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High-order above-threshold ionization: The uniform approximation
and the effect of the binding potential

C. Figueira de Morisson Faria,1 H. Schomerus,2 and W. Becker1,*
1Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin, Germany
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~Received 11 June 2002; published 22 October 2002!

A versatile semiclassical approximation for intense laser-atom processes is presented. This uniform approxi-
mation is no more complicated than the frequently used multidimensional saddle-point approximation and far
superior, since it applies for all energies, both close to as well as away from the classical cutoffs. In the latter
case, it reduces to the standard saddle-point approximation. The uniform approximation agrees accurately with
numerical evaluations for potentials, for which these are feasible, and constitutes a practicable method of
calculation, in general. The method is applied to the calculation of high-order above-threshold ionization
spectra with various binding potentials: Coulomb, Yukawa, and shell potentials which may model C60 mol-
ecules or clusters. The shell potentials generate rescattering spectra that are more structured and may feature an
apparently higher cutoff.
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I. INTRODUCTION

Sufficiently intense laser fields ionize atoms or molecu
by the quantum-mechanical process of tunneling@1#. Both
the tunneling process and the ensuing motion of the elec
in the continuum are well accessible to semiclassical m
ods. Tunneling generates a wave packet whose center
lows a classical trajectory while the wave packet is spre
ing. It may or may not return to within the range of the ion
binding potential. If it does, the well-known recollision
induced processes, such as high-order harmonic gener
~HHG! or high-order above-threshold ionization~ATI !, take
place@2,3#.

In the tunneling regime, the quantum-mechanical tran
tion amplitude can be analyzed, computed, and interpre
via the saddle-point approximation@4,5#. Typically, the tran-
sition amplitude is represented by a multidimensional in
gral over the timet8 at which the electron enters the co
tinuum by tunneling, the later timet at which it revisits the
ion, and one or all components of the drift momentumk
along its orbit in between those two times. For a specifi
final state, e.g., for given final momentum of the electr
after the recollision or for a given frequency of high-ord
harmonic emission, the saddle-point approximation sele
those particular ‘‘quantum orbits’’ that contribute to this fin
state. These orbits are characterized by particular value
the parameterst, t8, and k, which are complex number
because of the tunneling nature of these orbits. For a sp
fied final state, there are, in general, several contribu
quantum orbits. Their contributions have to be added co
ently, and this yields an interference pattern, which may
pear very intricate, even though its physical origin is sim
@6,7#.

Within the context of atoms in strong fields, the contri
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uting quantum orbits typically come in pairs. This may
best known from the Lewenstein model of HHG: For spe
fied harmonic order within the ‘‘plateau,’’ there are tw
quantum orbits whose contributions dominate the harmo
yield, the ‘‘long orbit’’ and the ‘‘short orbit.’’ An electron on
the long orbit starts earlier~by ionization! and returns later
~for recombination! than an electron on the short orbit@4#.
This is a very general feature of intense-laser–atom p
cesses and holds also for the more complicated orbits, w
bypass the ion once or several times before the recomb
tion process takes place@6#. For fixed laser intensity, the
maximal HHG frequency or the maximal energy of an A
electron obey classical limits@2,8#, which are related to the
maximal kinetic energy of the electron returning to the io
For parameters approaching such classical limits, the
quantum orbits become more and more identical. If it we
not for the fact that their parameters are complex, reflect
the birth of the electron by tunneling, the two orbits of a p
would coalesce at the classical cutoff@6#.

The near coalescence of the orbits of a pair near a cu
constitutes two problems for the saddle-point approximati

~i! Treating the two saddle points as independent beco
an increasingly inaccurate approximation if they approa
each other closely@9,10#; should they actually merge into
one, the standard saddle-point approximation diverges
hence is completely inapplicable.

~ii ! Beyond the cutoff, in the classically forbidden regim
both ~complex! saddle points continue to exist as formal s
lutions of the saddle-point conditions. One, however, has
be dropped from the transition amplitude, which is fr
quently, but not always, indicated by an exponentially e
ploding contribution. A rigorous analysis establishes that,
tually, it is not possible to deform the contour of integratio
through such a saddle point by the method of steepest
scent. In the framework of the theory of asymptotic expa
sions, the global bifurcation of the steepest-descent con
from two visited saddles to a single visited saddle is kno
as the Stokes transition@11,12#.

In previous work, these problems were not treated in
d
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systematic fashion. In this paper, we invoke a specific u
form approximation to solve both problems@13#. This turns
out to be no more complicated than the standard proce
of treating the two saddle points as independent, becau
uses exactly the same information as the standard proce
namely, the values of the action and its second derivativ
the saddle points. Problem~i! is solved because the uniform
approximation regularizes the saddle-point integrals clos
the classical cutoff, while it reduces to the saddle-point
proximation far away from the cutoff. Problem~ii ! is solved
by imposing the simple requirement of continuity on t
transition amplitude, which automatically selects the app
priate branch of the multivalued solution that does not c
tain the contribution of the unphysical saddle point beyo
the classical cutoff.

For a zero-range binding potential, the benefit of t
saddle-point approximation lies in the insight gained by
introduction of a few quantum orbits, which allow one
visualize the physical mechanism behind recollision-indu
processes. For the mere purpose of computation, the tra
tion amplitude can be calculated as well, if not more eas
via a simple quadrature. We will use the zero-range poten
as a test case, and find excellent agreement for the unif
approximation, even where the usual saddle-point appr
mation fails.

The zero-range potential is a valid model for the desc
tion of a negatively charged ion in an intense laser fi
@14–16#. To what extent it can also be employed to model
atom in an intense laser field or, in other words, just h
important the long range of the Coulomb potential is in t
situation, has been the object of some debate. Surprising
has turned out that at least for the qualitative explanation
most intense-field effects the Coulomb tail is not instrum
tal @4,5,17#. Still more surprisingly, even the subtle quantum
mechanical enhancements of the ATI plateau at cer
sharply defined intensities@18# are not specific to the Cou
lomb potential. In fact, a zero-range potential yields virtua
the same enhancements, though at slightly different inte
ties @19#. From this point of view, being able to compare AT
spectra from zero-range and nonzero-range potentials is
portant. However, for nonzero-range potentials, a direct co
putation of the transition amplitude requires one to carry
a cumbersome multidimensional integral@20#, and the uni-
form saddle-point approximation is the most viable a
proach.

The purpose of this paper then is twofold. First, we det
mine the specific uniform approximation that applies to
pairs of quantum orbits that appear in laser-induced res
tering processes. Second, we use this uniform approxima
to investigate the influence of the form of the binding pote
tial on ATI.

