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High-order above-threshold ionization: The uniform approximation
and the effect of the binding potential
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A versatile semiclassical approximation for intense laser-atom processes is presented. This uniform approxi-
mation is no more complicated than the frequently used multidimensional saddle-point approximation and far
superior, since it applies for all energies, both close to as well as away from the classical cutoffs. In the latter
case, it reduces to the standard saddle-point approximation. The uniform approximation agrees accurately with
numerical evaluations for potentials, for which these are feasible, and constitutes a practicable method of
calculation, in general. The method is applied to the calculation of high-order above-threshold ionization
spectra with various binding potentials: Coulomb, Yukawa, and shell potentials which may mgdablc
ecules or clusters. The shell potentials generate rescattering spectra that are more structured and may feature an
apparently higher cutoff.
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I. INTRODUCTION uting quantum orbits typically come in pairs. This may be
best known from the Lewenstein model of HHG: For speci-
Sufficiently intense laser fields ionize atoms or moleculedied harmonic order within the “plateau,” there are two
by the quantum-mechanical process of tunneliiy Both ~ quantum orbits whose contributions dominate the harmonic
the tunneling process and the ensuing motion of the electroeld, the “long orbit” and the “short orbit.” An electron on
in the continuum are well accessible to semiclassical meththe long orbit starts earlieby ionization) and returns later
ods. Tunneling generates a wave packet whose center folfor recombination than an electron on the short orip#].

lows a classical trajectory while the wave packet is spread] NiS IS @ very general feature of intense-laser—atom pro-
ing. It may or may not return to within the range of the ionic C€SS€S and holds also for the more complicated orbits, which

binding potential. If it does, the well-known recollision- PYPass the ion once or several times before the recombina-

induced processes, such as high-order harmonic generati(BiHn process takes pladé]. For fixed laser intensity, the

o i s maximal HHG frequency or the maximal energy of an ATI
é?aiggzoé]h'gh order above-threshold ionizatiATl), take electron obey classical limif,8], which are related to the

In the tunneling regime, the quantum-mechanical transi_rnaximal kinetic energy of .the electron refturnir?g to the ion.
. . ' ) For parameters approaching such classical limits, the two
tion amplitude can be analyzed, computed, and interpréteg,anym orbits become more and more identical. If it were
via the saddle-point approximatidd,5]. Typically, the tran- o4 tor the fact that their parameters are complex, reflecting
sition amplitude is represented by a multidimensional intene pirth of the electron by tunneling, the two orbits of a pair
gral over the timet’ at which the electron enters the con- ould coalesce at the classical cutps.
tinuum by tunneling, the later timeat which it revisits the The near coalescence of the orbits of a pair near a cutoff
ion, and one or all components of the drift momentém constitutes two problems for the saddle-point approximation.
along its orbit in between those two times. For a specified (i) Treating the two saddle points as independent becomes
final state, e.g., for given final momentum of the electronan increasingly inaccurate approximation if they approach
after the recollision or for a given frequency of high-order each other closely9,10]; should they actually merge into
harmonic emission, the saddle-point approximation selectsne, the standard saddle-point approximation diverges and
those particular “quantum orbits” that contribute to this final hence is completely inapplicable.
state. These orbits are characterized by particular values of (i) Beyond the cutoff, in the classically forbidden regime,
the parameters, t’, and k, which are complex numbers both (comple® saddle points continue to exist as formal so-
because of the tunneling nature of these orbits. For a spedutions of the saddle-point conditions. One, however, has to
fied final state, there are, in general, several contributingpe dropped from the transition amplitude, which is fre-
quantum orbits. Their contributions have to be added coheruently, but not always, indicated by an exponentially ex-
ently, and this yields an interference pattern, which may apploding contribution. A rigorous analysis establishes that, ac-
pear very intricate, even though its physical origin is simpletually, it is not possible to deform the contour of integration
[6,7]. through such a saddle point by the method of steepest de-
Within the context of atoms in strong fields, the contrib- scent. In the framework of the theory of asymptotic expan-
sions, the global bifurcation of the steepest-descent contour
from two visited saddles to a single visited saddle is known
* Also at Center for Advanced Studies, Department of Physics anas the Stokes transitidri1,12.
Astronomy, University of New Mexico, Albuquerque, NM 87131. In previous work, these problems were not treated in a
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systematic fashion. In this paper, we invoke a specific unithe saddle-point approximation. In Sec. V we compare the
form approximation to solve both problemis3]. This turns  ATI spectra obtained by these approximations to the numeri-
out to be no more complicated than the standard proceduigal results for the zero-range binding potential. The uniform
of treating the two saddle points as independent, because approximation is then used in Sec. VI to address the effect of
uses exactly the same information as the standard procedui@generalnonzero-rangebinding potential on the ATI spec-
namely, the values of the action and its second derivative dfum, using Coulomb, Yukawa, and shell potentials as ex-
the saddle points. Problefi) is solved because the uniform @mples. A summary of the results and conclusions can be
approximation regularizes the saddle-point integrals close tfund in Sec. Vil. - _

the classical cutoff, while it reduces to the saddle-point ap- V& Use atomic unitéa.u) throughout this paper.
proximation far away from the cutoff. Problefi) is solved

by imposing the simple requirement of continuity on the !l TRANSITION AMPLITUDE FOR RESCATTERING
transition amplitude, which automatically selects the appro- PROCESSES

priate branch of the multivalued solution that does not con-

tain the contribution of the unphysical saddle point beyonokion (ATI), are successfully described by transition ampli-

the classical cutofr. bindi sl the benefit of th tudes derived within a framework known as the strong-field
For a zero-range binding potential, the benefit of t eapproximation. This approximation neglects the binding po-
saddle-point approximation lies in the insight gained by th

. ) . . &ential in the propagation of the electron in the continuum,
|r_1trodgct|on of a few quantum orb|ts,. which a]lqw one 10 and the laser field when the electron is bound, which corre-
visualize the physical mechanism behind recollision-induced, g 16 treating the process of rescattering in the first-order
processes. For the mere purpose of computation, the trangi, ., anhroximation on the background of the laser field. The

tion amplitude can be calculated as well, if not more easilyxt) yansition amplitude for the direct electrons—electrons

via a simple quadrature. We will use the zero-range potentigh ¢ |eaye the vicinity of the ion right after they have tun-
as a test case, and find excellent agreement for the unifori,|aq into the continuum—is the well-known Keldysh-
approximation, even where the usual saddle-point apprOXiFaisal-Reiss amplitudee1]
mation fails.
The zero-range potential is a valid model for the descrip- o

