18).

4.3 Characterisations of the hybrid heuristic

In a setup as complex as considered here, it is perhaps unsurprising that simple characterisations of

effective heuristics are challenging to develop. This subsection gives a brief account of some sim-

ple and intuitive features of the hybrid heuristic which are reasonably straightforward to establish.

Theorem 1 states that our hybrid rule is monotone in the stock levels at the sending location.

Hence, if in order to meet some shortage summarised by the triple (i, zi, t), the rule mandates a
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transshipment summarised by the pair ( j∗,u∗ji) when the stock levels at j are given by IL j then in

meeting the same shortage when the stock levels at j are uniformly above IL j (with other features

of the network unchanged) the rule continues to mandate a transshipment from j with the stock

transshipped uniformly no less that u∗ji. In the theorem’s statement we use � to denote the com-

ponentwise weak ordering of two X-vectors. The proof of Theorem 1 may be found in the paper’s

online appendix.

Theorem 1 (The hybrid heuristic is monotone in the stock levels of the sending location)

(a) The index ∆
(
u ji | di, ILi, IL j, t

)
is nonincreasing componentwise in IL j for all fixed values

of u ji, di, ILi and t.

(b) If the minimisation in (4.18) is achieved by the pair ( j∗,u∗ji) and if IL j � IL′j, then the

minimisation

min
{

min
j,u ji

{
∆

(
u ji | di, ILi, IL′j, t

)
; ∆ (0 | di, ILi, t)

}}
is achieved by some pair ( j∗,u′ji) where u∗ji � u′ji.

It is possible to develop this result further as follows: Suppose now that we enhance the con-

straint set (4.19) by adding a linear constraint of the form

X∑
x=1

wxu jix ≤ Wj. (4.20)

Hence, for example, we could take wx = 1 ∀x with Wj then the maximum number of items which

can be carried in a single transshipment from j. Alternatively, wx could be the weight of a single

x-item with Wj then the maximum total weight which can be carried in a single transshipment from

j. Plainly part (a) of Theorem 1 continues to hold. However, we now have a weakened form of

part (b) which states that if IL jx increases (with all else fixed) from a value at which the heuristic

solution takes the form ( j∗,u∗ji) then the supply location chosen by the heuristic will remain j∗ while

the amount of item x supplied will not decrease.

It is also of interest to ask how transshipment decisions made by the hybrid heuristic change

as the time to the next replenishment at locations increase. The situation is complex but suppose
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we simplify matters by taking X = 1 and by supposing that all individual demands are for single

items. Now consider how the transshipment decision made as a result of a shortage at i might

change as the time to the next replenishment at location j increases from t j(t) to t j(t) + δ. The

j-term in an appropriate form of the expression in (4.16) now changes from v j{IL j − u ji, t, t j(t)} −

v j{IL j, t, t j(t)} to v j{IL j − u ji, t, t j(t) + δ} − v j{IL j, t, t j(t) + δ}. For small δ, this change in the value

of the index ∆
(
u ji | di, ILi, IL j, t

)
can be shown to be positive if and only if IL j is less than some

quantity ψ j

(
t j(t), u ji

)
whose dependence on t j(t) may be quite complex but which is increasing

in u ji. The interpretation of this is that location j becomes less attractive as a potential supplier

as its replenishment recedes if its inventory is sufficiently small. In this case the risk of future

shortage costs at j exceeds the benefit of reduced holding costs. In general if the review periods

Ti, 1 ≤ i ≤ N, are increased while keeping other aspects of the system unchanged, then this

increases the importance of an effective approach to the pooling of inventory. This is also the case

in the analogous situation in which space constraints force replenishment levels Six(·) to be reduced

(to below economic optima) while leaving all else the same. Our numerical results in Section 5

indicate that for the latter the cost advantage of using the hybrid approach is enhanced.

4.4 On the setting of replenishment levels

In the discussion above, replenishment levels are assumed given. In this subsection, we first give a

brief account of the economically optimal setting of replenishment levels when there is no pooling

of inventory between locations, i.e., no transshipments. No pooling means that distinct locations

operate independently. This, together with our global assumption from Section 3 that replenish-

ment will always be required when available, mean that it is sufficient to myopically consider how

best to replenish a single location to minimise expected inventory costs incurred over a single

review period. At the end of the subsection, we then describe how we deploy this analysis to es-

tablish an approach to the setting of replenishment levels in the context of the numerical study of

the hybrid proposal in Section 5.

