
Space Plasma Environment and Radio Science Group

Department of Communication Systems

Lancaster University

United Kingdom

Technological Advances in Imaging Riometry

Martin Grill, Dipl.-Ing. (FH)

Submitted in part fulfilment of the requirements

for the degree of Doctor of Philosophy

June 2007

Abstract

Technological Advances in Imaging Riometry

Martin Grill, Dipl.-Ing. (FH)

Submitted for the degree of Doctor of Philosophy

June 2007

Since their inception in 1935, relative ionospheric opacity meters (riometers) have evolved

through several generations, from simple, manually operated, widebeam receivers to automated

multi-beam imaging riometers. This thesis follows the development of a new type of imaging

riometer based on a Mills Cross antenna array: the Advanced Rio-Imaging Experiment in Scan-

dinavia (ARIES). This is the first time that a digital cross-correlation beamforming technique

has been used in riometry. The investigations presented cover initial simulations, software spec-

ification, design and implementation, hardware prototyping, the working instrument and first

data products. Therefore, the work is an interdisciplinary slice through the engineering cycle of

ARIES, encompassing a variety of subject areas, including (Space Plasma) Physics, Electronics,

Astronomy and (Software) Engineering.

This thesis makes three specific contributions. Firstly, several low- and high-level simula-

tions are presented, culminating in the development of the riometer simulation toolkit (RIOSIM).

RIOSIM is not specific to ARIES, but is capable of simulating the behaviour of arbitrary antenna

arrays.

Secondly, a flexible software architecture is developed and implemented in form of the Ad-

vanced Riometer Components (ARCOM) operating software. ARCOM consists of components

ii

iii

participating in processing pipelines through high-speed shared memory interfaces and a flexible

streaming data format based around principles similar to those used in digital video broadcast-

ing (DVB). ARCOM software architecture and data formats are not limited to riometry but will

readily support a wide range of data acquisition and processing tasks.

Thirdly, a new approach to image interpolation for riometers (GLEAM) is developed and its

performance evaluated. GLEAM uses a matrix inversion technique, combined with knowledge

about antenna and phased array directivity patterns and predictions obtained from simulations,

to fit a parametrised model of the sky brightness distribution to real data. This is envisaged to

become the primary data product of a new generation of riometers.

Declaration

The material presented in this thesis is the result of my own work and has not been produced

as the result of collaborations, except where specifically indicated. The material has not been

submitted in substantially the same form for the award of a higher degree elsewhere.

Some of the ideas in this thesis stem from discussions with my supervisors and colleagues,

and these have been referenced as ‘personal communication’ where appropriate.

Some of the material presented in this thesis has been, or is in the process of being, published

in journals (Hagfors, Grill, Honary 2003 — [HGH03]; Nielsen, Honary, Grill 2004 — [NHG04];

Honary, Grill, Barratt, Nielsen 2007 — [HGBC07]) and conference presentations (Grill, Honary,

Nielsen et al. 2003 — [GHN+03]; Honary, Marple, Kosch, Senior, Makarevitch, Grill 2004 —

[HMK+04]; Barratt, Honary, Grill, Chapman 2004 — [BHGC04]; Grill, Senior, Honary 2005

— [GSH05]; Honary, Chapman, Grill, Barratt et al. 2005 — [HCG+05]; Honary, Chapman,

Grill, Barratt et al. 2006 — [HCG+06]).

Martin Grill

iv

Dedication

“To him who is able to do immeasurably more than all we ask or imagine, according to his power

that is at work within us.” [God]

v

Acknowledgements

While working on this thesis, numerous people have supported and influenced me in many

different ways. Mentioning them all seems even more of a ‘Wicked Problem’ than designing

operating software for ARIES. So I shall ask forgiveness from all those people I have missed out

on the following list and from those whose contributions I have misrepresented or misjudged.

Stefani Maier and Haybatolah Khakzar have helped establish the contact with Lancaster

University in the first place. I thank my supervisor Farideh Honary for giving me the opportunity

to write this thesis and supporting me all the way.

Erling Nielsen and the late Tor Hagfors are the originators of the idea to build a riometer

based around a Mills Cross antenna array.

Hisao Yamagishi suggested a valuable practical approach for integration time estimation.

Mike Rietveld and staff at the EISCAT facility near Tromsø have helped out with advice

and equipment on various occasions, both during our on-site campaigns in Norway and during

remote operation.

As well as being a brilliant role model of a scientist and the originator of the ideas behind

chapter 10, Andrew Senior has often supported me with advice, comments and uniquely insight-

ful, ethical and diplomatic points of view. He has also provided me with much-needed extra

time by taking over some of my duties at various times.

Throughout several projects, including ARIES, Keith Barratt has always been a pleasure to

work with and an invaluable source of advice. He also shared my passion for well-designed

systems and interfaces.

Peter Chapman was the source of many interesting insights into RF design and applied elec-

tronics.

The support and friendship of all members of the Space Plasma Environment and Radio Sci-

ence (SPEARS) group has always been a great encouragement and especially Roman Makare-

vitch has become a good friend.

vi

vii

The original ARIES project was funded by the Particle Physics and Astronomy Research

Council (PPARC), which has since been merged into the Science and Technology Facilities

Council (STFC). Without funding for the ARIES project, this thesis would not have been possi-

ble.

I am deeply grateful that my parents Wolfgang and Sibylle Grill and my sister Claudia Grill

have been a never ending source of love and support.

Martin and Claudia Strohbach have become dear friends and have provided valuable advice,

support and my first godchild!

