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Abstract

A simple pedagogical introduction to the Colombeau algebra of generalised functions is
presented, leading the standard definition.

1 Introduction

This is a pedagogical introduction to the Colombeau algebra of generalised functions. I will limit
myself to the Colombeau Algebra over R. Rather than Rn. This is mainly for clarity. Once the
general idea has been understood the extension to Rn is not too difficult. In addition I have limited
the introduction to R valued generalised functions. To replace with C valued generalised functions
is also rather trivial.

I hope that this guide is useful in your understanding of Colombeau Algebras. Please feel free to
contact me.

There is much general literature on Colombeau Algebras but I found the books by Colombeau
himself[1] and the Masters thesis by Ta. Ngo.c Tŕı[2] useful.

2 Test functions and Distributions

The set of infinitely differentiable functions on R is given by

F(R) =
{
φ : R→ R | φ(n) exists for all n

}
(1)

Test functions are those function which in addition to being smooth are zero outside an interval, i.e.

F0(R) = {φ ∈ F(R) | there exists a, b ∈ R such that f(x) = 0 for x < a and x > b} (2)

I will assume the reader is familiar with distributions, either in the notation of integrals or as
linear functionals. Thus the most important distributions is the Dirac-δ. This is defined either as a
“function” δ(x) such that ∫ ∞

−∞
δ(x)φ(x)dx = φ(0) (3)

Or as a distribution ∆ : F0(R)→ R,

∆[φ] = φ(0) (4)

We will refer to (3) as the integral notation and (4) as the Schwartz notation. An arbitrary distri-
bution will be written either as ψ(x) for the integral notation or Ψ for the Schwartz notation.
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Figure 1: Plots of φ1 ∈ A1 and φ3 ∈ A3

3 Function valued distributions

The first step in understanding the Colombeau Algebra is to convert distributions into a new object
which takes a test functions φ and gives a functions

A : F0(R)→ F(R)

This is achieved by using translation of the test functions. Given φ ∈ F0 then let

φy ∈ F0(R) , φy(x) = φ(x− y) (5)

Then in integral notation

ψ[φ](y) =

∫ ∞
−∞

ψ(x)φ(x− y)dx (6)

and in Schwartz notation

Ψ[φ](y) = Ψ[φy] (7)

We will define the Colombeau Algebra in such a way that they include the elements ψ and Ψ. The
overline will be used to covert distributions into elements of the Colombeau algebra.

We label the set of all function valued functionals

H(R) = {A : F0(R)→ F(R)} (8)

We see below that we need to restrict H(R) further in order to define the Colombeau algebra G(R).
Observe that we use a slightly non standard notation. Here A[φ] : R → R is a function, so

that given a point x ∈ R then A[φ](x) ∈ R. One can equally write A[φ](x) = A(φ, x), which is the
standard notation in the literature. However I claim that the notation A[φ](x) does have advantages.

4 Three special examples.

For the Dirac-δ we see that

δ = ∆ = R (9)
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Figure 2: Heaviside (black) and θ[φ] (red) and
(
θ[φ]

)2
(blue)

where R ∈ H(R) is the reflection map

R[φ](y) = φ(−y) (10)

This is because

δ[φ](y) =

∫ ∞
−∞

δ(x)φ(x− y)dx = φ(−y)

and is Schwartz notation

∆[φ](y) = ∆[φy] = φy(0) = φ(−y)

Regular distribution: Given any function f ∈ F then there is a distribution fD given by

fD[φ] =

∫ ∞
−∞

f(x)φ(x)dx (11)

Thus we set f = fD ∈ H(R) as

f [φ](y) = fD[φy] =

∫ ∞
−∞

f(x)φ(x− y)dx (12)

The other important generalised functions are the regular functions. That is given f ∈ F we set

f̃ ∈ H(R) , f̃ [φ] = f that is f̃ [φ](y) = f(y) (13)

The effect of replacing ψ[φε] is to smooth out ψ. Examples of φ are given in figure 1. The action
θ[φ] where θ is the Heaviside function is given in figure 2.