tion of a negatively charged ion in an intense laser field Mdir:_if dt’ (g0 (1) [V]o(t")). 1)
[14-16. To what extent it can also be employed to model an o
atom in an intense laser field or, in other words, just NOWrhe generalized transition amplitude, which includes one
important the long range of the Coulomb potential is in thissingle act of rescattering, is given bg2]
situation, has been the object of some debate. Surprisingly, it
has turned out that at least for the qualitative explanation of o W V)(s 17 ,
most intense-field effects the Coulomb tail is not instrumen- Mrese= — fodtJ:wdt (P (OIVURIE )V (1))
tal[4,5,17. Still more surprisingly, even the subtle quantum- 2)
mechanical enhancements of the ATI plateau at certain
sharply defined intensitigsl8] are not specific to the Cou- In both equationsy denotes the atomic binding potential, the
lomb potential. In fact, a zero-range potential yields virtuallyfinal state is the Volkov state describing a charged particle
the same enhancements, though at slightly different intensiwith asymptotic momenturp in the presence of a field with
ties[19]. From this point of view, being able to compare ATI vector potentialA(t),
spectra from zero-range and nonzero-range potentials is im- _

ortant. However, for nonzero-range potentials, a direct com- I (= - )
Sutation of the transition amplitudg repquires one to carry out (r|¢§)v)(t)>=exp( - EJt dr[p+A( T)]Z) ellPrAmi,

Strong-field phenomena, such as above-threshold ioniza-

a cumbersome multidimensional integfab], and the uni- (3)
form saddle-point approximation is the most viable ap-
proach. andUM(t,t") is the Volkov time-evolution operator, which

The purpose of this paper then is twofold. First, we deter-describes the evolution of the electron in the presence of
mine the specific uniform approximation that applies to theonly the laser field. In Eq(l), the electron, initially in the
pairs of quantum orbits that appear in laser-induced rescaground statéyy(t')), is ionized into its final state at the time
tering processes. Second, we use this uniform approximatiori. In Eq. (2), an additional rescattering off the binding po-
to investigate the influence of the form of the binding poten-tential at the timet is accounted for. The amplitud®) in-
tial on ATI. corporates the amplitud@) for direct ionization in the limit

The plan of the paper is as follows: In Sec. Il, we sum-wheret’ —t. Hence, the two amplitudes must not be added
marize the improved Keldysh approximation for the transi-[22]. The amplitude(2) or closely related versions thereof
tion amplitude. In Sec. Ill, we discuss the saddle points thahave been used by several auth@40,20,23.
feature in the saddle-point approximation as well as in the If we insert the expansion of the Volkov propagator in
uniform approximation, and review the saddle-point approxi-terms of Volkov states,
mation as well as its problems close to classical cutoffs. In
Sec. IV, we determine the uniform approximation that over- v N 3 v V) /s
comes these problems and describe its conceptual relation to Uttt )_f d k|¢('< )(t)><¢(‘< 't Ik “)
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into Egs.(1) and(2), the transition amplitudes can be rewrit- Ill. SADDLE-POINT ANALYSIS

ten as For sufficiently high intensity of the laser field, corre-

" sponding to small Keldysh parametee \|Ey|/2Up, ioniza-
M g = —i J dt’ exgiSy(t")1Vpo (5)  tion can be envisioned to proceed via the quasistatic process
— of tunneling[25]. The transition amplitude&) and (6) are
then conveniently computed via the method of steepest de-
and scent. Both the standard saddle-point approximation as well
_ . as the uniform approximation rest on this method, which
M eec= _J' dtf dt,f d3keiSp(t,t’,k)Vkak0, 6) approximates the entire integral py the pontr|but|ons from
—o J-w the vicinity of those points on the integration contour where
the action is stationary, i.e., where the partial derivatives of
where the corresponding actions are given by the action with respect to the integration variables vanish.
These points correspond to maxima of the integrand after a

) 1(~ 5 deformation of the original integration manifold, which is
Sp(t") =~ Eft, dr[p+A(7)]*+|Eolt (7)  constructed such that the integrand decreases roughly like a
Gaussian when one moves away from the vicinity of the
and saddled 11].

In the current section, we first write down the equations
1 (= 1 [t that determine the saddle points, then describe the general
Sp(t,t" k)=~ EJ drp+A(7)]*— Ef /dr[k+A(r)]2 procedure of identifying theelevantsaddles, and finally dis-
t t cuss the saddle-point approximation. All these items are pre-
®) requisites for the discussion of the uniform approximation in

[Elt". Sec. IV.

The quantity|E,y| denotes the ionization potential of the _ _
atom. In this paper, we address the case of a linearly polar- A. Saddle-point equations
ized monochromatic field, For the rescattering amplitudé), the saddle-point equa-
tions are
A(t)=Aqg coswmt, 9
[k+A(t")]%=—2|E|, (12

with the ponderomotive enerdy = (A%(t))/2=A3/4.

The representation&) and (6) are particularly useful if [p+AD)P=[k+A(D)]? (13
the form factors

t
V= (p+ A V]K+A() Jtrdf[k”(”]:o' (14

1 f e bk v 10 Their solutions determine the ionization time the rescat-

T (2m)? rexd —i(p=k)-rIV(r) (10 tering timet, and the drift momentunk of the electronic
orbit in between those two times, such that the electron ac-
quires the asymptotic momentym Equationg12) and(13)
are related to energy conservation at the ionization time and

Vio=(k+A(t")|V]|0) :Ee _rescattering time, respectively, and Etd) detgrmines _

e intermediate electron momentum. For the direct ampli-
tude(5), only the ionization timé&’ need be determined, and

and

1
:(277)3’2f d3r exg —i{k+A(t")}-r]V(r) go(r) the resultjng equation is like E¢L2), with k replaced by the
asymptotic momenturp.
(1) Evidently, Eq.(12) has no real solutions’ as long as

Eo#0, and in consequendet’, andk are complex. Physi-
can be calculated in analytical form. Within the strong-fieldcally, the fact that’ is complex means that ionization takes
approximation, the influence of the binding potential is en-place through a tunneling process. The solutidns Y of the
tirely contained in these two matrix elements. For a zerosaddle-point equations for the linearly polarized monochro-
range potential, the form factors are constants. In this casaatic field (9) have been computed in Rd6]. They only
the five-dimensional integral6) can be reduced to a one- depend on the ionization enerdsy and the photoelectron
dimensional integral over a series of Bessel functions, whictmomentump, but not on the shape of the binding potential,
can be readily computed numericall®2,24. In Sec. V, we  which enters the transition amplitude only via the form fac-
will refer to the outcome of this procedure as the “exacttors (10) and(11).
result.” In general, however, a correspondingly “exact” A very important feature of the solutions is that they come
evaluation of the matrix elemef2) has to deal with a mul- in pairs. Let us denote the travel time byt—t’. Then, for
tidimensional integral. given asymptotic momentump and for thenth travel-time
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bt @1 oa 13 o1 2o of them is visited by the steepest-descent deformation of the
110 ay" ' 12 08 "2 original integration manifold26].
1 . . .
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2 ose[ 135 7 g JoTEET e | g 0 m’a‘s*"}g 7531 physical mechanism behind high-order ATI that both saddles
oS 10 04 io oo {10 of each pair are relevant provided the asymptotic momentum

