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We present a dynamical analysis of the transport through small quantum cavities with large openings. The
systematic suppression of shot noise is used to distinguish direct, deterministic from indirect, indeterministic
transport processes. The analysis is based on quantum mechanical calculafiamstia¢es and their poles for
quantum billiards with convex boundaries of different shape and two open channels in each of the two attached
leads. Direct processes are supported when special states couple strongly to the leads, and can result in
deterministic transport as signified by a striking system-specific suppression of shot noise.
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Transport through quantum devices is one of the topicahoninteracting electrons in diffusive wirés® and F=1/4
subjects in mesoscopic physics. The diagrammatic perturbder quantum dots**° respectively.
tion theory and the random-matrix thediMT) predict that Classically, the zero-temperature shot noise vanishes be-
the conductance varies from sample to sample by a universghuse of the deterministic nature of classical transport. Based
small amount, if details of the quantum device and its cou-on the semiclassical approach to quantum transport in clas-
pling to the electronic reservoirs are not importantfor  sically chaotic systems, it was predicted that the shot noise
reviews see Refs. 3 and).4These universal conductance indeed can be reduced beldf= 1/4 if the Ehrenfest timeg
fluctuations have been observed experimentally for disorthe time scale for wave packets to dissolve due to chaotic
dered quantum wirésand quantum dot$The RMT assumes dynamic$ is larger thanry,e.*® Recently, this prediction
that the dwell timery,,, Of electrons in the system is large has been verified experimentally by using chaotic cavities,
enough to wash out all system-specific details, and supposegere the time that electrons dwell inside can be turded.
that the conductance is determined by a random coupling ofhe analog suppression in soft chaotic systems has been con-
the scattering states to the leads. Recent studies clearly degidered in Ref. 18.
onstrate that the conductance of small quantum dots with In the present paper we investigate the shot noise in the
very large openings, which violate the RMT conditions, in-deep quantum mechanical regime, which is opposite to the
deed only can be fully understood on the basis of their spesemiclassical limit of Refs. 16—18. We find that the bands of
cific properties’® This is the deep quantum mechanical re-broad resonanceormed by appropriate attachment of the
gime, in which the Heisenberg time ,=#/A becomes a leads support direct, deterministic transport channels with
relevant time scale for the internal dynamics, whares the  dwell times 74, less than the timey,q.; that separates de-
mean resonance spacing. Under these conditions the coterministic from indeterministic dynamicén the quantum
pling between specific states of the cavity and the channekgime, this time scale depends on the detailed dynamical
wave functions depends sensitively and nonuniversally omxploration of the system, and only may be identified with
the position of the attached leati¥’ For instance, an appro- the Ehrenfest time in the long time, semiclassical ljmithis
priate attachment of the leads to the Bunimovich stadiums signified by a striking suppression of the shot noise, even
billiard, a paradigm for quantum chaotic systems, gives risavhen the corresponding classical dynamics in the quantum
to a family of short-lived whispering gallery modé4/GM) cavity is chaotic. On the other hand, resonances with large
related to the shortest classical paths connecting both leadgwell times are indeterministic and contribute to the shot
These special states have small lifetimgge <7y and cor-  noise as predicted by RMT. The general observation of shot-
respond to broad overlapping resonances, which influenceoise suppression by direct processes is consistent with the
the transport over a large range of energies. As a consevork of Baranger and Mell&® who found that in their pres-
guence, the conductance of the quantum cavity significantlgnce the transmission eigenvalues are redistributed towards
exceeds the prediction of RM¥. the deterministic values 0, 1. We provide a detailed analysis

