Dales, H.G. and Hayman, W. K. (1981) Esterlè's proof of the tauberian theorem for Beurling algebras. Annales de L'Institut Fourier, 31 (4). pp. 141-150. ISSN 1777-5310
Full text not available from this repository.Abstract
Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1({\bf R})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi ({\bf R})$. Our estimates need a theorem of Hayman and Korenblum.
Item Type:
Journal Article
Journal or Publication Title:
Annales de L'Institut Fourier
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2602
Subjects:
?? algebra and number theorygeometry and topology ??
Departments:
ID Code:
67662
Deposited By:
Deposited On:
22 Nov 2013 10:32
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 14:22