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Statistics of finite-time Lyapunov exponents in a random time-dependent potential
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The sensitivity of trajectories over finite-time interval$o perturbations of the initial conditions can be
associated with a finite-time Lyapunov expon&ntobtained from the elemenkd;; of the stability matrixM.
For globally chaotic dynamics, tends to a unique valughe usual Lyapunov exponeit,) for almost all
trajectories as$ is sent to infinity, but for finite it depends on the initial conditions of the trajectory and can
be considered as a statistical quantity. We compute for a particle moving in a randomly time-dependent,
one-dimensional potential how the distribution functiéfi;t) approaches the limiting distributioR(\ ;)
=8(N—X\..). Our method also applies to the tail of the distribution, which determines the growth rates of
moments ofM;; . The results are also applicable to the problem of wave-function localization in a disordered
one-dimensional potential.
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[. INTRODUCTION gation through a random medium, in the ray-acoustics/ray-
optics regime of short wavelengtlif®r a recent application,

In this work, we give a uniform description of the com- see Refs[22,23)). Moreover, they have shifted into the focus
plete asymptotic statistics of the finite-time Lyapunov expo-of attention due to recent advances in the understanding of
nent for a particle moving in a randomly time-dependentthe role of the Lyapunov exponents for quantum-chaotic
one-dimensional potential. The Lyapunov exporlepichar- ~ wave propagatiofi24—30: It has been observed that under
acterizes the sensitivity of trajectories to small perturbationsertain conditions the Lyapunov exponent can be extracted
of the initial conditions and plays a fundamental role in thefrom the decay of the overlap of two wave functions which
characterization of systems which display deterministicare propagated by two slightly different Hamiltoniafibe
chaos[1]. The Lyapunov exponent is defined in the joint so-called Loschmidt echoSince the overlap is studied as a
limits of vanishing initial perturbation and infinitely large function of time, the distribution of the finite-time Lyapunov
times. In a hyperbolic Hamiltonian system, may be ob- exponent is directly relevant for these investigations. This
tained from any nonperiodic trajectory, because for arbi-extends also to related semiclassical time scales, such as the
trarily long times the trajectories uniformly explore the com- Ehrenfest time~ (Inz)/\, which is a semiclassical estimate

plete phase space. of the diffraction time of wave packets due to the chaotic
A widely studied generalization af, is the finite-time classical dynamics.
Lyapunov exponent1-17], which is defined for finite In the limit of infinite timet, the distribution function

stretchegtime intervalt) of trajectories(generalizations to  P(\;t) in a completely chaotic phase space tends to the lim-
finite perturbations also exigtl8]). The sensitivity of the iting form P(\;%*)=48(A—N\.). For large but finitet, the
dynamics to initial perturbations is given by the stability ma-bulk of the distribution function can be approximated by a
trix map M, which is the linearization of the map of initial Gaussian centered arourd., with the width vanishing
coordinates to final coordinates. In terms of eleménts of «t~12 ast—o. However, many of the properties deter-
M, the finite-time Lyapunov exponent may then be defined asnined by P(\;t) (like the generalized entropy and dimen-
sion spectracannot be calculated from the Gaussian bulk of
the distribution functior 1].

In this paper, we investigate for a particle moving in a
one-dimensional randomly time-dependent potential with
In contrast to\.,,A is not a uniqgue number independent Gaussian statistics hoR(\;t) approaches the limiting dis-
of the initial conditions, but a fluctuating quantity with a tribution function P(\;»)=8(\—\.,) for large times. Our

distribution functionP(\;t) (defined by uniformly sampling approach uniformly applies both to the bulk as well as to the

all initial conditions in phase spakeThis distribution func-  far tail A>\., of the distribution function. We find that the

tion determines, e.g., the generalized entropy and dimensiocumulant-generating function &f(\;t),

spectra of dynamical systenj§], and more practically the

weak-localization correction to the conductaft6] and the - o (6 "

shot-noise suppressiofi20,21 in mesoscopic systems. ’7(§)ZI”<eXp(5t)‘)>:gl (A >>T @)

Finite-time Lyapunov exponents also determine the wave-

front stability of acoustic and electromagnetic wave propa{where the averagé ) is over realizations of the fluctuating
potential and {{-)) denotes the cumulanistakes the
asymptotic form

1 2
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with w(€) a universal functiorfwithin the statistical model one-dimensional random time-dependent potential. In Sec.

and Ill, we show how the cumulant-generating function can be
related to the parametrized eigenvalue of a second-order dif-

te=ntu® (4)  ferential equation, and that the cumulants can be calculated

systematically. Moments d&¥;; are calculated in Sec. IV. We

a system-specific time scale which can be determined fromlose the paper with a discussion and conclusions in Sec. V.