084 2 ha 004 i is classically accessible. For the pair of orbits having the
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OSGT es wWe ° V8 29 52 W0 4e i ©7 b o shortest travel times n=1), this is the case ifp%/2

Re [wt] Re [of] Re [WA,]

=<10.00WU5; [27]. The other pairs of orbits have smaller cut-
FIG. 1. Saddle points as a function of energy for a KeldyshOff €nergies. _ ,

parameter ofy=0.975 and scattering angte=0. The first, second, The relevant sadcjle b(_ayond the classical _cutoff is the one

and third columns give the start time, the return time, and the inihat has the smaller imaginary part of the action at the Stokes

termediate drift momentum, respectively. The panels present thansition[28]. In the following, we reserve the indexfor

paths in the complex plane that are followed by the saddle points adlis saddle. Saddleonly maintains a residual contribution to

a function of the final energy, which is indicated by the numbersthe transition amplitude after the Stokes transition, until it

along the curvedin multiples of Up). The upper row gives the becomes completely irrelevant in the so-called anti-Stokes

saddle points for the pair of orbits with the shortest two travel timestransition

(1+2), the lower row for (9+10), which is one of the pairs with

the longest times considered in this paper. The figure shows how the Im Sy(ti,t{ ki) =1m Sy(t; ,tj' Kj). (16

saddle points of a pair approach each other most closely near the

classical cutoff. In each case, the contribution of the orbit that isThe anti-Stokes transition coincides with the Stokes transi-

drawn dashed is dropped after the cutoff. tion if both saddles actually coalesce. Otherwise, it fre-
guently occurs very shortly after the Stokes transition.
time interval nT/2<Rer<(n+1)T/2 (n=1,2,...), there Exactly how the transition amplitude behaves close to the

are two solutions having slightly different travel times. The classical cutoff can only be described when the interplay of
parameters of two typical pairs of quantum orbits are dis-both saddles is taken into account in a systematic way, which

played in Fig. 1. is achieved by the uniform approximation. Before we turn to
this approximation, we now discuss the standard saddle-
B. Classical cutoffs and Stokes transitions point approximation.

The original contour of integration in the amplitudés
or (6) is along the real axes, while the solutions of the
saddle-point equatior(d2)—(14) are located off the real axes  Within the saddle-point approximation, the amplitudgs
in the complex plane. A central question in the method ofand (6) are approximated by
steepest descent then is, which of the various saddle points
are visited by the steepest-descent integration manifold. We 2i
shall call those therelevant saddle points. The steepest- MGA=2 oV eXHiSy(ty)]  (17)
descent manifold consists of pieces with a constant real part s 9"Spl s
of the action. These pieces are glued together at zeros of the
integrand, at which the phase of the action is not well dedn
fined. Usually, each piece visits only a single saddle point,
which also determines the constant real part of the action. MSSPCA):E A exp(iSy), (183
Only such pieces that are needed to connect the integration s
boundaries give contributions to the transition amplitude.
The number of these pieces can change in a so-called Stokes Si= Sp(ts,tg Kg), (18b
transition, when two pieces merge at a certain value of a

C. Saddle-point approximation

d

parameter(here we consider the photoelectron momentum Vo Vico
p). On either side of the Stokes transition, the manifolds of AS:(ZﬂTi)S/Z#, (180
the saddles of interest are glued together in different ways: \/detsg(t,t’,k)|s

on one side, both pieces are needed to connect the integration

boundaries(plus, possibly, other pieces related to differentrespectively, where the indexruns over the relevant saddle
pairs of saddle poinjs while only one of the pieces is points, andSi(t,t’ ,k)|s is the five-dimensional matrix of the
needed on the other. Note that in the latter case, too, there asecond derivatives of the acti¢8) evaluated at the solutions
still two solutions of the saddle-point equations, but only oneof the saddle-point equatiori&2)—(14).
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In explicit calculations, we will proceed slightly differ- Re Syt t-’)—Sp(t- t)]
ently: First, we employ the saddle-point approximation to y= . L . (23
evaluate the three-dimensional integral over the intermediate V2| Im[Sy(ti 1) — Syt O]
momentumk in Eq. (6), which enters the actiof8) only
quadratically. This results in The argumentr vanishes at the Stokes transiti¢hb) and

diverges at the anti-Stokes transitioh6), after which the
* t ' spurious saddle drops out completely. Note that this auto-
Mresc= — f,wdtj,xdt S Vo) Vieno, (19 matically prevents an exponential growth of the amplitude of
the spurious saddle in the approximatitk8), because the
where saddle is dropped while the imaginary part of the action is
still positive (namely, equal to the imaginary part of a physi-
1t cal saddle
k(t,t')=— _J drA(7) (20) This regularization procedure is not accurate enough in
t—t'Jv the present problem because the Stokes transitions take place
while the saddles are not sufficiently separafefd Sec. V).
and Sy(t,t")=S,(t,t’,k(t,t")). Then, we again make use of On the other hand, the Stokes transitions are already built
the saddle-point approximation to compute the two-into the uniform approximation, to which we turn now.
dimensional integral over andt’ in Eqg. (19), which again
results in the amplitud€18), where the actions and ampli-

tudes are now computed by IV. THE UNIFORM APPROXIMATION

The saddle-point approximationd7) and (18) are ob-
Ss=Sy(ts,tg), (218 tained by expanding the action functi6p to second order in
the integration variables about each saddle point, and then
solving the ensuing Gaussian integrals. These approxima-
_ (21b) tions are valid if the expansion of the action holds until the
V(ti—tg)® detS(t,t")]s integrand has become much smaller than it was at the saddle
point, so that the integration can be extended to infinity. The

