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Andreev levels in a single-channel conductor
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We calculate the subgap density of states of a disordered single-channel normal metal connected to a
superconductor at one erfidormal-metal—superconductor junctjoor at both end$superconductor—normal-
metal—superconductgSNS junction]. The probability distribution of the energy of a bound stédadreev
level) is broadened by disorder. In the SNS case the twofold degeneracy of the Andreev levels is removed by
disorder leading to a splitting in addition to the broadening. The distribution of the splitting is given precisely
by Wigner’s surmise from random-matrix theory. For strong disorder the mean density of states is largely
unaffected by the proximity to the superconductor, because of localization, except in a narrow energy region
near the Fermi level, where the density of states is suppressed with a log-normal tail.
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[. INTRODUCTION ity distribution of the splitting is given precisely by Wigner’s
surmise from random-matrix theoly.(The spectra of cha-
Several recent works have identified and studied deviaotic systems have spacings described by Gaudin’s distribu-
tions from mean-field theory in the subgap density of state§on, which is close to, but not identical with Wigner’s
of a normal metal in contact with a supercondu¢tdrThe — surmise’®) _ _
excitation spectrum below the gap of the bulk supercon- [N the localized regime the fl_uctuatpns of the Andreev
ductor consists of a coherent superposition of electron antgvels become greater than their spacing, and they can no
hole excitations, coupled by Andreev reflecfioat the longer be distinguished in the mean density of states, which
norma|_meta|_superconductdﬂS) interface. The energy of decreases SmOOtth to zero on approaching the Fermi level.
these Andreev levels fluctuates from sample to sample, buthe energy scale for this soft gap is exponentially small be-
such mesoscopic fluctuations are ignored in mean-fiel@ause of localization, given byy=(fve/1)e”"". The decay
theory. Because of these fluctuations, the ensemble averagel (v(g)) for e<ey has a log-normal formeexg
density of stateév(e)) acquires a tail that extends below the —(I/4L)In (s/sg)]. Such log-normal tails are characteristic of
mean-field gap, vanishing only at the Fermi leyatro ex-  rare fluctuations in the localized regimand have appeared
citation energye). The fluctuations become particularly large recently in the context of the superconductor proximity
if the size of the normal metal is greater than the localizatiorgffect”
length.
The purpose of this paper is to analyze an extreme case of
complete breakdown of mean-field theory, which is still suf- Il QUASIBALLISTIC REGIME
ficiently simple that it can be solved exactly. This is the case A. NS junction
of single-mode conduction through a disordered normal- The NS iuncti ists of . f | metal of
metal wire attached to a superconductor. The localization N junction consists of a piece of normal metal o

length in this geometry is equal to the elastic mean-free pattﬁggéz Latc?hneneo(f[:]eedr :E\Eggg Eind E;]aTship?A:ﬁﬁEdgf tt?]re and
[, so that the wire crosses over with increasing lerigfftom 9- i

the ballistic regime directly into the localized regime— normal metal is of the order of the Fermi wavelength,

without an intermediate diffusive regime. Perturbation theoryzner E_ \We assume an ideal iunction. without anv tunnel
is possible in the quasiballistic reginhe-L, but forl <L an 9YEE - u ! junction, without any tu

essentially nonperturbative approach is required. We will usgarrler and withEx much greater than the superconducting

an approach based on a scaling equaftadso known as in-
variant embeddingthat has proved its use before in different @ ...
contexts™°

We will contrast the quasiballistic and localized regimes,
as well as the two geometries with a single superconducting
contact(NS junction or with two superconducting contacts
at both ends of the normal metal wifsuperconductor— (b) ...
normal-metal—superconduct@NS junction]. If we assume
that the two superconductors have the same phase, so that
there is no supercurrent flowing through the normal metal,
then the Andreev levels of the SNS junction are doubly de-
generate in the absence of disorder. This degeneracy is bro-
ken by disorder. We find that for weak disorder the probabil- FIG. 1. Geometry of the NS and SNS junctions.

x=0 x=L

0163-1829/2001/64.3)/1342066)/$20.00 64 134206-1 ©2001 The American Physical Society