It is well established that shot noigthe zero-frequency of the dynamical aspects involved in the formation of the
current-current correlations caused by the discreteness gbrresponding deterministic processes, by means of the re-
electric charge provides valuable complementary informa- sulting shot-noise suppression and of a direct investigation of
tion not contained in the conductander a review see Ref. the resonance wave functions.
11). It was found that correlations due to Fermi statistics In order to study the role of special states for the transport
suppress the shot-noise poweby a factor = P/Py below in small quantum systems with large openings, we consider
the maximal valud®,=2e G,V of incoherent transport, with cavities with convex boundaries and two attached leads,
e the unit of chargeG, the series conductance of the two where each lead suppoifts=2 propagating modes. We ana-
point contacts, an¥ the applied voltage. The universal pre- lyze two stadium billiards of Bunimovich typgéength of the
dictions for the shot-noise suppression factor Arel/3 for  linear segmentt =37/(7+ 1) and radiugk= L] with differ-
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ent positions of the lead8unl and Bun2, see Fig(d) and the total sum of the width&gI'r(E) (which is fixed by a
1(f)], and also consider a semicirclR£ 3) with an internal  sum rule; for quantum billiards see Refs. 9 and.1Dhe
scatteref SIS, see Fig. (b)]. The Bunimovich stadium is a states from band andB are related to the first and second
prototype of chaotic motion, while the SIS is most suitabletransverse excitation of the propagating modes in the leads,
for the propagation of the WGMI. respectively. The resonance wave functidrg(x,y)|? dis-

The poles of theS matrix are obtained by the method of plays a strong localization along the convex boundary, which
exterior complex scalirf in combination with the finite el- is a characteristic feature of the WGKIIn the SIS, these
ement methodfor details see Ref. 21 The Smatrix itself is  trajectories almost exclusively correspond to one bounce at
calculated in small energy steps by directly solving thethe convex boundary, while for the Bunl billiard, there is
Schralinger equation in a discretized space, according to thalso a small contribution of trajectories with two bounces. In
method suggested in Ref. 22. The poles of 8matrix ob-  the SIS the WGM accumulatR=3T"\ygu/ZiI'i>98% of
tained by the numerical calculation are shown in the leftthe total sum of width&T'; of all states, while in the Bunl
panels of Fig. 1. The plots demonstrate the formation obilliard they accumulate a fractidR=93% of the total sum.
bands of overlapping resonances denoted\landB for the  For these direct processes one can supposerifhais larger
SIS and the Bunl billiard, while no evident band is formedthan the dwell timery,e;, and this will be demonstrated,
in the Bun2 billiard. Another ban81 of resonances can be indeed, by our dynamical analysis.
identified for the SIS, but these resonances do not overlap. The bands of WGM are inhibited in the Bun2 billiard

The bands of overlapping resonances in the SIS and in thig=ig. 1(e) and Xf)] by destructive interference, since the cou-
Bun1 billiard are the result of resonance trappifiig, phe- pling matrix elements of the WGM with the channel wave
nomenon in which few states accumulate the major part ofunctions have different phases for different leads. As we
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FIG. 2. Shot-noise suppression factérvs the value of the FIG. 3. Shot-noise suppression factbrof the SIS billiard as a
energy-averaging intervadt,, for the three different billiards SIS function of the energy-averaging intenil, . Different curves cor-
(open squane Bunl (filled squarg¢, and Bun2(open circlg. respond to the different lower-energy boun&g""=40 (filled

squarg, Ej""=52.5 (open circl¢, andEJ"=65 (open square
will demonstrate, the resonances in the Bun2 comply with
Tindet< Tawell» COrresponding to indeterministic processes
This is also the case for the long-living resonances in the Sl
and Bunl billiards.
The suppression factofF=(2/N)tr[T(1—T)] is deter-
mined by the eigenvaludsransmission probabilitigf the

gwemselves, without any modification of their dynamics. The
Shot noise in the billiard Bun2 corresponds well to the uni-
versal predictionF=1/4 of RMT, from which we conclude
that 74.el= Tinget @nd that the dynamics is indeterministic.
matrix T=t't, wheret is the transmission matri&:24 The For the other two billiards, the suppression factor is signifi-
I(_:antly reduced below the universal value. We now argue that

closer the transmission probabilities are to the classical val:". . X .
ues 0 or 1 of completely deterministic dynamics, the smalle%gt'isc’: ??:ngsoitmbmed to the WGM, which support determin-

is the shot noise. To get a thorough insight into the interplay The modes that lead to shot-noise reduction can be iden-

of deterministic and indeterministic dynamics, we employ.... AR

the procedure recently developed in Ref. 18. The major elquigi;r\?itm fgfed?gfgnizagifdz Osr':eEnzqi\-“s V\g::'i?ir; mr%'g:;iz;hf in-
ment of this procedure is the purposeful replacement 0fieterminyi/stic onpes For the bil>lliards S:OS and I[I;)unl the fu¥1c-
system-specific dynamics with dwell timege = 74y by in- ) ’

deterministic processes. In the first step, the system-specifﬂ:? n ¥ increases monotonically with increasing contribution

details are eliminated by averaging the scattering médrix of the random dynam'cencreasnga") and eventually ap-
over an energy rangEEq— E./2,Eo+E./2] of width E proaches the universal prediction of RMT. However, the
0 av <=0 a av