My church family at Lancaster Baptist Church and beyond, and particularly our housegroup,

have been a tremendous source of strength, support and advice.

Finally, the biggest ‘thank you’ of all goes to my wife Ruth and my son Ken Lukas. The

very thought of them has the power to fill every moment of my life with joy and happiness, also

and especially whenever work and research are not as joyful as they should be.

Contents

Abstract ii

Declaration iv

Dedication v

Acknowledgements vi

Contents viii

List of Figures xviii

List of Tables xxiii

1 Introduction 1

1.1 Main Contributions . 1

1.2 Brief Description of All Chapters . 2

1.3 Typographical Conventions . 5

2 Antennas 6

2.1 Radiation Properties of Antennas . 6

2.2 A Brief History of Crossed Dipole Antennas 7

2.3 Phased Array Antennas . 8

2.3.1 Working Principle of an Additive Phased Array 8

2.3.2 Reception . 9

2.3.3 Additive Beamforming . 9

2.3.4 Phase Angles for Butler Matrices . 11

2.3.5 Cosine Tapering . 12

viii

CONTENTS ix

2.3.6 Pairwise Addition . 12

2.3.7 Conclusion . 16

2.4 Mills Cross Antennas . 16

2.4.1 A Brief History of Mills Cross Type Antenna Arrays 16

2.4.2 Working Principle of a Mills Cross Antenna Array 17

2.4.2.1 Fan Beams . 17

2.4.2.2 Cross-correlation, Pencil Beams 18

2.4.3 Disadvantages of a Mills Cross . 20

2.4.3.1 High Sidelobe Levels . 20

2.4.3.2 Noise Behaviour and Bandwidth 21

2.5 Step-by-Step Guide to Reception from a Mills Cross 21

2.6 Summary . 25

3 Riometers 26

3.1 Working Principle . 26

3.2 Types of Riometers . 30

3.3 The ARIES Riometer . 32

3.4 Scientific Applications of Riometry . 35

3.4.1 Ionosphere . 35

3.4.2 Riometer Observations . 36

3.4.3 Ionospheric Processes . 36

3.5 Radio Stars . 36

3.5.1 Cassiopeia A . 37

3.5.2 Cygnus A . 37

3.5.3 Simulating Reception from Radio Stars 37

3.6 Sky Maps . 38

3.6.1 Purpose . 39

3.6.2 Requirements . 39

3.6.3 Coverage . 40

3.6.4 Resolution . 40

3.6.5 Frequency . 41

3.6.6 Content . 41

CONTENTS x

3.6.7 Simulating Reception from a Sky Map 41

3.6.8 The Sky Maps Used in this Thesis . 42

3.6.8.1 Cane’s Sky Map . 46

3.6.8.2 GEETEE 34.5MHz Sky Map 46

3.7 Summary . 48

4 Functional Simulation of ARIES 49

4.1 Data Flow . 49

4.1.1 Reception . 50

4.1.2 Beamforming (Fan Beams) . 51

4.1.3 Cross-correlation and Integration . 51

4.2 Implementation Details . 53

4.2.1 Reception: model . 53

4.2.1.1 ModelMasterControl::init() 54

4.2.1.2 ModelMasterControl::run() 56

4.2.2 Fan Beamforming: beamform . 56

4.2.3 Cross-correlation and Integration: xcorr 57

4.3 Results . 58

4.3.1 Three Sources . 58

4.3.2 Ten Sources . 61

4.3.3 Long/Short Integration Time . 61

4.3.4 Phase Centre Offset . 62

4.3.5 Ghost Images in the Sinusoidal Case 62

4.3.6 ‘Negative Sidelobes’ . 65

4.4 Summary and Conclusions . 66

5 Investigations into the Achievable Integration Time 68

5.1 Basic Simulation Software Structure . 69

5.2 Yamagishi-Model . 70

5.2.1 Idea . 72

5.2.2 Aims . 75

5.2.3 The Number of Noise Sources . 77

5.2.4 Noise Sources of Different Intensities 79

CONTENTS xi

5.2.5 The Effects of Varying ε . 81

5.2.6 Different τn% . 84

5.2.7 System Bandwidth . 84

5.2.8 Varying the Sampling Rate . 84

5.2.9 Conclusion . 87

5.3 Nielsen’s Estimates . 90

5.4 Hagfors’s Estimates . 91

5.5 Summary . 91

6 Radiation Pattern Simulations: RIOSIM 93

6.1 Design Goals . 94

6.2 Implemented Object Structure . 95

6.3 Radiation Patterns: RRadPat and Descendants 96

6.3.1 Gain Retrieval . 98

6.3.2 Plotting . 98

6.3.2.1 Basic Plots . 99

6.3.2.2 Three-dimensional Plots . 101

6.3.3 Contouring . 102

6.3.4 The Radiation Pattern of a Simple Dipole: RLinDipPat 102

6.3.5 The Simplified Radiation Pattern of a Crossed Dipole: RXDipNielsenPat 102

6.3.6 Linear Additive Arrays: RAddPat and RPharrPat 104

6.3.7 Additive Arrays of Individual Elements: RIndAddPat 105

6.3.8 Multiplicative Arrays: RMulPat . 105

6.3.9 Rotated Patterns: RRotPat . 105

6.3.10 FEM Simulated Radiation Patterns: RNECPat 106

6.3.11 MIA Antenna Directivity Adaptor: RMIAPat 107

6.4 Sky Maps: CSkyMap and Descendants . 107

6.5 Radio Stars: CRadioStar . 111

6.6 Elementary RIOSIM Functions . 111

6.6.1 Projecting Rays onto the Spherical Ionosphere: ‘projection1’ 112

6.6.2 Projecting a Spherical Cap onto a Flat Plane: ‘FLATM Projection’ . . . 115

6.6.3 Riometer Beam Factories: getbeampat() and getspecialbeampattern() . 115

CONTENTS xii

6.7 Summary . 116

7 Applications of the RIOSIM Toolkit 119

7.1 Plotting Beam Contours onto the Ionosphere 119

7.2 Radio Star Tracker . 123

7.3 Simulated Reception: rxskymap() and Relatives 123

7.4 Quiet-Day Curve Generator . 126

7.4.1 Introduction . 126

7.4.2 Mathematical Background . 127

7.4.3 RIOSIM Implementation: maketheoreticalqdc() 128

7.4.4 Predicted ARIES QDCs for the 2002 Experiment 129

7.5 Determining the Worst-Case ARIES Beam . 131

7.6 Radiation Pattern Explorer RP . 134