We can without loss of generality consider the optimal replenishment under no pooling of a

single item (x) at a single location (i) and drop the identifier ix from the notation. In particular,
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we consider the choice of replenishment level S to minimise expected inventory costs v{S , 0,T }

incurred during the review period [0,T ]. We write S∗ for the optimal replenishment level, satisfying

v{S∗, 0,T } = min
S∈�+

{
v{S , 0,T }

}
. We also use Dτ for the number of items demanded during [0, τ], Fτ

for its distribution function, defined by Fτ(n) = P(Dτ < n), n ∈ �+, and F−1
T for its inverse

distribution function, namely F−1
T (β) = max

{
n; FT (n) < β

}
, β ∈ [0, 1]. A proof of the following

result may be found in the paper’s online appendix.

Proposition 1

(a) The optimal replenishment level S∗ in the absence of transshipments is given by

S ∗ = max

S ∈ �+;

T∫
0

(h + b) · Fτ(S ) dτ − L + L · FT (S ) − bT < 0

 . (4.21)

(b) S∗ is bounded above as follows:

S ∗ ≤ F−1
T

(
1 −

hT
hT + bT + L

)
. (4.22)

(c) If L > hT > 0 then S ∗ is bounded below as follows:

S ∗ ≥ F−1
T

(
1 −

hT
L

)
. (4.23)

We shall refer to the upper and lower bounds on S∗ given in the above result as S and S

respectively. We readily conclude that for cases of the lost sales model for which hT � L, S will

be reasonably tight since then we have

S = F−1
T

(
1 −

hT
hT + bT + L

)
= F−1

T

(
1 −

hT
hT + L

)
' F−1

T

(
1 −

hT
L

)
= S .

As we shall see, this will be enough for our purposes. We now continue by developing approxima-

tions to the upper bound S based on the normal distribution.

We can use the central limit theorem to develop a normal approximation to the distribution of

the total demand DT under the condition that the expectation E(DT ) is moderately large. Recall

that we use µd and σ2
d respectively for the mean and variance of the number of units demanded
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by a single individual. It then follows that E(DT ) = µdΛ(T ) and Var(DT ) =
(
µ2

d + σ2
d

)
Λ(T ) =(

µ2
d+σ2

d
µd

)
E(DT ). From the above we can conclude that the upper bound S on the optimal replenish-

ment level under no pooling is well approximated by

S ≈ E(DT ) + Φ−1
(
1 −

hT
hT + bT + L

) √(
µ2

d + σ2
d

µd

)
E(DT ). (4.24)

We now restore the item/location identifier ix. Features which will be present in the numerical

examples discussed in Section 5 are those of a repeating demand pattern on a weekly cycle for

all items at all locations and of a review period for all items at all locations equal to an integer

number of weeks. While these are certainly not necessary for the method they simplify things

considerably. Replenishment levels Six, 1 ≤ i ≤ N, 1 ≤ x ≤ X, now need to be tailored to individual

locations i and item-types x but not to the times at which the replenishments are made. From the

above analysis a natural approach to the determination of replenishment levels would be to conduct

an appropriate search using the above upper bounds for no pooling as a starting point. We would

certainly expect that optimal replenishment levels under inventory pooling via transshipments to be

somewhat lower than for no transshipments. Our numerical studies confirm this. Further, it is not

unreasonable to assume common characteristics for inventory costs and for the nature of individual

demands across locations. It is thus not unreasonable to suppose that replenishment levels take the

form

Six = E(DixT ) + αx

√
E(DixT ), 1 ≤ i ≤ N, 1 ≤ x ≤ X (4.25)

and conduct a search over common αx, 1 ≤ x ≤ X, to achieve costs which are close to minimising.

The above discussion notwithstanding, our envisaged application domain frequently features

city centre locations where rents are high and space is limited. Hence it may not be possible to

replenish at the levels suggested by the analysis of the cost model, as above. Indeed, a key moti-

vation for considering transshipments at all is to operate in a way which mitigates the impact of

depressed inventories at individual locations by a scheme of pooling inventory across the network.