The corresponding saddle-point equations are Fiy.and  Saddle-point approximation breaks down when the difference
(13) with k replaced by(t,t'). Note that the valueS;, A,  Of actions|S—Sj| of two quantum orbits with similar coor-
of each saddle point are not changed, they are just obtaingdinates becomes of order unity, such that the expansion about
from a different set of relations in this more practical proce-saddle point becomes inaccurate close to the saddle goint
dure. and vice versa. For the quantum orbits in ATI this happens
Upon approach to the classical cutoff, the two solutionsvhen the energy approaches the classical cutoff. The remedy
that make up one pair come very close to each other. For a@ffered by the theory of asymptotic expansions is to improve
example, this is illustrated in Fig. 1. The saddle-point ap_the expansion of the action function in the neighborhood of
proximation (18), however, treats different saddle points assaddles andj by including higher orders in the coordinate
independent. As mentioned in previous pagéiisand in the ~ dependence and to take the resulting approximate integral as
Introduction, this leads to a quantitative and qualitative@ collective contribution of both saddle points.
breakdown of the standard saddle-point approximation near What is often not observed is that the resulting uniform
the cutoff of any pair of solutions for two reasor®: This approximation can be written in such a form that no addi-
approximation can overestimate the contribution to the trantional information on the quantum orbits is needed, i.e., the
sition amplitude by several orders of magnitugteactually cumbersome expansion in the coordinate dependence actu-
diverges if both saddles coalegcéi) In previous papers, the ally can be circumvented. The derivation proceeds in two
spurious saddle has been dropped after the classical cutoff §eps. First, we write down the so-called diffraction integral
requiring a minimal discontinuity of the transition amplitude. Which describes a pair of orbits which might be close to each
Still, the discontinuity remains finite and noticeable. other or well separated. Then, we determine the parameters
A smooth suppression of the spurious saddle can pef the formal expansion in terms of the quantities that enter
achieved if both quantum orbits are well separated at théhe standard saddle-point approximation, from the observa-
Stokes transitiorfwhich is, however, not the case for physi- tion that the conventional saddle-point approximatias)
cally accessible parameters in ATby a regularization that has to be recovered in the limit where the saddle points are
has been derived in the general framework of asymptotigufficiently well separated.
expansiong12]. Thereby, the contribution of the spurious  For the first step, we observe that it is precisely two quan-

saddle is suppressed by multiplication with the error functiorfum orbits that closely approach each other near each cutoff.
According to the splitting lemma of the catastrophe theory

\Y; N
pk(te,t") Vk(t,,t2)0
A= (2i)5? S

2 v [29], the parametrization of the integration domain can be
erfa —v)= — drexp — ), (22) rectified such that the orbits approach each other along one
Jmd = of the (appropriately chosercoordinate axesdenoted byx
in the following. This is the only direction where higher
with the argument given by orders in the coordinate expansion of the action have to be
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included, while the expansion in the other coordinates can bgj,, parameter§ €, a do

restricted to second order such that these can be integrat
out by the usual saddle-point approximatighis is similar

to integrating outk in the transition from Eq(18) to Eq.
(21)]. Hence the contribution of the pair of quantum orbits
(denoted byi andj) to the transition amplitude can be re-
duced, in principle, to a one-dimensional diffraction integral
of the general form

M= f:udxg(x)exp[iS(x)], (24)

where the action accounts for these two saddle points and th

integration boundaries,, c; in (complex infinity are as-

sumed such that the integrand decays to zero and the integr
converges. Moreover, an expression that reduces to the con-

ventional saddle-point approximation when the quantum or
bits are well separated will be obtained if we allow for a
linear coordinate dependence in the functigfr). This mo-
tivates the use of the normal fornffor a derivation in an-
other semiclassical context, see Réf3])

S(x)=S+ex—ax3, g(x)=go+g,X. (25)

PHYSICAL REVIEW @6, 043413 (2002

andg; by explicitly carrying out

‘ta‘r(Ije expansion25). Indeed, the knowledge of the explicit

dependence on these parameters is not even desired because
it can be manipulated by a coordinate transformation, while
the original integral is invariant under smooth changes of the
coordinate system. For the saddle-point approximatid@,
invariance with respect to coordinate transformations is en-
sured trivially for the action§g, while the amplitudes are
invariant because the Jacobian of a transformation contrib-
utes a factor t@ which is canceled by the determinant of the
second derivatives of the action, see E@d80 and (21h).

This is the reason why we express the expansion coefficients
N Eq. (25 by the coordinate-transformation invariant quan-
titfes Aij, S of the saddle points. Indeed, it is a simple
ercise to verify with the help of the asymptotic behavior

2 1/2
J:V(Z)N(E) cogzx vw/2— wl4d) (27)

of the Bessel functions for largethat the saddle-point ap-
proximation(18) is recovered from the uniform approxima-

tion (26) in the limit of largeAS.
Finally, let us demonstrate that the uniform approximation

Here we have chosen the origin of the coordinate systerjr§ also capable of describing the Stokes transition, in which

exactly in the middle between the two saddles, which hav
coordinatess; ;= * e/3a and coalesce when=0.

The uniform approximation that we introduce here differs
from an earlier regularization methd8,10], where the ac-
tion was expanded to cubic order about the stationary poi

of the linear term in the functiom(x) in Eq. (25). It is

precisely this term whose presence allows us to match th
standard saddle-point approximation both near the cutoff an

away from it. Thus, the method of R¢f] coincides with the
uniform approximation near the classical boundary, but de
viates from it and from the exact solution farther away from
the cutoff region.

With expansion(25) inserted into the original integral
(24), the amplitudeM; , ; reduces to a sum of Bessel func-
tions,

Miy ;= V27AS/3exfiS+im/4){AA[Jys(AS)

+3_15(AS) ] +A[Jy5(AS) —J_55(AS) T},
_ (26)
AS=(S —Sj)/2, S=(S+ Sj)/2,

AA=(A—iA)2, A=(iIA—A)/2,

where the four independent parameterS, AS
=2e%427a) 12 A=go(—2mi)%a¥¥(3e) Y4 and AA
=g,(27i)Y%43a) ¥4 have been expressed by the ampli-
tudes and actions that result from the saddle-point approx
mation of the diffraction integra(24).

The uniform approximation is defined by inserting into
Eq. (26) the actions and amplitudg48) of the respective
pair of quantum orbitgwhich we have denoted hiyandj).

ne of the two saddles is rendered irrelevant. The Bessel
unctions in Eq.(26) assume complex arguments and are
multivalued functions, depending on the integration contour
taken in their integral representation. The functional
ranches can be distinguished by the number of saddles that
are visited by a steepest-descent deformation of the contour,
In complete analogy with the procedure for the original inte-
gral (6). Hence, when the conditiofi5) is fulfilled, one not
8nly observes a Stokes transition in the original integral, but
also encounters a Stokes transition in the defining integral of
the Bessel functions. The proper branch of the function will
automatically be selected by requiring a smooth functional
behavior. The choice of branches beyond the Stokes transi-
tion corresponds to replacing the Bessklfunctions by
BesselK functions,

Mi; ;= 2iAS/ 7 exp(iS)

X[AK s —1AS)+iAAK s —i1AS)].  (28)
From the usual asymptotics
T 1/2
KV(Z)~(§ exp(—2) (29

of the BesseK function for largez, one verifies that in this
case only saddlecontributes to the saddle-point approxima-
tion.