7.7 Scintillation Prediction: scint_calc_mia() . 136

7.8 Running the Scintillation Calculator Remotely and Asynchronously 138

7.8.1 XML Wrapper for scint_calc_mia() 140

7.8.2 Remote-Access Wrapper . 140

7.8.3 Asynchronous Remote Execution: run_scint_calc 141

7.8.4 Summary: How to Asynchronously Invoke a MATLAB Function on a

Remote Machine from a Webserver 142

7.8.5 Conclusion (Remote Asynchronous Execution) 145

7.9 Summary . 146

8 Advanced Riometer Components: ARCOM 148

8.1 Design Goals . 149

8.2 Basic ARCOM Structure . 150

8.2.1 Component-based . 150

8.2.2 Pipeline Architecture . 151

8.2.3 High-speed Component Interconnect 154

8.2.4 Recorders . 155

8.2.5 Processors . 157

8.2.6 Adaptors . 157

8.3 Shared Memory Interface . 157

CONTENTS xiii

8.3.1 Multi-client . 159

8.3.2 Multi-master . 160

8.3.3 Block-based . 160

8.3.4 Simultaneous Read . 161

8.3.5 Simultaneous Write . 161

8.3.6 Diagnosis . 161

8.4 Shared Memory Interface Internals . 161

8.5 Log File Handling . 166

8.5.1 Date/Time Awareness . 166

8.5.2 Automatic Intelligent Splitting . 167

8.5.3 Flexible Automatic Naming (Timestamping) 167

8.5.4 Overwrite/Out-of-order Protection . 168

8.5.5 Fallback (Emergency) Mode . 168

8.5.6 Fuzzy Search . 169

8.5.7 Conclusion and Evaluation . 169

8.6 The ARCOM Streaming Data Format . 170

8.7 The CORBA Interfaces . 172

8.8 Selected ARCOM Components . 177

8.8.1 AADMXRCRecorder . 177

8.8.2 A9812Recorder . 178

8.8.3 ADemoRecorder . 179

8.8.4 ALogger . 179

8.8.5 ATCPTransmitter and ATCPReceiver 180

8.8.6 AFromLogRecorder . 181

8.8.7 Future Components . 182

8.9 Low-level Support Tools (ARCOM Tools) . 183

8.9.1 ARCOM CORBA Message Dispatcher (sendcmd) 183

8.9.2 Graphical User Interface (gui1.tcl) 185

8.9.3 Automated Startup and Shutdown (executor.pl) 185

8.9.4 Shared Memory Playground . 186

8.9.5 ARCOM Packet Tools . 186

8.9.5.1 Generic ARCOM Packet Tools 186

CONTENTS xiv

8.9.5.2 More Specialised ARCOM Packet Tools 188

8.9.5.3 Usage Examples . 189

8.10 Component Implementation Details . 189

8.11 Summary . 190

9 First Experiment Results 194

9.1 Experiment Setup . 194

9.2 Note on Different Ways of Post-integrating Data 195

9.2.1 Conclusion . 198

9.3 Note on the Terms ‘Resolution’ and ‘Integration Time’ 199

9.4 Relative Noise Intensity ARIES–IRIS . 200

9.4.1 Expected Result . 200

9.4.2 Analysis . 200

9.4.2.1 Note on How to Interpret the Term ‘1s Data’ for an IRIS Type

Riometer . 203

9.4.2.2 Note on Post-integration Techniques for Complex Samples . 204

9.4.3 Conclusion . 204

9.5 Relative Noise Intensity for Different ARIES Beams 204

9.6 The Dynamic Range of the Receivers . 204

9.6.1 Conclusion (Dynamic Range) . 207

9.7 Influence of the Radio Stars Alone . 207

9.7.1 The Radio Stars . 207

9.7.2 Phase Considerations . 209

9.7.3 Conclusion (Influence of Radio Stars) 210

9.8 A Comparison of IRIS Pencil Beams to ARIES Pencil Beams for Several Days 211

9.8.1 Conclusion . 211

9.9 Effect of Height Variation on Beam Intersection with IRIS (80–100km) 212

9.9.1 Conclusion . 212

9.10 Summary . 213

10 A New Approach to Image Interpolation in Riometry 219

10.1 Motivation . 219

10.2 Prerequisites . 220

CONTENTS xv

10.2.1 The Need for Image Interpolation . 220

10.2.2 Traditional IRIS Interpolation Algorithm 221

10.2.3 Role of Obliquity Factors . 224

10.2.4 Metric . 225

10.3 The Parametrised Model Interpolation Method (GLEAM) 225

10.3.1 Implementation Notes . 229

10.4 Suitable Orthogonal Basis Functions . 229

10.4.1 ‘Polar Blocks’ . 229

10.4.2 Spherical Harmonics . 231

10.4.3 Adjusted Spherical Harmonics . 232

10.5 MATLAB Implementation . 234

10.6 Performance with Simulated ARIES Data . 236

10.6.1 Comparison with Sky Map . 236

10.6.2 Comparison with Traditional Image Interpolation 243

10.6.3 Behaviour in the Presence of Absorption 243

10.6.4 Additional Theoretical Knowledge . 247

10.7 Performance with Real ARIES Data . 248

10.7.1 Comparison of Real ARIES Data to Simulation 248

10.7.2 Real Data Image Plots / Movies . 250

10.8 Summary and Conclusions . 251

11 Summary, Conclusions and Outlook 258

11.1 Riometer Simulation Toolkit . 258

11.2 Advanced Riometer Operating Software . 261

11.3 A Novel Approach to Riometer Image Interpolation 263

A Glossary 268

B Astronomical Coordinate Systems 275

B.1 Astronomical Coordinate Systems . 275

B.1.1 Common Basics . 276

B.1.2 The ‘Mathematical’ Spherical Coordinate System 278

B.1.3 The ‘Electromagnetic’ Spherical Coordinate System 278

CONTENTS xvi

B.1.4 The Geographic Coordinate System 279

B.1.5 The Horizontal Coordinate System . 280

B.1.6 The First Equatorial = Local Equatorial Coordinate System 282

B.1.7 The (Second) Equatorial Coordinate System 282

B.1.8 The Galactic Coordinate System . 283

B.1.9 The Geomagnetic Coordinate System 284

B.2 Converting Between Coordinate Systems . 284