The plan of the paper is as follows: In Sec. II, we su
marize the improved Keldysh approximation for the tran
tion amplitude. In Sec. III, we discuss the saddle points t
feature in the saddle-point approximation as well as in
uniform approximation, and review the saddle-point appro
mation as well as its problems close to classical cutoffs
Sec. IV, we determine the uniform approximation that ov
comes these problems and describe its conceptual relatio
04341
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the saddle-point approximation. In Sec. V we compare
ATI spectra obtained by these approximations to the num
cal results for the zero-range binding potential. The unifo
approximation is then used in Sec. VI to address the effec
a general~nonzero-range! binding potential on the ATI spec
trum, using Coulomb, Yukawa, and shell potentials as
amples. A summary of the results and conclusions can
found in Sec. VII.

We use atomic units~a.u.! throughout this paper.

II. TRANSITION AMPLITUDE FOR RESCATTERING
PROCESSES

Strong-field phenomena, such as above-threshold ion
tion ~ATI !, are successfully described by transition amp
tudes derived within a framework known as the strong-fi
approximation. This approximation neglects the binding p
tential in the propagation of the electron in the continuu
and the laser field when the electron is bound, which co
sponds to treating the process of rescattering in the first-o
Born approximation on the background of the laser field. T
ATI transition amplitude for the direct electrons—electro
that leave the vicinity of the ion right after they have tu
neled into the continuum—is the well-known Keldys
Faisal-Reiss amplitude@21#

Mdir52 i E
2`

`

dt8^cp
(V)~ t8!uVuc0~ t8!&. ~1!

The generalized transition amplitude, which includes o
single act of rescattering, is given by@22#

M resc52E
2`

`

dtE
2`

t

dt8^cp
(V)~ t !uVU(V)~ t,t8!Vuc0~ t8!&.

~2!

In both equations,V denotes the atomic binding potential, th
final state is the Volkov state describing a charged part
with asymptotic momentump in the presence of a field with
vector potentialA(t),

^r ucp
(V)~ t !&5expS 2

i

2Et

`

dt@p1A~t!#2D ei [p1A(t)] •r,

~3!

andU (V)(t,t8) is the Volkov time-evolution operator, which
describes the evolution of the electron in the presence
only the laser field. In Eq.~1!, the electron, initially in the
ground stateuc0(t8)&, is ionized into its final state at the tim
t8. In Eq. ~2!, an additional rescattering off the binding po
tential at the timet is accounted for. The amplitude~2! in-
corporates the amplitude~1! for direct ionization in the limit
wheret8→t. Hence, the two amplitudes must not be add
@22#. The amplitude~2! or closely related versions thereo
have been used by several authors@9,10,20,23#.

If we insert the expansion of the Volkov propagator
terms of Volkov states,

U (V)~ t,t8!5E d3kuck
(V)~ t !&^ck

(V)~ t8!u, ~4!
3-2
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HIGH-ORDER ABOVE-THRESHOLD IONIZATION: THE . . . PHYSICAL REVIEW A 66, 043413 ~2002!
into Eqs.~1! and~2!, the transition amplitudes can be rewr
ten as

Mdir52 i E
2`

`

dt8 exp@ iSp~ t8!#Vp0 ~5!

and

M resc52E
2`

`

dtE
2`

t

dt8E d3keiSp(t,t8,k)VpkVk0 , ~6!

where the corresponding actions are given by

Sp~ t8!52
1

2Et8

`

dt@p1A~t!#21uE0ut ~7!

and

Sp~ t,t8,k!52
1

2Et

`

dt@p1A~t!#22
1

2Et8

t

dt@k1A~t!#2

1uE0ut8. ~8!

The quantity uE0u denotes the ionization potential of th
atom. In this paper, we address the case of a linearly po
ized monochromatic field,

A~ t !5A0ex cosvt, ~9!

with the ponderomotive energyUP5^A2(t)& t/25A0
2/4.

The representations~5! and ~6! are particularly useful if
the form factors

Vpk5^p1A~ t !uVuk1A~ t !&

5
1

~2p!3E d3r exp@2 i ~p2k!•r #V~r ! ~10!

and

Vk05^k1A~ t8!uVu0&

5
1

~2p!3/2E d3r exp@2 i $k1A~ t8!%•r #V~r !c0~r !

~11!

can be calculated in analytical form. Within the strong-fie
approximation, the influence of the binding potential is e
tirely contained in these two matrix elements. For a ze
range potential, the form factors are constants. In this c
the five-dimensional integral~6! can be reduced to a one
dimensional integral over a series of Bessel functions, wh
can be readily computed numerically@22,24#. In Sec. V, we
will refer to the outcome of this procedure as the ‘‘exa
result.’’ In general, however, a correspondingly ‘‘exac
evaluation of the matrix element~2! has to deal with a mul-
tidimensional integral.
04341
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III. SADDLE-POINT ANALYSIS

For sufficiently high intensity of the laser field, corre
sponding to small Keldysh parameterg5AuE0u/2UP, ioniza-
tion can be envisioned to proceed via the quasistatic pro
of tunneling@25#. The transition amplitudes~5! and ~6! are
then conveniently computed via the method of steepest
scent. Both the standard saddle-point approximation as
as the uniform approximation rest on this method, wh
approximates the entire integral by the contributions fro
the vicinity of those points on the integration contour whe
the action is stationary, i.e., where the partial derivatives
the action with respect to the integration variables vani
These points correspond to maxima of the integrand afte
deformation of the original integration manifold, which
constructed such that the integrand decreases roughly li
Gaussian when one moves away from the vicinity of t
saddles@11#.

In the current section, we first write down the equatio
that determine the saddle points, then describe the gen
procedure of identifying therelevantsaddles, and finally dis-
cuss the saddle-point approximation. All these items are p
requisites for the discussion of the uniform approximation
Sec. IV.

A. Saddle-point equations

For the rescattering amplitude~6!, the saddle-point equa
tions are

@k1A~ t8!#2522uE0u, ~12!

@p1A~ t !#25@k1A~ t !#2, ~13!

E
t8

t

dt@k1A~t!#50. ~14!

Their solutions determine the ionization timet8, the rescat-
tering time t, and the drift momentumk of the electronic
orbit in between those two times, such that the electron
quires the asymptotic momentump. Equations~12! and~13!
are related to energy conservation at the ionization time
the rescattering time, respectively, and Eq.~14! determines
the intermediate electron momentum. For the direct am
tude~5!, only the ionization timet8 need be determined, an
the resulting equation is like Eq.~12!, with k replaced by the
asymptotic momentump.

Evidently, Eq. ~12! has no real solutionst8 as long as
E05” 0, and in consequencet, t8, andk are complex. Physi-
cally, the fact thatt8 is complex means that ionization take
place through a tunneling process. The solutions (t,t8) of the
saddle-point equations for the linearly polarized monoch
matic field ~9! have been computed in Ref.@6#. They only
depend on the ionization energyE0 and the photoelectron
momentump, but not on the shape of the binding potenti
which enters the transition amplitude only via the form fa
tors ~10! and ~11!.

