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Abstract. Pollution from oil and gas exploitation in the Niger Delta has greatly 

endangered the natural ecosystem, with gas flaring identified as a key agent of 

environmental pollution in the region. Efforts to evaluate the impacts of flaring on the 

surrounding environment have been hampered by limited access to official information 

on flare locations and volumes; hence an alternative method of acquiring such 

information is needed. This paper describes the development and application of the 

Landsat Flare Detection Method (LFDM), based on the combination of the near, 

shortwave and thermal infrared bands of Landsat imagery. The technique was validated 

using a reference dataset of flare locations interpreted from aerial photographs, 

achieving a user accuracy of 86.67%. The LFDM was applied to a time-series of 

imagery (1984 to 2012 inclusive) to obtain a long term flaring history of the region; 303 

flares (251 onshore and 52 offshore) were detected over the study period. The 

spatiotemporal distribution of these flares corresponds with known variations in oil and 

gas activities in the region. There was considerable variation between states in the 

trajectories of gas flaring activity and the proportion of onshore versus offshore flaring, 

which indicates substantial spatiotemporal variations in the environmental impacts of 

this industry. The LFDM builds upon existing methods of flare detection, which were 

based on moderate resolution imagery, by offering: increased precision of flare location 

estimates, improved objectivity, accurate identification of onshore and offshore flares 

and a long flaring history. The LFDM is an efficient and cost effective method which is 

able to provide local to regional scale information which is complementary to that 

derived from other remote methods of flare detection and ground-based surveys. It 

could thus be used for either backward (flare history) and/or forward (monitoring) 

surveys, especially in monitoring the country’s progress towards the recently set 30% 

flare reduction target by 2017. 
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1. Introduction 

 

Nigeria is one of the largest crude oil producing countries in the world, with its daily 

production estimated at 2.6 million barrels/day as at 2004 (Vanguard Newspaper, 2012, 

2011; NNPC, 2011). In addition to the crude oil found in the Niger Delta region of the 

country, there are considerable reserves of associated and non-associated natural gas, 

estimated to be in excess of 48.8 trillion cubic metres, making the country the 10th 

largest in the world in terms of proven natural gas reserves (NLNG, 2012). Decades of 

oil and gas exploitation have brought huge financial benefits to the country but also 

severe environmental problems that have endangered the region’s fragile biodiversity. 

The Niger Delta ecosystem has thus been declared one of the most endangered 

ecosystems in the world (Nigerian Conservation Foundation, 2006). Environmental and 

health issues such as agricultural land and mangrove degradation, biodiversity loss, 

water and air quality degradation, and increasing risks to human health, have all been 

associated with oil and gas exploitation in the region (Chukwuezi, 2006; Ugochukwu, 

2008).  

Gas flaring (Figure 1) is a process used in separating natural gas associated with 

extracted crude oil (through burning). This is usually carried out at flow stations where 

crude oil from a group of wells in an oil field is initially gathered for processing. In 

Nigeria this practice has been ongoing since the commencement of oil exploration in 

1958. Due to weak environmental regulations and enforcement in the country (World 

Bank, 2004), companies have found it more profitable to burn off the natural gas than to 

reinject or convert it to an energy source (Liquefied Natural Gas).   

 

 
Insert Figure 1 here 

 

Figure 1. Shell gas flare at Kolo Creek Bayelsa State, Nigeria, surrounded by agricultural fields (Source: 

Friends of the Earth, 2004a).  

 

 

Among the oil producing countries, Nigeria currently has the second highest record 

of gas flaring (Elvidge et al., 2009a, 2009b, 2007; Friends of the Earth, 2004b; NLNG, 

2012; Olukoya, 2008) and this has been identified as a key agent of environmental 

pollution in the region. There are strong indications that flaring has caused widespread 

environmental degradation via air pollution, heat stress, acid rain and soil bacteria 

reduction (NLNG, 2008; Zabbey, 2004). In addition, there have been continuous claims 

from host communities of directly experiencing the adverse effects of flares on their 

health and environment. Furthermore, in 2002 the World Bank reported that gas flaring 

in Nigeria had contributed more greenhouse gases to the atmosphere than any other 

source in sub-Saharan Africa (World Bank, 2002).  

However, there is little auditable evidence of the magnitude of the impacts due to 

the inherent difficulty in obtaining reliable information about flaring from relevant 

agencies (GE Energy, 2011). Flaring usually occurs at remote and hazardous locations 

with restricted access, and public reporting of detailed flare related information (such as 

exact locations and flaring volumes) is usually discouraged by relevant government 

agencies through bureaucratic procedures. This restriction of access to information has 

thus greatly hindered comprehensive empirical assessment of the impact of flaring on 

the Niger Delta environment, and most research in this area has largely been speculative 

(Friends of the Earth, 2005). Remote sensing offers a potential solution to this through 
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the detection, continuous monitoring and mapping of flare locations over extended 

periods. The following sections demonstrate the capabilities of remote sensing for 

detecting fires and gas flares, and explain the need for the new methodological approach 

developed in the present study. 

    

1.1 Detection of fires using satellite imagery 

 

In order to protect lives, properties and ecosystems, numerous satellite systems have 

been deployed to detect and monitor fires and their effects, due to their timely and 

repetitive observations, multispectral viewing capabilities, information retrieval from 

hazardous locations and synoptic detection capabilities. Fire detection is based on the 

ability of sensors to identify signals produced by fire from space. The two main types of 

signal employed for this purpose are the direct (flames and heat) and the indirect (smoke 

and burned surfaces). The direct signals are most commonly employed in fire detection 

(Movaghati et al., 2009; Justice et al., 2006; Weaver et al., 2003), while the indirect are 

employed for post fire assessment and management (Lanorte et al., 2013; Sedano et al., 

2013). Most satellite-based fire detection studies have focused on forest/biomass fires, 

as their impacts draw considerable attention from the research community and 

investigations are facilitated by the availability of well-validated fire-hotspot algorithms 