B.2.1 Relation Between Horizontal and Geographic Coordinates 284

B.2.2 First to Second Equatorial Coordinate System 285

B.2.3 First Equatorial to Horizontal Coordinate System 285

B.2.4 Catalogued Star Coordinates to Current, Observable Coordinates 285

B.2.5 Horizontal Coordinates to Galactic Coordinates 288

C Timescales 290

C.1 International Atomic Time TAI . 290

C.2 Coordinated Universal Time UTC . 290

C.3 Universal Time UT=UT1 . 291

C.4 Greenwich Mean Sidereal Time GMST . 291

C.5 Local Apparent Sidereal Time LAST . 291

C.6 Network Time Protocol (NTP) Timescale . 292

C.7 GPS Timescale . 292

D ARIES System Diagrams 295

E File Excerpts for ARIES Model 300

E.1 run Shell Script for ARIES Model . 300

E.2 Sample Source Definition File . 301

E.3 Example Output of a Simulation Run . 301

F Specialbeams.txt 304

G ARIES ‘Earlobe’ Plots 307

H MIA’s Asynchronous Processing System 315

H.1 Request-specific Structure . 316

CONTENTS xvii

H.2 Centralised Organisation . 316

H.3 Some Suggestions for Future Implementations 316

I DUNES Overview 318

Bibliography 321

List of Figures

2.1 A simple phased array . 10

2.2 Beamforming summation . 10

2.3 Beams formed by a 32 port Butler Matrix 13

2.4 Two different ways of cosine tapering for a 32 element linear array 13

2.5 Beam pattern for cosine tapered input signals 14

2.6 Beam pattern for ‘half’ cosine tapered input signals 14

2.7 Pairwise addition of Butler Matrix outputs 15

2.8 Beam pattern of a 32 port Butler Matrix with outputs added pairwise 15

2.9 Original Mills Cross . 19

2.10 Beamforming for a Mills Cross . 19

2.11 Signal-processing view of reception of signals by a Mills Cross 24

3.1 Trace of IRIS beam 31 during one sidereal day 27

3.2 IRIS QDC and recorded power for 2002-10-30 29

3.3 IRIS absorption for 2002-10-30 . 29

3.4 Complexity of widebeam, phased array and Mills Cross type riometers 31

3.5 Physical layout of several Mills Cross and filled array antenna configurations 33

3.6 Long-distance view of ARIES . 33

3.7 Close-up view of ARIES . 34

3.8 Inside the ARIES control hut . 34

3.9 The atmosphere of the Earth . 43

3.10 Bright Radio Sources . 44

3.11 The part of the sky that affects ARIES/IRIS 45

3.12 Sky temperature in K as mapped by Cane’s sky map 47

3.13 Sky temperature in K as mapped by the GEETEE sky map 47

xviii

LIST OF FIGURES xix

4.1 Model data flow (summary) . 52

4.2 ARIES system model, stage 1: Reception 52

4.3 ARIES system model, stage 2: Beamforming 52

4.4 ARIES system model, stage 3: Cross-correlation and integration 55

4.5 Class diagram for ARIES model . 55

4.6 3 sources, 4×105 samples . 59

4.7 10 sources, 4×105 samples . 59

4.8 The same 20 sources, different integration times 60

4.9 Phase centre issues . 63

4.10 Effect of pure sinusoidal sources . 64

4.11 ‘Negative sidelobes’ . 67

5.1 Class diagram for noise sources in Yamagishi Model 71

5.2 Two intersecting fan beams . 74

5.3 Measurement example . 74

5.4 Normalised simulation results . 76

5.5 Simulation results for different quantities of simulated noise sources 78

5.6 Influence of incoherently received power on the integration time. Part 1 . . . 80

5.7 Influence of incoherently received power on the integration time. Part 2 . . . 80

5.8 Effect of different boundary conditions ε on integration time 83

5.9 Required integration time to measure τ30%, τ50%,...,τn% 85

5.10 Required integration time in samples versus system bandwidth 86

5.11 Required integration time in samples versus sampling rate 88

6.1 RIOSIM architecture . 97

6.2 RRadPat and descendants . 97

6.3 Basic plotting capabilities of a RRadPat radiation pattern object 100

6.4 Advanced 3D visualisation options . 103

6.5 Some RRadPat-derived radiation patterns. 103

6.6 Radiation pattern of a crossed dipole above ground 108

6.7 CSkyMap and descendants . 108

6.8 CTaohSkyMap vs. CGrillTaohSkyMap . 110

6.9 CRadioStar . 113

LIST OF FIGURES xx

6.10 ‘Projection 1’: Projection onto the ionosphere 113

6.11 FLATM projection as used for IRIS image data 118

7.1 ARIES and IRIS beam contours . 122

7.2 Multiple contour levels and radio star traces for 2001-01-20 124

7.3 IRIS power data for beam 38 on 2001-01-20 125

7.4 Theoretical QDCs for IRIS compared to real QDCs 130

7.5 Simulated QDCs for the 716 ‘existing’ ARIES pencil beams 132

7.6 One frame of the ARIES worst-case beam determination movie 135

7.7 RP, the radiation pattern explorer . 135

7.8 Output of scint_calc_mia() for 20 January 2001 139

7.9 Three screenshots of the scintillation calculator 143

7.10 Remote execution the hard way. Client side 143

7.11 Remote execution the hard way. Server side 147

8.1 Multi-layer view of ARCOM and its operating environment 152

8.2 From spaghetti-code to distributed applications 152

8.3 Structure of a CORBA-based application . 153

8.4 An example of pipelining: Pipes on the UNIX command line 153

8.5 The three basic ARCOM (meta-)components 156