5 Sums and Products

Given two Generalised functions A,B ∈ H(R) then we can define there sum and product in the
natural way

A + B ∈ H(R) via (A + B)[φ] = A[φ] + B[φ] i.e. (A + B)[φ](y) = A[φ](y) + B[φ](y) (14)
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and

AB ∈ H(R) via (AB)[φ] = A[φ]B[φ] i.e. (AB)[φ](y) = A[φ](y)B[φ](y) (15)

We see that the product of delta functions δ2 ∈ H(R) is clearly defined. That is

δ2[φ](y) = (δ[φ]δ[φ])(y) = δ[φ](y)δ[φ](y) =
(
φ(−y)

)2
Although this is a generalised function, it does not correspond to a distribution, via (7). That is
there is no distribution Ψ such that Ψ = (δ)2.

Likewise we can see from figure 2 that (θ)2[φ] =
(
θ[φ]

)2 6= θ[φ].

6 Making f and f̃ equivalent

Now compare the generalised function f and f̃ (12),(13). We would like these two generalised
functions to be equivalent, so that we can write f ∼ f̃ . One of the results of making f ∼ f̃ is that
if f, g ∈ F then

(fg) ∼ (̃fg) = f̃ g̃ ∼ f g

In the Colombeau algebra, which is a quotient of equivalent generalised functions, we say that f and
f̃ are the same generalised function.

The goal therefore is to restrict the set of possible φ so that when they are acted upon by (f − f̃)
the difference is small, where small will be made technically precise. When we think of quantities
being small, we need a 1-parameter family of such quantities such that in the limit the difference
vanishes. Here we label the parameter ε and we are interested in the limit ε → 0 from above, i.e.
with ε > 0. Given a one parameter set of functions gε ∈ F then one meaning to say gε is small
is if gε(y) → 0 for all y. However we would like a whole hierarchy of smallness. That is for any
q ∈ N0 = N

⋃
{0} then we can say

gε = O(εq) (16)

if ε−qgε(y) is bounded as ε → 0. Note that we use bounded, rather that tends to zero. However,
clearly, if gε = O(εq) then ε−q+1gε → 0 as ε→ 0.

We will also need the notion of gε = O(εq) where q < 0. Thus we wish to consider functions
which blow up as ε→ 0, but not too quickly. Such functions will be called moderate.

Technically we say gε satisfies (16) if for any interval (a, b) there exists C > 0 and η > 0 such that

ε−q|gε(x)| < C for all a ≤ y ≤ b and 0 < ε < η (17)

We introduce the parameter ε via the test functions, replacing φ ∈ F0 with φε ∈ F0 where

φε(x) =
1

ε
φ
(x
ε

)
(18)

Observe at as ε→ 0 then φε becomes narrower and taller, in a definite sense more like a δ-function.
Thus we consider a generalised function A to be small, if for some appropriate set of test functions
φ ∈ F0 and for some q ∈ Z, A[φε] = O(εq).

Let us first restrict φ ∈ F0 to be test function which integrate to 1. That is we define A0 ⊂ F0,

A0 =

{
φ ∈ F0

∣∣∣ ∫ ∞
−∞

φ(x)dx = 1

}
(19)
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f (back), f [φ1|ε=0.2] (blue) and f [φ1|ε=0.1] (red). f (back), f [φ3|ε=0.2] (blue) and f [φ3|ε=0.1] (red).

(f − f̃)[φ1|ε=0.02] (blue) and
(f − f̃)[φ1|ε=0.01] (red).

(f − f̃)[φ3|ε=0.02] (blue) and
(f − f̃)[φ3|ε=0.01] (red).

