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Abstract
We outline the embedding of the vector curvaton scenario as a promising
mechanism to generate statistical anisotropy within Type IIB string the-
ory, where the vector field on a single D-brane plays the role of the vector
curvaton. We first consider a toy model in the context of open string in-
flation, and then begin to construct a concrete model in the context of
closed string inflation.

1 Introduction

Type IIB string theory has provided a rich arena for embedding phenomenological
scenarios of the early universe within a fundamental theory, providing a wealth of
light fields with masses and couplings that can in principle be known explicitly, which
allows for concrete model-building. In such a context in which the early universe
is expected to be diversely populated, it is natural to wonder whether or not the
features captured in CMB maps are in fact the result of an intricate piece of team
work, rather than a single lone wolf inflaton. In particular, the primordial seeds of
cosmic structure are believed to be generated by gravitational particle production, a
quantum process that requires an expanding background, but does not require the
quantum and classical sectors to be one and the same. Pursuance along these lines of
study led to the curvaton scenario [1] and, more recently, vector curvaton scenario [2,
3], in which the central idea is that the fields which give the dominant contribution
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Six dimensional compact space
(CY3)

to the seeds of cosmic structure have nothing to do with expanding the background
(for vector field driven cosmologies, see e.g. [4]).

Vector fields arise on the world-volumes of D-branes as a result of the open strings
which end of them. Therefore, although their cosmological implications have been
largely unexplored, such fields are completely generic in open string as well as closed
string inflation models because all of these models contain D-branes, either at an
active or passive level. In open string inflation, D-branes (most famously D3-branes)
can actively drive cosmic expansion as they move in warped throat environments (see
[5] for a review). In closed string inflation, Kähler moduli which parameterise the
volumes of compact 4-cycles may drive inflation as they roll to their minima [6],
and these 4-cycles may be wrapped by D7-branes, which are required to be present by
consistency of the theory. In these proceedings we will explore the string constructions
under which D-brane vector fields may become curvatons in both open and closed
string inflation scenarios, where the former will provide a toy model and the latter
will be the starting point for a concrete model.

2 The vector curvaton scenario

The seeds of cosmic structure induce tiny regions of over- and under-densities in the
otherwise uniform energy density of the early universe, and at these loci the geometry
is correspondingly perturbed. This gives rise to a quantity known as the curvature
perturbation ζ, which forms the initial condition for structure growth. The vector
curvaton scenario explores the conditions under which a vector field may produce a
sizable contribution to ζ.

In order to undergo gravitational particle production, fields must be sufficiently light
such that their Compton wavelengths may extend beyond the horizon (plus not be
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conformally invariant). In order to be viable curvatons, they must also give rise to
spectra that are consistent with observations of ζ and thus, importantly, suitably scale-
invariant. In one version of the vector curvaton scenario [7], it is shown that a light
vector field with a mass and a gauge kinetic function that varies during inflation may
give rise to a scale-invariant spectrum of superhorizon perturbations if the mass and
gauge kinetic function obey

m∝ a(t), f ∝ a(t)2 (1)

or
m∝ a(t), f ∝ a(t)−4, (2)

where a(t) is the cosmic scale factor. To see this1, consider the Lagrangian for a
massive Abelian vector field,

L=−
1

4
f Fµν Fµν −

1

2
m2AµAν , (3)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, and f and m are the gauge
kinetic function and mass respectively. We assume that f ∝ a(t)α and m ∝ a(t)β ,
since a(t) sets the only time scale in the problem. For quasi- deSitter expansion with
Hubble parameter H, we find the following equations of motion for the homogeneous
Aµ(t) where Aµ = (A0, A):

A0 = 0, (4)

Ȧ+

�

H +
ḟ

f

�

Ȧ+
m2

f
A= 0. (5)

It is clear that the effective mass of the vector field is given by

M ≡
m
p

f
, (6)

where M � H while the cosmological scales exit the horizon. To study gravitational
particle production we perturb around the homogeneous zero-mode Aµ(t),