In light of this, it will be important to consider the impact of our heuristic transshipment policies

when replenishment levels are set at a somewhat lower level than cost optimal. In Section 5 we
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shall consider the performance of our hybrid transshipment heuristic for both cases when replen-

ishment levels are set in a cost minimising fashion as in the previous paragraph and when rather

lower levels are assumed because of space constraints.

4.5 A lower bound on achievable costs when all locations replenish simultaneously

The intractability of our decision problem means that it is only possible to compare the cost per-

formance of our proposed heuristic directly with optimal in small problems, N ≤ 3 say. This will

indeed be done as part of the numerical study in Section 5. For certain cases, we are able to further

strengthen our analyses by developing lower bounds on the expected cost rate achievable under

any policy. Such is the complexity of our setup that we can only achieve simple and effective

bounds for cases in which (i) all locations are replenished simultaneously (at times nT, n ∈ �,

where T is a common review period), (ii) all locations share a common holding cost rate for each

item type, namely hix = hx, 1 ≤ i ≤ N, 1 ≤ x ≤ X, and (iii) a constraint of the form in (4.20)

delimits transshipments from each location. To illustrate the approach simply we shall take X = 1

and drop the item identifying subscript x in what follows. We shall also focus on the lost sales

model. Extensions to X > 1 and/or to backorder costs are straightforward.

We shall obtain a lower bound LB(S,T ) on the costs achievable under any policy in a single re-

view period of length T and with replenishment levels given by the N-vector S. The corresponding

bound on the achievable cost rate is T−1LB(S,T ). We obtain LB(S,T ) by developing in turn lower

bounds on the two elements of inventory costs, namely holding costs and those incurred through

stock shortages.

To obtain a lower bound on holding costs, we imagine the network operating as a single lo-

cation with aggregate replenishment level Stot :=
N∑

i=1
Si operating under the aggregate demand rate

λtot(t) :=
N∑

i=1
λi(t). This approach to accounting for stock gives a lower bound on the actual stock

present (and hence on the corresponding holding cost rate) at all time points since it defers lost

sales to the last possible moment. Expressed differently, items leave the system soonest possible.
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Using the quantities Stot and λtot(t) in (4.8), we obtain the quantity

vtot

{
Stot, 0,T ; hold} =

Stot∑
j=1

j∑
n=1

h ·
(
Atot(n, 0,T ) + T · Btot(n, 0,T )

)
· Pn

j (4.26)

as a lower bound on holding costs for the network.

To obtain a lower bound on shortage costs, we first use R f
∗i and Ru

∗i as respectively the smallest

fixed and unit costs associated with transshipments to location i. Further, using (4.20) with X = 1

we have an inequality wu ji ≤ W j delimiting the size of transshipments from j to i and W :=

max
j

W j

w
as the maximum quantity which can be handled by a single transshipment. We also recall

from subsection 4.4 that the material around (??) facilitates the computation of the probability

distribution of DiT , the total demand at i in a single review period. Condition now on the event that

location i faces an aggregate shortage z over a single review period. This shortage will incur costs

which are a combination of those due to transshipments and lost sales. It is not difficult to see that

when W < ∞, the quantity

ρi(z) := min
0≤u≤z

{⌈ u
W

⌉
R f
∗i + uRu

∗i + (z − u)Li

}
(4.27)

gives a lower bound on shortage costs at location i. The form of the expression appropriate for the

case W = ∞ is ρi(z) := min
{
R f
∗i + zRu

∗i, zLi

}
. Combining the above elements yields the following

result:

Proposition 2 A lower bound on the network costs incurred over a review period of length T and

with replenishment levels S is given by

LB(S,T ) = vtot

{
Stot, 0,T ; hold

}
+

N∑
i=1

∞∑
j=Si+1

P(DiT = j)ρi( j − Si). (4.28)

5 Experimentation

To test the performance of the new policy an extensive simulation study has been carried out. We

first explore how different heuristic approaches, including the new hybrid policy, perform com-

pared to optimal for small problems. Given the complexity of the decision problem, the analysis
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is restricted to a single item in a network with three locations. Alongside the hybrid policy (H)

developed in Section 4 we tested the performance of the myopic policies no pooling (NP) in which

no transshipments occur and complete pooling (CP) in which transshipments to meet shortages are

designed on a minimum immediate cost basis. We also study a standard reactive policy (R) which

was adapted from Archibald et al. (2010). All policies were applied under the same conditions

using common random numbers. For the optimal policy, the cost rate was determined via dy-

namic programming. Table 2 summarises the optimality gaps obtained for the above policies and

highlights how policy H improves significantly upon R closing the gap to optimal considerably.