Figure 3: Plots of f [φε] with f(x) = tanh(10x)
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Given φ ∈ A0 and setting z = (x− y)/ε so that x = y + εz

f [φε](y) = fD[φyε ] =

∫ ∞
−∞

f(x)φε(x− y)dx =
1

ε

∫ ∞
−∞

f(x)φ
(x− y

ε

)
dx

=

∫ ∞
−∞

f(y + εz)φ(z)dz

(20)

Thus as ε→ 0 then f(y + εz) ≈ f(y) so that, since φ ∈ A0,

f [φε](y) =

∫ ∞
−∞

f(y + εz)φ(z)dz ≈
∫ ∞
−∞

f(y)φ(z)dz = f(y)

∫ ∞
−∞

φ(z)dz = f(y) = f̃ [φε](y)

In fact since f(y + εz)− f(y) = O(ε) we can show using (17) that

if φ ∈ A0 then (f − f̃)[φε] = O(ε) (21)

This is good so far, but we want to further restrict the set φ so that we can satisfy

(f − f̃)[φε] = O(εq) (22)

to any order of O(εq).
Taylor expanding f(y + εz) to order O(εq+1) we have

f(y + εz) =

q∑
r=0

εrzrf (r)(y)

r!
+O(εq+1)

Thus

(f − f̃)[φε](y) =

∫ ∞
−∞

(
f(y + εz)− f(y)

)
φ(z)dz =

∫ ∞
−∞

( q∑
n=1

εrzrf (r)(y)

r!
+O(εq+1)

)
φ(z)dz

=

q∑
n=1

εrf (r)(y)

r!

∫ ∞
−∞

zrφ(z)dz +O(εq+1)

(23)

Thus we can satisfy (16) to order O(εq+1) if the first q moments of φ(z) vanish:∫ ∞
−∞

zrφ(z)dz = 0 for 1 ≤ r ≤ q

We now define all the elements with vanishing moments.

Aq =

{
φ ∈ F0(R)

∣∣∣ ∫ ∞
−∞

φ(z)dz = 1 and

∫ ∞
−∞

zrφ(z)dz = 0 for 1 ≤ r ≤ q

}
(24)

So clearly Aq+1 ⊂ Aq. We can show that these functions exist. Thus from (23) we have

φ ∈ Aq implies (f − f̃)[φε] = O(εq+1) (25)

Two example test functions φ1 ∈ A1 and φ3 ∈ A3 are given in figure 1. The result f [φε], (12), (20)
is given in fig 3.

The easiest way to construct φ ∈ Aq is to choose a test function ψ and then set

φ(z) = λ0ψ(z) + λ1ψ
′(z) + · · ·+ λq−1ψ

(q−1)(z)

where λ0, . . . , λq−1 ∈ R are constants determined by (24).
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7 Null and moderate generalised functions.

As we stated we wanted f and f̃ to be considered equivalent. From (25) we have φ ∈ Aq then
(f − f̃)[φε] = O(εq+1). We generalise this notion. We say that A,B ∈ H(R) are equivalent, A ∼ B,
if for all q ∈ N there is a p ∈ N such that

φ ∈ Ap implies A[φε]−B[φε] = O(εq) (26)

We label N (0)(R) ⊂ H(R) the set of all elements which are null, that is equivalent to the zero
element 0 ∈ H(R) that is

N (0)(R) = {A ∈ H(R) |A ∼ 0}

I.e.

N (0)(R) = {A ∈ H(R) | for all p ∈ N there exists q ∈ N such that for all φ ∈ Aq, A[φε] = O(εp)}
(27)

Examples of null elements are of course f − f̃ ∈ N (0)(R), which is true by construction. Another
example is N ∈ N (0)(R) which is given by

N [φ](y) = φ(1) (28)

Since for any φ ∈ A0 there exists η > 0 such that 1/η is outside the support of φ. Thus φε(1) = 0
for all ε < η and hence N [φε] = 0 so N ∈ N (0)(R). However, although N ∈ N (0), we can choose φ
so that N [φ](y) = φ(1) is any value we choose. Thus knowing that a generalised function A is null
says nothing about the value of A[φ] but only the limit of A[φε] as ε→ 0.