the infinite-time-Lyapunov exponent and the constaftt)

=du/dé|,—o (by definition,d 7/d€|,—o=\.t). The function Il. FORMULATION OF THE PROBLEM

(&) is given by the leading eigenvalue of a second-order

differential equation in whicl§ appears as a parameter. This

eigenvalue can be calculated perturbatively jrwhich gen- Let us consider an ensemble of time-dependent Hamil-

erates the cumulants of. The values ofu at integeré  tonian system with one degree of freedéranonically con-

determine the asymptotic growth rates thH(Mﬁ) jugated coordinates,p), and the Hamiltonian given by

=Reu(&)/t. of moments of stability-matrix elements. For

A. Statistical model

2

the positive moments&>0), we find that these values are _Pp

. Ay e : : H +V(x,1). ©)
given by the leading eigenvalue of finite-dimensional matri- 2m
ces.

In practical applications, an ensemble of independent tratiéreV(xt) is a randomly time-dependent potential ands
jectories through a randomly fluctuating potential can be reth® mass. Shortly we will see that the stability of trajectories
alized in different ways. If the potential also has a randonPtained from Hamiltonia(®) is determined by properties of
spatial dependence with a short correlation lerigthtop of ~ the curvature of the potential. We allow for a time-
the random temporal dependehcindependent trajectories independent mean curvature
can be realized by choosing different initial conditions in )
phase spacémost appropriately, distributed with the canoni- IV
cally invariant uniform phase-space dengitht should also 2
be noted that a random time-dependent potential is often
considered as a statistical model for the ergodic properties ofhich may arise from a static background potential, while
hyperbolic chaotic motion, in the spirit of the early work of temporal fluctuations of the curvature are assumed to be
Chirikov [31]. The time dependence of the potential thenGaussian and-function-correlated,
mimics the dependence of the potential in the eigentime
along the trajectory. In the context of finite-time Lyapunov PV (X,ty) PV(X,t)
exponents, there have been indications that a statistical de- X2 X2
scription is usually valid for the chaotic background of its
distribution[16], while system-specific deviations may exist The constanD is similar to a diffusion constant, but not
in some exceptional cases even in the bulk of the distributionidentical with conventional diffusion constants of motion in
function [15]. Moreover, these findings indicate that the as-phase spacéln the specific model of Ref§22,23, D can be
sumption of Gaussian statistics of the fluctuations is not rerelated to the temporal and spatial fluctuation properties of
strictive. While the statistical model considered in this workthe potentiaM(x,t).]
is tailored to a specific class of Hamiltonian systems, it can Equation(5) along with Hamilton’s equations of motion
be modified straightforwardly to other classes of chaotic sysand Eqs(6) along with the assumption of Gaussian fluctua-
tems(this is briefly described at the end of this paper tions completely specify the statistical model of Hamiltonian

The problem of finite-time Lyapunov exponents in the dynamics which we investigate in this paper. As already
random time-dependent potential is equivalent to the probmentioned in the Introduction, statistical models of this kind
lem of wave localization in a random one-dimensional po-have a long history in the description of dynamical systems,
tential[32—34, because the equations of motion for the ma-not only for truly time-dependent cases but also as an ap-
trix elements M;; are formally equivalent to the proximation of the pseudorandomness induced by chaotic
corresponding Schdinger equation[10,37. Indeed, the dynamics, with the underlying assumption that different
Fokker-Planck equation employed in this work is based orstretches of typical trajectories are practically uncorrelated.
the phase formalism described, e.g., in Rd38-40Q. Although we restrict our mathematical analysis to the statis-
Hence, the asymptotic statistics of the finite-time Lyapunowvtical model with Gaussian fluctuations, the general findings
exponent presented in this work is of direct interest and cashould also carry over to other random potentials, as long as
be transferred to this field of researf#l]. A number of the correlations are short-ranged and the variance of the ran-
additional areas of application of our method come intodom values is finite. This expectation is supported by the
scope if one considers the vast arena of problems which carertain degree of universality found in chaotic dynamical
be analyzed by products of random matrices, since the finitesystems, as well as by the indications of universal wave-
time Lyapunov exponents are a valuable way to characteriziinction statistics in one-dimensional localization. For de-
the eigenvalues of these produfig)]. tailed investigations of the applicability of statistical ap-

The plan of this paper is as follows. In Sec. Il, we formu- proaches to these models, refer to the works mentioned in the
late the problem of finite-time Lyapunov exponents in thelntroduction.