In summary, in the uniform approximation, the sum of
isaddle-point amplitudegl8) of each pair of quantum orbits
is simply replaced by the collective amplituds). The uni-
form approximation improves the saddle-point approxima-
tion such that it works even when two quantum orbits ap-
proach each other so closely that one cannot locally expand

We wish to stress that it is not necessary to obtain the exparabout either one, as is the case close to their classical cutoff.
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(a)}

It also works well far away from classical cutoffs, because it
includes the saddle-point approximation as a special case,
which is recovered fotAS|=1. This can happen in two ol
ways: (i) when the saddle points become well separated as a
system parametgisuch asp) is varied, or(ii) in the strict
semiclassical limit when for a fixed system parameter the
Keldysh parameter is decreaségiven AS#0). Also, the
Stokes transition at the classical cutoff is automatically built
into the uniform approximation. Most notably, the uniform
approximation is of the same practical simplicity as the

1

—

[=]
T

— saddle-point approximation
1 - - - SPA with Stokes regularization 4
— uniform approximation

@ exact transition probability

saddle-point approximation since it involves the same ampli- B e AL
tudesAg and actionsS, defined in Eqs(18). 4t 5. 6 ,7 . 8. S ' 10 .11 . 12. 13
-5 [ ( b ) direct electrons 4
- = 144107
V. COMPARING THE VARIOUS APPROXIMATIONS -6 E

----- |direct+1+,.+6]°
—— |direct+1+..+10" i
® exact transition probability

]
~

In this section, for the zero-range potential we compare
the approximations discussed in the previous sections with
the exact integration of E(6). First, let us consider ATI
spectra in the direction of the electric field of the laser. Such

log ,, Photoelectron Yield (arb. units)
&

[}
©

a spectrum is composed of the contributions of direct and of 0p

rescattered electrons. The former quickly decrease after their -11

classical cutoff at Pp. The latter form an extended plateau 2l s . .
with its classical cutoff at 10, whose yield is below that 0 2 4 6 8 10 12

of the direct electrons by several orders of magnitude. The Photoelectron energy (units of Up)
cutoff at 10J is related to the pair of orbits with the shortest
travel times. The other pairs of trajectories, which have FIG. 2. Photoelectron spectra for a zero-range binding potential
longer travel times, have cutoff energies below this valueand Up/w=3.58, ®=0.073 a.u., and a ground-state energy of
(see, e.g., Refl6] for a more complete discussiprin the  E,=—0.5 a.u. The spectrum is in the direction of the electric field
figures that follow, we consider up to five pairs of electronof the laser,§=0. Part(a) shows spectra computed using the
trajectories, those with the shortest travel times. To each tresaddle-point and uniform approximations, compared with the pho-
jectory, we associate a positive integer number which intoelectron yield obtained by computing the integi@l exactly. For
creases with the corresponding travel time. the saddle-point and the uniform approximation, we take into ac-
The outcome of this comparison is displayed in Figy2  count the two direct trajectories and the first five pairs of rescattered
In general, there is a good qualitative agreement between tHaiectories(ordered by increasing travel timesThe approximate
saddle-point approximation and the exact solutioote energy positions of the Stokes transitiqi§), which coincide with
however, that the scale is logarithmic in this figur@uanti- the respective classical cutoffs, are indicated_by arrows. @art_
tatively, however, there are marked discrepancies, which Odjlsplays spectra computed by means of the uniform approximation.
cur in t,hose ener,gy regions where the saddle poin,ts that cor e spectra of the direct electrons, the first five pairs of orbits (1
stitute a particular pair approach each other and can n+---+10), direct electrons plus the first three pairs of oritis
longer be treated as independent rect+1+---+6), and the direct electrons plus the first five pairs

| . K[6], th hvsical tributi f of orbits (direct +1+---+10) are shown separately. The latter spec-
n previous wor » the unphysical contribution of one trum agrees with the result of the exact calculatifiled circles

of the saddle points was elilminated' by hand as soon as tl]g(cept near the interference difisist below 8Jp and at 8Jp).
energy crossed the Stokes lifib). This causes the cusps in aiso, only in these two regions is there a marked difference be-

the spectra, which can also be seen in Fi@).ZThis is not  yyeen the results of including three or five pairs of orbits.
very satisfactory, since the discrepancies in the ATI signal

may amount to almost one order of magnitude. This problememaining differences between the uniform approximation
is particularly critical if the intensity of the driving field is and the exact integration occur near the interference minima
not so high. In this case, the various cutoff energies are relaand are due to the contributions of pairs of trajectories with
tively close to each other, so that the artifacts affect a broatbnger travel times that have not been included. This is indi-
energy region. Thus, a more accurate approximation is desieated by the minor differences in the spectra computed with
able and even necessary, in case the inte@atannot be the uniform approximation using three and five pairs of tra-
carried out exactly, as is the case for any potential other thajectories, cf. Fig. t).
the zero-range potential. Figure Zb) shows that the exact spectrum is well repro-
One possibility to eliminate such effects, shown in Fig.duced by the uniform approximation for all energies. The
2(a), is the Stokes regularization, E@Q2). This smoothes out figure also separately displays the contribution of the direct
the cusps, without, however, eliminating them completely. electrons[30]. One observes that interference between the
Far superior results are obtained by the uniform approxirescattered and direct-electron trajectories is only important
mation, given by Eqs26) and(28). The spectrum computed within a small energy region, betweetJ4 and &Jp [31].
in this way almost perfectly agrees with the exact result. TheAbove and below this energy range, either the rescattered or
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20 - - T spectrum and the ratio of direct over rescattered electrons

18[ snemy =B, l - were investigated as a function of the applied field, for the
= 16l ] pair of the two shortest orbits. In particular, the dependence
5. et S : 1 on the atomic species was modeled by a Thomas-Fermi po-
€ ' - - - - saddle-point approximation i tent@a_ll. Here, for various model pote_ntlals, makln_g use of the
. ] additional power afforded by the uniform approximation, we
E 1.0 7 will concentrate on the detailed shape of the angular-resolved
5 08 . energy spectrum and on the contributions of the orbits with
B 06 ] longer travel times.
S 04 ] Throughout, we shall use the results for the zero-range
2 potential
o 02 ]

00, 7y 2 17

0 (degrees) V= \/mﬁ(r) ar"' (30

FIG. 3. Angular distributions o_f photoelectrons_for the zero- as a benchmark. Its form factofs0) and(11) are constants,
range potential case, computed with the saddle-point and the uni-

form approximation including the shortest five pairs of orbits, and

compared with the exact yield. The field parameters @ o vV k:; (31
=35.8, w=0.0584 a.u.; the ground-state energy is chosekas P (2m)2\2|Ey|
=-0.9 a.u.; and the photoelectron energy éis8.01Up. The
angles of Stokes transitions are marked with arrows. and
the direct electrons compl [ (2[Eqh™
pletely dominate the spectrum, so Vio=— _ (32)
that interference only leads to minor effects. 2@
The superiority of the uniform approximation over the
saddle-point approximation becomes particularly impressive A. Coulomb and Yukawa potentials

if spectra are displayed on a linear scale. This is done in Fig.