TITOV, MORTENSEN, SCHOMERUS, AND BEENAKKER PHYSICAL REVIEW B4 134206

gap Ag. An electron incident on the superconductor with 6
energy e<A, above the Fermi level is then Andreev re-

L &y/L=0.24, IL=12
flected as a hole at energybelow the Fermi level, with the

5_

phase shift 4 .
¢pa=—arccose/Ag), —mw2<H\<0. (1) ’E\ 3 i

We wish to know at whicke a bound statéAndreev level

will form in the normal metal. 1 i
The electron and hole components of the wave function .
Py(X)=[u(x),v(x)] satisfy the Bogoliubov-de Gennes 0
(BdG) equation? 0 !
Ho A FIG. 2. Mean density of statés units of vo=2L/7hve) of a
A* — HS p=ei, 2 quasiballistic NS junction. The Gaussian with variance given by Eq.

(7) (solid curve$ is compared to the numerical solution of the BdG
where Ho=— (2%/2m) 4%/ 9x*>+ V(x) is the Hamiltonian of equation(data points
the normal metal(with disorder potentialV) and A(x)
=Ao0(—x) is the superconducting gawhich vanishes in Where(- - -) stands for the disorder average. It follows that
the normal-metal regior>0). For narrow junctiongwidth  the distribution of an Andreev level around its ballistic value
much less than the superconducting coherence leggth is @ Gaussian with zero meafje)=0, and variance
=hvg/Ay) the depletion ofA(x) on the superconducting
side may be neglected, hence the step functipr x). At 5 h2v§(2L+§0 Sing,)
the closed endk=L of the normal metal we impose the (0e%)= 20(2L — £, /sinbp)? .
boundary conditiony(L)=0. o/Singa
In this section we address the quasiballistic regime ofo way of illustration, we show in Fig. 2 the mean density of
mean-free path>L. We can then trea?’ as a small pertur-  grates” of an NS junction containing three Andreev levels
bation on the ballistic bound states (¢,/L=0.24) with mean-free path=12L. The Gaussian
) given by Eq.(7) agrees very well with the numerical solution
1 sin (kg +Kk)(x—L)] of the BdG equatioridata points
Y(x)= E sin (ke—k)(x—L)—7n] We briefly explain the numerical method. The BdG equa-
(33 tion is solved numerically on a one-dimensional gtattice
constanta) by replacing the Laplacian by finite differences
sin kex— (ke + k)L ] ) and truncating the Hamiltonian matrix in the superconduct-

)

), 0<x<L,

1
Y= \/_Z(sir[k,:x—(k,:—k)L—rrn]

ing region, where the wave function is evanescent for ener-
gies in the superconducting gap. The resulting tight-binding
model has nearest-neighbor coupling=%2/2ma? (band-
xexp{ — 1sin¢A), x<0. (3b) width 4v). We setEr=vy and Ay=0.1y, corresponding to

o \g=6a and £,=10y3a. The disorder is modeled by a ran-
dom on-site potential which is uniformly distributed in the
interval (—W,W). The mean-free path from the Born ap-
proximation,| = 3E¢(4y— Er)a/W?, was found to fit well to
the prediction of one-dimensional scaling theory for the
mean inverse transmission probability{T )=3[1
+exp(/1)], in the complete range from the quasiballistic to

The total number of Andreev levels within the gap ls/z¢,  the localized regime(The localization lengtt is related to

The normalization constant i8=L—3&,/sin¢g, for KeL
>1. (We denoteker=muvg/h=2m/\.) The wave number
k=el/hvg should satisfy the quantization condition

2kL+¢pa=mn, n=0,12.... (4)

for L>¢&,. (There remains one level if<¢&,.) the mean-free path by=2l, cf. Ref. 6) This allows for a
To first order inV the energy level is shifted by the matrix Parameter-free comparison of the analytical and numerical
element results for the ensemble-averaged density of states.
L . .
5s=f dx VOOTU()2= v (%)?]. (5) B. SNS Junction
0 The quasiballistic regime in an SNS junctidfig. 1(b)] is

. . . qualitatively different from the NS case of the preceding sec-
We assume a potential with a short-range correlation, ®Xfion. The reason is the double degeneracy of the unperturbed
pressed by Andreev levels. This degeneracy exists if the phase of the

2 order parameter in the two superconductors is the same,
VF S(x—x"), 6) which is what we assume in this paper. Let us examine the

splitting of the Andreev levels by the disorder potential.