Aµ(t, x ) = Aµ(t) +δAµ(t, x ), (7)

and we define the canonically normalised physical (as opposed to comoving) vector
field as

W =
p

f A/a (8)

1We summarise here the computations done in [7].
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with perturbations δW . In momentum space, the equations of motion for the left and
right transverse and longitudinal polarisations of the quantum mode functions of δW ,
w(t, x ), are found to be

ẅL,R+ 3HẇL,R+

�

−
1

4
(α+ 4)(α− 2)H2+

�

k

a

�2�

wL,R = 0, (9)

ẅ||+ (5−α+ 2β)Hẇ||+

�

−
1

2
(α− 2)(2−α+ 2β)H2+

�

k

a

�2�

w|| = 0, (10)

where we have assumed M � H. We may now compute the superhorizon power
spectra for these polarisations. For the left and right transverse modes, we find

PL,R =
k3

2π2

�

�

�

�

lim
k/aH→0+

wL,R

�

�

�

�

2

∝
�

H

2π

�2� k

2aH

�3−2σ

(11)

where σ = 1
2
|α+ 1|. For the longitunal mode,

P|| =
k3

2π2

�

�

�

�

lim
k/aH→0+

w||

�

�

�

�

2

∝
�

3H

M

�2� H

2π

�2� k

2aH

�5−2ρ

(12)

where ρ = 1
2

p

9+ 2(α+ 1)(2−α+ 2β) + (2−α+ 2β)2 and M enters via a Lorentz
boost.

We then see from Eq. (11) that the transverse spectrum is scale-invariant if α=−(1±
3). From Eq. (12), we see that the longitudinal spectrum is scale-invariant if, in
addition, β = −1/2(3 ± 5), but we reject β = −4 because M decreases with a for
this case and so M � H cannot hold in the subhorizon limit. Hence we arrive at
Eqs. (1,2). Note that a necessary condition to obtain these relations is that f and m
have the precise relationships

f ∝ m2 (13)

or
f ∝ m−4, (14)

respectively, in order for the vector field to generate scale-invariant spectra for all of
its components.

3 D-brane vector curvatons

The excitations of D-branes are described by the oscillation modes of the open strings
that end on them. The massless bosonic open string spectrum includes a U(1) gauge
boson which propagates only along the world-volume, and there are massless scalars

4
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which describe the fluctuations in the position of the brane in the transverse direc-
tions. The U(1) world-volume vector fields may then obtain masses via Stückelberg
couplings to bulk two-forms, and these masses can depend on the various scalars in
the theory. In addition, the vector fields may couple to the scalars through their gauge
kinetic functions. If the scalars that enter these quantities are evolving at inflationary
energies, then the early universe would contain massive D-brane vector fields with
time varying masses and gauge kinetic functions. Then, if the vectors are light and the
dynamics of the scalars obey Eqs. (1,2) while the cosmological scales exit the horizon,
these D-brane vector fields could become vector curvatons and contribute to or even
generate the seeds of cosmic structure. We will now examine these possibilities.

3.1 The general set-up

We consider a warped flux compactification of Type IIB string theory in which the ten
dimensional metric takes the form

GMN d x M d xN = h−1/2 gµνd xµd xν + h1/2 gABd yAd yB, (15)

where the indices M , N = (0, ..., 9), µ,ν = (0, ..., 3) and A, B = (4, ..., 9) denote co-
ordinates in ten dimensional spacetime, the four noncompact dimensions and the six
compact dimensions respectively, and h is the warp factor which depends only on the
compact coordinates. We embed a probe Dp-brane with world-volume coordinates
ξa in this background, with three of its directions extended in the three large spatial
dimensions, and its remaining (p − 3) directions wrapping a compact (p − 3)-cycle.
The action for such a brane is a sum of the Dirac-Born-Infeld (DBI) and Wess-Zumino
(WZ) actions, where the former encodes kinetic terms for the brane and its world-
volume fields, and the latter, couplings of world-volume fields and the brane itself to
other fields in the bulk. In the Einstein frame, the DBI action takes the form