In addition of the evaluation of the hybrid policy H via comparisons to optimal in small net-

works we study its performance in larger networks with 10 and 50 locations and two distinct item

types. In Tables 3-7 the cost rate performances of the policies mentioned above are compared in

larger networks along with that of an artificial policy (Hpar) which runs the decision rule H for

each item type separately before aggregating costs. Comparing H to Hpar shows the improvement

achieved by modelling item types together and allowing the coordinated proactive transshipments

of multiple item types at each decision epoch. In Table 8 the cost rates incurred by NP, CP, R and H

are compared with the lower bound established in Section 4.5 for problems with 10 locations which

are replenished simultaneously. Subsequent studies aim to assess the benefits achieved through the

generality of our demand modelling (Table 9) and to characterise competing transshipment heuris-

tics in terms of the size, frequency and timing of transshipments (Figure 1).

In all of the numerical studies reported in the section we shall take the unit of time to be

one day and shall assume that stock is replenished on a weekly basis (Ti = 7, ∀i). Successive

replenishments at location i occur at κi + 7m, m ∈ �, for some offset κi ∈ [0, 7), 1 ≤ i ≤ N. We

also assume a weekly demand pattern. We write λi for the mean number of customer arrivals at

location i per week and ϕik for the long run proportion of customers who arrive during phase (day)

k ∈ {1, . . . , 7} of the week. Hence the customer arrival rate at i during phase k is λiϕik. These

choices are informed by the motivating application concerning the sale of car parts. Note that the

parameters λi and ϕik are chosen constant here, but our approach easily accommodates varying

22



these for successive replenishment cycles to model any trend in demand. In what follows we shall

use D-Pat as an abbreviation for the pattern of weekly demands λλ in the network and P-Pat for the

associated phase patterns ϕϕ.

Parameter Values

Weekly demand
D-Pat 1 λ1̄ = 20, λ2̄ = 20, λ3̄ = 20
D-Pat 2 λ1̄ = 25, λ2̄ = 20, λ3̄ = 15
D-Pat 3 λ1̄ = 30, λ2̄ = 20, λ3̄ = 10

Phase pattern

P-Pat 0 ϕk = 1
7 ∀k (Constant/Stationary)

P-Pat 1 ϕ = (0.100, 0.250, 0.250, 0.100, 0.100, 0.100, 0.100)
P-Pat 2 ϕ = (0.050, 0.375, 0.375, 0.050, 0.050, 0.050, 0.050)
P-Pat 3 ϕ = (0.150, 0.350, 0.200, 0.075, 0.075, 0.075, 0.075)

Table 1: Overview of demand and phase patterns used

In our numerical studies we assign each location to one of three similarly sized groups. Loca-

tions within group g have a common customer arrival rate λḡ. We further always assume a common

phase pattern ϕk, 1 ≤ k ≤ 7, across all locations. Table 1 contains details of the D-Pat and P-Pat

we use in the study. We further take fixd = 0.8(1 − 0.8)d−1, d ≥ 1, as our model for type-x demand

per customer at location i, with an associated mean of 0.8−1 = 1.25. With the exception of the

simultaneous replenishment setting of Table 8, the offsets κi determining the times of location re-

plenishments are drawn independently and uniformly from the interval [0, 7). Transshipment costs

are characterised by the triple (Rfix,Rdist,Ru). The fixed element of the cost of a transshipment from

j to i is given by R f
ji = Rfix + ξ jiRdist, while the per unit cost is Ru

jix = Ru for all choices of j, i

and x. The factor ξ ji is the normalised distance between locations j and i. Since throughout our