(Dozier, 1981; Giglio et al., 2003; Kaufman et al., 2000; Martin et al., 1999; Matson 

and Dozier, 1981; Prins and Menzel, 1992). Fire detection from space is based on 

Planck’s function (the temperature of a blackbody determines the characteristics of 

spectral radiation it emits). Radiation emitted at typical surface fire temperatures mostly 

lies in the infrared region of the electromagnetic spectrum. Thus, images from sensors 

such as Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Geostationary Operational Environmental 

Satellite (GOES), which have infrared bands, have mostly been used for forest fire 

detection (Ichoku et al., 2003; Justice et al., 2006; Kaufman et al., 1998; Li et al., 2000; 

Prins and Menzel, 1992). These systems also have relatively high temporal resolution, 

enabling near-continuous monitoring of active fire fronts, which is important given the 

ephemeral nature of biomass fires. 

 

1.2 Fire detection algorithms 

 

Four major classes of algorithms have been developed to detect fires using satellite 

images (Li et al., 2000; Martin et al., 1999). These techniques were developed initially 

using AVHRR data then adapted for data from different sensors.  

The single band algorithm for fire hotspot identification was developed based on 

the AVHRR mid-infrared band 3 (3.75µm) (Malingreau and Tucker 1988). Typically, 

the radiative energy emissions of fires reach peak values at temperatures ranging 

between 500K and 1000K (Li et al., 2000). However, AVHRR band 3 pixels saturate at 

a brightness temperature of 320-331K (Robinson, 1991), as the sensor was not designed 

for fire detection. Despite this, band 3 can still be used to identify fire pixels as fire 

rarely saturate the pixels. So in its simplest form the fire detection algorithm retains all 

saturated or near-saturated pixels in AVHRR Band 3. In other forms, a single 

empirically-determined threshold is used to determine fire pixels in the Band 3. By 

using this approach, straw-burning was detected in Great Britain with AVHRR data 

(Muirhead and Cracknell, 1985) and biomass burning detected in the Amazon Basin of 

Brazil (Setzer and Pereira, 1991). The accuracy of single band threshold algorithms is 
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greatly limited by the presence of bright objects such as highly reflective clouds and 

land surfaces. This can lead to false detections, restricting the utility of the single band 

algorithm for regional fire detection (Martin et al., 1999), and leading to the 

requirement for different thresholds for night-time data and day-time data, different 

ecosystems and different seasons. The single band algorithm was found to be most 

useful with night-time data, where the effects of solar irradiation are minimised (Martin 

et al., 1999).  

The multi-band threshold algorithm was developed to improve upon the single band 

algorithm.  It basically combines information (calculated brightness temperatures) from 

AVHRR band 3 and band 4 using two or more fixed thresholds for the bands, to 

determine fire hotspots. It generally involves: the use of band 3 to identify all potential 

fires, after which clouds are removed with band 4, and the difference in brightness 

temperature between bands 3 and 4 (T3-T4) is finally used to isolate fires from high 

temperature background. This is based on the notion that fire pixels have significantly 

larger values of T3-T4 than non-combusting background (Li et al., 2000). However, 

when a pixel is largely covered by an active fire, band 4 receives enough radiance to 

increase T4 up to saturation levels, in which case the test becomes inadequate. Another 

limitation is that thresholds are generally region-specific, thus modifications are 

required for different regions (Kennedy et al. 1994). The T3-T4 test, while efficient in 

removing false detections, is also limited as factors other than fire could create similar 

differences such as: (i) unequal atmospheric effects (ii) unequal emissivities; and (iii) 

solar reflection in band 3. The T3-T4 test works well for moderate resolution satellite 

images such AVHRR and MODIS (Kuenzer et al., 2008), where fires usually cover a 

small proportion of a 1km pixel, but for higher resolution images such as Landsat, the 

test would not be as effective, as fires could easily occupy a large proportion of a 

120/60m pixel (Li et al., 2000). 

Contextual algorithm was developed to allow automatic adaptation of threshold 

values based on local conditions. Fixed threshold approaches are insensitive to spatio-

temporal variations in land surface temperature and this can constrain the efficiency of 

the algorithms for fire detection (Martin et al., 1999). Contextual algorithms enable the 

continuous updating of threshold values based on the condition of surrounding pixels, 

thus accounting for variations in the local background signal. The basic process 

involves the initial setting of threshold values to identify potential fire pixels and then 

fine-tuning of the thresholds to confirm fires among the potential fire pixels (Li et al., 

2000). The values of the neighbouring pixels to a target pixel serve as indicators of the 

radiometric characteristics of the local environment (Martin et al., 1999). The 

contextual algorithm was used in the development of the MODIS active fire detection 

product (Giglio et al., 2003). 

Sub-pixel fire detection algorithms are used to detect fire and estimate fire size 

and temperature at sub-pixel level, through the decomposition of pixel responses into 

background and fire signals. This is based on the work of Dozier (1981) who found that 

this could be achieved using AVHRR bands 3 and 4 in areas of uniform background, if 

pixels were not saturated and the fire signal was significant in both bands. The 

algorithm is based on simultaneously solving two equations (Dozier model), derived 

from the two bands, to obtain sub-resolution brightness temperatures and the fractions 

of pixels occupied by fires, assuming the background temperature is known (Martin et 

al., 1999). However, it has been observed that the effectiveness of the sub-pixel 

approach is often limited due to violations of the underlying assumptions that: (i) pixels 

are unsaturated; (ii) any pixel is composed of only two uniform sets of temperature; 
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high  temperature (fire)  and low temperature (background), (iii) all fires within a pixel 

are grouped together, (iv) both fire and background have black body emissivity 

properties, and (v) the background has spatially homogenous thermal properties 

(Peterson et al., 2013; Martin et al., 1999; Li et al., 2000). Furthermore, retrieved fire 

areas and temperatures can be extremely sensitive to the selection background 

temperature values (Langaas, 1993).  