— kT slope of F(E,,) for small E,, almost vanishes. Hence, with-
av: out any consequences for the shot noise the long-living reso-
. 1 (Eg+Eg/2 nancegtrapped by the WGNican be replaced biand hence
S(Eav;EO):E_ S(E)dE. (1) are equivalent tpindeterministic processes. On the other
av/Eo~Ea/2 hand, the suppression factor rises significantly when the

Indeterministic processes then are introduced by coupling thenergy-averaging windov,, becomes of the order of the
system to an auxiliary indeterministic system, with a scatterwidth I'r of the WGM modes in each of the two billiardsf.
ing matrix S, taken from the appropriate circular ensembleFig. 1), which hence support deterministic transport.
of RMT. The composed system with scattering matrix The position of the attachment of the leads plays a deci-
sive role, since it determines the character of the system-
S'(EayiEo:S0) = S(EayiEg) + 7' (1-SyR)"1S,7 (2)  specific broad resonances. In the Bun2 billiard, the suppres-
. ) 5 26 . sion factor F is almost independent oE,, and hence
is a member of the Poisson kernel of RIMPE® The matrix  completely insensitive to the replacement of system-specific
S’ must be unitary, which determines the coupling matricesyroperties by indeterministic dynamics. Even the short-living
7, T', andR. We numerically calculate the mean suppres-resonances no longer correspond to deterministic classical
sion factor7(E,,) for fixed values ofE,, by first averaging transport. The remarkable difference in the behavior of the
over the random matri$, within each Poisson kernel, and syppression factaf for the Bunl and Bun2 billiards arises
then averaging ovef, within a range Eg"" ,Eg"™). from the different position of the leads attached to the same
The result for the suppression factstE,,) in the three  quantum system, which results in the formation of direct,
billiards is shown in Fig. 2. Her&g""=40 andEg™®*=90 are  deterministic transport channels in the first case, while no
fixed to the values where the second and the third propagasuch channels are formed in the second case.
ing mode opens in each lead, respectively. The val(ig,, Both in the SIS and in the Bunl billiard, two bandsB
=0) is the shot-noise suppression factor of the billiardsof broad resonances have been identified. We now analyze
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these bands in more detail for the SIS. Figure 3 displays thef type B with smallest width are included into the averaging
result for the suppression factor for three different values ofnterval, and the slope of the suppression fack®E,,) for

max__

EX™, while ET®=90 remains fixed to the value where the

very small values of,, increases noticeably. This shows

third propagating mode opens in the leads. In this way wdhat even the longest-living resonances in fanBlysupport

focus on the contribution of the WGM from different parts of
the bands. The lowest and the highest suppression féctor
are obtained if we only consider WGM with energiEg
=Eg"=65 and Eg=E("=53, respectively{see Fig. 1a)
and the inset in Fig. B The difference between the largest
and the smallest values is small, since the dynamics
mainly determined by the states of the bafdwhich are
strongly localized along the convex boundary and all hav
similar width. The widths of the states from the famiy
depend almost linearly on their energy, and become sm
when one approaches the thresh@gd=40 of the second

propagating mode in the leads. H&, =40 the resonances

system-specific direct, deterministic processes.
Summarizing, we analyzed the transport through small
quantum cavities with large openings, deep in the quantum
regime. We observed an essential suppression of the shot
noise when the transport is dominated by system-specific
.broad resonances that support direct processes well described
'By deterministic classical dynamics. These deterministic
transport channels can exist even if the closed system mani-

Qests typical properties of chaotic dynamics, and their forma-
aHon sensitively depends on the precise position of the leads.

We gratefully acknowledge discussions with Pier A.
Mello, as well as with Konstantin Pichugin.
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