ﬁ2

(V(x))=0, (VO)V(X))=—
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The SNS junction has energy gap 157

10 IL=12
8 -
A(X)=Ag0(—X)+AgH(x—L). (8) 6 L 8
r 4
The quantization condition reads ; L \
< I
a 0 L N R L
KL+ ¢p=nm, n=0,12.... 9 & 0 02 04 06 08 1
/A
There arel/7&y Andreev levelgfor L> &), each level be- ¢
ing doubly degenerate. We choose the two independent
eigenfunctionsy.. (x) such that they carry zero current. They : -
are given by 0 ol 9 :;;.;;:::;:;;;;::;;::;
s/A
b0 ] S af - o] xc
X)=— expg — —sin ,  X<O0, istributi it ; i
+ \/? cogKex— ) & A FIG. 3. Distribution of the splitting of the first pair of Andreev

10 levels in an SNS junction witlj, /L =0.24. The solid curves are our

(102 theoretical expectation from E¢L1), the data points result from the
numerical solution of the BdG equation. The inset shows the nu-

1 ( cog (ke +k)x] merical data for the mean density of states.

'J/+(X)=\/? COS{(kF—k)x—¢A])' 0<x<L,

(100) wherer(¢)=¢'%() is the reflection amplitude of the disor-
dered normal metal[The hole has reflection amplitude
r*(—e).] In terms of the phase shifts we have

. 1 [ cogkegx+KL) x—L s ) .
Yi(X)=—= exp ——sing,|, x>L, —h(—
/7' \ cogkex+ arn) o :¢(8) d(—¢) _ _
(100 CI)(s)——z +dp(e)=mn, n=0,1,....
14
and s_(x) is obtained by replacing cosine by sine. The nor- _ . 4
malization constant is NO&’ =L — £, /Sin . The density of states(c)=X,5(s—¢,) is related to the

To first order inV the levels are splitted symmetrically SCattering phase shifts

around the ballistic value, by an amouns. The basig10) 1 d

is chosen in such a way that the off-diagonal elements of the v(ie)=—— ds Im Insin®(e+i0"), (15

perturbation vanish. The shift of each level can then be cal- mHe

culated from Eq(5) using the corresponding eigenfunction. where 0" denotes a positive infinitesimal. The imaginary

We again calculate the probability distributid?(s) of the  part of the logarithm jumps byr whenever sib(e) changes

level splitting using Eq(6). The result is sign, hence it counts the number of levels belewThe
derivative with respect te then gives the density of states. It

P(s)= ZZTSS)’ exr{ _47<TSS>2 ) (11) is convenient to write Eq(15) as a Taylor series,
1d 1
with average splitting vie)=— g | @+ Im mE:l Eez'mq’ : (16)
m EgVL+ EpSinda which converges becaus@(s+i0") is equivalent to
(=AM o1 e 7ens. (12 @(e)+i0*.
2l L—¢&p/singp

We seek the disorder-averaged density of stéi€s)).
We recognize Eq(11) as Wigner's surmise of random- One way to proceed is by means of the Berezinskii
matrix theory° techniquet**° An alternative way, that we will follow here,
In Fig. 3 we compare Eq11) with numerical data. The is to start from the scaling equatithfor the probability
agreement is excellent for a range of mean-free paths in théistribution P(¢y) of the phase shift ¢y=3[ ¢(e)
quasiballistic regime. The mean position of the splitted levels—- ¢(—¢)]. This equation has the form
fluctuates only to higher orders ir/l. This makes it possible

to resolve the splitting in the mean density of stdsee inset E: J _ 2_8+ } J Sirtehy | P 17)
in Fig. 3. L dpn\  hve | dy NjT
The initial condition is lim _,oP(¢n) = 6(dn)-
lll. LOCALIZED REGIME The first moment satisfie& ¢y )/ L =2e/hvg, hence
A. NS junction 2el
ballistic reqime i (dn)=7— (19
In order to go beyond the quasiballistic regime into the hue

localized regimeL>| we write the quantization condition

for the Andreev levels in an NS junction in the form Multiplication of Eq. (17) by exp(dméy) and integration