Consequently, recent operational fire detection algorithms from different sensors 

are based upon one or more of the first three classes of algorithms. Some prominent 

examples include: the Wildfire Automated Biomass Burning Algorithm (WF_ABBA), a 

contextual algorithm derived from the GOES imagery and ancillary databases (Prins 

and Menzel, 1992;  Schmidt and Prins, 2005); the Bi-spectral Infra-red Detection 

(BIRD) hotspot detection, a contextual algorithm (Zhukov et al., 2006) based on BIRD 

image; the World Fire Atlas, a single threshold algorithm (Casadio and Arino, 2009) 

based on ATSR; the Meteosat SEVIRI fire detection algorithm, a hybrid contextual and 

multi-band approach (Roberts and Wooster, 2008); the Sentinel-3 Sea and Land Surface 

Temperature Radiometer (SLSTR) active fire detection, a hybrid contextual and multi-

band algorithm (Wooster et al., 2012); the MSG fire detection algorithms which include 

multi-band and contextual approaches (ATPS, 2013). 

 

1.3 Detection of gas flares using satellite imagery 

 

Although gas flares are numerous globally, only a small number of studies have 

attempted to detect them remotely.  Croft (1978) was the first to suggest that flares were 

detectable through satellite images, having observed that they were visible in night-time 

Defence Meteorological Satellite Program (DMSP) and Landsat Multi-spectral Scanner 

System (MSS) images. Matson and Dozier (1981), while attempting to determine 

blackbody temperatures of sub-pixel fires from night-time AVHRR imagery, detected 

six gas flares in the Persian Gulf oil fields alongside twelve high temperature industrial 

sources (steel mills) in Detroit. Muirhead and Cracknell (1984) visually inspected 

AVHRR images in order to identify gas flares from North Sea oil rigs. Elvidge et al. 

(2007) used DMSP Operational Linescan System (OLS) imagery to identify flares 

visually, using the circularity and bright centres of lights from flares to aid detection, 

and was the first to attempt flare detection on a global scale over extended time period 

(1994-2008 inclusive). Although the DMSP method has high temporal resolution (12 

hours revisit period), the relatively low spatial resolution (560m – 2.7km) of the 

imagery greatly limits its ability to accurately detect flares, particularly amidst urban 

‘lightings’ as noted by Elvidge et al. (2009a). Furthermore, gas flares are only 

detectable with nighttime DMSP, and flares in mid-to-high latitudes during the summer 

cannot be detected due to solar contamination limitations. In addition, the brightness of 

flares often leads to the saturation of the DMSP visible band, and lights from flow 

station facilities especially in remote flare locations are included in the gas flares signal 

captured by DMSP (Elvidge et al., 2011). Also, the visual identification technique 

employed is subjective and time consuming. Casadio et al., (2012) recently applied an 

active flame detection algorithm (ALGO3) to night-time Along Track Scanning 

Radiometer (ATSR) shortwave infrared imagery to globally detect flares from 1991- 

2009 inclusive. The method is a single-band fixed threshold algorithm that mostly 

employs temporal persistence of hotspot pixels as an indicator of flaring activity, with 

the presence of industrial installations (identified from high resolution images available 

on Google Earth) used to validate the results. However, the low spatial resolution 



6 

 

(1000m) of ATSR could reduce the spatial precision with which flares are located and 

hinder the detection of individual flares where two or more are in close proximity. 

Furthermore, the method of validation may be inconsistent as not all industrial sites in 

oil producing regions contain flares. Nevertheless, ALGO3 is more objective than the 

DMSP and AVHRR methods, as it adopts a fixed threshold method to discriminate 

hotspots based on the spectral characteristics of ATSR imagery in the automatic 

detection of flares, thus overcoming the limitations of manual identification. 

Whilst the DMSP and ATSR methods of flare detection are clearly very useful for 

global studies of flaring, they may be of more limited utility in studies across smaller 

areas such as the Niger Delta, where detailed survey and monitoring of flares is needed 

for accurate assessment of the environmental and health impacts of flares from local to 

regional scales.  Furthermore, the temporal coverage (1991 to 2009) of the outputs from 

the analysis of DMSP and ATSR data (Casadio et al., 2012; Elvidge et al., 2009a) limits 

the ability to comprehensively study the impact of flares in regions where gas flaring 

has been practiced over longer time periods. Hence, this study exploits the higher spatial 

resolution of Landsat imagery and its extended time-series for the detection of flares 

and assessment of the long term spatiotemporal variations in flaring. 

 

1.4 Detection of high temperature events using Landsat data and approach used in 

present study 

 

Landsat data have been employed in the detection and mapping of a wide spectrum of 

high temperature events such as underground coal fires (Cracknell and Mansor, 1992; 

Prakash et al., 1997; Kuenzer et al., 2007), geothermal sources (Kienholz et al. 2009; 

Savage, 2009), fumarolic fields (Lagios et al., 2007), and volcanic activity (Flynn et al, 

2001; Goanac’h et al., 1994; Francis and Rothery, 1987). Indeed in relation to the oil 

industry, Kant and Badarinath (2002) successfully deployed Landsat data to detect oil 

spill fires. However, despite the level of success of Landsat data in the detection of high 

temperature events and suggestions that gas flares could be detected with Landsat 

infrared bands (Croft, 1978; Elvidge et al., 2009a, 2009b, 2007), no study has 

demonstrated the detection of gas flares with Landsat data.  

