Dales, H.G. and Hayman, W. K.
(1981)
*Esterlè's proof of the tauberian theorem for Beurling algebras.*
Annales de L'Institut Fourier, 31 (4).
pp. 141-150.
ISSN 1777-5310

## Abstract

Recently in this Journal J. Esterlé gave a new proof of the Wiener Tauberian theorem for $L^1({\bf R})$ using the Ahlfors-Heins theorem for bounded analytic functions on a half-plane. We here use essentially the same method to prove the analogous result for Beurling algebras $L^1_\varphi ({\bf R})$. Our estimates need a theorem of Hayman and Korenblum.

Item Type:

Journal Article

Journal or Publication Title:

Annales de L'Institut Fourier

Uncontrolled Keywords:

/dk/atira/pure/subjectarea/asjc/2600/2602

Subjects:

?? algebra and number theorygeometry and topology ??

Departments:

ID Code:

67662

Deposited By:

Deposited On:

22 Nov 2013 10:32

Refereed?:

Yes

Published?:

Published

Last Modified:

15 Jul 2024 14:22