experimentation, we found that the lost sales and backordered sales models produced comparable

results, we include results only for the former. For the most part, we assume that holding and lost

sales cost rates do not vary with location and item type. When this is the case we also take the

holding cost rate to be the unit in which all costs are measured. Hence we have hix = 1 and Lix = L

for all choices of i, x. For such cases, we assume from the discussion leading to (4.25) that replen-

ishment levels take the form Six = 1.25λi + α
√

1.25λi, where the parameter α is either set equal

to 1 or 1.5 or is optimised in the manner described in subsection 4.4. In order to demonstrate that

our results are not dependent on assumptions of homogeneity of inventory and transshipment costs
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across item types we include a set of results in Table 5 where this is not the case. The appropriate

form of (4.25) then becomes Six = 1.25λi + αx
√

1.25λi. In all of the experiments 50 simulation

repetitions were performed with each running for 200 replenishment periods (weeks).

Suboptimality gap for policy (%)

Parameter NP CP R H

L
20 10.09 4.98 4.40 0.14
60 76.72 15.00 13.47 0.54

100 133.63 12.43 12.18 0.79

(Rfix ,Rdist ,Ru)
(10, 40, 0) 64.28 12.46 11.52 0.51
(10, 40, 1) 60.13 11.21 10.16 0.41
(5, 20, 1) 96.04 8.75 8.36 0.55

worst case 126.80 15.84 15.48 1.14

Table 2: Suboptimality gap results for a three location network using α = 1

Table 2 summarises results obtained for different heuristic transshipment policies expressed as

the deviation (percentage excess) from the optimal cost rate. These are all three location problems

with replenishment levels set by taking α = 1. Experiments were carried out for all combina-

tions of the demand and phase patterns in Table 1 and three levels of both lost sales penalties and

transshipment costs. This yields 108 problem configurations in all. We present average figures for

the results obtained for different cost levels as well as the worst case. Please note that the hybrid

heuristic H closes the greater part of the suboptimality gap left by other heuristics.

The 10 location experiments whose results are given in Tables 3 and 4 were conducted on

10 randomly generated maps. The experiments were as described above and the relevant model

parameters are given in the tables. We include results for just one phase/demand pattern since

we found varying P-Pat and D-Pat had little impact on the relative performance of the heuristic

policies. The tables give values of the cost per week incurred under different policies and for a

variety of problem contexts also record the percentage cost reduction achieved by H in comparison

to other policies. Table 3 considers contexts in which limited storage space dictates low replen-

ishment levels (α = 1) while in Table 4, the value of α has been chosen to achieve a minimum

cost rate for each policy. This optimal value lies in the range [1.3,1.8] for CP, [1.3,1.6] for R and

[1.1,1.3] for H, with larger optimising α obtained when lost sales penalties and/or transshipments

costs are high. For policy NP, optimal values of α were obtained from (4.21). We can infer that the
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new hybrid policy allows for considerably lower levels of safety stock compared to other policies

thus keeping holding costs low. This is especially important for inventory systems where hold-

ing costs constitute a major part of the operating costs. We can also see that the hybrid policy is

more robust towards higher shortage costs which is also very important for industries where high

penalties apply for unmet customer demand. For high levels of shortage costs, it is notable that

for non-simultaneous replenishments, as is the case here, the myopic policy CP in many cases

outperforms policy R. This is due to the fact that the purely reactive quasi-myopic approach over-

estimates future shortage costs at locations where the remaining time until the next replenishment

is long and thus produces inferior decisions. This deficiency is completely removed by the hybrid

approach.