In the context of the present study Landsat data was chosen as an appropriate sensor due 

to its relatively high spatial resolution. Existing techniques for fire detection have been 

designed for larger fires that are ephemeral in nature and usually focus on near-realtime 

monitoring of the development and progress of fires. Thus, low spatial resolution 

sensors such as AVHRR with higher temporal resolutions have effectively been 

employed for the development of the algorithms. The comparatively large size of 

biomass fires minimises the effect of using low spatial resolution imagery on the 

accuracy of detection. In contrast, gas flares are much smaller in size, have a permanent 

location and are mostly continuously active (Environmental Rights Action/Friends of 

the Earth, 2005; SPDC, 2011). Thus using low spatial resolution imagery to detect such 

small features is likely to prove less effective than using higher spatial resolution 

imagery such as Landsat and it has been observed that existing fire detection algorithms 

usually fail to detect gas flares (Elvidge et al., 2010). A Landsat-based flare detection 

technique is also expected to improve the spatial precision of flare detection compared 

to previous studies that employed moderate spatial resolution imagery (DMSP and 

ATSR), while retaining simplicity and objectivity. High precision detection will play an 

invaluable role in monitoring the compliance of individual companies to the current 

commitments to flaring reduction within Nigeria.Hence, the potential advantages of 
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Landsat data for detecting gas flares can be summarised as: (i) Landsat has good spatial 

resolution suitable for accurate detection of flares which are high temperature events but 

have a small spatial extent; (ii) the fixed location and near-continuous nature of flares 

implies that the relatively low temporal resolution of Landsat imagery is unlikely to be 

detrimental to the detection process; (iii) the long archive of Landsat data and 

continuation of the time-series with the recently launched Landsat 8, make this system 

amenable to longer term detection of spatiotemporal changes in flaring; (iv) Landsat 

data is freely available, readily accessible, and easy to process, and it therefore presents 

a potentially cost-effective solution.  

The need to develop a new algorithm for detecting gas flares from Landsat data is 

based on the following: (i) most existing fire detection algorithms utilise information 

from mid- and thermal-infrared bands but Landsat does not possess the former; (ii) at 

the spatial resolution of Landsat the heterogeneity of land cover characteristics (and 

their spectral responses) in the vicinity of gas flares limits the effectiveness of 

contextual algorithms; (iii) sub-pixel fire detection algorithms are generally unsuitable 

due to the unrealistic assumptions of the model and are inappropriate given the spatial 

resolution of Landsat data; (iv) existing Landsat-based methods for detecting other high 

temperature events are generally unsuitable as they have been calibrated for quite 

different phenomena or require manual intervention to set thresholds. Therefore, the 

present study extends the existing analysis methods through the use of multi-band fixed-

threshold algorithms to harness the flare detection capabilities of the near, shortwave 

and thermal infrared bands of Landsat. 

The Landsat Flare Detection Method (LFDM) has been designed to provide an 

accurate and objective means of detecting onshore and offshore flares, using a 

transferrable and repeatable method that is simple, cheap, quick and efficient, and 

facilitates the derivation of ‘flare histories’ over extended time periods. This study sets 

out to achieve the following objectives: 

i. to explore the flare detection potential of the different Landsat spectral bands, 

ii. to develop a remote sensing technique based on Landsat imagery for the 

automatic detection of flares in the Niger Delta region, 

iii. to apply the technique in the survey and mapping of active flares in the region, 

covering the three decades in which oil extraction has been most active. 

 

2. Study Area 
 

The Niger Delta region in southern Nigeria covers an area of approximately 70,000km2. 

It is a densely populated region with over 10 million people and it is endowed with 

extensive natural resources (Zabbey, 2004). Apart from being the largest source of 

hydrocarbons in the country (Tuttle et al., 1999) and the centre of oil and gas industry in 

Nigeria (Figure 2), it is home to the third largest mangrove forest in the world and has a 

rich biological diversity (Niger Delta Awareness, 2007). The Niger Delta is 

characterised by wetlands, estuaries and rivers traversing the entire region and can be 

divided into three main ecological zones, with varying boundaries depending on 

seasonal flooding patterns: the saltwater mangrove swamps, the fresh water swamp and 

lowland rainforests (Nzewunwa, 1979). The region provides the natural habitat for a 

wide variety of endemic coastal and estuarine fauna and flora, supporting over 60% of 

the total species in Nigeria (IUCN, 1994; World Bank, 1995, cited in Ugochukwu 

2008). Hence, the Niger Delta is ranked as one of the highest conservation priorities in 
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West Africa, yet is virtually unprotected (IUCN, 1994). It has thus been the focus of 

increasing research activity in recent years, particularly on the impacts of oil 

exploitation on the environmental (Eregha, and Irugh, 2009; Bayode et al., 2011; 

Nwaogu and Onyeze, 2010), socio-cultural and economic (Aghalino, and Odeh, 2010; 

Ajiboye et al., 2009) characteristics of the region. 
Insert Figure 2 here 

 
Figure 2. The Niger Delta region, its component states and oil producing area. Map of Nigeria is inset.  

 

3. Methodology 

3.1 Data and preprocessing 

 

The main data used in this research include Landsat imagery obtained from the Global 

Visualization Viewer (USGS, 2012), high resolution aerial photographs from 

Google Earth, and a political map of Nigeria delineating state boundaries, obtained from 

the Department of Geoinformatics and Surveying, University of Nigeria Nsukka. The 

core oil producing area is covered by approximately four Landsat scenes and data from 

the Thematic Mapper (TM4, TM5), and Enhanced Thematic Mapper Plus (ETM+) 

sensors extending from 1984 to 2012 were used. Landsat MSS data were not used in 

this study because there is no thermal band in this sensor. The Landsat data were only 

available in day-time and there was no night-time Landsat data for the region. Due to 

limitations imposed by the availability of cloud-free Landsat products, and differences 

in satellite path between some scenes, it was not possible to obtain all four scenes that 

covered the study area on exactly the same occasion. Instead our strategy was to break 

down the study period into six sampling periods and use one image of each scene 

acquired during the six different sampling periods between 1984 and 2012 (Table 1). It 

was anticipated that these snapshots of active flares for each scene would provide 

insightful details of flaring activities in the region, by detecting changes in the spatial 

distribution of the flares over the study period. Each image selected was of the highest 

quality (minimal cloud coverage and atmospheric attenuation) during that sampling 

period and, as far as possible, matched the acquisition dates of the images covering the 

other scenes during that period. Due to gaps in the USGS Landsat data archive, only a 

limited number of images were available between 1991 and 1998 for the region, and 

none were suitable for this study due to extensive cloud coverage. Imagery acquired 

after May 2003 suffered from missing slithers of data towards the edge of the swath due 

to the scan line corrector failure of the ETM+ sensor. Therefore, it was necessary to fill 

the gaps using data from temporally adjacent ETM+ scenes, to ensure full coverage of 

the study area.  