3 for an angular distribution at fixed energy. Both with the . SN :
saddle-point approximation and the uniform approximation,range Coulomb potential on above-threshold ionization. This
is particularly interesting since, for hydrogen, ATl spectra

the ten shortest trajectories are considered. The uniform ap? ) e . .
proximation, again, yields excellent agreement with the exactaVe been extracted from a high-precision numerical solution

result. Minor differences, for small scattering angles, areOf the time-dependent Sctdinger e_quatlor(TD_SE) [.32]' SO
caused by the trajectories with still longer travel times thatnat We can compare the strong-field approximation with an
have not been included. Those do not contribute for largefXact solution. ,

angles. The saddle-point approximation, on the other hand, 1he form factors of the Yukawa potential

exhibits large discrepancies with the exact results near the V(r)=—Z exp(— ar)lr (33)
classical cutoffs. For the chosen photoelectron energy of

8.01Up, there are only three relevant cutoffs, correspondinggye

to the pairs of trajectories#12, 5+6, and 9+10. The remain-

In this section, we investigate the influence of the long-

ing pairs of trajectories do not contribute, since their cutoffs z 1
are significantly below 8.01p. V= — P (k)ﬁ (34
T (P— o
VI. INFLUENCE OF THE POTENTIAL ON and
RESCATTERING PROCESSES \/_ 6/
2 z
The preceding section has shown that the uniform ap- Vio=—— 5 —
proximation is a very dependable method, yielding results T (Z+a) +[k+A(t")]
very close to those obtained from the exact integration. The 2 5o
latter, however, is only feasible for a binding potential of —_ _2 A (35)
zero range. Therefore, we will rely on the uniform approxi- T (Z+ a)2—2|Eo| '

mation to investigate how the form of the binding potential

affects the photoelectron spectrum. The transition amplitudevhere the saddle-point equatigh2) has been used in the
(2) was derived in the context of one electron bound by thdast line. Hence, in the saddle-point approximatigp, acts
potentialV(r). In order to simulate a many-electron atom, it as a constant; indeed, this is the case for any spherically
can be reasonable to use in the transition amplif@edif- symmetric potential. This constant determines the total ion-
ferent potentialsv(r) for the electron when it tunnels out ization rate, but has no effect on the shape of the spectrum.
and when it rescattefd 0]. In Refs.[10,23, the effect of the  Another consequence is that the spectrum of the direct elec-
rescattering potential on the general shape of the rescatteririgons, described by the amplitud®), is independent of the
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FIG. 4. Photoelectron spectra for the zero-range potential, com-
pared with those for the Coulomb and Yukawa poteni&d), for

the same field and atomic parameters as in Fig. 2. Rahshows same field and atomic parameters as in the previous figure, and
total spectra with the consideration of the first three pairs of rescat§evera| screening parametersPart(a) shows the resulting spectra

. . 0 A for the direct electrons and the five shortest pairs of rescattered
tered orbits, while panelgb), (c), and (d) exhibit the individual . -
contributicl)ns V(;If :aac% paifb) © (d) exhibi navidu orbits, whereas pait) shows the contributions from the shortest

pair of rescattered trajectories.
form of the binding potential because it only depends on
Vo, in contrast to the spectrum of the rescattered electrond:ig. 2@ and Fig. 2 of Ref[32] is good and even quantita-

The Coulomb form factors can be retrieved from Egs.tive. We notice that the pronounced dip in the spectrum near
(34) and (35) in the limit «—0. Since in this case&, 8Up, which is due to destructive interference of the contri-
=—72/2, this leads to the well-known divergence of the butions of the shortest two orbifsf. Fig. 4 (b)], is almost at
Coulomb form factor(35) [4]. This has no effect on the the same position in both calculations. The next destructive-
shape of the spectrum, and talesolutescale can be reestab- interference minimum from these two orbits occurs just be-
lished too[33]. low 6Up. The contributions of the longer orbifsf. Figs.

In Fig. 4, we compare ATI spectra for the zero-range, thed(c) and 4d)] partially fill in this minimum, leaving only a
Yukawa, and the Coulomb potential. In view of the Coulombshoulder in the total spectrufa). The exact calculatiofB32]
divergence oV,, we used the zero-range form fact@2)  features a slightly more pronounced minimum at the same
for all potentials|34]. As expected from E¢(34), there is a  position. Remarkably, the two interference minima in the to-
suppression of the photoelectron yield for the higher energietal spectrum at low energy near 0.5 and 2Jp, which are
in the Coulomb and Yukawa cases. This effect is present fodue to the direct electrons and the amplitu8g are also
all pairs of trajectories. For the Coulomb potential, there isClearly reflected in the exact calculati¢82] at about the
an additional enhancement of the rescattered yield for lovgame positions. The overall drop of the spectrum from the
energies, which does not occur in the zero-range or shorgirect electrons to the final maximum of the rescattered elec-
range cases. This enhancement is due to the functional forthons preceding the cutoff is more pronounced in the exact
of V. Clearly, if the screening parameter is small enoughgalculation by about half an order of magnitus].
this effect is also present for the Yukawa potential. Further- In Fig. 5, we investigate the ATl spectra for several
more, for these latter potentials, there is a reduction in thécreening parametets of the Yukawa potential. In this fig-
plateau intensity as the screening parameter is increasedre, we also address the question of how the form fa¢tgr
Evidently, the form factor(34) for the Coulomb potential affects the photoelectron yield. The figure clearly shows a
always exceeds that for the Yukawa potential. global shift in the photoelectron signal, which increases for

The parameters of Figs. 2 and 4 correspond to those cha@lecreasingy. In this sense, our results are in agreement with
sen in Ref[32], where the results of a numerical solution of those in Ref[20]. It is, however, not expected that this yield
the three-dimensional time-dependent Sdiniger equation increases indefinitely. In fact, its limit for— 0O should be
for hydrogen are reported and ATI spectra are extracted frorgiven by the TDSE resultE32]. Because of the singularity
the former. The agreement between the Coulomb result dbr hydrogen inVv,q for vanishing screening parameters, such

FIG. 5. Photoelectron spectra for the Yukawa poteri88), the
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T T 4 M 1 M 1 v T T T

a comparison is beyond the scope of the strong-field approxi-
mation. Additionally, there is an enhancement of the photo-
electron yield at lower energies, similar to those occurring in 5k
the Coulomb case, which disappearsws increased, which '