Parameter Cost per period using policy Improvement H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 543.22 482.19 480.59 411.59 397.82 36.55 21.21 20.80 3.46
60 975.92 495.74 516.04 420.06 403.63 141.79 22.82 27.85 4.07

100 1408.63 495.74 521.01 422.92 405.06 247.76 22.39 28.63 4.41

(10, 40, 1)
20 543.22 491.67 487.97 429.06 417.77 30.03 17.69 16.80 2.70
60 975.92 510.90 527.26 439.29 425.92 129.13 19.95 23.79 3.14

100 1408.63 510.90 532.19 442.56 428.00 229.12 19.37 24.34 3.40

(5, 20, 1)
20 543.22 422.37 434.45 389.82 385.13 41.05 9.67 12.81 1.22
60 975.92 422.38 437.51 393.40 387.43 151.90 9.02 12.93 1.54

100 1408.63 422.38 438.95 394.67 388.36 262.71 8.76 13.03 1.63

Table 3: Lost sales results for 10 locations using α = 1 (D-Pat 3, P-Pat 2)

Parameter Cost per period using policy Improvement H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 465.90 440.98 445.51 405.85 396.26 17.57 11.28 12.43 2.42
60 529.36 443.72 454.11 411.70 400.48 32.18 10.80 13.39 2.80

100 561.26 443.72 455.53 413.52 401.83 39.68 10.43 13.37 2.91

(10, 40, 1)
20 465.90 444.10 448.24 417.97 412.28 13.01 7.72 8.72 1.38
60 529.36 447.79 457.51 423.19 417.78 26.71 7.18 9.51 1.30

100 561.26 447.79 458.72 425.42 419.40 33.82 6.77 9.37 1.43

(5, 20, 1)
20 465.90 412.11 423.19 389.82 385.13 20.97 7.00 9.88 1.22
60 529.36 412.11 424.67 393.40 387.43 36.63 6.37 9.61 1.54

100 561.26 412.11 425.53 394.67 388.36 44.52 6.12 9.57 1.63

Table 4: Lost sales results for 10 locations using respective optimal values of α (D-Pat 3, P-Pat 2)

The studies in Tables 3 and 4 (and those elsewhere in this subsection) suppose that inventory

and transshipment costs are constant over item types. In Table 5 find results from a set of experi-

ments in which we have introduced item cost heterogeneity and set hi1 = 0.5, hi2 = 1.5, Li1 = L,

Li2 = 2L,Ru
ji1 = Ru, Ru

ji2 = 3Ru. Other aspects of the studies are unchanged from those reported
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in Tables 3 and 4. The reader will note that this introduction of item cost heterogeneity has not

materially effected the nature of the results.

Parameter Cost per period using policy Improvement H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 640.40 483.15 488.85 409.20 395.03 62.12 22.31 23.75 3.59
60 1277.62 490.93 514.97 416.84 400.06 219.35 22.71 28.72 4.19

100 1914.83 490.93 519.73 419.37 401.37 377.07 22.31 29.49 4.49

(10, 40, 1)
20 640.40 509.30 508.42 443.54 433.48 47.73 17.49 17.29 2.32
60 1277.62 520.27 536.67 453.97 442.86 188.49 17.48 21.18 2.51

100 1914.83 520.27 541.35 457.54 445.70 329.62 16.73 21.46 2.66

(5, 20, 1)
20 640.40 431.75 440.91 401.83 398.62 60.66 8.31 10.61 0.81
60 1277.62 431.75 444.25 406.94 403.49 216.64 7.01 10.10 0.86

100 1914.83 431.75 445.67 408.66 405.29 372.46 6.53 9.96 0.83

Table 5: Lost sales results for 10 locations with heterogeneous item types using α = 1 (D-Pat 3, P-Pat 2)

In order to evaluate how the benefits of the hybrid policy scale with the size of the network,

experiments were conducted using a network with 50 locations. Here geographical data on 50

branches of a car parts dealer were used. Tables 6 and 7 report a set of results equivalent to those

for 10 locations in Tables 3 and 4. In the determination of replenishment levels the parameter α

was both set to be 1 (Table 6) and optimised (Table 7). The larger number of locations means that

the chance of a suitable sending location when a shortage occurs is enhanced. Hence it is true for

all transshipment policies that safety stock levels, as reflected by the optimal α values computed

for Table 7 were significantly reduced. Optimal α are now in the range [1.0,1.4] for CP, [1.0,1.3]

for R and [0.6,1.0] for H. We can see that with regard to choosing α optimally the benefit of H

observed earlier is increased. The importance of transshipments per se is seen in the dominance of

all transshipment policies over NP.