8.6 ARCOM example configuration as used during initial experiments 156

8.7 ARCOM example configuration for current FPGA-based design 158

8.8 Example of ARCOM data flow through a shared memory interface 158

8.9 AShMemInterface class hierarchy . 162

8.10 AShMemInterface states . 162

8.11 An ARCOM shared memory interface in use 164

8.12 ALogFile and descendants . 173

8.13 ARCOMPACKET_FPGAPACKET . 175

8.14 ARCOM CORBA interfaces . 176

8.15 Life cycle of an ARCOM component . 176

8.16 gui1.tcl: A simple GUI for controlling ARCOM components 187

9.1 Hardware available during the October 2002 experiment 196

9.2 Different averaging methods, demonstrated for IRIS pencil beam data 197

LIST OF FIGURES xxi

9.3 Beam width versus integration time . 201

9.4 Difference between post-integrating (complex) raw data and post-integrating

preprocessed data . 205

9.5 Beam width versus integration time (zenithal beam) 206

9.6 Receiver working range and signal dynamic range 208

9.7 Influence of the strong radio stars . 214

9.8 The radio stars’ influence on beam 3501. Part A: fan beams 215

9.9 The radio stars’ influence on beam 3501. Part B: pencil beam 216

9.10 Amplitude and phase response of a 16-element linear phased array 216

9.11 Pencil beam comparison for multiple days 217

9.12 ARIES / IRIS beam projections onto different heights 218

10.1 Non-interpolated IRIS and ARIES data for 2007-03-20 08:45 223

10.2 ‘Traditional’ IRIS image interpolation . 223

10.3 Obliquity factor δ correcting for apparent thickness of absorption layer 228

10.4 Inter-relations of the parametrised interpolation model method (GLEAM) . . 228

10.5 Examples of direct orthogonal basis functor fits 230

10.6 The first 49 real spherical harmonics . 233

10.7 Influence of compression factor on ‘adjusted’ spherical harmonic fit 233

10.8 GLEAM class diagram . 235

10.9 GLEAM with simulated ARIES data; Constellation 1 237

10.10 GLEAM with simulated ARIES data; Constellation 2 238

10.11 GLEAM with simulated ARIES data; Constellation 3 239

10.12 GLEAM with simulated ARIES data; Constellation 4 240

10.13 Visualisation of the traditional image interpolation algorithm for ARIES . . . 244

10.14 Performance of the traditional interpolation method for three cases 245

10.15 Path of a simulated absorption patch across a ‘frozen’ sky map 246

10.16 Simulated power readings during absorption event 246

10.17 Diurnal variation of model weighting coefficients for direct sky map fit 253

10.18 ARIES real and simulated complex beam data for 12 exemplary beams 254

10.19 Sequence of ARIES power images for 2007-03-23 255

10.20 Sequence of ARIES power images for 2007-03-23, temporal zoom 256

LIST OF FIGURES xxii

10.21 Sequence of ARIES power images for absorption event 257

11.1 Advanced ARCOM deployment examples supporting real-time data feeds . . 267

B.1 Common coordinate systems . 281

B.2 Conversion from geographic to horizontal coordinates 289

D.1 ARIES block diagram . 296

D.2 ARIES receiver block diagram . 297

D.3 ARIES receiver PCB . 297

D.4 ARIES FPGA data flow . 298

D.5 ARIES physical layout . 299

G.1 ARIES ‘earlobe’ plots: all central 676 beams 308

G.2 Zoomed-in version of figure G.1, part 1 . 309

G.3 Zoomed-in version of figure G.1, part 2 . 310

G.4 Zoomed-in version of figure G.1, part 3 . 311

G.5 Zoomed-in version of figure G.1, part 4 . 312

G.6 Zoomed-in version of figure G.1, part 5 . 313

G.7 Zoomed-in version of figure G.1, part 6 . 314

I.1 State diagram of main DUNES state machine 320

List of Tables

3.1 Summary of discussed sky maps . 43

4.1 Available command line arguments for model 55

5.1 Noise sources used in ARIES simulations . 71

5.2 Simulations to determine the influence of the number of noise sources 80

5.3 Simulations with sources of different intensities 82

5.4 Simulations with different boundary conditions ε 82

5.5 Simulations with different bandwidths . 85

5.6 Simulations with different sampling rates . 88

5.7 Summary of integration time estimates . 92

8.1 Comparison of three common componentry frameworks 153

8.2 ARCOM packet types . 173

8.3 ARCOM descriptor types . 174

8.4 ARCOM component status values . 174

8.5 ARCOM low-level shared memory tools . 187

8.6 Important ARCOM component files . 191

8.7 ARCOM files in the ARCOM/common/ directory 193

9.1 Available datasets as recorded during October 2002 experiment 196

9.2 Achievable accuracy for different integration times 205

10.1 Summary of GLEAM performance with simulated ARIES data 242

B.1 Common coordinate systems . 277

C.1 Timescales (1) . 293

xxiii

LIST OF TABLES xxiv

C.2 Timescales (2) . 294

Chapter 1

Introduction

New technologies enable us to probe as-yet unknown areas of creation. Today’s complex sys-

tems are made up of a multiplicity of mechanical, electrical and electronic components, with the