We would like N (0)(R) to form an ideal in H(R), that is that if A,B ∈ N (0)(R) and C ∈ H(R)
then

• A + B ∈ N (0)(R) and

• AC ∈ N (0)(R).

It is easy to see that the first of these is automatically satisfied. However the second requires one
additional requirement. We need

C[φε] = O(ε−N) (29)

for some N ∈ Z. Thus although C[φε] → ∞ as ε → 0 we don’t want it to blow up to quickly. Now
we have the following:

Given A ∈ N (0)(R) and C satisfying (29) and given q ∈ N0 then there exists p ∈ Z such that
φ ∈ Ap implies A[φε] = O(εq+N). Hence

(AC)[φε] = A[φε]C[φε] = O(εq+N)O(ε−N) = O(εq)

hence AC ∈ N (0)(R). We call the set of elements C ∈ H(R) satisfying (29), moderate and set of
moderate functions

E (0)(R) =
{
A ∈ H(R)

∣∣ there exists N ∈ N such that for all φ ∈ A0, A[φε] = O(ε−N)
}

(30)

Examples of moderate functions include

∆[φε](y) = φε(−y) =
1

ε
φ
(
− y

ε

)
= O(ε−1) ,

(
∆
)n

[φε] = O(ε−n)

and

f̃ [φε](y) = f(y) = O(ε0)
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8 Derivatives

The last part in the construction of the Colombeau Algebra is to extend all the definitions so that

they also apply to the derivatives
dA[φ]

dy
,
d2A[φ]

dy2
, etc. We require that not only does a moderate

function not blow up too quickly, but neither do its derivatives, i.e.

(A[φ])(n) =
dn

dyn
(
A[φ]

)
∈ E (0)(R) (31)

Thus we define the set of moderate function as

E(R) =
{
A ∈ E (0)(R)

∣∣∣ (A[φ]
)(n) ∈ E (0)(R) for all n ∈ N, φ ∈ A0

}
(32)

That is

E(R) =
{
A ∈ H(R)

∣∣∣ for all n ∈ N0 there exists N ∈ N such that for all φ ∈ A0,(
A[φε]

)(n)
= O(ε−N)

} (33)

Likewise we require that for two generalised functions to be equivalent then we require that all the
derivatives are small

N (R) =
{
A ∈ N (0)(R)

∣∣∣ (A[φ]
)(n) ∈ N (0)(R) for all n ∈ N

}
(34)

That is

N (R) =
{
A ∈ H(R)

∣∣∣ for all n ∈ N0 and q ∈ N there exists p ∈ N such that

for all φ ∈ Ap,
(
A[φε]

)(n)
= O(εq)

} (35)

9 Quotient Algebra

We write the Colombeau Algebra as a quotient algebra,

G(R) = E(R)/N (R) (36)

This means that, with regard to elements A,B ∈ E(R) we say A ∼ B if A − B ∈ N (R). For
elements in A,B ∈ G(R) we simply write A = B.

Given A ∈ G(R), then in order to get an actual number we must first choose a representative
B ∈ E(R) of A ∈ G(R), then we must choose φ ∈ A0 and y ∈ R then the quantity B[φ](y) ∈ R.

10 Summary

We can summarise the steps needed to go from distributions to Colombeau functions:

• Convert distributions which give a number Ψ[φ] as an answer to functionals A[φ] which give a
function as an answer.

• Construct the sets of test functions Aq, so that f ∼ f̃ , i.e. f − f̃ ∈ N (0)(R)

• Limit the generalised functions to elements of E (0)(R) so that the set N (0)(R) ⊂ E (0)(R) is an
ideal.

• Extend the definitions of E (0)(R) and N (0)(R) to E(R) and N (R) so that they also apply to
derivatives.

• Define the Colombeau Algebra as the quotient G(R) = E(R)/N (R).

The formal definition, we define E(R) via (33), then N (R) via (35) and (24). Then define the
Colombeau Algebra G(R) as the quotient (36).
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