Parameter Cost per period for policy Improvement H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 2758.67 2205.63 2183.64 1921.43 1879.52 46.78 17.35 16.18 2.23
60 4914.75 2205.92 2195.93 1945.19 1899.59 158.73 16.13 15.60 2.40

100 7070.83 2205.92 2206.71 1957.60 1908.49 270.49 15.58 15.63 2.57

(10, 40, 1)
20 2758.67 2270.44 2236.99 2013.65 1982.72 39.14 14.51 12.82 1.56
60 4914.75 2270.84 2250.22 2044.90 2015.43 143.86 12.67 11.65 1.46

100 7070.83 2270.84 2260.89 2061.33 2030.00 248.32 11.86 11.37 1.54

(5, 20, 1)
20 2758.67 2000.74 1996.39 1898.55 1890.06 45.96 5.86 5.63 0.45
60 4914.75 2000.74 2007.04 1922.02 1914.10 156.77 4.53 4.86 0.41

100 7070.83 2000.74 2013.43 1931.62 1923.36 267.63 4.02 4.68 0.43

Table 6: Lost sales results for a 50 location network using α = 1 (D-Pat 3, P-Pat 2)
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Parameter Cost per period for policy Improvement H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 2374.59 2144.02 2143.82 1914.62 1853.31 28.13 15.69 15.68 3.31
60 2688.90 2144.07 2146.67 1945.19 1881.31 42.93 13.97 14.11 3.40

100 2842.91 2144.07 2150.34 1957.60 1894.10 50.09 13.20 13.53 3.35

(10, 40, 1)
20 2374.59 2178.19 2174.29 2013.65 1982.72 19.76 9.86 9.66 1.56
60 2688.90 2178.27 2177.42 2044.90 2015.43 33.42 8.08 8.04 1.46

100 2842.91 2178.27 2181.04 2061.33 2030.00 40.04 7.30 7.44 1.54

(5, 20, 1)
20 2374.59 2000.74 1996.39 1872.23 1853.04 28.15 7.97 7.74 1.04
60 2688.90 2000.74 2007.04 1900.39 1883.84 42.73 6.21 6.54 0.88

100 2842.91 2000.74 2013.43 1911.29 1894.15 50.09 5.63 6.30 0.90

Table 7: Lost sales results for a 50 location network using respective optimal values of α (D-Pat 3, P-Pat 2)

It is clear from the results obtained in Tables 2-7 that the hybrid policy improves significantly

upon the competing heuristics. For networks of size larger than three locations the full potential

of applying the hybrid approach remains unknown as an optimal solution cannot be determined

for use as a comparator. Section 4.5 introduced an approach which provides a lower bound for

the cost per period achievable under any policy. For this setup an assumption of simultaneous

replenishment of all locations is required. The results presented in Table 8 use the same underlying

parameters as before with the exception that the offset κi from the weekly repeating replenishment

pattern is set to zero for all i. To allow a common lower bound for all policies a fixed value

of α is used. This was set at level α = 1.5 to achieve a reasonably strongly performing set of

replenishment levels for all the policies. We can see that the hybrid policy performs very well

which indicates that the quasi-myopic approach indeed yields a good approximation to solving

the sequential decision problem. The deviation from the lower bound ranges from roughly 1 to

2.5% for the hybrid policy. As was the case in Table 2, Table 8 again makes clear that the hybrid

heuristic H closes the major part of the suboptimality gap left by the competing heuristics in these

larger problems. Further, upon close inspection the reader should observe that the lower bound

developed in Section 4.5 applies to all approaches of stock rebalancing between (simultaneous)

replenishments, not simply those triggered by shortages of the kind considered here. Hence for the

problems in Table 8, heuristic H is competitive with a wide range of possible approaches including

those which take a different approach to proactive transshipment and/or which allow simultaneous

transshipments from more than a single location.
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Parameter Deviation from lower bound (%)

(Rfix ,Rdist ,Ru) L NP CP R H

(10, 40, 0)
20 18.24 19.18 11.11 1.32
60 11.89 21.25 12.77 1.52

100 16.99 21.25 12.85 1.73

(10, 40, 1)
20 18.24 19.76 10.65 2.07
60 11.89 22.39 12.66 2.38

100 16.99 22.39 12.74 2.68

(5, 20, 1)
20 18.24 11.73 6.56 1.42
60 11.89 11.73 6.61 1.82

100 16.99 11.73 6.67 2.03

Table 8: Performance analysis for 10 locations using the derived lower bound and α = 1.5 (D-Pat 3, P-Pat3)