intangible ‘ether’ of software causing dead matter to rise beyond its pure existence and assist us

in our quest of exploration. It is this fascination with making things work, interact and fulfil a

higher purpose that drives an engineer.

This thesis follows the development of a new type of imaging riometer based around the

principle of a Mills Cross cross-correlating antenna array: the Advanced Rio-Imaging Experi-

ment in Scandinavia (ARIES). This is the first time that a digital cross-correlation beamforming

technique has been used in riometry.

The author’s background in Mechatronics results in this thesis being an interdisciplinary

slice through the engineering cycle of ARIES, encompassing a variety of subject areas including

(Space Plasma) Physics, Electronics, Astronomy and (Software) Engineering.

Several of the concepts presented in this thesis have since been applied to, or used during

the development of, other scientific instruments. These include the Advanced Imaging Riometer

for Ionospheric Studies (AIRIS), which uses the ARCOM operating software, and the new high-

speed photometer for optical emission measurements (SPARKLE), which employs a packet-

based streaming data format very similar to the one presented in this thesis.

1.1 Main Contributions

This thesis makes three specific contributions. Firstly, several low- and high-level simulations

are presented, culminating in the development of the riometer simulation toolkit (RIOSIM).

1

CHAPTER 1. INTRODUCTION 2

RIOSIM is not specific to ARIES, but is capable of simulating the behaviour of arbitrary antenna

arrays.

Secondly, a flexible software architecture is developed and implemented in form of the Ad-

vanced Riometer Components (ARCOM) operating software. ARCOM consists of components

participating in processing pipelines through high-speed shared memory interfaces and a flexible

streaming data format based around principles similar to those used in digital video broadcast-

ing (DVB). ARCOM software architecture and data formats are not limited to riometry but will

readily support a wide range of data acquisition and processing tasks.

Thirdly, a new approach to image interpolation for riometers (GLEAM) is developed and its

performance evaluated. GLEAM uses a matrix inversion technique, combined with knowledge

about antenna and phased array directivity patterns and predictions obtained from simulations,

to fit a parametrised model of the sky brightness distribution to real data. This is envisaged to

become the primary data product of a new generation of riometers.

1.2 Brief Description of All Chapters

The sequence of chapters follows the logical development cycle of the riometer, from inital con-

cepts through low- and high-level simulations, software specification, design and implementa-

tion, hardware prototyping and testing to a sophisticated piece of scientific measuring equipment

and analyses of real data recorded by this brand-new instrument. Each chapter builds on the pre-

ceding ones. Chapters 2 and 3 form the background part of the thesis, the subsequent chapters

address the author’s specific contributions. Additional information to complement the material

presented in the main body of the thesis is provided in several appendices, including technical

documentation of certain tools as well as information collated from third-party documentation

that is not the author’s own work, or only distantly related to the main topic of this thesis.

Antennas are essential in any device that receives or transmits radio waves. Chapter 2 looks

at properties of individual antennas as well as of arrays of antennas. This general description

forms the basis for the more specific discussion of our area of interest, riometry, and how anten-

nas are used in riometers, in chapter 3. A large part of chapter 2 is dedicated to the discussion of

various aspects of the Mills Cross as used by the Advanced Rio-Imaging Experiment in Scandi-

navia (ARIES) riometer.

Chapter 3 explains what riometers are, introduces the various types of riometers and de-

CHAPTER 1. INTRODUCTION 3

scribes what they are used for. It builds on the knowledge about antennas as introduced in

chapter 2. Sky maps and radio stars are also introduced and basic concepts relating to these are

discussed. Knowledge about the working principles of riometers, sky maps and radio stars is

important for the chapters to follow.

In chapter 4 we introduce a set of programs to simulate the data flow through a Mills Cross

type system from source to the final beam output. These programs (and the results they produce)

help to deepen the understanding of the working principle of a Mills Cross type system such as

the one used for ARIES. The simulations discussed in this chapter will also enable us to examine

the signals inside the system at various stages, providing test data even before any hardware has

been built.