(6a)

NG

>—v§=2D5(tl—t2). (6b)
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In order to investigate the stability properties of trajecto-duction that the equations for the elemeiMs; andM, are
ries, we introduce the map; which propagates initial con- equivalent to the Schdinger equation, at energy
ditions (x; ,p;) over a time intervat to the final coordinates =V,/m, of a particle of mas.?/2 in a one-dimensional
(X5,ps)=Fi(X; ,p;). The stability matrixM is the lineariza- random potential  +V,)/m (of vanishing meapn with t
tion of the mapF; and describes the sensitivity of the final playing the role of the spatial coordinate,
coordinates to a small perturbation of the initial conditions,

_ d(X¢,py) _(Mu M1,

S aX,p) My My,
) o . while the other matrix elements are directly related to them
Area preservation of the dynamics in phase space entails ”B’y

property deM =1 of the stability matrix.

d2M11 1% dZMlz 1%
@ a2 mM e =M, (14

We are interested in the evolution of the stability matrix dM; dM;,
with given initial conditions and increasing time interval Mar=m—r=, Mzp=m—r—. (15
According to Hamilton’s equations of motion, the stability
matrix fulfills the differential equation The problem of finite-time Lyapunov exponents hence is
dM 0 mt closely related to the problem of one-dimensional localiza-
“— =KM, K=( ) (8) tion in a random potential, in which the Lyapunov exponent
dt v O corresponds to the inverse decay length of the wave function.

where the functior (t) in the matrixK is given by IIl. CUMULANTS OF THE FINITE-TIME

d2v LYAPUNOV EXPONENT
b(t)=——

dx2 ©) We now solve the problem of finding the probability dis-

x=x4(1) tribution function of matrix elements!;; within the statisti-
cal model of chaotic dynamics, defined by the evolution
equation(8) for M, with initial condition(10), and the statis-
tical propertieg11) of the random function. For the sake

M (0)=diag(1,1), (10  of definiteness we will consider in this section the statistics

of the upper diagonal elemekt,,. The results directly carry

corresponding to the identification of the initial and final over to the other elements bf, as is discussed in Sec. IV C.
coordinate systems fdr=0. The statistical properties of

Differential equation(8) is supplemented by the initial con-
ditions

directly follow from Egs.(6), A. Cumulant-generating function as an eigenvalue
(v(t))=—V,, <v(t1)v(t2)>—V§=2D Sty —t,). We introduce the quantities
(1)
L 1 ;2 Mél
Both D as well as the magss can be eliminated from the u= 5'” My z= M_’ (16)
subsequent analysis by rescaling quantities in the following 1
way- where the relation= 2\t to the finite-time Lyapunov expo-
t=tt’, v=(D/m)tw’, Vo=(D/m)t.V}, nent\ is established by Eq1) [note thatM;=Mj, in the
rescaling Eq(12)]. According to Eqs(8) and(12), u andz
M= (tc/MMi,,  My=(mito)Mby, fulfill the differential equations
My=Mi;,  Map=Mp,. (12 %:Z, E:U,_Zz. (17)
dt’ dt’

Here we defined the characteristic time scale

t,=m?D 18, (13) Note that _the evolution equation a_fdecoup_les fromu
and can be interpreted as a Langevin equation. Hence the
[In the course of our analysis, we will see that this time scaldlistributionP(z;t") can be calculated from a Fokker-Planck
also can be found from E@4).] The rescaledprimed quan- ~ €quation, which was considered before in the context of
tities fulfill Egs. (8),(10),(11), with D=m=1. Also note that Wwave-function localizatio39,40,
the rescaling leaves the property 8t 1 invariant. GoP(Zt) = LP(Z:t), (18

B. Relation to one-dimensional localization , =az(22+V§+aZ). (18b)

The set of linear first-order differential equatiof® can
be decoupled by converting them into second-order differenFor larget’, the distribution functiorP(z;t’) approaches the
tial equations. It is useful to not@s mentioned in the Intro- stationary solutioh38-4Q
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[z Equations(22) form an eigenvalue problem, since condi-
Psta(Z):Nf dy K(y,2), (198 tion (22b) only can be fulfilled for a discrete set of numbers
o un—note that these eigenvalues depend on the pararfeter
At ¢£€=0, there is a finite gap between the largest eigenvalue
Mo and the second-largest eigenvajug and by continuity
_ it is guaranteed that this gap also persists in a finite neigh-
N=7"?[Ai%(—V3)+Bi* (V5] " (199  borhood ofé=0. In the limit of larget’, only the largest
eigenvalue is relevant, because the other eigenvalues give
Here Ai and Bi are Airy functions. The normalization con- rise to exponentially smaller contributions. The largest eigen-
stant is directly related to the integrated density of states ifajue vanishes ag—0, i.e.,10(0)=0, because the station-
the localization problem [38-4Q. For V;=0, N ary distribution ofz, Eq. (19), must be recovered for large
=356~ 18,-12/[(1/6)]. Becausalu/dt=2z/t., itis clear  times from Eq.(21) by integrating outu. In the following,
[40] that the infinite-time Lyapunov exponent can be ob-we denote for simplicityug(§)=u(€).
tained from\..=(z)/t.; this relation will be demonstrated The moments ot are given by
explicitly in Sec. Il C.
The Fokker-Planck equation for the joint distribution
function P(u,z;t") is given by