A very important feature of the solutions is that they com
in pairs. Let us denote the travel time byt[t2t8. Then, for
given asymptotic momentump and for thenth travel-time
3-3
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FIGUEIRA de MORISSON FARIA, SCHOMERUS, AND BECKER PHYSICAL REVIEW A66, 043413 ~2002!
time interval nT/2<Ret<(n11)T/2 (n51,2, . . . ), there
are two solutions having slightly different travel times. T
parameters of two typical pairs of quantum orbits are d
played in Fig. 1.

B. Classical cutoffs and Stokes transitions

The original contour of integration in the amplitudes~5!
or ~6! is along the real axes, while the solutions of t
saddle-point equations~12!–~14! are located off the real axe
in the complex plane. A central question in the method
steepest descent then is, which of the various saddle po
are visited by the steepest-descent integration manifold.
shall call those therelevant saddle points. The steepes
descent manifold consists of pieces with a constant real
of the action. These pieces are glued together at zeros o
integrand, at which the phase of the action is not well
fined. Usually, each piece visits only a single saddle po
which also determines the constant real part of the act
Only such pieces that are needed to connect the integra
boundaries give contributions to the transition amplitu
The number of these pieces can change in a so-called St
transition, when two pieces merge at a certain value o
parameter~here we consider the photoelectron moment
p). On either side of the Stokes transition, the manifolds
the saddles of interest are glued together in different wa
on one side, both pieces are needed to connect the integr
boundaries~plus, possibly, other pieces related to differe
pairs of saddle points!, while only one of the pieces is
needed on the other. Note that in the latter case, too, ther
still two solutions of the saddle-point equations, but only o

FIG. 1. Saddle points as a function of energy for a Keldy
parameter ofg50.975 and scattering angleu50. The first, second,
and third columns give the start time, the return time, and the
termediate drift momentum, respectively. The panels present
paths in the complex plane that are followed by the saddle point
a function of the final energy, which is indicated by the numb
along the curves~in multiples of UP). The upper row gives the
saddle points for the pair of orbits with the shortest two travel tim
(112), the lower row for (9110), which is one of the pairs with
the longest times considered in this paper. The figure shows how
saddle points of a pair approach each other most closely nea
classical cutoff. In each case, the contribution of the orbit tha
drawn dashed is dropped after the cutoff.
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of them is visited by the steepest-descent deformation of
original integration manifold@26#.

Merging of steepest-descent manifolds requires that
real parts of the actions of two quantum orbits become id
tical at a specific value ofp,

ReSp~ t i ,t i8 ,k i !5ReSp~ t j ,t j8 ,k j !, ~15!

wherei and j denote the saddle points of the given pair, a
the timests and ts8(s5 i , j ) depend onp. It follows from the
physical mechanism behind high-order ATI that both sadd
of each pair are relevant provided the asymptotic momen
is classically accessible. For the pair of orbits having
shortest travel times (n51), this is the case ifp2/2
<10.007UP @27#. The other pairs of orbits have smaller cu
off energies.

The relevant saddle beyond the classical cutoff is the
that has the smaller imaginary part of the action at the Sto
transition@28#. In the following, we reserve the indexi for
this saddle. Saddlej only maintains a residual contribution t
the transition amplitude after the Stokes transition, unti
becomes completely irrelevant in the so-called anti-Sto
transition

Im Sp~ t i ,t i8 ,k i !5Im Sp~ t j ,t j8 ,k j !. ~16!

The anti-Stokes transition coincides with the Stokes tran
tion if both saddles actually coalesce. Otherwise, it f
quently occurs very shortly after the Stokes transition.

Exactly how the transition amplitude behaves close to
classical cutoff can only be described when the interplay
both saddles is taken into account in a systematic way, wh
is achieved by the uniform approximation. Before we turn
this approximation, we now discuss the standard sad
point approximation.

C. Saddle-point approximation

Within the saddle-point approximation, the amplitudes~5!
and ~6! are approximated by

Mdir
(SPA)5(

s
A 2p i

]2Sp /]ts
2
Vp0 exp@ iSp~ ts!# ~17!

and

M resc
(SPA)5(

s
As exp~ iSs!, ~18a!

Ss5Sp~ ts ,ts8 ,ks!, ~18b!

As5~2p i !5/2
Vpks

Vks0

AdetSp9~ t,t8,k!us

, ~18c!

respectively, where the indexs runs over the relevant saddl
points, andSp9(t,t8,k)us is the five-dimensional matrix of the
second derivatives of the action~8! evaluated at the solution
of the saddle-point equations~12!–~14!.
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In explicit calculations, we will proceed slightly differ
ently: First, we employ the saddle-point approximation
evaluate the three-dimensional integral over the intermed
momentumk in Eq. ~6!, which enters the action~8! only
quadratically. This results in

M resc52E
2`

`

dtE
2`

t

dt8eiSp(t,t8)Vpk(t,t8)Vk(t,t8)0 , ~19!

where

k~ t,t8!52
1

t2t8
E

t8

t

dtA~t! ~20!

andSp(t,t8)[Sp„t,t8,k(t,t8)…. Then, we again make use o
the saddle-point approximation to compute the tw
dimensional integral overt and t8 in Eq. ~19!, which again
results in the amplitude~18!, where the actions and ampl
tudes are now computed by

Ss5Sp~ ts ,ts8!, ~21a!

As5~2p i !5/2
Vpk(ts ,t

s8)Vk(ts ,t
s8)0

A~ ts82ts!
3 detSp9~ t,t8!us

. ~21b!

The corresponding saddle-point equations are Eqs.~12! and
~13! with k replaced byk(t,t8). Note that the valuesSs , As
of each saddle point are not changed, they are just obta
from a different set of relations in this more practical proc
dure.

Upon approach to the classical cutoff, the two solutio
that make up one pair come very close to each other. Fo
example, this is illustrated in Fig. 1. The saddle-point a
proximation ~18!, however, treats different saddle points
independent. As mentioned in previous papers@9# and in the
Introduction, this leads to a quantitative and qualitat
breakdown of the standard saddle-point approximation n
the cutoff of any pair of solutions for two reasons:~i! This
approximation can overestimate the contribution to the tr
sition amplitude by several orders of magnitude~it actually
diverges if both saddles coalesce!. ~ii ! In previous papers, the
spurious saddle has been dropped after the classical cuto
requiring a minimal discontinuity of the transition amplitud
Still, the discontinuity remains finite and noticeable.

A smooth suppression of the spurious saddle can
achieved if both quantum orbits are well separated at
Stokes transition~which is, however, not the case for phys
cally accessible parameters in ATI!, by a regularization tha
has been derived in the general framework of asympt
expansions@12#. Thereby, the contribution of the spuriou
saddle is suppressed by multiplication with the error funct

erfc~2n!5
2

Ap
E

2`

n

dt exp~2t2!, ~22!

with the argument given by
04341
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Re@Sp~ t i ,t i8!2Sp~ t j ,t j8!#

A2uIm@Sp~ t i ,t i8!2Sp~ t j ,t j8!#u
. ~23!