The fact that this simulation is done at signal level implies that it is not possible to simulate

long periods of time due to the amount of processing power and storage space required. For the

same reasons, the simulation cannot be carried out in real-time, and there is a practical limit to

the number of sources that can be simulated.

Chapter 5 will introduce a different simulation that is geared towards determining estimates

for the required integration time in a realistic situation, but these simulations will no longer

simulate the whole reception process (as done in chapter 4) but only the final cross-correlation

stage. We explore how different factors contribute to the required integration time, these results

are then used to extrapolate a realistic estimate of the required integration time.

Having looked at the basic working principles of antennas and riometers in chapters 2 and

3, and having simulated the low-level reception processes in chapters 4 and 5, chapter 6 oper-

ates on a higher level of abstraction, focusing on radiation patterns and on how the concept of

radiation patterns can help in the evaluation and deployment of real system designs.

The toolbox developed in this chapter will enable us to apply all findings to arbitrary riome-

ters or, in fact, antenna systems.

Chapter 7 describes applications of the RIOSIM toolkit developed in chapter 6. RIOSIM

was designed with many of these applications in mind, and this chapter aims to prove that

RIOSIM fulfils these expectations and has in fact contributed to the successful deployment of

ARIES in various ways, as many of the applications presented have been used during initial in-

vestigations and deployment of the ARIES riometer. Some have also proved useful for existing

riometers, for example IRIS. We show that due to the object-oriented nature of the developed

CHAPTER 1. INTRODUCTION 4

toolkit, the power of many of the applications presented can easily be harnessed for other riome-

ters, usually by simply changing the location, time and beam pattern parameters appropriately.

Chapter 8 defines the ARCOM framework, a generic operating software for advanced ri-

ometer systems. The chapter is roughly structured along the process activities of the Software

Engineering cycle. It does not go into implementation details of every single function call, aim-

ing instead at providing a general (although more abstract) description of the working principles

involved.

The design of operating software for a ‘Wicked System’ such as ARIES presents unique

challenges to the software engineer. The chapter looks at what these challenges are, how they

influenced the design of the ARIES operating software, and how the implemented software

architecture solves the ‘Wicked Problem.’

Chapter 9 contains discussions of the different results obtained from the 2002 ARIES ex-

periment. During the 2002 experiment, a variety of datasets has been recorded for different

configurations of a preliminary ARIES system. The data comprises several hundred gigabytes

of raw input data as recorded from the A/D converters connected to the beamforming network,

as well as integrated data derived from the raw data in real-time.

The first full ARIES system started recording first long-term datasets in March 2006, and

data from ARIES in its final configuration is available from March 2007. Chapter 10 describes

the GLEAM algorithm developed to compensate for the correlation-related issues discovered

during the initial experiments. This algorithm also has the potential to provide higher-quality

image interpolation compared to the currently used approach. We describe the GLEAM algo-

rithm and apply it to various test- and real datasets to show its effectiveness.

Chapter 11 summarises the thesis, and draws some conclusions for future development of

riometers. The results presented in this thesis open up many new research opportunities, and

some ideas for future work are presented.

The appendix contains a glossary of terms and abbreviations used in this thesis as well as

various additional materials of interest. A bibliography concludes this thesis.

CHAPTER 1. INTRODUCTION 5

1.3 Typographical Conventions

The layout of this thesis adheres to the official guidelines of the University of Lancaster as

published in [Par07]. In the electronic (PDF) version of this document, all (cross-)references

have been hyperlinked for reading convenience. The following typographical conventions are

used throughout this thesis:

• Variable parameters in equations are depicted by lowercase italic characters, e.g. n.

• Bold C-style notation is used for program functions (methods), i.e. run().

• Classes, objects, components and variables are referred to in bold text, but without trailing

parentheses, as in CNoiseSource.

• Bold and italic text is also used for general emphasis.

• Where deduction from the context is potentially ambiguous, the C++-style scope operator

(::) is used to indicate which class a function belongs to, for example CNoiseSource::-

getSample().

• A monospaced font is employed for

– File names (e.g. small_circle.source).

– File contents.

– Output of commands.

– (Excerpts of) source code.

• A bold monospaced font is used for commands and names of programs entered on a

command line (e.g. ./sendcmd).

• Diagrams relating to software architecture adhere to the Unified Modelling Language

(UML) notation.

Chapter 2

Antennas

Antennas are essential in any device that receives or transmits radio waves. This chapter sum-

marises some properties of individual antennas as well as of arrays of antennas in general. This

general description forms the basis for the more specific discussion of our area of interest, riom-

etry, and how antennas are used in riometers in chapters 3 onwards.

2.1 Radiation Properties of Antennas

Antennas radiate or receive energy in form of electromagnetic waves. The radiation pattern of

an antenna describes how the antenna in question responds to radiation received from any given

direction. The radiation pattern of an antenna usually depends on the frequency of the radiation

in question. Antennas can be designed to maintain a nearly constant radiation pattern over a wide

range of frequencies. However, most simple antennas show strong variations in their radiation

pattern as the operating frequency is varied.

From the description above it is clear that at least two parameters are needed to describe the

radiation pattern of any given antenna, namely the spherical coordinates (azimuth and elevation)

that specify the direction in question.