K(y,z)=eW’ - 2)B+Vy(y-2) (19b)

n\ _ i dg ” ! n
W= e | duexpur - antien

9y P=—20,P+ L,P. (20) = lim 7 expl(e(O)HF(8), 29
-0
This Fokker-Planck equation withh,=0 has been derived in . " )
Ref. [19] for the autonomous chaotic scattering of a particle’here the coefficient§(£) =/~..dz fo(¢,2) are determined,

from a dilute collection of scatterersvith more than one In Principle, by the initial condition folP(u,zt") att’=0.
degree of freedoin From Eq.(23), we obtain the moment-generating function

The joint distribution functionP(u,z;t’) does not ap- _ _
proach a stationary limit becauseruns away to infinitely x(§)=(exp(éu))=exp(u(§)t/t)f(£), (24)
large values. In order to analyze the behavior of the distribuyhere we reintroduced the original time variabtett’ by
tion function P(u,zt’) for large times, we convert the Eq (12). The cumulant-generating functid@) hence takes
Fokker-Planck equatiori20) into an eigenvalue problem the form of Eq.(3), including the corrections of ordef,
which discriminates between the different time scales in-
volved in this evolution. For this purpose, we introduce into n(&)=In x(&)=pw(Et/t+1In f(£). (25

Eq. (20) the ansatz o
The cumulantg(\")) of the finite-time Lyapunov expo-

oo

+ie dg nent are obtained by expanding the generating funciion
P(U,Zit')Zf 5 exd un(Ht' —Eulf,(€,2). powers ofé, see Eq(2). In terms of the coefficients of the
o n=0 (21) Taylor expansion,

(The integration ‘contour along_ the imaginary axis corre- M(f):E £ (26)
sponds to a Fourier transformatipiit follows that the func- n=1

tions f, fulfill the differential equation ) ) ) )
[which starts with the linear term i§ becauseu(0)=0],

wn tn(€,2)=(62+ L) Fn(£,2), (229  according to Egs(2) and(25) the nth cumulant of\ is then
given by
in which u, and ¢ appear as parameters. However, in order \ (s—1y1-n .
to obtain a meaningful probability distribution functi¢d), (A =nlutt ot Ot ). 27

we have to impose boundary conditions fy{¢,z) at z—
+oo, It is convenient to express these boundary condition
by the requirement

él’his equation means that within the statistical model, the
cumulants are universal quantities in the leading ordérim
the sense that the initial conditio®z,u;0) only enter the

o next-order corrections. The only system-specific parameters
Pf dz f,(&,2)z<oo. (22b) which enter the cumulants are the time sdgl@nd the(re-

o scaled strengthV;, of the static potential. Note that ratios of
cumulants are even independent of the time staléand
hence of the parameteBs and m of the statistical model

The form (4) of t. follows from Eq.(27) whent, is ex-
pressed in terms of the infinite-time Lyapunov exponent
with help of the definition

Here P denotes the principal value with respect to the inte-
gration boundaries at . Condition(22b) follows from the
behaviorz~(t'—t.) ! of the solution of the differential
equation (17) close to timest’~t., where|z|— (and
hencev’ can be ignored In practical terms, the condition
(22b) guarantees that the drift af remains finite for all A= lim(\)=pu Dt (28)
times. t

— 00
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In terms of the bare quantities of the statistical model,  with the help of the partial solutiof{’’(z) of its homoge-
neous counterpart, E¢31). This inhomogeneous part of the
— (1) 1/3—2/3 ) L .
A= p /DM (29 functionsf{"(z) is fixed by the requirement thaf®)(z) be

In the next two sections, we obtain general expression8°'malized to 1. Adding the homogeneous 59'““0'“9%(2)
for the expansion coefficienta™ and calculate explicitly in any order gives rise to additional terms in all higher or-
the proportionality factoruD=du/dé|,_, in Eq. (29), as ders, but these combine in such a way that they drop out of
well as the first few coefficienta ?) M(sS{*_ " which deter.  the calculation of the coefficienta!™, which hence are
mine, respectively, the variance and the leading non-un'qu:ely determlne? b.y qug’a)' be i d lcul
Gaussian correctiongigher cumulantsof the fluctuations The r_ecnIJrsmI)ln re atllon(s3 )f can be iterated to calculate
of the finite-time Lyapunov exponent around its limiting Successively all cumulants af.
valueh.. .