The argumentn vanishes at the Stokes transition~15! and
diverges at the anti-Stokes transition~16!, after which the
spurious saddle drops out completely. Note that this au
matically prevents an exponential growth of the amplitude
the spurious saddle in the approximation~18!, because the
saddle is dropped while the imaginary part of the action
still positive ~namely, equal to the imaginary part of a phys
cal saddle!.

This regularization procedure is not accurate enough
the present problem because the Stokes transitions take
while the saddles are not sufficiently separated~cf. Sec. V!.
On the other hand, the Stokes transitions are already b
into the uniform approximation, to which we turn now.

IV. THE UNIFORM APPROXIMATION

The saddle-point approximations~17! and ~18! are ob-
tained by expanding the action functionSp to second order in
the integration variables about each saddle point, and t
solving the ensuing Gaussian integrals. These approxi
tions are valid if the expansion of the action holds until t
integrand has become much smaller than it was at the sa
point, so that the integration can be extended to infinity. T
saddle-point approximation breaks down when the differe
of actionsuSi2Sj u of two quantum orbits with similar coor
dinates becomes of order unity, such that the expansion a
saddle pointi becomes inaccurate close to the saddle poinj,
and vice versa. For the quantum orbits in ATI this happe
when the energy approaches the classical cutoff. The rem
offered by the theory of asymptotic expansions is to impro
the expansion of the action function in the neighborhood
saddlesi and j by including higher orders in the coordina
dependence and to take the resulting approximate integr
a collective contribution of both saddle points.

What is often not observed is that the resulting unifo
approximation can be written in such a form that no ad
tional information on the quantum orbits is needed, i.e.,
cumbersome expansion in the coordinate dependence
ally can be circumvented. The derivation proceeds in t
steps. First, we write down the so-called diffraction integ
which describes a pair of orbits which might be close to ea
other or well separated. Then, we determine the parame
of the formal expansion in terms of the quantities that en
the standard saddle-point approximation, from the obse
tion that the conventional saddle-point approximation~18!
has to be recovered in the limit where the saddle points
sufficiently well separated.

For the first step, we observe that it is precisely two qu
tum orbits that closely approach each other near each cu
According to the splitting lemma of the catastrophe theo
@29#, the parametrization of the integration domain can
rectified such that the orbits approach each other along
of the ~appropriately chosen! coordinate axes~denoted byx
in the following!. This is the only direction where highe
orders in the coordinate expansion of the action have to
3-5
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included, while the expansion in the other coordinates can
restricted to second order such that these can be integ
out by the usual saddle-point approximation@this is similar
to integrating outk in the transition from Eq.~18! to Eq.
~21!#. Hence the contribution of the pair of quantum orb
~denoted byi and j ) to the transition amplitude can be re
duced, in principle, to a one-dimensional diffraction integ
of the general form

Mi 1 j5E
cl

cu
dxg~x!exp@ iS~x!#, ~24!

where the action accounts for these two saddle points and
integration boundariescu , cl in ~complex! infinity are as-
sumed such that the integrand decays to zero and the int
converges. Moreover, an expression that reduces to the
ventional saddle-point approximation when the quantum
bits are well separated will be obtained if we allow for
linear coordinate dependence in the functiong(x). This mo-
tivates the use of the normal forms~for a derivation in an-
other semiclassical context, see Ref.@13#!

S~x!5S̄1«x2ax3, g~x!5g01g1x. ~25!

Here we have chosen the origin of the coordinate sys
exactly in the middle between the two saddles, which h
coordinatesxi , j56A«/3a and coalesce when«50.

The uniform approximation that we introduce here diffe
from an earlier regularization method@9,10#, where the ac-
tion was expanded to cubic order about the stationary p
corresponding to the classical cutoff. This led to the abse
of the linear term in the functiong(x) in Eq. ~25!. It is
precisely this term whose presence allows us to match
standard saddle-point approximation both near the cutoff
away from it. Thus, the method of Ref.@9# coincides with the
uniform approximation near the classical boundary, but
viates from it and from the exact solution farther away fro
the cutoff region.

With expansion~25! inserted into the original integra
~24!, the amplitudeMi 1 j reduces to a sum of Bessel fun
tions,

Mi 1 j5A2pDS/3 exp~ iS̄1 ip/4!$DA@J1/3~DS!

1J21/3~DS!#1Ā@J2/3~DS!2J22/3~DS!#%,
~26!

DS5~Si2Sj !/2, S̄5~Si1Sj !/2,

DA5~Ai2 iA j !/2, Ā5~ iAi2Aj !/2,

where the four independent parametersS̄, DS

52«3/2(27a)21/2, Ā5g0(22p i )1/2a1/4(3«)21/4, and DA
5g1(2p i )1/2«1/4(3a)23/4 have been expressed by the amp
tudes and actions that result from the saddle-point appr
mation of the diffraction integral~24!.

The uniform approximation is defined by inserting in
Eq. ~26! the actions and amplitudes~18! of the respective
pair of quantum orbits~which we have denoted byi and j ).
We wish to stress that it is not necessary to obtain the exp
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sion parametersS̄, «, a, g0, andg1 by explicitly carrying out
the expansion~25!. Indeed, the knowledge of the explic
dependence on these parameters is not even desired be
it can be manipulated by a coordinate transformation, wh
the original integral is invariant under smooth changes of
coordinate system. For the saddle-point approximation~18!,
invariance with respect to coordinate transformations is
sured trivially for the actionsSs , while the amplitudesAs are
invariant because the Jacobian of a transformation con
utes a factor tog which is canceled by the determinant of th
second derivatives of the action, see Eqs.~18c! and ~21b!.
This is the reason why we express the expansion coeffici
in Eq. ~25! by the coordinate-transformation invariant qua
tities Ai , j , Si , j of the saddle points. Indeed, it is a simp
exercise to verify with the help of the asymptotic behavio

J6n~z!;S 2

pzD
1/2

cos~z7np/22p/4! ~27!

of the Bessel functions for largez that the saddle-point ap
proximation~18! is recovered from the uniform approxima
tion ~26! in the limit of largeDS.

Finally, let us demonstrate that the uniform approximati
is also capable of describing the Stokes transition, in wh
one of the two saddles is rendered irrelevant. The Be
functions in Eq.~26! assume complex arguments and a
multivalued functions, depending on the integration conto
taken in their integral representation. The function
branches can be distinguished by the number of saddles
are visited by a steepest-descent deformation of the con
in complete analogy with the procedure for the original in
gral ~6!. Hence, when the condition~15! is fulfilled, one not
only observes a Stokes transition in the original integral,
also encounters a Stokes transition in the defining integra
the Bessel functions. The proper branch of the function w
automatically be selected by requiring a smooth functio
behavior. The choice of branches beyond the Stokes tra
tion corresponds to replacing the BesselJ functions by
BesselK functions,

Mi 1 j5A2iDS/p exp~ iS̄!