α = 1 α = 1.5

Parameter Cost Gain Cost Gain

(Rfix ,Rdist ,Ru) L Ave H (%) Ave H (%)

(10, 40, 0)
20 177.7 173.0 2.66 165.6 162.7 1.75
60 188.0 182.5 2.88 168.9 165.2 2.16

100 193.7 188.7 2.57 170.1 166.6 2.06

(10, 40, 1)
20 190.2 185.1 2.69 173.4 170.0 1.96
60 201.6 195.6 3.01 177.5 173.2 2.41

100 207.6 202.1 2.65 179.0 174.9 2.27

(5, 20, 1)
20 162.2 158.7 2.14 159.1 156.5 1.59
60 169.0 166.0 1.77 161.1 158.8 1.45

100 173.7 171.1 1.48 161.9 159.9 1.28

Table 9: Non-homogeneous benefit analysis for 10 locations in a single item network (D-Pat 3, P-Pat 3)

To assess the contribution made to the results by our incorporation of non-homogeneous de-

mand, for each of phase patterns 1-3 we designed a hybrid heuristic (Ave) on the basis of a false

assumption of homogeneous demand. In Table 9, find cost rates which compare H with Ave over

a set of cases similar to those used in Tables 3 and 4, but for a single item model and with re-

plenishment levels set by taking α = 1 and α = 1.5. From our entire set of results we note that

a cost rate benefit of up to 3% can be achieved by correctly incorporating demand seasonality in

the model. In an unreported study available from the authors, they demonstrate the superiority of

H over competing heuristics even in the case of pure Poisson demand standard in the literature

hitherto.

We finally analyse the nature of different policies by evaluating statistics collected for the set

of experiments reported in Table 3. The left hand plot of Figure 1 shows how often transshipments

were made under the policies CP, R and H and how close the receiving location was to its next

replenishment expressed in phases. We can see that under the hybrid policy, transshipments are
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less frequent than for policies CP and R. Particularly striking is the extent to which H mitigates

the spike in the frequency of transshipments which occur at the end of a location’s review period

in comparison to CP and R. This is reflected in the cost benefit analysis as fixed costs for trans-

shipments increase. We can also see that due to its myopic nature, policy CP has an increased

transshipment frequency compared to R. Studying the right hand plot of Figure 1, we can under-

stand the huge potential the hybrid policy offers. Here the average shipment size across different

item types is illustrated. While in the majority of cases CP and R ship only one item to meet an oc-

curring shortage, policy H makes significantly larger transshipments. This not only enables fewer

transshipments in the future due to a reduced chance of stockouts it also makes efficient use of the

capacity of vehicles and exploits the dominance of fixed over variable costs.

6 Conclusion

The hybrid policy improves significantly upon a reactive policy and other heuristics when a sub-

stantial part of the cost of transshipments is fixed. This is particularly relevant for inventory net-

works which are spread over a wide geographic area where the cost of transshipping will be pre-

dominantly determined by distance and time travelled rather than the amount transported. The

main improvement lies in the fact that fewer transshipments of larger size are made thus making

efficient use of the resources involved. Not only will reducing the frequency of transshipments

reduce costs, it also reflects a more strategic approach to stock rebalancing and will reduce the

extent to which stock is shuffled repeatedly between locations. We have provided evidence that

our hybrid heuristic not only improves upon previous proposals but also comes close to optimal.
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Figure 1: Timing and size of transshipments for different policies
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In addition to the considerable cost savings in operating an inventory system, our approach also

enables a much greener business operation as the capacity of transport vehicles is used more effi-

ciently and fewer journeys are needed. Allowing compound non-homogeneous demand provides

further performance improvements and greater precision in the policy’s application. The approach

enables a very general setting allowing multiple item types where demand is drawn from a general

multivariate distribution. Further, a more flexible way to model shortage costs is offered. This

increased generality allows the hybrid policy to exploit the benefits offered by economies of scale

in a wide range of practical settings.
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