C. Explicit expressions and numerical values

B. Recursion relations for the cumulants According to Eq.(27), the two numbersu(l) and M(z)

We now show how the cumulants can be calculated fromtletermine mean and variance of the distribution function of
Eq. (27) by recursively solving a hierarchy of equations for X, which then is approximated by a Gaussian. The coeffi-
coefficientsu(™ in the Taylor expansion of(£), Eq.(26).  cient ™ has been obtained in R#0] from the Fokker-

In analogy to Eq.(26), let us also expand the function Planck equatior(18) for arbitrary V,. For the special case
fo(£,2) in powers ofé, V,=0, the two coefficientsu® and u® have been ob-
tained in Ref.[19] from the Fokker-Planck equatiof20).
However, the deviations from the Gaussian distribution func-
tion are not at all negligible for many chaotic systems, which
is most clearly displayed in their generalized dimension and
With Eqgs. (26) and (30), the eigenvalue problen22) can  entropy spectrgl]. As we have seen in Sec. Il B, our ap-
now be written order by order in powers 8f. Forn=0, we  proach of reduction to the eigenvalue probl&2f) allows us
recover the stationary variantl8) of the Fokker-Planck to analyze the non-Gaussian deviations by the higher cumu-
equation(20), lants of A. [In Sec. IV, we show that one can even obtain

©) from our analysis the positive momerM;il, £>0, which
L,f57(2)=0, (81 are determined by the far tail>\.. of P(\;t), while the
bulk of the distribution is essentially irrelevant for these mo-
ments]
Explicit expressions for the first few coefficienjs®),
n 1@ 1@ andu® result from Eq.(33a),

10 @)= -2 V@) + 2 k10 V@, (32

fo(f,z>=n§0 (). (30)

which is solved by the stationary solutid’)(z) = Pg.(2),
Eq. (19). Forn>1, the differential equations are of the form

uH= J_:dz z{(z), (343

Let us assume that we have solved the hierarchy of equa-
tions up to orden— 1. In the next orden, both the unknown
quantitiesf&”) as well asu(™ appear. The unknowns can be (2)_f
separated by integrating the differential equati8g) overz o
from — to «: The integrated left-hand side vanishes be-
cause of conditiori22b) of the eigenvalue problem. The in-
tegrated right-hand side can be rearranged to g, u®= f

M(n): f dz

which only involves quantities up to order—1. Subse-

dz(z—puM)fi(2), (34b)

" 4 (2 kDD (2) - u @1 2)], (349

n—-1
zf§ Y(z2)— ;1 ,A')fg“—')(z)}, (333

pt= J d7 (z— uMf(2) - u@1P(2) - PfP(2)],

quently, »(™ can be inserted into E¢32). The function (340
fg“)(z): fz dyfy dx K(y,z) _ng“—l)(x) Wheref(()o)(z) = Pg,(2) is given by the stationary distribution
- - function ofz, Eq.(19), while the other functions follow from
+2 pOf 00 (33b)
=1

f(z =f dy dx K(y,z)(u®—x)f(x),
[with the kernelK (y,z) defined in Eq(19)] is then obtained 6 (2) oy Ky.2)(u o (x)
by solving the resulting inhomogeneous differential equation (353
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25 — : : : : TABLE I. The first eight coefficients! u(™ of the cumulants of
finite-time Lyapunov exponentsf. Eq.(27)], in the absence of the
21 static background potential/f=0).
s M n 1 2 3 4
3.
Ly nt (™ 0.365 0.401 0.0975 0.0361
o5 | n 5 6 7 8
0 nt (™ -0.266 —0.628 —0.554 3.71
1d ~
1y W= _—_

3 o 5 av; logN, (36)

Vf} 0.5 | ] whereN is given in Eq.(19), while the cumulants fon=2
can be obtained quickly by numerical integration of-fdld
integrals. The effort of integration can be greatly reduced

0 down to the expense equivalent to a single integral, because
the integrand factorizes. An efficient recursive scheme is de-
05t ' ' ' R scribed in the Appendix. In Fig. 1, we plot the coefficient
1Y and the ratios! (/™) for n=2,3,4 as a function of

_ V5. The non-Gaussian corrections are largest arouid

“a 0 =0, while they become irrelevant for large negative or posi-

g tive values ofV}.

o

05t . For large negative valueg,< — 1, the growth rate of u
fluctuates only weakly around the valae +— V3, which in
the absence of the temporal fluctuationsvirwould be a
stable equilibrium point fog, see Eq(17). Henceu grows
linearly in time with almost negligible fluctuations.