3@ĀK1/3~2 iDS!1 iDAK2/3~2 iDS!#. ~28!

From the usual asymptotics

Kn~z!;S p

2zD
1/2

exp~2z! ~29!

of the BesselK function for largez, one verifies that in this
case only saddlei contributes to the saddle-point approxim
tion.

In summary, in the uniform approximation, the sum
saddle-point amplitudes~18! of each pair of quantum orbits
is simply replaced by the collective amplitude~26!. The uni-
form approximation improves the saddle-point approxim
tion such that it works even when two quantum orbits a
proach each other so closely that one cannot locally exp
about either one, as is the case close to their classical cu
3-6
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HIGH-ORDER ABOVE-THRESHOLD IONIZATION: THE . . . PHYSICAL REVIEW A 66, 043413 ~2002!
It also works well far away from classical cutoffs, because
includes the saddle-point approximation as a special c
which is recovered foruDSu*1. This can happen in two
ways:~i! when the saddle points become well separated
system parameter~such asp) is varied, or~ii ! in the strict
semiclassical limit when for a fixed system parameter
Keldysh parameter is decreased~given DS5” 0). Also, the
Stokes transition at the classical cutoff is automatically b
into the uniform approximation. Most notably, the unifor
approximation is of the same practical simplicity as t
saddle-point approximation since it involves the same am
tudesAs and actionsSs defined in Eqs.~18!.

V. COMPARING THE VARIOUS APPROXIMATIONS

In this section, for the zero-range potential we comp
the approximations discussed in the previous sections
the exact integration of Eq.~6!. First, let us consider ATI
spectra in the direction of the electric field of the laser. Su
a spectrum is composed of the contributions of direct and
rescattered electrons. The former quickly decrease after
classical cutoff at 2UP . The latter form an extended platea
with its classical cutoff at 10UP , whose yield is below tha
of the direct electrons by several orders of magnitude. T
cutoff at 10UP is related to the pair of orbits with the shorte
travel times. The other pairs of trajectories, which ha
longer travel times, have cutoff energies below this va
~see, e.g., Ref.@6# for a more complete discussion!. In the
figures that follow, we consider up to five pairs of electr
trajectories, those with the shortest travel times. To each
jectory, we associate a positive integer number which
creases with the corresponding travel time.

The outcome of this comparison is displayed in Fig. 2~a!.
In general, there is a good qualitative agreement between
saddle-point approximation and the exact solution~note,
however, that the scale is logarithmic in this figure!. Quanti-
tatively, however, there are marked discrepancies, which
cur in those energy regions where the saddle points that
stitute a particular pair approach each other and can
longer be treated as independent.

In previous work@6#, the unphysical contribution of on
of the saddle points was eliminated by hand as soon as
energy crossed the Stokes line~15!. This causes the cusps i
the spectra, which can also be seen in Fig. 2~a!. This is not
very satisfactory, since the discrepancies in the ATI sig
may amount to almost one order of magnitude. This prob
is particularly critical if the intensity of the driving field is
not so high. In this case, the various cutoff energies are r
tively close to each other, so that the artifacts affect a br
energy region. Thus, a more accurate approximation is de
able and even necessary, in case the integral~6! cannot be
carried out exactly, as is the case for any potential other t
the zero-range potential.

One possibility to eliminate such effects, shown in F
2~a!, is the Stokes regularization, Eq.~22!. This smoothes ou
the cusps, without, however, eliminating them completely

Far superior results are obtained by the uniform appro
mation, given by Eqs.~26! and~28!. The spectrum compute
in this way almost perfectly agrees with the exact result. T
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remaining differences between the uniform approximat
and the exact integration occur near the interference min
and are due to the contributions of pairs of trajectories w
longer travel times that have not been included. This is in
cated by the minor differences in the spectra computed w
the uniform approximation using three and five pairs of t
jectories, cf. Fig. 2~b!.

Figure 2~b! shows that the exact spectrum is well repr
duced by the uniform approximation for all energies. T
figure also separately displays the contribution of the dir
electrons@30#. One observes that interference between
rescattered and direct-electron trajectories is only impor
within a small energy region, between 4UP and 6UP @31#.
Above and below this energy range, either the rescattere

FIG. 2. Photoelectron spectra for a zero-range binding poten
and UP /v53.58, v50.073 a.u., and a ground-state energy
E0520.5 a.u. The spectrum is in the direction of the electric fie
of the laser,u50. Part ~a! shows spectra computed using th
saddle-point and uniform approximations, compared with the p
toelectron yield obtained by computing the integral~6! exactly. For
the saddle-point and the uniform approximation, we take into
count the two direct trajectories and the first five pairs of rescatte
trajectories~ordered by increasing travel times!. The approximate
energy positions of the Stokes transitions~15!, which coincide with
the respective classical cutoffs, are indicated by arrows. Part~b!
displays spectra computed by means of the uniform approximat
The spectra of the direct electrons, the first five pairs of orbits
1•••110), direct electrons plus the first three pairs of orbits~di-
rect 111•••16), and the direct electrons plus the first five pa
of orbits ~direct111•••110! are shown separately. The latter spe
trum agrees with the result of the exact calculation~filled circles!
except near the interference dips~just below 6UP and at 8UP).
Also, only in these two regions is there a marked difference
tween the results of including three or five pairs of orbits.
3-7
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the direct electrons completely dominate the spectrum
that interference only leads to minor effects.

The superiority of the uniform approximation over th
saddle-point approximation becomes particularly impress
if spectra are displayed on a linear scale. This is done in
3 for an angular distribution at fixed energy. Both with t
saddle-point approximation and the uniform approximati
the ten shortest trajectories are considered. The uniform
proximation, again, yields excellent agreement with the ex
result. Minor differences, for small scattering angles,
caused by the trajectories with still longer travel times t
have not been included. Those do not contribute for lar
angles. The saddle-point approximation, on the other ha
exhibits large discrepancies with the exact results near
classical cutoffs. For the chosen photoelectron energy
8.01UP , there are only three relevant cutoffs, correspond
to the pairs of trajectories 112, 516, and 9110. The remain-
ing pairs of trajectories do not contribute, since their cuto
are significantly below 8.01UP .