' over ¢y from 0 to 7 yields a set of recursive differential
r(e)r(—e)*e?oa=1, (13)  equationd® for the momentR,,=(e2™Mn),
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@3

N

where y~0.58 is Euler’s constant.

Near the Fermi level, foe<ey, the mean density of
states vanishes as a result of the proximity to the supercon-
ductor. This “soft gap” appears no matter how strongly lo-
calized the normal metal is. The coefficieftg may now be
treated as analytical functions of the parameter

6 2l hv
L Ey/L=0.24 X _ YR
() WﬁUF(l y),

Do dielm
0 0.2 0.8 1 2= o

F
e/A . L. .
FIG. 4. Mean density of states of an NS junction from the qua- Taking the limite ~0 we deduce from Eq17) the partial-

siballistic into the localized regime. The solid curves have beend'fferentlal equation

computed from Eqg16) and(19). The dashed curves are a numeri- IR (;ZR
cal simulation of random disorder in the BdG equation. I(?_L 52

dR, m? die with initial condition lim _,gR(z)=1. This differential equa-

L =|—(Rm+1+ Rmn—1—2R;) + h—m Ry, (19 tion has been studied before in the theory of one-dimensional
UF localization!®!” but not in connection with the proximity

with the initial conditionR,,(0)=1. We solve this set of effect. The result for the mean density of states, derived in

equations by truncating the vectd®{,R,, ...Ry) ata suf-  the Appendix, is given by

ficiently large value oM ~400 and diagonalizing the corre-

R,=R(2). (24)

-zR (25

sponding tridiagonal matrix. From EL6) we then find the 2l _ e e by b
mean density of states. 312 1, 4L 2L\ 2L '
The result is shown in Fig. 4 fof,/L=0.24 and ratios (26)

[/L ranging from the quasiballistic regime to the localized
regime. Agreement with the numerical solution of the BdG
equation is excellent over the whole range.

In the localized regim& >1 the individual Andreev levels

where u=In wfivg /el =In meg/le+L/l. The leading logarith-
mic asymptotic of this expression in the limit<e, has the
log-normal tail

can no longer be distinguished in the mean density of states, ,TEg
because the broadening of the levels becomes greater than (v(e))cexp — I'” s |1 £<%q- (27)
the spacing. In this regime we distinguish two energy ranges

paciid- J ; L/I gy rang The same log-normal tail was found in Ref. 4 for a many-

e>eq ande<ey, Whereey=(fivg/l)e”

For energies higher than, we may use thé — o limit of
the distributionP(¢y), obtained by setting the left-hand side
of Eq. (17) equal to zero. The resulting moments are

channel diffusive conductor. In that case the fadttr is
replaced by the Drude conductance of the normal metal and
the energy scales, is replaced by the Thouless energy
#D/L? (with D the d|ffu5|on constant In our single-channel

m 4el localized conductor neither the Drude conductance nor the
) I (200 Thouless energy play a role.

lim Rm—J doe @

L—oo

oc—iw

We then calculate the mean density of states from(E6), B. SNS junction

with the result In contrast with the quasiballistic regime, the NS and SNS

oL junctions are similar in the localized regim@t least for the
(v(e))= s+f(e), e>eq, (21) case of zero current through the SNS junction considered
T’ﬁUF \/Ao here) Unfortunately, there exists no simple scaling equation
_ as Eq.(17) that can describe the density of states of the SNS
d »do| e 7 e 7(1—e??a) junction. We therefore rely on the numerical solution of the
f(e)= 7 Im fo T o0 g(1-e?N—in| BdG equation. In Fig. 5 we show that the mean density of