- = - |[1+..+10[% 8 shell

~ = « [1+..+10|? zero range
—— |direct+1+..+10)? & shell
e |direct+1+.+10[% zero range |

is in agreement with the previous figure. -6
) -7
B. Shell potentials w o .
Spherical shell potentials have been used for modeling ‘_-=, B RV
clusters or molecules such agyC Recently, ATl has been -g _9' \/
observed experimentally forggin the direct-electron energy g R S . L L
region[36]. While the data show well-resolved ATI peaks, g -5 : — : : :
unfortunately their statistics are not yet sufficient to allow c .t (b)
conclusions regarding the significance of rescattering and the o6 [ [1
existence, let alone the shape, of a rescattering-induced pla- E -7
teau. Nevertheless, in this section we investigate how such g "
potentials affect the ATl spectra in the direct and in the res- £ k
cattered regions. Let us first consider a spheriahell, 2-9 41‘ / y Y -
R
V(r)=—Vod(r—ro), (36) 3'10"} / —— & shell -
Ab zero range -
with b
_12 " 1 1 1 N 1 i 1 N L
\/ﬁ 0 2 4 6 8 10 12
0 (37 Photoelectron energy (units of U,)

Vo= :
0 1—exd —2v2|Eq|ro]

. o FIG. 6. Photoelectron spectra for the shell poter(®), com-
where E, again denotes the binding energy of the groundyareq with the zero-range case. The ionization potential was taken
state. lonization from such a potential was investigated in th%s|Eo|:0.274 a.u. and the cluster radiusras=6.7 a.u. The field
past[37] for weaker laser fields. The corresponding form parameters arg,=6.5x 10 W/cn? andw=0.057 a.u. This yields
factors(10) and(11) are an excursion amplitude aiy=13.2 a.u. and a Keldysh parameter

y=0.9805. In parta) we take into account the five shortest pairs of

Vor trajectories, whereas in pgt) only the shortest pair is considered.
Vo= o s \(p kel (38 paty orly the shortest p
27 (p—k) magnitude. If the form facto(39) is taken into account, an
additional global increase in the yield occurs. However, in
and the &-shell case, the rescattering plateau on the average has a
V. downward slope, in contrast to the zero-range case where the
_ 0 . =t slope goes up.
Vio= . |E0|rosmk( 2|Eqlro), (39 The most interesting feature, however, is that the rescat-
tered spectrum of thé-shell potential is much more struc-
respectively, with tured than it is for the zero-range potential, with several ad-
ditional oscillations. Such oscillations are due to the form
\/m vz 0 fﬁctorh(SS), and 'arefalre'ady present fohr the porll_t.rci;l)))uggns of
= . the shortest pair of trajectories, as shown in Fi)6An
exp(2v2|Eg|ro) —1—2v2|Eq|rg unexpected sﬁde ef'fectJ of these oscillations is the effective

) ] o } increase of the plateau cutoff energy by about two units of
For the 5-shell potential Vi, is an oscillating function and j, for the shell versus the zero-range potential, which can
Vo is a constant as always. Thus, in the following, we con-he observed in Fig. 6. Since the laser intensity is the same in
centrate on the influence &, on the resulting spectra. We poth cases, the rescattering cutoff would be expected at the
consider typical g parameters, taken from Rdf36]. The  same energy, too. However, the shell form factor has a zero
external field is chosen such that its intensity is still belowaround the energy of 95, where the zero-range spectrum
the G, fragmentation threshold, but the electron excursionfeatures its final maximum. This moves the final maximum
amplitude[38] is roughly twice as large as. Furthermore, of the shell-potential spectrum up to a higher energy.
the Keldysh parameter is about unity. Thus, the rescattering In order to investigate these oscillations in more detail, in
picture is still expected to be applicable. the following we will look at contributions oihdividual tra-

In Fig. 6, we compare the photoelectron spectrum for thgectories to the photoelectron yield for ti#eshell, in com-
é-shell and the zero-range potential, within the uniform ap-parison to the zero-range potential. Since the uniform ap-
proximation. In order to assess the efficiency of rescatteringoroximation requires pairs of trajectories, we will use the
in either case we used fofi o the zero-range resulB2). The  saddle-point approximation for that purpose. Whenever deal-
figure shows that thé-shell potential rescatters more effi- ing with a pair of trajectories, we will consider the uniform
ciently than the zero-range potential by about one order ofpproximation.
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sion times, since, according to E@.4), kec1/(t—t’). This

can already be seen in Fig. 1, where the saddle points as
functions of the energy are depicted. For a pair of trajectories
with short travel times, the start and the return times, as well
as the intermediate momentumvary considerably with the
photoelectron energy. For a long travel time, on the other

1? hand, these quantities are nearly constant, in the classically
12 5 allowed region. Furthermore, the return time, as well as the
13 P L I’ 5 shell intermediate momentum, are almost real &rid very small.
 {SmrTic e v I K Clearly, there exist deviations from E¢1) due to the
5[ (b) P=15 i shel fact thatk is nonvanishing and complex,andt’ are com-
=16 lii’, zero range plex, and due to the time dependence of the intermediate

momentum. For instance, a feature that is not explained by
Eq. (41) is a shift in the oscillations of the longer trajectory,
with respect to those of the short one. This feature occurs for
all pairs of trajectories, and decreases as the travel times get
longer. A qualitative estimate of these deviations can be ob-
tained by considering/(p—k)? up to first order inyk?, and
the pair ¢4,t;) and ¢,,t;)=(t;—¢,t;+&") up to first order
Photoelectron energy (units of U ) in g,&’. This gives a shift in the minima, which is propor-
tional to /(t—t"), confirming the results presented in
FIG. 7. Contribution from individual trajectories to the rescat- Fig. 7.
tered photoelectron spectrum for the shell potential, in comparison Now we turn to other shell potentials. Similar results are
to the zero-range case. We consider the same parameters as in $¥tained for a more realistic square well, of the foxf(r)
previous figure. The labelsandj refer, in part(a), to the third- =—V, for r,<r<r,, and zero otherwise. Since, in nature,
shortest pair, denoted b{s+6), and in part(b) to the eighth-  ne sharp edges present fordashell or a square well are
shortest pair, denoted lig5+16). For the termgi + | |* we applied sy 0thed out, it is of interest to investigate whether the ad-
the uniform approximation. For the terrfi$"+ |j|*, we applied the yiyio o1 oscillations are also present for smooth potentials

Sto'.(es r.egu""?‘r'zat'o'.(‘zz) to the diverging trajectory. The dashed that approximate Eq36). One such example is the Gaussian
vertical lines in the figure separate the classically allowed and for-

bidden energy regions for the respective orbits. There are two ad[_)otentlal
ditional curves in parta), displayed as the dotted and dashed gray
lines, which represent the individual contributions of five and six,
respectively, for the zero-range case. They are smeyhrt from
the cusps at the cutgfind do not exhibit any sharp dips.

log,, Photoelectron Yield (arb. units)

V(r)=—Voexd — (r—rq)? o?]. (42)

For vanishing width, we recover E36). For this potential,
the form factorV, is given by a rather complicated expres-

Figure 7 displays these results for several rescattered trgon: which will not be reproduced here. Important features