VI. INFLUENCE OF THE POTENTIAL ON
RESCATTERING PROCESSES

The preceding section has shown that the uniform
proximation is a very dependable method, yielding resu
very close to those obtained from the exact integration. T
latter, however, is only feasible for a binding potential
zero range. Therefore, we will rely on the uniform appro
mation to investigate how the form of the binding potent
affects the photoelectron spectrum. The transition amplit
~2! was derived in the context of one electron bound by
potentialV(r ). In order to simulate a many-electron atom,
can be reasonable to use in the transition amplitude~2!, dif-
ferent potentialsV(r ) for the electron when it tunnels ou
and when it rescatters@10#. In Refs.@10,23#, the effect of the
rescattering potential on the general shape of the rescatte

FIG. 3. Angular distributions of photoelectrons for the zer
range potential case, computed with the saddle-point and the
form approximation including the shortest five pairs of orbits, a
compared with the exact yield. The field parameters areUP /v
535.8, v50.0584 a.u.; the ground-state energy is chosen asE0

520.9 a.u.; and the photoelectron energy ise58.01UP . The
angles of Stokes transitions are marked with arrows.
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spectrum and the ratio of direct over rescattered electr
were investigated as a function of the applied field, for t
pair of the two shortest orbits. In particular, the depende
on the atomic species was modeled by a Thomas-Fermi
tential. Here, for various model potentials, making use of
additional power afforded by the uniform approximation, w
will concentrate on the detailed shape of the angular-reso
energy spectrum and on the contributions of the orbits w
longer travel times.

Throughout, we shall use the results for the zero-ran
potential

V~r !5
2p

A2uE0u
d~r !

]

]r
r ~30!

as a benchmark. Its form factors~10! and~11! are constants,

Vpk5
1

~2p!2A2uE0u
~31!

and

Vk052
~2uE0u!1/4

2p
. ~32!

A. Coulomb and Yukawa potentials

In this section, we investigate the influence of the lon
range Coulomb potential on above-threshold ionization. T
is particularly interesting since, for hydrogen, ATI spec
have been extracted from a high-precision numerical solu
of the time-dependent Schro¨dinger equation~TDSE! @32#, so
that we can compare the strong-field approximation with
exact solution.

The form factors of the Yukawa potential

V~r !52Z exp~2ar !/r ~33!

are

Vpk52
Z

2p2

1

~p2k!21a2
~34!

and

Vk052
A2

p

Z5/2

~Z1a!21@k1A~ t8!#2

52
A2

p

Z5/2

~Z1a!222uE0u
, ~35!

where the saddle-point equation~12! has been used in th
last line. Hence, in the saddle-point approximation,Vk0 acts
as a constant; indeed, this is the case for any spheric
symmetric potential. This constant determines the total i
ization rate, but has no effect on the shape of the spectr
Another consequence is that the spectrum of the direct e
trons, described by the amplitude~5!, is independent of the

ni-
3-8
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HIGH-ORDER ABOVE-THRESHOLD IONIZATION: THE . . . PHYSICAL REVIEW A 66, 043413 ~2002!
form of the binding potential because it only depends
Vk0, in contrast to the spectrum of the rescattered electr

The Coulomb form factors can be retrieved from Eq
~34! and ~35! in the limit a→0. Since in this caseE0
52Z2/2, this leads to the well-known divergence of th
Coulomb form factor~35! @4#. This has no effect on the
shape of the spectrum, and theabsolutescale can be reestab
lished too@33#.

In Fig. 4, we compare ATI spectra for the zero-range,
Yukawa, and the Coulomb potential. In view of the Coulom
divergence ofVk0 we used the zero-range form factor~32!
for all potentials@34#. As expected from Eq.~34!, there is a
suppression of the photoelectron yield for the higher ener
in the Coulomb and Yukawa cases. This effect is present
all pairs of trajectories. For the Coulomb potential, there
an additional enhancement of the rescattered yield for
energies, which does not occur in the zero-range or sh
range cases. This enhancement is due to the functional
of Vpk . Clearly, if the screening parameter is small enou
this effect is also present for the Yukawa potential. Furth
more, for these latter potentials, there is a reduction in
plateau intensity as the screening parameter is increa
Evidently, the form factor~34! for the Coulomb potentia
always exceeds that for the Yukawa potential.

The parameters of Figs. 2 and 4 correspond to those
sen in Ref.@32#, where the results of a numerical solution
the three-dimensional time-dependent Schro¨dinger equation
for hydrogen are reported and ATI spectra are extracted f
the former. The agreement between the Coulomb resu

FIG. 4. Photoelectron spectra for the zero-range potential, c
pared with those for the Coulomb and Yukawa potential~33!, for
the same field and atomic parameters as in Fig. 2. Panel~a! shows
total spectra with the consideration of the first three pairs of res
tered orbits, while panels~b!, ~c!, and ~d! exhibit the individual
contributions of each pair.
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Fig. 2~a! and Fig. 2 of Ref.@32# is good and even quantita
tive. We notice that the pronounced dip in the spectrum n
8UP , which is due to destructive interference of the cont
butions of the shortest two orbits@cf. Fig. 4 ~b!#, is almost at
the same position in both calculations. The next destruct
interference minimum from these two orbits occurs just b
low 6UP . The contributions of the longer orbits@cf. Figs.
4~c! and 4~d!# partially fill in this minimum, leaving only a
shoulder in the total spectrum~a!. The exact calculation@32#
features a slightly more pronounced minimum at the sa
position. Remarkably, the two interference minima in the
tal spectrum at low energy near 0.5UP and 2UP , which are
due to the direct electrons and the amplitude~5!, are also
clearly reflected in the exact calculation@32# at about the
same positions. The overall drop of the spectrum from
direct electrons to the final maximum of the rescattered e
trons preceding the cutoff is more pronounced in the ex
calculation by about half an order of magnitude@35#.

In Fig. 5, we investigate the ATI spectra for sever
screening parametersa of the Yukawa potential. In this fig-
ure, we also address the question of how the form factorVk0
affects the photoelectron yield. The figure clearly show
global shift in the photoelectron signal, which increases
decreasinga. In this sense, our results are in agreement w
those in Ref.@20#. It is, however, not expected that this yie
increases indefinitely. In fact, its limit fora→0 should be
given by the TDSE results@32#. Because of the singularity
for hydrogen inVk0 for vanishing screening parameters, su

-

t-

FIG. 5. Photoelectron spectra for the Yukawa potential~33!, the
same field and atomic parameters as in the previous figure,
several screening parametersa. Part~a! shows the resulting spectr
for the direct electrons and the five shortest pairs of rescatte
orbits, whereas part~b! shows the contributions from the shorte
pair of rescattered trajectories.
3-9
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a comparison is beyond the scope of the strong-field appr
mation. Additionally, there is an enhancement of the pho
electron yield at lower energies, similar to those occurring
the Coulomb case, which disappears asa is increased, which
is in agreement with the previous figure.