SDBI =−µp

∫

dp+1ξe
(p−3)

4
φ

q

−det(γab + e−
φ

2 Fab). (16)

In this expression, φ is the dilaton which parameterises the string coupling, and the
Dp-brane tension Tp = µpe((p−3)/4)φ where µp = (2π)−p(α′)−(p+1)/2 and α′ = `2

s is
the string scale. In addition,

Fab = Bab + 2πα′Fab, γab = GMN∂a x M∂b xN (17)

where Bab is the pullback of the NSNS 2-form field and Fab is the field strength of the
world volume gauge field, and γab is the pullback of the ten dimensional metric on
the brane.

5
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The WZ action takes the form

SW Z = qµp

∫

Wp+1

∑

n
Cn ∧ eF , (18)

where the Cn are the pullbacks of bulk fields Cn on the brane and q = +1(−1) for
a probe Dp-brane(anti-brane). The integral is over the world-volume Wp+1 and the
sum is over the relevant rank (p+ 1) products of bulk and world-volume fields.

We work in the static gauge in which ξµ = xµ. For the compact spacetime coordinates
transverse to the brane (with indices i, j = (p+1, ..., 9)), we allow y i = y i(ξµ): these
functions will give the massless open string modes that parameterise the fluctuations
in the position of the brane.

3.2 D3-brane vector curvaton

We will first consider the vector field on a D3-brane in the context of open string
inflation [8]. In these inflation models, the inflaton is identified with the changing
position coordinate of a Dp-brane as it moves along its potential in a warped throat.
If the potential is sufficiently flat, the brane moves slowly and the scalar position field
which parameterises the motion has a nearly constant energy density, giving rise to
an epoch of slow-roll inflation. If the potential is steep on the other hand but the
brane is moving in a strongly warped region, a surprising result is that the energy
density still continues to be nearly constant. This is due to the fact that the strong
warping forces the brane to slow down despite the steepness of the potential, and
once again this gives rise to an epoch of inflation, in this case known as DBI inflation
[9]. The majority of models consider D3-branes however other possibilities have been
studied.

From the form of Eq. (16) we see immediately that the gauge kinetic function for Aµ
contains a dynamical degree of freedom, namely the dilaton φ. Then, for a D3-brane,
the WZ action in Eq. (18) contains a coupling C2∧ F2 which is able to generate a mass
for the vector field via the Stückelberg mechanism2. Computing the mass explicitly
yields

m= e−φ/2
p
π(2π)5

MP

V6
, (19)

where V6 is the dimensionless volume of the compact space and MP is the Planck
mass. Therefore, both the mass and gauge kinetic function for the vector field contain
the dilaton. While this field is usually considered to be stabilised during inflation, for

2For compactifications of Type IIB with O3/O7 orientifold planes, the four dimensional components of
C2 are projected out of the spectrum, however we will continue to use this coupling for the purpose
of the toy model.

6
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the purpose of our toy model we will assume that it can be dynamical, at least while
the cosmological scales exit the horizon.

The total four dimensional action for the D3-brane that we consider, including all
appropriate terms for gravity, the evolving dilaton φ, the canonically normalised in-
flaton ϕ and the canonically normalised vector curvaton Aµ (after expanding the de-
terminant in Eq. (16)3 and taking into account the mass generation mechanism from
Eq. (18)), then takes the form

SD3 =

∫

d4 x
p

−gh−1

�

M2
P

2
R−

M2
P

4
∂µφ∂

µφ − V (φ)

−
�

1+
1

2
he−φFµν Fµν + h∂µϕ∂

µϕ

�1/2

− V (ϕ) + h−1−
1

2
m2AµAµ

�

.