For V,>1, the Lyapunov exponent becomes small be-
cause of the stabilizing influence of the confining back-
ground potential[In the context of wave localization, this
corresponds to the well-known limit of a large Fermi energy
E~V,; (cf. Sec. Il B.] The matrix element$/;; then oscil-
late with an almost fixed frequency \/7 , as can be seen
from Eq. (8). The coefficients! u(W/u®— 8,,+ 8,,, with
Smn the Kronecker symbol, and the Gaussian approximation

-1

24 pOp®

-4 2 0 2 4
Vz’

1
) =W g4 Z g2 3
FIG. 1. Coefficientu® of the first cumulant, and the ratios Haaussiaht) = 1 (§ 2§ ) 37

n!u™/u® for the coefficients of the second, third, and fourth _

cumulantcf. Eq.(27)], as a function of the strengi, of the static becomes valid.

background potential. Analytical results can be found in the cage=0 for the
first two coefficients,

13
f<2>(z)=f dy dx K(y,2)[ (u—x)F§(x) (32T
0 Zz>y>X 0 M F( 1/6) ’ (386)
— ,(2)£(0)
M _E ﬁ 32 ’ ’E,E,E’Z ’ ( )
t9(2)= L>y>xdy dx Ky, 2)[ (M=) FP (%) whereN(V,=0)=3562-137-Y2[T(1/6)], while 4F, is a
generalized hypergeometric function. Incidentally, the nu-
—u@fP 00— @O (x)7. (350  merical value given fo(® in Ref.[19] is wrong, but the

analytic expression given in that paper is equivalent to Egs.
(34b) and(38b). In Table I, we tabulate the numerical values
The coefficientu®) is then given by40] of the first eight coefficienta! u(™ for V,=0.
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IV. MOMENTS OF M (a triconfluent Heun’s equation with singularity atz#/0).

A. Formally exact expressions We introduce into this equation the polynomial ansatz

In view of Egs.(16) and(24), we find that the exponential ¢
growth rates of the moments M, are given by the largest Q(Z)ano 2" (42
eigenvalueu (&) of Eq. (22) at integer values of [42], N

Power matching results in the following backward-recursion
dIn(M{,) o 48 relation: ’ ?
=Re . (39 :
dt t.

As we will now show, for positive integer values éfthe (€=men=plneat (N+2)[Valniz= (N+3)Cnss]
eigenvalue probleni22) can be reduced to a matrix eigen- (433
value problem of finite dimension. For the first few mo- . R .
ments, the leading eigenvalue can be calculated explicitly/" the coefficientss,, with initial conditions
while for larger values it is formally given by the largest root
of the corresponding characteristic polynomial.

In order to obtain a solution of the differential equation g, integer¢, this backward-recursion relation terminates.
(223, we write We obtain functionso(), ¢1(x), andc,(x) and an addi-
tional condition from the terms in Eq41) which are con-

c:=1, C;1=u, C§_2:M2/2. (43b

‘ 9(2) stant inz
fo(é,2)= | dyK(y,2) o(y)? (40) '
_ S _ Pe(p)=pCo+V5e1—2¢,=0, (44)
[with the kernelK (y,z) defined in Eq(19)], and obtain fog
the differential equation wherep,(u) is a polynomial of degre¢+ 1. This polyno-
by 5 mial can also be interpreted as the characteristic polynomial
(n—£2)9=—(2°+V;)3,9+ 3,9 (4D of the[(&+1)X (&+1)]-dimensional matrix
|
0 -V, 1x2 0 0
& 0 -2V, 2Xx3 0
0 ¢-1 0 -3V, 3x4
0 O £-2 0 -4V,
’ , (45)
0 0 £-3 0 o -
: : : 0 (1-9Vy (£-1)¢
2 0 — &V,
0 1 0

which is the matrix representation of the eigenvalue problenThe distance of the subleading eigenvalue to the leading ei-
(22) in the space of the monomial expansionggf). genvalue increases with increasiég

The exponential growth ratg(¢) of the éth moment is For finite V5, we plotted the real parts of the leading and
given by the rodf) of p.(u) with the largest real paf42].  subleading growth ratdeigenvalues of the matritd5)] for
In Sec. IV B, we will see for the examples=1,2 that the the first four moments in Fig. 3. The growth rate /z€l)
other roots show up in the transient behavior of the moments.

ForV,=0, the values for the first few moments are given = TABLE Il. Exponential growth rateg.(¢) of the first few mo-
in Table I1. Figure 2 shows the growth rates and the real parfents(Miy) [cf. Eq.(39)], in the absence of the static background
of the subleading eigenvalue for values &fup to 80. A  Potential ¢/;=0).
log-normal statistics oM, (corresponding to a Gaussian

;tatistics of th_e finite-time Lyapunov expone)nl\s)uld_result (1) 23,3 243;,3 8:1',3
in the quadratic dependence Eg7) of (&) on &, while the  #
plot shows a weakefapproximately linegrdependence for ¢ 5 6 7

large £. This results from the influence of the termé ¢ w 2(14+3\19)¥3  (252+2479)®  2(63+15/10)¥3
for n=3 in the complete Taylor expansion pf, Eq. (26).
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FIG. 2. Growth rateg:(&) of the momentgM 7)) [cf. Eq. (39)]
in the absence of the static background potentigl<0), obtained
as the largest eigenvalue of the mat(45) (full circles). Also

shown is the real part of the subleading eigenvalue of this matrix
(open circles

Re u(2)

=[Im/V}| of the first momentM,) follows from the roots
of py(m) =u?+ V). Consequently, the growth rate ¥ )

vanishes in the case of confinement,>0. This will be
confirmed by the direct computation in Sec. IV B.