B. Shell potentials

Spherical shell potentials have been used for mode
clusters or molecules such as C60. Recently, ATI has been
observed experimentally for C60 in the direct-electron energ
region @36#. While the data show well-resolved ATI peak
unfortunately their statistics are not yet sufficient to allo
conclusions regarding the significance of rescattering and
existence, let alone the shape, of a rescattering-induced
teau. Nevertheless, in this section we investigate how s
potentials affect the ATI spectra in the direct and in the r
cattered regions. Let us first consider a sphericald shell,

V~r !52V0d~r 2r 0!, ~36!

with

V05
A2uE0u

12exp@22A2uE0ur 0#
, ~37!

where E0 again denotes the binding energy of the grou
state. Ionization from such a potential was investigated in
past @37# for weaker laser fields. The corresponding for
factors~10! and ~11! are

Vpk52
V0r 0

2p2A~p2k!2
sin@A~p2k!2r 0# ~38!

and

Vk052
V0C

pAuE0ur 0

sinh~A2uE0ur 0!, ~39!

respectively, with

C5F A2uE0u

exp~2A2uE0ur 0!2122A2uE0ur 0
G 1/2

. ~40!

For thed-shell potential,Vpk is an oscillating function and
Vk0 is a constant as always. Thus, in the following, we co
centrate on the influence ofVpk on the resulting spectra. W
consider typical C60 parameters, taken from Ref.@36#. The
external field is chosen such that its intensity is still bel
the C60 fragmentation threshold, but the electron excurs
amplitude@38# is roughly twice as large asr 0. Furthermore,
the Keldysh parameter is about unity. Thus, the rescatte
picture is still expected to be applicable.

In Fig. 6, we compare the photoelectron spectrum for
d-shell and the zero-range potential, within the uniform a
proximation. In order to assess the efficiency of rescatter
in either case we used forVk0 the zero-range result~32!. The
figure shows that thed-shell potential rescatters more effi
ciently than the zero-range potential by about one orde
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magnitude. If the form factor~39! is taken into account, an
additional global increase in the yield occurs. However,
thed-shell case, the rescattering plateau on the average h
downward slope, in contrast to the zero-range case where
slope goes up.

The most interesting feature, however, is that the res
tered spectrum of thed-shell potential is much more struc
tured than it is for the zero-range potential, with several
ditional oscillations. Such oscillations are due to the fo
factor ~38!, and are already present for the contributions
the shortest pair of trajectories, as shown in Fig. 6~b!. An
unexpected side effect of these oscillations is the effec
increase of the plateau cutoff energy by about two units
UP for the shell versus the zero-range potential, which c
be observed in Fig. 6. Since the laser intensity is the sam
both cases, the rescattering cutoff would be expected at
same energy, too. However, the shell form factor has a z
around the energy of 9.5UP , where the zero-range spectru
features its final maximum. This moves the final maximu
of the shell-potential spectrum up to a higher energy.

In order to investigate these oscillations in more detail,
the following we will look at contributions ofindividual tra-
jectories to the photoelectron yield for thed shell, in com-
parison to the zero-range potential. Since the uniform
proximation requires pairs of trajectories, we will use t
saddle-point approximation for that purpose. Whenever d
ing with a pair of trajectories, we will consider the uniform
approximation.

FIG. 6. Photoelectron spectra for the shell potential~36!, com-
pared with the zero-range case. The ionization potential was ta
as uE0u50.274 a.u. and the cluster radius asr 056.7 a.u. The field
parameters areI 056.531013 W/cm2 andv50.057 a.u. This yields
an excursion amplitude ofa0513.2 a.u. and a Keldysh paramet
g50.9805. In part~a! we take into account the five shortest pairs
trajectories, whereas in part~b! only the shortest pair is considered
3-10
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Figure 7 displays these results for several rescattered
jectories. In caseVpk is constant, as is the case for the ze
range potential, all oscillations present in the spectra co
from interference terms. The contributions of individual tr
jectories are nearly constant in the classically allowed reg
and do not produce any substructure. For thed shell, how-
ever, Vpk is oscillatory and produces its own maxima a
minima in the spectrum. However, comparing Figs. 6~a! and
6~b! we observe that the contributions of the longer orb
tend to restore the minima of the shell-potential spectrum
those of the zero range. Only the highest-energy minim
near 9.5UP is left unaffected, since the longer orbits do n
contribute to this energy.

In particular, the minima are given by ReA(p2k)2

5np/r 0, wheren is an integer. To a first approximation, th
drift momentumk can be neglected with respect to the m
mentump, so that the energy positions of the minima,
units of the ponderomotive energy, are roughly given by

p2

2UP
5

n2p2

r 0
2UP

. ~41!

This expression is expected to work better for longer exc

FIG. 7. Contribution from individual trajectories to the resca
tered photoelectron spectrum for the shell potential, in compar
to the zero-range case. We consider the same parameters as
previous figure. The labelsi and j refer, in part~a!, to the third-
shortest pair, denoted by~516!, and in part ~b! to the eighth-
shortest pair, denoted by~15116!. For the termsu i 1 j u2 we applied
the uniform approximation. For the termsu i u21u j u2, we applied the
Stokes regularization~22! to the diverging trajectory. The dashe
vertical lines in the figure separate the classically allowed and
bidden energy regions for the respective orbits. There are two
ditional curves in part~a!, displayed as the dotted and dashed g
lines, which represent the individual contributions of five and s
respectively, for the zero-range case. They are smooth~apart from
the cusps at the cutoff! and do not exhibit any sharp dips.
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sion times, since, according to Eq.~14!, k}1/(t2t8). This
can already be seen in Fig. 1, where the saddle point
functions of the energy are depicted. For a pair of trajecto
with short travel times, the start and the return times, as w
as the intermediate momentumk, vary considerably with the
photoelectron energy. For a long travel time, on the ot
hand, these quantities are nearly constant, in the classic
allowed region. Furthermore, the return time, as well as
intermediate momentum, are almost real andk is very small.

Clearly, there exist deviations from Eq.~41! due to the
fact thatk is nonvanishing and complex,t and t8 are com-
plex, and due to the time dependence of the intermed
momentum. For instance, a feature that is not explained
Eq. ~41! is a shift in the oscillations of the longer trajector
with respect to those of the short one. This feature occurs
all pairs of trajectories, and decreases as the travel times
longer. A qualitative estimate of these deviations can be
tained by consideringA(p2k)2 up to first order inAk2, and
the pair (t1 ,t18) and (t2 ,t28)5(t12«,t181«8) up to first order
in «,«8. This gives a shift in the minima, which is propo
tional to «/(t2t8), confirming the results presented
Fig. 7.

Now we turn to other shell potentials. Similar results a
obtained for a more realistic square well, of the formV(r )
52V0 for r 1,r ,r 2, and zero otherwise. Since, in natur
the sharp edges present for ad shell or a square well are
smoothed out, it is of interest to investigate whether the
ditional oscillations are also present for smooth potent
that approximate Eq.~36!. One such example is the Gaussi
potential

V~r !52V0 exp@2~r 2r 0!2/s2#. ~42!