(20)

We consider the fields to evolve in an FRW universe, in which case the equation of
motion for ϕ(t) is given by

ϕ̈−
h′

h2 +
3

2

h′

h
ϕ̇2+ 3Hϕ̇

1

γ2
ϕ

−
h′

h
e−φ

�

Ȧ

γϕa

�2

+

�

V ′(ϕ) +
h′

h2

�

1

γ3
ϕ

= 0, (21)

where

γϕ =
1

p

1− hϕ̇2
(22)

is the Lorentz factor for the inflaton. For a Maxwellian vector field we may expand
the square root in Eq. (20) such that the equations of motion for Aµ(t) take the form
given in Eqs. (4,5), with the mass m given by Eq. (19), and the gauge kinetic function
f still to be determined.

We first focus on the simplest possibility: the vector field on a stationary D3-brane, in
which case inflation is driven by, for example, the motion of another D3-brane. The
gauge kinetic function is then

f = e−φ , (23)

and the vector field decouples from the dynamics of the inflaton. Taking into account
the precise powers of the dilaton φ that appear in Eqs. (19) and (23), we see that
Eq. (13) is obtained. For our toy model we will merely assume that, in addition,
Eq. (1) may hold4, and move on to consider the cosmology. It is interesting though
that the very precise relationship between f and m in Eq. (13) does in fact happen to
arise for the stationary D3-brane vector field. The cosmological features of the vector

3We keep terms only up to quadratic order in F and ∂µφ and in their products for now, see [8] for the
more general case.

4This behaviour requires a linear potential for the dilaton, which could be an approximation to an
exponential potential for small displacements. However, this behaviour should hold for at least the
10 efolds that span the cosmological scales, which is unfortunately not a small displacement.

7
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curvaton on a stationary D3-brane have been computed in [8], where it is shown
that statistical anisotropy in both the spectrum and the bispectrum of the curvature
perturbation can arise from such a scenario. The amount of statistical anisotropy in
the spectrum, parameterised by g, is found to be

p
g ∼

ΩA

ζ

δW

W
∼ 0.1, (24)

where ΩA is the density parameter for the vector field5. For the bispectrum, the non-
linearity parameter fNL is found to be

12 ≤ ‖ f eq
NL ‖max ≤ 713, (25)

while the degree of statistical anisotropy in the bispectrum, parameterised by G, is

G =
1

8

�

3H?
M

�4

� 1, (26)

which shows that non-Gaussianity is predominantly anisotropic.

We now consider the vector field on a moving D3-brane in a warped throat. For
simplicity we consider the throat to be AdS-like in the regions of interest, in which
case the warp factor takes the simple form h= λ/ϕ4 where λ is the t’Hooft coupling.
In this case we find for the gauge kinetic function

f = e−φγϕ. (27)

Now, for slow-roll inflation, γϕ → 1 and the results obtained for the stationary D3-
brane case follow here. For the case of DBI inflation on the other hand, it is shown in
[8] that

f → a(t)2(1+ε) (28)

where ε is the generalised slow-roll parameter for DBI inflation. This adds a small de-
gree of scale dependence to the spectrum, but once again the results for the stationary
D3-brane follow in this case.

3.3 D7-brane vector curvaton

We will now investigate the vector fields on D7-branes in closed string inflation, and
thereby construct a starting point for a concrete model of the vector curvaton scenario

5Observations suggest g ≤ 029 [10]. Statistical anisotropy will be observed by the Planck satellite if
g ≥ 0.02 [11].