 
Table 1. Landsat images of a section of Niger Delta, Nigeria used in the study. 

Insert Table 1 here 

 

Before delivery, the Landsat data used had been radiometrically, geometrically and 

terrain corrected to Level 1 using the standard algorithms (NASA, 2011). Our analysis 

of the various data sets revealed that these algorithms had worked very effectively and 

that no further refinements to these corrections were required. We then converted the 
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raw digital number (DN) values in the Landsat bands to spectral radiance values (W m-2 

sr-1 μm-1) using the following standard algorithm, using the LMin and LMax spectral 

radiance scaling factors available in the metadata file for each Landsat scene (NASA, 

2011): 

  

max min
cal min min

max min

 – 
 =      

 –  
cal

cal cal

L L
L L 
   Q Q

Q Q
. . . . . . . . . . . . (1) 

Where:  

Lλ  = spectral radiance at the sensor's aperture (W m-2 sr-1 μm-1) 

Qcal = the quantized calibrated pixel value (DN)  

Lλ = spectral radiance scaled to Qcal min (W m-2 sr-1 μm-1) 

Lmaxλ = spectral radiance scaled to Qcalmax (W m-2 sr-1 μm-1) 

Qcal min = minimum quantized calibrated pixel value (DN, usually = 1)  

Qcalmax = maximum quantized calibrated pixel value (DN, 255) 

 

The Landsat thermal bands were subsequently converted to temperature values (Kelvin) 

using the inverse of the Planck function shown below (NASA, 2011): 
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 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. . (2) 

Where: 

T =     effective at-satellite temperature (Kelvin) 

K2=   calibration constant 2 ( 1282.71for Landsat 7 and 1260.56, Landsat 5) 

K1=   calibration constant 1 (666.09Landsat 7 and 607.76 Landsat 5) 

ε =     emissivity (typically 0.95) 

Lλ = spectral radiance (W m-2 sr-1 μm-1) 

 

 

The various Landsat datasets were then inter-calibrated to minimise differences due 

to atmospheric attenuation and environmental temperature across years and scenes. To 

do this the 2002 Landsat image of scene 2 was chosen as the reference based on image 

quality (cloud free and minimal distortion) and temporal centrality (approximately 

midway between the start and end years of study period) and all other images were 

calibrated to this reference. Spatially homogenous and spectrally stable calibration sites 

were extracted from areas of scene overlap and radiance or temperature values from 

each band in target and reference images were regressed in order to construct a 

calibration model for each band. The model was then used to inter-calibrate each band 

in the target image with the reference image. This was effectively an adapted empirical 

line correction (Karpouzli and Malthus, 2003) that used a reference image rather than 

reference ground spectra, as these were not available for the study site, due to access 

difficulties.  

 

 

 

 

3.2 Development of the Landsat Flare Detection Method (LFDM) 
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The sensitivities of each Landsat band were independently investigated through 

interactive examination to determine their flare detection capabilities. The infrared 

bands (4, 5, 6 and 7) were found to exhibit the greatest potential for discriminating 

flares, with bands 5 and 7 (both in the shortwave infrared region) apparently showing 

almost similar potential. Further examination revealed that Band 7 was more sensitive 

to flares than band 5 as more pixels were highlighted as flares by band 7. The low-gain 

thermal band (61) was found to have greater capability than the high-gain band (62) in 

discriminating flares from biomass fires and hot natural and anthropogenic surfaces. 

Band 4 which exhibited flare detection potential was chosen as it was from the near 

infrared range and have the potential to detect other flare characteristics that may have 

been missed by the shortwave infrared bands. Therefore, the three Landsat infrared 

bands that were selected (bands 7, 61 and 4) provided the greatest discriminatory power 

for flare detection. The three bands were subsequently used in combination to develop 

the multiband flare detection technique. We observed from the bands that the influence 

of gas flares extended to more than 1 pixel (Figure 3), thus sub-pixel problem due to the 

differences in the spatial extent of flares did not pose a significant problem.  

 
Insert Figure 3 here 

 
Figure 3. Illustration of the depiction of gas flares with differing spatial extents on Landsat imagery of a 

section of Niger Delta  
 

A range of different thresholds were tested on the individual infrared bands and 

accuracy assessments performed, in order to determine optimal thresholds and 

technique for flare detection.  

The multi-band fixed-threshold method established is made up of three key criteria. 

The first criterion focuses on identifying locations with high shortwave infrared 

emissions. According to Wien’s displacement law, as the temperature of a body 

increases, peak emission shifts towards the shorter wavelengths and at temperatures of 

about 1150K, which approximates average flaring temperature (Biogas, 2006), the peak 

emission is within the shortwave infrared (Dennison and Roberts, 2009). Hence, due to 

the sensitivity of the shortwave infrared to fire radiative temperature, Landsat band 7 

was used as the first criterion for flare detection. Pixels in band 7 with radiance values 

greater than the optimal threshold value (10.5 Wm-2sr-1μm-1) were selected as high 

shortwave infrared emission events. However, it was found that other features on the 

image with high shortwave infrared emissions or high levels of reflected solar radiation 

such as biomass fires, clouds, bare land and sandy surfaces could exceed this threshold.  