For vanishing width, we recover Eq.~36!. For this potential,
the form factorVpk is given by a rather complicated expre
sion, which will not be reproduced here. Important featu
of Vpk are the presence of minima and a decrease with
creasing asymptotic momentum. This decrease dampen
oscillations, such thatVpk , in comparison to thed-shell form
factor, decays much more rapidly for largep. This effect
becomes more pronounced as the width of the potential
creases.

In Fig. 8~a!, the contribution of the two shortest trajecto
ries to the ATI spectra is displayed for the Gaussian poten
~42!, in comparison to thed-shell potential. We considere
the zero-range-potential form factorVk0 @Eq. ~32!#. As in the
previous figure, there exist additional oscillations, whi
come fromVpk . In Fig. 8~b!, this is clearly shown for the
contributions from the second shortest trajectory. For sm
width, as expected, thed-shell oscillation pattern is practi
cally recovered. For the parameter range considered in
figure, this holds fors&0.5. Major differences are presen
only for s.1.5. As the width gets larger, there is a displac
ment in the minima of the form factor and a suppression
the photoelectron yield. This suppression is due to the de
of the form factorVpk . Therefore, even when the shell po
tentials are smoothed out, the oscillations survive. Thus,
possibility that they are artificially caused by the sharp ed
of the d-shell potential can be ruled out.
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VII. CONCLUSIONS

We have investigated the influence of the binding pot
tial in above-threshold ionization~ATI !, for linearly polar-
ized laser fields, in terms of quantum orbits, using the u
form approximation@Eqs.~26! and~28!#. In this method, the
transition amplitude is expanded in terms of the collect
contribution of pairs of orbits rather than individual orbit
No information is required beyond the conventional sadd
point approximation. This is made possible and, indeed,
cessitated by the fact that for laser-induced rescattering
nomena the orbits naturally come in pairs that nea
coalesce at the classical cutoffs, thus rendering the con
tional saddle-point approximation inapplicable in this ene
region. Moreover, the uniform approximation remains va
beyond the classical cutoff in the classically forbidden
gion, where it automatically incorporates the fading out
unphysical saddles beyond the cutoff energy. If the t
saddles of a pair are sufficiently far apart, the stand
saddle-point approximation is recovered.

The fact that the uniform approximation is valid in th
whole energy range, both away from as well as near
cutoffs, allows one to obtain quantitative predictions for A
spectra. Indeed, in this paper this approximation has b
tested for the zero-range potential against the numerical c

FIG. 8. Contribution from the shortest pair of trajectories to t
photoelectron spectrum for the Gaussian potential~42!, compared
to thed-shell case, for several widthss and the same parameters
in the previous figure. Parts~a! and ~b! depict u112u2 and u2u2,
respectively. The prefactorV0, for uE0u50.274, was computed by
solving the time-independent Schro¨dinger equation numerically.
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putation of the strong-field approximation transition amp
tudes. The photoelectron spectra as well as the angular
tributions obtained in both ways turned out to be practica
identical. With the conventional saddle-point approximatio
quantitative predictions are not possible in certain ene
regions, which for low laser intensity can span the better p
of the ATI plateau.

The excellent quality of the uniform approximation fo
the zero-range potential also suggests that the uniform
proximation is reliable enough for computing ATI spectra f
other binding potentials, such as Coulomb, Yukawa, or sh
potentials. Within the framework of this paper, the influen
of the binding potential is contained in two form factor
which either characterize the transition from the ground s
to an intermediate momentum state, or the transition fr
the intermediate state to an asymptotic momentum st
Throughout the paper, these form factors are calledVk0 and
Vpk , respectively.

As a first application, we investigated the role of the Co
lomb tail by computing photoelectron spectra for Coulom
and Yukawa potentials. As a main feature, we observe a s
pression of the photoelectron yield for the ATI plateau,
comparison to the zero-range case, for both Yukawa
Coulomb cases. This is due to the functional forms ofVpk ,
which are inversely proportional to the photoelectron m
mentum. Additionally, for the Coulomb potential this form
factor causes an increase in the low-energy ATI peaks. Th
results are in agreement with the fully numerical solution
the time-dependent Schro¨dinger equation@32#. Furthermore,
for the Yukawa potentials, we observed an increase in
yield for decreasing screening parameter. Similar featu
have been obtained in Ref.@20#, from the numerical solution
of the strong-field approximation transition amplitudes.

Another class of potentials that we investigated are s
potentials, which are commonly used as an approxima
for clusters. In comparison to the zero-range case, the p
toelectron spectra computed for such potentials exhibit a
tional structure, which comes from the oscillating form
Vpk . This is an extreme case of how the form factorVpk
influences the photoelectron yield. Such oscillations are a
present when the potentials are smoothed out, and there
are not an artifact of the shell models.

An alternative for performing such investigations is t
numerical solution of the three-dimensional Schro¨dinger
equation. This would require considerable numerical effo
and, for elliptical polarization, would take one close to t
limit of today’s computational resources. Another possibil
would be the numerical solution of the strong-field appro
mation amplitudes~1! and ~2!. From the numerical view-
point, this is not an easy task either, since one must deal
multiple integrals of highly oscillating functions. Thus, th
uniform approximation considerably simplifies the compu
tions involved. Furthermore, using this approximation, one
able to gain additional physical insight into the interferen
processes between the quantum orbits, and how such
cesses are affected by the binding potential.

In summary, the uniform approximation is a very powe
3-12
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ful method for investigating laser-assisted rescattering p
cesses, being applicable in all energy regions of the spe
This approximation allows one to compute photoelect
spectra for binding potentials other than the zero range w
minimal numerical effort. Application of the methods deve
oped in this paper to other high-intensity laser-induced
laser-assisted phenomena, such as nonsequential doubl
ization, or to elliptically polarized fields is, in principle
straightforward. For double ionization, such work is
progress@39#.
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L’Huillier, and K. Rza̧żewski ~Plenum, New York, 1991!, p.
95.

@9# S. P. Goreslavskii and S. V. Popruzhenko, J. Phys. B32, L531
~1999!; Laser Phys.10, 583 ~2000!.

@10# S. P. Goreslavskii and S. V. Popruzhenko, Zh. E´ksp. Teor. Fiz.
117, 895 ~2000! @JETP90, 778 ~2000!#.

@11# N. Bleistein and R. A. Handelsman,Asymptotic Expansions o
Integrals ~Dover, New York, 1986!.

@12# M. V. Berry, Philos. Trans. R. Soc. London, Ser. A422, 7
~1989!.

@13# H. Schomerus and M. Sieber, J. Phys. A30, 4537~1997!.
@14# I. J. Berson, J. Phys. B8, 3078~1975!; N. L. Manakov and L.

P. Rapoport, Zh. E´ksp. Teor. Fiz. 69, 842~1975! @Sov. Phys.
JETP42, 430 ~1976!#; F. H. M. Faisal, P. Filipowicz, and K.
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