8
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in string theory. We consider the effective action for N = 1, d = 4 supergravity, which
takes the form

S =

∫

d4 x
p

−g
�

1

2
R−Ki j̄∂µT i∂ µ T̄ j̄ − V (T l , T̄ l̄)

�

, (29)

where the Ti = τi + iθi are complex Kähler chiral fields consisting of the 4-cycle
volume moduli τi and their associated axions θi , and Ki j̄ is the Kähler metric. In the
Large volume scenario (LVS) [12], perturbative corrections are added to the Kähler
potential and non-perturbative corrections are added to the tree level superpotential,
which stabilise the Kähler moduli. The potential exhibits exponentially flat directions
which supports slow-roll inflation as the moduli roll to their minima [6]. For a single
volume modulus τm for example, the potential takes the form

V =
3W 2

0 ξ

4V3 −
4W0amAmτme−amτm

V2 . (30)

Here V is the volume of the six dimensional Calabi-Yau in units of the string length
`s, W0 is the tree level superpotential, ξ is proportional to the Euler characteristic of
the manifold, the Am encode threshold corrections, and the am are constants which
depend on the specific non-perturbative mechanism (am = 2π/gs for Euclidean D3-
brane instantons and am = 2π/gsN for gaugino condensation on D7-branes). For a
single evolving field, the canonically normalised inflaton field χm is related to τm by

χm =

r

4λ

3V
τ3/4

m . (31)

The volume V and the 4-cycle moduli τi may be expressed in terms of the 2-cycle
moduli t i according to

V =
1

6
κi jk t i t j tk, τi =

∂

∂ t i V =
1

2
κi jk t j tk, (32)

respectively, where κi jk are the triple intersection numbers and i = 1, ..., n= h1,1.

Geometries featuring an over-all size V controlled by one large 4-cycle with modulus
τ1, and then a number of small blow-up 4-cycles or “holes” with moduli τ2, ...,τn, are
referred to as “Swiss-cheese” (SC) geometries. In an appropriate basis, one can write
V in a particularly simple diagonal form in terms of the 4-cycle moduli6,

V = α̃

 

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

!

(33)

6In a study carried out in [13] which scanned hundreds of geometries, it is shown that a large number
of SC geometries are expressible in the “strong cheese” form in Eq. (33).

9
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where α̃ and λi are model-dependent constants. In the LVS, geometries are chosen
such that τ1 � τ2,...,n, therefore V is not destabilised if one or more of the small
4-cycles evolves.

We consider a D7-brane wrapping a 4-cycle with modulus τ, which is evolving during
inflation and may be driving inflation [14]. As for the D3-brane case, the action for
such a brane descends from the general DBI and WZ actions in Eqs. (16) and (18),
where now we may integrate the DBI action over the internal components of the
brane which wrap the compact 4-cycle. After expanding the determinant in the DBI
action, this integration amounts to adding the 4-cycle modulus into the gauge kinetic
function of the vector field. The WZ action for the D7-brane contains a coupling of
the form

1

2
(2πα′)2C4 ∧ F2 ∧ F2, (34)

where C4 is expanded in the cohomology basis of the manifold. In this expansion is
a four-dimensional 2-form D2 which will give rise to a coupling of the form D2 ∧ F2
when one of the field strengths in Eq. (34) is a compact flux. This coupling generates
a Stückelberg mass for the D7-brane vector field7. Again one must integrate over the
compact components wrapped by the brane, and this introduces the 4-cycle modulus
into the mass for the vector field. In a suitable basis, the mass is given by8

m∝
MP/
p
V

q

τ1/2− τ2

V

. (36)

So we see that both f and m for the D7-brane vector field contain the evolving 4-cycle
modulus τ. We may now treat the dilaton as fixed and use instead the modulus τ as
the varying degree of freedom relevant for the vector curvaton scenario. As such, after
canonically normalising the vector field, we find

f = τ. (37)

The total four dimensional action we will consider then takes the form

S =

∫

d4 x
p

−g

 

M2
p

2
R− ∂µχ∂ µχ − V (χ)−

1

4
f Fµν Fµν −

1

2
m2AµAµ

!

, (38)

7Unlike C2 (and indeed B2) in the D3-brane case, D2 is not projected out of the spectrum by the action
of the orientifold planes for compactifications with O3/O7 planes.

8The form of the the denominator arises from the integration over the harmonic 2-forms which yields

ki jk tk −
(1/2kilm t l tm)(1/2kino tn to)

V
, (35)

and then moving to an appropriate basis as is used in Eq. (33).