Therefore, to discriminate flares from other objects with high shortwave infrared 

responses, a second criterion was introduced, which identifies high temperature pixels 

in the thermal band (band 6 for TM and band 61 – low gain band – for ETM+). An 

optimal threshold value of (310K) was found to achieve a balance between over- and 

under-representation of flare pixels. It was found that there were spatial offsets between 

band 6 and the other infrared bands, which could not be explained by the differences in 

spatial resolution of the bands and were inconsistent in terms of magnitude and 

direction between different Landsat datasets. To account for such variability in offsets, 

spatial buffering was applied to the pixels generated by thresholding band 7, before 

these were combined with the outputs from band 6. The buffering also minimised the 

effects of varying directions of the flames (due to the action of wind) between locations 

and over time. Different buffering radii were examined before arriving at an optimum 
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radius of 300m. By combining the outputs from bands 7 and 6, the resulting pixels 

represented features with high shortwave and thermal infrared responses and this 

eliminated most of the areas falsely identified as flares based on band 7 alone. 

As the near infrared band was found to exhibit some potential for flare detection, a 

further refinement (particularly for onshore flares) to the method used a third criterion 

that identified high near-infrared events from band 4. An optimal threshold value of 21 

Wm-2sr-1μm-1 was used and the resulting pixels were overlaid with the outputs from the 

band 7 and 6 combination so that pixels exceeding the thresholds in all three bands 

formed the final output from the flare detection technique. The main stages of the 

Landsat Flare Detection Method (LFDM) are illustrated in Figure 4.  
Insert Figure 4 here 

 

Figure 4. Major stages of the Landsat flare detection method (LFDM). Band 4  (radiance Wm-2sr-1μm-

1), band 61 (temperature K), band 7 (radiance Wm-2sr-1μm-1) 
 

In order to provide some context for the capabilities of the LFDM, the flare 

detection potential of a wide range of alternative analytical image processing techniques 

was tested. For brevity, only the more successful approaches are described here. 

Supervised classification was attempted and the optimal configuration for the 

discrimination of flares was to utilise all of the Landsat bands with a minimum distance 

classifier to map five land cover classes (water body, vegetation, bare land, built 

environment and gas flares,). Similarly, Principal Component Analysis (PCA) was 

applied to all Landsat bands to generate three Principal Component images. These were 

subsequently classified into the five land cover classes listed above, using the minimum 

distance classifier. Accuracy assessments (see section 3.5) enabled quantitative 

comparison of the different approaches to flare detection.  

 

3.4 Mapping flares with the LFDM 
 

The technique was subsequently applied to the full time series of Landsat images 

covering the entire Niger Delta region (as listed in Table 1). A flaring history model 

detailing the spatial and temporal variations in the distribution of active flares in the 

region was subsequently developed from the results. The Nigerian political map was 

used to allocate the detected flares to different states in the region. As the map did not 

delineate the offshore boundaries of the states, offshore flares were objectively assigned 

to the nearest states using GIS tools in order to adequately represent the flaring activity 

of the states. The ecological zones in which the flares are located were also examined in 

order to understand potential environmental impacts. 

3.5 Accuracy Assessment 

 

Ground-based surveys of flare locations were not feasible at the time of research due to 

logistical and safety issues associated with fieldwork in the region resulting from 

political volatility. Therefore, high resolution aerial photographs from Google Earth 

were analysed visually in order to validate the Landsat-based flare detection procedures. 

This method for collecting reference data on flare locations has been employed 

effectively by previous researchers (Casadio et al., 2012; Elvidge et al., 2009b). Landsat 

images closely corresponding (±1 month) with the acquisition date of the high 

resolution images were used to detect flares using the LFDM, supervised classification 
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and PCA methods. For each of the detected flare locations, the high resolution aerial 

photography was investigated manually. Visible flames were used in conjunction with 

clearly discernible physical structures such as buildings, pipelines, flare pits and flare 

stacks to confirm the locations of active flares. The precise coordinates of visibly active 

flares were noted. If flares were absent from the location indicated by the Landsat 

procedures then the land cover type present was visually interpreted from the 

photography and noted. The total number of correct and incorrect identifications were 

used to compute the user accuracy – the percentage of the total flares derived from the 

Landsat data that were correctly identified. This measure of accuracy was considered 

appropriate as the focus was on maximising the proportion of correct identifications and 

higher user accuracy implies higher confidence in the use of the flare detection 

technique. The spatial accuracy of the Landsat-based methods was calculated by 

comparing the coordinates of the flares detected from Landsat with the coordinates of 

the corresponding flares in the reference dataset. 

 

 

4. Results  

 
4.1 Accuracy of the flare detection techniques 

 

A user accuracy of 86.66% was obtained from the LFDM, 54.71% from supervised 

classification, 36.14% from band 6 threshold, and 34.38% the classified principal 

component. This level of accuracy from the LFDM is in line with that of many remote-

sensing based detection and mapping methodologies and justifies the onwards 

application of the LFDM approach in this study. The spatial accuracy of the LFDM 

calculated as the root mean square error between locations of the flares in the reference 

data and those identified by LFDM was found to be ±23.85m (Figure 5). Details of the 

data used within the validation procedures are shown in Table 2. 
              

Insert Figure 5 here 
Figure 5. Illustration of the spatial accuracy of LFDM in flare detection using an active gas flare in a 

section of the Niger Delta. Red marker indicates the location derived from the LFDM. 

 

Insert Table 2 here 
Table 2. Details of the flares identified by LFDM during validation 

 

4.2 Flare Distribution 
 

The LFDM detected 303 flares (251 onshore and 52 offshore) in the region during the 

period of study (1984 to 2012 inclusive). Figure 6 shows the spatial distribution of the 

flares and the number of sampling periods during which they were detected, represented 

by graduated symbols. Figure 6 also show that a considerable number of flares were 

detected on multiple occasions, suggesting that the environmental impacts of flaring in 

this region have been experienced for a sustained period of time. While analysing the 

temporal variations of the flares across the states, Rivers State was found to have the 

greatest number of sustained active flares, closely followed by Delta State (see Table 3), 

suggesting that environmental impacts would be greatest in these states. Table 3 also 

shows the number of flares detected during each sampling period and their 

onshore/offshore distribution, which indicates that the largest number of flares (143) 
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was recorded in the 2006-2009 time period. Akwa Ibom State had the greatest number 

of offshore flares (17), closely followed by Delta State (15). Further analysis revealed the 

onshore and offshore contributions of the various states during the various sampling periods (Table 4). 
 