(22) states of an NS junction of lengthis close to that of an SNS
) ) ) ) junction of length 2_. This factor of 2 has an obvious expla-
The first term on the right-hand side of E@1) is the energy  nation in the ballistic regimgcompare Eqs(4) and(9)], but

independent density of stateg in an isolated normal metal. it s remarkable that it still applies to the localized regime.
The main effect of the superconductor for ¢4 is an en-

hancement of the density of states close to the ygpf the

bulk superconductofsecond term The third term is nega-
tive for sufficiently smalle and is a precursor of the soft gap  In summary, we have calculated the effect of disorder on
near the Fermi level. Fofy<| ande<fvg/l the reduction the spectrum of Andreev levels in single-channel NS and
term f(&) can be simplified as SNS junctions. The nonperturbative effects of localization in

IV. CONCLUSION
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3 whereK,(2) is the modified Bessel function, such that
NS,L=2/=218 —
SNS,L =4l =42 &y e 92 p2 —
) zzy—z)fp(z)szp(z). (A2)
AT The solution to Eg.(25 with the initial condition
z lim__oR(z)=1is
T | s
~ L I )+f°c g ysinf(ﬂ'v/Z)f 2
z)="1(z v——F;,(2
/ ! — m(v2+1) I
/ | | . . xexg —(v?+1)L/4l]. (A3)
0 0 02 04 0.6 0.8 1 To obtain the density of states of the NS junction it is con-
&/ A venient to define the inverse Laplace transform
FIG. 5. Numerical calculation of the mean density of states of 1 (ix+t0t dz z
an NS junction(solid) and SNS junctiondashed in the nearly F(N)= Z_mf ot (AN)2 R(z)ex TR (A4)
—io+

localized regime. The length of the SNS junction is twice that of the . .
NS junction.(The weak oscillations are remnants of Andreev levels,FFom EQ.(16) we find fore<e the mean density of states

that will disappear ifL/| is increased further. in terms of the functiorf,

4] el
the one-dimensional case can be studied exactly, at least in (v(e))= WF(W) (A5)
the NS geometry. Our research is of theoretical interest in F F

view of recent studies of the subgap density of states beyon@Ur @m is to find the asymptotic form () in the limit
mean-field theory;* but may also be of experimental inter- A—0. The inverse Laplace transform of the modified Bessel

est in view of recent progress made in superconductorfunctions in Eq.(A3) can be found in Ref. 20. We obtain

carbon-nanotube devicé$!® x o ,

The results derived in the quasiballistic regime are not F(A):Fo()\)_ﬁwdv N DPexd — (v +1)L/4I]
restricted to a one-dimensional geometry. Andreev levels of
an SNS junction remain doubly degenerate in higher dimen-

3 v
sions without disorder, and weak disorder will still induce a 1P| 5+ ?,1+iv,—4)\>
splitting distributed according to the Wigner surmise. The (AB)
subgap density of states in the localized regime has been 2\m(1-iv)(iv/2)
studied in higher dimensions without disorder in Ref. 4. Thewhere Fy(\) =exp(—4\). The integrand has a single pole
log-normal tail is a generic feature of the lowest energies. v= —i in the lower half of the complex plane and the residue
from this pole cancels the terf,. Let us shift the contour
ACKNOWLEDGMENTS by the transformatiow— v— (il /L)In(1/\) and consider the

, o , limit A\<e™ """, In this limit the contour is shifted through the
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_ I iv |
manns Mindefond.” X[|iv=1=11In 7\)F > 5N )\) (A7)
. The asymptotic form of this integral in the limk<e "
APPENDIX: DERIVATION OF THE LOG-NORMAL TAIL can be found by evaluation of the expression in square

The differential operator on the right-hand side of Eq.brackets in the poink=0 and calculation of the Gaussian
(25) has eigenfunctions integral. Using the asymptotic formula for the Euler gamma

function one obtains the mean density of states given in Eq.

fo(2)=2\zK,(2V2), (A1) (26).
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