10
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where we have used Eq. (29) for a single canonically normalised inflaton χ, and the
relevant terms for the D7-brane vector field from the DBI and WZ actions. Note that
for closed string inflation we do not consider the D-brane scalars here.

In an FRW background, the equation of motion for χ(t) becomes

χ̈ + 3Hχ̇ + V ′−
1

2
f ′
�

Ȧ

a

�2

+mm′
�

A

a

�2

= 0, (39)

where we see that as for the D3-brane case, the vector field can backreact into the
dynamics of the inflaton. The equations of motion for the vector background Aµ(t)
are once again given by Eqs. (4) and (5), where now the gauge kinetic function f and
mass m are given by Eqs. (37) and (36) respectively.

Having all the equations and relevant quantities at hand, we will now consider whether
or not such a set-up allows for an embedding of the vector curvaton scenario. Here we
will check this using simple calculations that can be done analytically. From Eq. (36)
we see that for V � 1 we find m∝ τ−1/4, and because f = τ, we immediately obtain
Eq. (14). Therefore, the D7-brane curvaton can generate scale invariant spectra for
all of its components if Eq. (2) holds, i.e. if f ≡ τ ∝ a(t)−4. We will now investigate
whether or not this is possible.

Let us consider the case for which the backreaction of the vector field into the dyna-
mics of the inflaton is negligible (see [15] for a discussion of non-negligible backreac-
tion). For f = τ∝ a−4, from Eq. (31) we then require that the canonically normalised
field obeys χ ∝ a(t)−3. For inflation to occur we require V ≈ const., and indeed the
potential in Eq. (30) is exponentially flat for large enough τ. For H ≈ const. and
using the approximation V ′ ≈ 0, the solution to Eq. (39) without backreaction takes
the form9

χ =−
e−3Ht

3H
c1+ c2, (40)

We would like c2 ≈ 0 in which case the dominant solution is χ ∝ e−3Ht = a−3 as
required. This means that firstly the minimum of the potential should occur at a very
small value for χ (this depends on the geometry) and secondly, χ should not approach
the second term in Eq. (40) until it is very close to its minimum (this depends on initial
conditions). We therefore require that initially,

c1 = χ̇0 ® −3H0χ0. (41)

9More precisely the full solution, which can only be obtained numerically using the full form of the
potential, will contain suppressed terms that come from the dependence of V ′ on χ. Here we are
interested only in the dominant contributions.

11
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The value of χ should decrease during inflation, so we see that c1 is negative as it
should be. If χ is the inflaton, then we further require that 1/2χ̇2� V such that the
energy density is roughly constant. From the Friedmann equation we obtain

3H2
0

�

1−
3

2
χ2

0

�

= V (χ) (42)

so we require χ0 �
p

2/3, i.e. the field should be subPlanckian to begin with.
Then, for 10 efolds of evolution which span the cosmological scales, we have N =
ln(a f /ai) = −1/3 ln(χ f /χi), so χ f ≈ 10−14χi , which is rather a large field range.
We would further require that the other 50 efolds of inflation take place over a very
small field range, depending upon just how small the stabilised value of χ can be. This
seems feasible given the vast number of Swiss cheese geometries, but it would have to
be verified concretely, checking that the over-all volume and the other volume moduli
are stabilised properly in the process, with realistic values for the parameters. If c2
is a small constant, this will add a degree of dependence upon scale to the curvature
perturbation, as can be seen from Eqs. (11,12) considering that α= 0.

4 Conclusions

We have explored the possibility of embedding the vector curvaton paradigm in Type
IIB string theory as a promising mechanism to generate statistical anisotropy, in both
the open and closed string sectors. We first considered a toy model in open string
inflation, where the vector field on a D3-brane plays the role of the vector curvaton.
With simple computations we then demonstrated the feasibility of constructing a con-
crete model in closed string inflation, where the vector field on a D7-brane plays the
role of the curvaton.
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