B. Direct computation of the first and second moment

Re p(3)

In order to illustrate our findings for the growth rates of
the momentgM$,), we compare the results f@=1 and 4
£=2 to the exact results for all timéscluding the transient
behavioj. A formal solution of the differential equatiaii4) 8
in terms of a series in the disorder potential is obtained by
integrating Eq.(14) iteratively, under observation of the ini-
tial conditionsM ;=1, dM4,/dt=0 for t=0. This gives

v(ty)

% n
te—1
Mu(to)=1+ > [1 dty (t—1— 1) , (46)
A=1k=1 Jo

Re p(4)
(=]

where we introducetiy=t for notational convenience.
For the first moment, we can average E46) directly
with help of Eq.(12), -10

1 71 7
M) =cog (t/t) VVi]=z etV Vaq — gtV -V5,
(M) $(Ut) Ve 2 ‘ 2 ‘ FIG. 3. Growth rates Rg(&) of the momentgM7}) [cf. Eq.

(47 (39)], for m=1,2,3,4, as a function of the streng#tj of the static
background potential. Also showdashed linesare the subleading

For V,=0, the first moment is constant and given by its growth rateqreal parts of the subleading eigenvalues of the matrix
initial value,(M1;)=1. This means that negative deviations (45)].
M 1,<<0, corresponding to inverse hyperbolic motion, cancel )
precisely the positive deviatiorid ;>0 of hyperbolic mo- - tk—1
tion. For negativé/,, the first moment grows, while for posi- <M§1>: 1+nzl (2/t§)“k1:[l J; diy(tk-1—t)?
tive V; it oscillates and stays of order unity. In the decom-
position of the cosine into the two exponentials, we identify
in the exponents the two rootg \—V, of pi(u)=pu?
+V,. For negativeV,, the subleading root hence governs (48)
the transient behavior of the first moment.

For the second moment, let us restrict ourselves for simThe asymptotic growth rate of the second moment is given
plicity to the caseV,=0. We group the functions in the by the leading rooj(2)=2%° of the characteristic polyno-
two factors ofMy; in pairs and then invoke thé-function  mial p,(u)= 33— 2, in accordance with Table Il. The sec-
correlations of Eq(11). Performing the time-ordered inte- ond and third exponent are the other two roots of this poly-
grals, we obtain nomial.

= %[eM(Z)WH_ e~ (CDu@ttey o= (-1 Fu@tite],
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C. Equivalence of matrix elements plus potential energy, with time dependence only in the po-

So far we mainly studied the statistics of the upper diag_tential energy. This case is of particular interest because of its

onal elemenM ; of the stability matrixM. At this point now direct applicability to specific dynamical systems as in the
we can discuss how the results for the cumulant-generatin?"dom wave-propagation problem of Ref22,23, and be-

function and the moments can be transferred to the othdf@US€ of its applicability to one-dimensional wave localiza-
elements oM. tion. For the Hamiltoniarn5), the matrixK in the differential

The differential equatiori15) for M., can be integrated €duation(8) is purely off-diagonal, with fluctuations only in
similarly to the one forM {;, from which we obtain analo- the Iqwer-lgft (_alement. For Hamlltonlans Wh'.Ch do not sepa-
gously to Eq.(46) the formal solution rate into kinetic and potential energy, the differential equa-

tion (5) for M involves the matriX in the more general form

% n
-1 v(ty)
Mato) =1+ 3 TT | * dt(te—ti) == 49 PH
Kir Kz 2 ap?
o _ _ _ . (51
Here we defined in each term of orderthatt,,,=0. It Kyt Ky 21 2 (51

follows by direct computation that the first two moments of -
M, are identical to those ofl;y, (My)=(My;), (M3, ax? axap
=(M2)). These explicit results already suggest that the sta-

tistics of the two diagonal matrix elements is the same. InA generalized statistical model now arises by introducing
deed. the transformatiortk—t—T ) v(t—T)—5(~t) noise into all of the matrix elements &. (One may also
’ - n+1-k» -

brings Eq.(49) into the form of Eq.(46) and leaves the allow for correlations between the different matrix elements

properties of the Gaussian noi&kl) invariant. Hence even or for finite correlation times by introducing auxiliary vari-

the transient behavior of the diagonal elements is compIeteI?l:’lLe:tfSSr ﬂ:)?nrt]glustet\;\?othgrﬁéirllgir:isvgiﬁor which a statistical
identical, for arbitrary values 0¥ . P P