 
Insert Table 3 here 

 
Table 3. Distribution of flares across states and numbers detected in each time period. 

 

 
Insert Table 4 here 

Table 4: Number of offshore and onshore flares detected in various sampling periods 

across the states  
 

 

Insert Figure 6 here 

Figure 6. Spatial distribution and persistence of detected flares in the Niger Delta from 1984 to 2012 

 

In order to get better understanding of the spatial and temporal variations in 

offshore flares, their distribution was analysed separately (Table 3, lower part). Most of 

the offshore flares detected in the early years (1984-1987) were located around Delta 

State offshore areas, and whilst newer offshore flares (from 1999) were detected around 

the Rivers and Akwa Ibom States offshore areas. This is in line with current trend in 

offshore exploration activities, which have been intensified in the eastern part of the 

Niger Delta, with the discovery of new offshore oil fields (Bonga Field, Oyo Field, 

Ofon Field, Usan Field and Egina Field). Approximately 45% of flares detected in 

Akwa Ibom State were located offshore, while Rivers State, with the greatest number of 

flares (overall) has only around 10% located offshore. This suggests that relative 

impacts on marine and terrestrial environments are likely to vary substantially between 

states. Figure 7 shows that within the terrestrial environment, sustained gas flaring 

activity has taken place within all of the three main ecological zones of the region. 
 

 
Insert Figure 7 here 

Figure 7: Map showing the distribution of gas flares among the major ecological zones of the Niger 

Delta. 

5. Discussion 
 

This study has demonstrated the viability of using Landsat imagery to accurately detect 

flares from space. It potentially provides a simple, objective and cost effective means of 

monitoring flaring activity. The spatial accuracy obtained, surpasses those of previous 

methods based on coarser spatial resolution imagery (Muirhead and Cracknel, 1984; 

Elvidge et al., 2009a; Casadio et al., 2012), and hence will be beneficial for 

investigating the impacts of flares from local to regional scales. As flares are clearly 

discernible from high resolution imagery (as shown in our validation exercise), it could 

be argued that employing such imagery may offer even higher spatial precision than the 

Landsat method. However, the cost of repeatedly acquiring high resolution imagery for 

monitoring flares would be prohibitive given the size of the area under investigation; 

meanwhile, Landsat imagery is freely available. Due to the long archive of Landsat 
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imagery, the study was able to provide a longer flaring history than previous satellite 

based flare studies, allowing for the first time an assessment of the flaring activity in the 

Niger Delta from the mid 1980’s to present. This is valuable for understanding the 

impacts of flares over the extended period of oil extraction activities in the Niger Delta. 

With the recent launch of Landsat 8, the LFDM has potential for monitoring gas flaring 

activity in the future. 

The spectral detection capabilities of Landsat proved to be suitable for the accurate 

discrimination of flares from other land surface covers. The LFDM exploited the 

combination of responses across the three infrared bands and the simple technique 

offered an objective method without the need for painstaking manual interpretation. The 

use of radiance and temperature values for defining thresholds will facilitate the 

transferability of the method to Landsat imagery of other parts of the world.  

It is worth noting that results obtained from the LFDM may have been affected by 

the temporal resolution of Landsat that limited the number of images that were acquired 

for the study area. The number of useable images was further restricted by cloud cover 

which is high and persistent in this region. As cloud-free images were used in the 

analysis then, in principle, all areas of the study site received equal sampling effort. 

However, image acquisition dates did vary across the study site within each sampling 

period because it was necessary to (i) use images from a variety of years within each 

sampling period in order to obtain all the scenes needed to cover the entire study site 

and (ii) fill data gaps caused by the scan line corrector failure after 2003 using 

temporally adjacent ETM+ imagery (but the number of useable images did increased 

substantially for the later sampling periods). Hence, it could be argued that uneven 

temporal coverage of data and the generally restricted frequency of useable Landsat data 

could have resulted in the under-sampling of flares. However, it is important to 

recognise that gas flaring is carried out as long as crude oil is being processed because 

the gas extracted from the processed oil must be constantly expelled due to health and 

safety reasons (Argo, 2013). Gas flares are usually considered permanent phenomena 

that are burning continuously at any active flow station, except for short periods of 

maintenance, when oil processing may be briefly halted. Therefore, we do not expect 

the reduced frequency of Landsat data to drastically reduce confidence in the spatial and 

temporal distributions of the flares reported in this research. Furthermore, given the 

large financial investment needed to construct flow stations and associated flaring 

infrastructure, oil companies expect such facilities to operate for decadal time scales in 

order to see adequate returns (Daily Champion Newspaper, 2003). Hence, it could be 

argued that permanent changes such as flare commissioning or decommissioning and 

associated long term trends in flaring activity will be adequately characterised with the 

six sampling periods used in the study. 

Solar irradiation effects in day-time images, were another challenge that may have 

affected our method, leading to the incorrect identification non-flare pixels as flares. 

Day-time data were used in this project as there was no available night-time Landsat 

data for the region. As part of our methodological development process, investigations 

of the responses of individual Landsat bands revealed that some potential flare 

detections were caused by sun glint from high reflectance surfaces such as exposed soil, 

rooftops, road surfaces and river sands. However, despite the challenges of the day-time 

data, we were able to develop the sequential multi-band thresholding approach which 

was able to minimise false detections due to high reflectance surfaces and produce a 

good level of detection accuracy. Nevertheless, false detections were not completely 

removed using the LFDM and it might be expected that for regions where night-time 
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Landsat data are available, the technique would perform with improved accuracy. 