. . . X of V, are the presence of minima and a decrease with in-
jectories. In cas&/, is constant, as is the case for the zero-

; A X creasing asymptotic momentum. This decrease dampens the
range potential, all oscillations present in the spectra comé

from interference terms. The contributions of individual tra- O;;'(I)'?t'gg;s:cmﬁf%'rg Cr(;miz?n?grn It:rthé_rshr;gllef%r;
jectories are nearly constant in the classically allowed regim ’ Y pidly ‘for ‘arge o
ecomes more pronounced as the width of the potential in-
and do not produce any substructure. For ¢hehell, how-
X . . . creases.
ever, Vi is oscillatory and produces its own maxima and

. Pk . . In Fig. 8@), the contribution of the two shortest trajecto-
minima in the spectrum. However, comparing Figs) @nd ries to the ATI spectra is displayed for the Gaussian potential
6(b) we observe that the contributions of the longer orbits P play b

- . 42), in comparison to theS-shell potential. We considered
tend to restore the minima of the shell-potential spectrum t he zero-range-potential form factdg, [Eq. (32)]. As in the
those of the zero range. Only the highest-energy minimu 9e-p ko LE=Q- '

near 9 8. is left unaffected. since the longer orbits do not previous figure, there exist additional oscillations, which
contrib.utepto this energy ' 9 come fromV . In Fig. 8b), this is clearly shown for the

. o : ——3  contributions from the second shortest trajectory. For small
In_ particular, _the minima -are given by _ép . K) width, as expected, thé-shell oscillation pattern is practi-
=nm/ry, wherenis an integer. To a first approximation, the

drift momentumk can be nealected with respect to the rno_caIIy recovered. For the parameter range considered in the
9 . P . - figure, this holds forc<0.5. Major differences are present
mentump, so that the energy positions of the minima, in

units of the ponderomotive enerav. are rouahlv given b only for ¢>1.5. As the width gets larger, there is a displace-
P 9y, gnly 9 Y ment in the minima of the form factor and a suppression of

5 5 the photoelectron yield. This suppression is due to the decay
p-_nm _ (41) of the form factorV, . Therefore, even when the shell po-
2Up  r3Up tentials are smoothed out, the oscillations survive. Thus, the

possibility that they are artificially caused by the sharp edges
This expression is expected to work better for longer excuref the §-shell potential can be ruled out.
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putation of the strong-field approximation transition ampli-
tudes. The photoelectron spectra as well as the angular dis-
tributions obtained in both ways turned out to be practically
identical. With the conventional saddle-point approximation,
guantitative predictions are not possible in certain energy
regions, which for low laser intensity can span the better part
of the ATI plateau.

The excellent quality of the uniform approximation for
the zero-range potential also suggests that the uniform ap-
i i i L M proximation is reliable enough for computing ATI spectra for
other binding potentials, such as Coulomb, Yukawa, or shell
potentials. Within the framework of this paper, the influence
of the binding potential is contained in two form factors,
which either characterize the transition from the ground state
to an intermediate momentum state, or the transition from
the intermediate state to an asymptotic momentum state.
Throughout the paper, these form factors are callggdand
Vo, respectively.

As a first application, we investigated the role of the Cou-
lomb tail by computing photoelectron spectra for Coulomb
and Yukawa potentials. As a main feature, we observe a sup-
pression of the photoelectron yield for the ATI plateau, in
comparison to the zero-range case, for both Yukawa and
Coulomb cases. This is due to the functional forms/gf,

FIG. 8. Contribution from the shortest pair of trajectories to thewhich are inversely proportional to the photoelectron mo-
photoelectron spectrum for the Gaussian poterida), compared  mentum. Additionally, for the Coulomb potential this form
to the 5-shell case, for several widthsand the same parameters as factor causes an increase in the |Ow_energy ATI peaks_ These
in the previous figure. Parts) and (b) depict |1+ 2|? and |2|?, results are in agreement with the fully numerical solution of
respectively. The prefactdfy, for |Eo|=0.274, was computed by o time_dependent Schiimger equatiori32]. Furthermore,
solving the time-independent Schinger equation numerically. for the Yukawa potentials, we observed an increase in the

yield for decreasing screening parameter. Similar features
have been obtained in R¢20], from the numerical solution
of the strong-field approximation transition amplitudes.

VII. CONCLUSIONS Another class of potentials that we investigated are shell
potentials, which are commonly used as an approximation

We have investigated the influence of the binding potenfor clusters. In comparison to the zero-range case, the pho-
tial in above-threshold ionizatiofATl), for linearly polar-  tgpelectron spectra computed for such potentials exhibit addi-
ized laser fields, in terms of quantum orbits, using the uniyiona| structure, which comes from the oscillating form of

form approximatio Egs.(26) and(28)]. In this method, the 5. This is an extreme case of how the form faciy

transition amphtude IS expfinded In terms Of. the Conec.t'vemfluences the photoelectron yield. Such oscillations are also
contribution of pairs of orbits rather than individual orbits.

. b . ; present when the potentials are smoothed out, and therefore
No information is required beyond the conventional saddle- .
are not an artifact of the shell models.

point approximation. This is made possible and, indeed, ne- An alternative for performing such investigations is the
cessitated by the fact that for laser-induced rescattering phe- P 9 g

nomena the orbits naturally come in pairs that nearIWume_”CalTi(_)luuonIdOf the_ three-q(ljmerg)slmnal S‘F"“‘I!’e;r
coalesce at the classical cutoffs, thus rendering the conveffduation. This would require considerable numerical effort,

tional saddle-point approximation inapplicable in this energy2nd: for eIIip,ticaI polarization, would take one close to the
region. Moreover, the uniform approximation remains valiglimit of today’s computational resources. Another possibility

beyond the classical cutoff in the classically forbidden re-would be the numerical solution of the strong-field approxi-
gion, where it automatically incorporates the fading out ofmation amplitudes1) and (2). From the numerical view-
unphysical saddles beyond the cutoff energy. If the twaPoint, this is not an easy task either, since one must deal with
saddles of a pair are sufficiently far apart, the standardnultiple integrals of highly oscillating functions. Thus, the
saddle-point approximation is recovered. uniform approximation considerably simplifies the computa-
The fact that the uniform approximation is valid in the tions involved. Furthermore, using this approximation, one is
whole energy range, both away from as well as near theble to gain additional physical insight into the interference
cutoffs, allows one to obtain quantitative predictions for ATI processes between the quantum orbits, and how such pro-
spectra. Indeed, in this paper this approximation has beetesses are affected by the binding potential.
tested for the zero-range potential against the numerical com- In summary, the uniform approximation is a very power-

1 1
- —_
KN o
T
\
4
7
1

log,Photoelectron Yield (arb. units)

Photoelectron energy (units of U )
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