. . description promises to result in direct applications to physi-
The results for the cumulant-generating functiggé) cal situations of interest. One case is more relevant to wave-

(henqe also th? growth rates of the moments, bu'g not th?unction localization while the other is more relevant for cha-
transient behavigrcan also be transferred to the off-diagonal otic dynamics

matrix elements ofM: The elementM,, fulfills the same (@ The diagonal element ;= —K,,=0 still vanish

e e e s dencaly, bt bt ofagonl e and
of the off-diagonal matqrix elemaed;r?'fs. differ from those of thetuate with a vanishing mean. This situation is related to the
9 band-center case of one-dimensional localization in the

diagonal elements. However, according to E2§) this only Anderson mode[41,43,44 (where space is discretized on

?Lfﬁﬁfam? feunn:rg?iz(ggug]c:rcfm\?hl?(t:)#eiglrnt%g %rigﬁlﬂgso?ftﬁge the lattice, since at the band center the effective mass of the
9 9 ' P aparticle divergegand hence the mean &f;, vanisheg

second moment, results in factors in front of the exponenti (b) Dynamics which are isotropic in phase space, in the

functions which are different from those in E@'ZS)]' , sense that the Hamiltoniarid(p,x,t) statistically do not
Let us add that from Eq<46) anld (419)' vzve find for_VZ single out any specific direction in phase space. In this case
=0 the cross-correlatofM ;M) =z +2(M1y). Collecting e \would encounter independent fluctuations of all four ma-
the results, this givegtrM)=2, trix elementsK;; with identical amplitude and vanishing
)3 mean. Hamiltonian dynamics gives rise to the further con-
((rM)?)=1+exDet 2 Ree™ ("M@ e (50)  gpraintk y,= — K .
It would be interesting to compare the outcome of an
V. DISCUSSION analysis of this model with the findings in the literature
[15,16, which indicate a certain degree of robustn@tsot

In this work, we presented a uniform approach to theyniversality of the distribution of finite-time Lyapunov ex-
asymptotic statistics of finite-time Lyapunov exponents, forponents in chaotic maps.

the model(described in Sec. )lof a particle moving in a
random time-dependent potential. The cumulant-generating
function 5(¢£) was found to be directly proportional to the
eigenvalueu(§) of a parametrized differential equation, de-  We gratefully acknowledge useful discussions with Igor
fined by Egs.(22). This facilitated an effective analysis of Gornyi, Philippe Jacquod, and Holger Kantz, and especially
the statistics, including the non-Gaussian deviations of theyith Steven Tomsovic, who motivated us to study this prob-
distribution function. These deviations are especially impor{em.
tant for the moments of the elements of the stability matrix,
since their growth rateannotbe predicted by the Gaussian
approximation Eq(37).

We limited our attention to the case of time-dependent
Hamiltonian systems with a single degree of freedom and a The cumulants of orden result from the recursion rela-
Hamiltonian(5) which is of the special type of kinetic energy tions Eq.(33) in the form of Zh-fold integrals. Usually, the
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numerical evaluation of such integrals for largeis very lower integration boundajyare zero. We now can write re-
time consuming, since the number of points on a grid covereursively, by incrementally increasing the integration vari-
ing the integration domain with lattice constantN}/ N ables,

>1, grows rapidly withn asN?". However, the integrands

in Eq. (33 factorize and the expense of the integration can Om+1 1
i - 12) === @4 —g 1 (3) (A2a)
be reduced from exponential to algebraic dependence miT g TIm TN Imlm”s
~nN. The principle can be demonstrated for the example of m
the twofold integral, 1
19,=19+ 518 (A2b)

2
|(l):f dz I(Z)(Z),
-7

More(();/)er, when @) itself is a multidimensional integral of
Y z type '+, its current value can be obtained recursively in the
1@(2)=9(2) f_zody 19(y), AL same way as the value tf"). Since each additional integral
will give rise to only one additional equatidsimilar either

where g is an arbitrary function and® may itself be a to Eq. (A2a) or to Eq. (A2b)], the number of operations
multidimensional integral. grows linearly withn, as advertised abovgThe recursion

We introduce an inderm which denotes that the argument relations(A2) have the additional advantage for the present
of a function is taken at theth lattice point on the appro- problem that they avoid overflow and underflow in the evalu-
priate axis of the grid. The initial values bﬁ?’ atm=0 (the  ation of the kerneK(y,z) =exp{*/3+ V,y—23/13—V}z).]
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