Furthermore, the availability of night-time Landsat data may increase the temporal 

sampling frequency. 

The LFDM has potential to make important contributions in environmental and 

socioeconomic research into the effects of gas flaring in the Niger Delta, being the first 

attempt to identify flare locations using an approach that avoids reliance on restricted 

official documentation. Given that the Niger Delta is among the highest ranked global 

hotspots for gas flaring, this is a significant contribution to our understanding of the 

magnitude and dynamics of this environmental challenge. Furthermore, the technique 

developed here could be extended to other flaring hotspots in order to monitor oil 

producing countries’ compliance to the Kyoto Protocol aimed at the reduction of 

greenhouse gas emissions. It is also anticipated that the LFDM in conjunction with high 

temporal resolution imagery, will play major role in monitoring Nigeria’s compliance to 

the 30% gas flaring reduction target by 2017 recently set by the World Bank Global Gas 

Flaring Reduction partnership (World Bank 2012). The research has extended the earlier 

work on flare detection through satellite imagery (Elvidge et al., 2009; Casadio et al., 

2012), from a general global observation to a more focussed regional survey and 

monitoring process.  

Significantly, this research was able to report on the trajectories of gas flaring 

activity at the state scale, which provides more explicit evidence of the changes in the 

oil exploitation process to policy makers and environmental managers in the country. 

Moreover, the variation of the flares within each of the states of the Niger Delta over 

time enabled us to gain a much finer (spatially and temporally disaggregated) 

understanding of the process compared to the official regional values as reported by the 

NNPC (NNPC, 2011). This knowledge provides a solid basis for future assessment of 

the environmental impacts of gas flaring in the region. The length of time a flare has 

been active is expected to be proportional to its impact on the environment, as every 

cubic metre of gas flared contains a considerable percentage of carbon dioxide, carbon 

monoxide, soot, methane, as well as recognised toxins, such as benzene benzapyrene, 

dioxin, benzene, toluene, nitrogen dioxide, and particulates, which are directly released 

into the atmosphere (Odu, 1994; Climate Justice Programme, 2005).  Hence, not only 

does the regional total of gas flares detected in this study indicate remarkable levels of 

pollutant release, the state-specific distributions suggest that there are intense hotspots 

of prolonged activity and impact. Notably, Rivers State has by far the greatest number 

of flares and likely the greatest volume of pollutants released since 1984, with 33% of 

all flares in the region located in this state. The research has also demonstrated that there 

has been a prolonged activity of gas flaring across all of the ecological zones of the 

region, suggesting that localised impacts of flaring are likely to have an influence upon 

all of the major components of biodiversity within the Niger Delta. The knowledge of 

flaring activity generated in this project can now form a basis for quantifying the local 

and regional scale environmental impacts and consequences for biodiversity and 

ecosystem services, which will be undertaken in our future research. The first step in 

this process will be to estimate the rate of gas combustion of individual flares. This may 

be possible through the fusion of outputs from the localised LFDM with information 

from a range of other operational satellite systems that offer the possibility of measuring 

signals from flares and their atmospheric pollutants over different spatial, temporal and 

spectral domains. 
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6. Conclusions  
 

Gas flaring is a key agent of environmental pollution in the Niger Delta region of 

Nigeria. Efforts to comprehensively assess the impact of flaring on the Niger Delta 

ecosystem have been hampered by limited information on flaring locations and 

volumes. In this paper, we describe the development of a technique to detect gas flares 

using Landsat imagery. The LFDM is a multiband fixed threshold technique based on 

the combination of the flare detection capabilities of the shortwave, thermal and near 

infrared bands of Landsat. The LFDM was validated with a reference dataset of gas 

flare locations obtained from high resolution aerial photographs, achieving a user 

accuracy of 86.67%. When applied to the Niger Delta region, the LFDM was able to 

provide long term profiling of variations in flaring activity; it detected 303 active flares, 

comprised of 251 onshore and 52 offshore flares, within the period of study. A 

considerable number of flares have been active throughout the 28 years study period, 

suggesting sustained impact on the environment. The results obtained from the LFDM 

were subsequently used to spatially and temporarily disaggregate the regional flaring 

activity reported by the NNPC into a more meaningful and explicit state level. Rivers 

State contained the highest number of flares overall, closely followed by Delta State, 

while Akwa Ibom State had the highest number of offshore flares. Rivers State 

contained a third of the gas flares in the region and with its high percentage of onshore 

flares (90%), the impact is likely to be concentrated in the terrestrial environment 

inhabited by humans. Sustained flaring activity has taken place within all of the major 

ecological zones of the delta, suggesting that a wide range of biodiversity components 

and ecosystem services are likely to be affected by this activity. These findings in 

relation to the spatio-temporal distribution of gas flaring activities will be invaluable for 

future environmental and socioeconomic research related to the oil industry in the Niger 

Delta region. 

The LFDM overcame many of the limitations of techniques that have used 

moderate resolution satellite imagery for flare detection (such as difficulty in detecting 

flares amidst urban lighting and the need for visual identification of flares) and those of 

conventional surveying methods (such as being time consuming and costly), by making 

use of the spectral characteristics and relatively high spatial resolution of Landsat 

imagery. The technique is simple, objective, cost effective and accurate. It enables the 

mapping of flares with a higher spatial precision than previous remote sensing 

techniques and monitoring over extended periods of time. The LFDM therefore has the 

capacity to contribute to global flare monitoring exercises, by providing detailed 

information on gas flaring activities from local to regional scales that is complementary 

to that from other sources. Further analyses of the robustness and transferability of the 

technique are now needed to develop the wider applicability of the approach. A specific 

focus of our future research will be on using Landsat imagery in combination with data 

from other missions, to improve estimates of the rate of gas combustion by individual 

flares. This will form the basis for the subsequent modelling of the health and 

environmental impacts of flaring in the Niger Delta and other oil-producing regions. 
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