However, electromagnetic radiation can be polarised. To fully describe a radio wave propa-

gating in any given direction, the polarisation state of this wave needs to be known. This can be

specified through the Stokes parameters [Kra88], or, equivalently, through two complex phasors

in space quadrature describing the two principal components of the electric field (or equivalently

the magnetic field which is always perpendicular to the electric field) and the relative phase offset

between them.

6

CHAPTER 2. ANTENNAS 7

A general radiation pattern is therefore a function of direction and polarisation. From now

on, we will refer to such a radiation pattern as complex radiation pattern, because two (complex)

phasors are used to describe the radiation properties for each direction.

Most of the time, however, one is not interested in the instantaneous amplitude of the re-

ceived signal. The property of interest is the average power received from any given direc-

tion. This is called the power gain of an antenna (often specified in relative terms relative to

an ‘isotropic radiator’ and assuming unpolarised radiation). Another term that is often used to

describe the properties of an antenna is the ‘antenna directivity.’ Often, this refers to the power

gain as discussed above. Sometimes, the term directivity is also used to describe the maximum

power gain.

2.2 A Brief History of Crossed Dipole Antennas

The individual antenna elements of today’s riometers are crossed dipole antennas, also known

as ‘turnstile’ antennas. This kind of antenna was first described by Brown in [Bro36]. Brown’s

goals were to build an antenna with circularly symmetrical radiation pattern that should concen-

trate the energy in the vertical plane so that the signal strength toward the horizon for a given

power input will be considerably greater than that obtained from a single half-wave vertical an-

tenna with the same input power. In fact, he built a vertical array of what we now know as

crossed dipole antennas. In [Bro36], he also derives the horizontal radiation pattern of such an

antenna, and how it changes as a function of the amplitude and phase of the signal that is fed

into each of the two arms of the crossed dipole. He experimentally verified the uniformness of

the radiation pattern if the current in the two arms is in time quadrature.

Brown built a model of such an antenna to operate at a wavelength of 3m (100MHz). Having

verified the working principle, he then built a full scale antenna for operation at 6.7m (45MHz).

Interestingly, Brown also mentions the superior fluctuation behaviour of ‘his’ antenna compared

to a single half-wave dipole. He states that observers reported that, in districts where signals

from a single half-wave antenna had fluctuated as much as ten to one due to changes in field

distribution due to moving automobiles and possibly elevator cables, the signal from the turnstile

only shifted between limits whose ratio was two to one. He states that this effect is probably

due to the fact that the transmitting antenna is spread through a space two and one-half wave

lengths long, thus giving ‘diversity’ effect. This is the same reason that led to the development of

CHAPTER 2. ANTENNAS 8

today’s MIMO (multiple input multiple output systems) which are used in digital communication

systems [SCT03].

Wells [Wel44] describes a ‘quadrant aerial’ consisting of two linear dipoles in space quadra-

ture. He describes the radiation patterns of such an antenna for different lengths of dipoles. He

also derives radiation patterns for such antennas above perfect and imperfect earth. The two

dipoles of his ‘quadrant aerial’ are, however, not centred on each other. Their common point is

located at the end of the dipoles.

Today, crossed dipoles are widely used in riometry. The main reasons are

• Omnidirectional radiation pattern.

• Circular polarisation matches predominant polarisation of incoming ‘signal’ from cosmic

noise background.

• Simple and inexpensive to build [Nie01].

• Use of guy ropes (IRIS) or guide wires (ARIES) makes them highly resistant to environ-

mental influences such as snow and wind.

In [Nie01], Nielsen approximates the power gain ψ of such a crossed dipole to be

ψ = 2 · sin(
2π

λ
h · sin(

π

2
−θ)) (2.1)

where λ is the wave-length, h the height of the antenna in wave-lengths above a perfect

ground plane and θ the zenith angle. We can visualise this and other radiation patterns with the

RIOSIM toolkit described in chapter 6.

2.3 Phased Array Antennas

2.3.1 Working Principle of an Additive Phased Array

Figure 2.1 shows a simple example of an additive phased array. The antenna elements are posi-

tioned in a Cartesian coordinate system, the location of each element i is described by its position

vector −→pi . All lengths are specified in multiples of the operating wavelength. In figure 2.1, for

simplicity’s sake, there are four antenna elements, equally spaced 0.5 wavelengths apart on the

x-axis and located symmetrically to the centre of the coordinate system. The following discus-

sion is true for arbitrary aerial positions, however.

CHAPTER 2. ANTENNAS 9

2.3.2 Reception

To understand the response of such an array to an arbitrary incoming radio wave, we logically

divide the process up into the reception (this section) and beamforming (section 2.3.3 below)

stages.

Let the direction of the incoming wave be specified by the unit vector −→w . If we want to find

the directivity pattern of the array, we simply have to determine the response of the array to all

possible incoming wave directions −→w . That is why, in the following discussion, we stick to one

single direction −→w =−→w0.

A wave received from a certain direction −→w is received by each aerial with a certain phase

shift relative to the centre of the array (or, in fact, any arbitrary fixed point in space — known as

the phase centre1). This individual phase shift depends on the placement−→pi of the aerial element

i in question and on the direction of the incoming wave as specified by −→w .

Note that all phase information is relative to a certain fixed point and time, for convenience

we specify that point to be the origin of the coordinate system. Thus, an aerial at O(0 | 0 | 0)

receives the wave from direction −→w with phase delay 0rad=0◦. We will specify all angles in

radians from now on.

The amount of phase delay for any given aerial position−→pi is simply related to the projection

of −→pi on the direction vector −→w of the incoming wave:

∆φi =−2π ·−→w ·−→pi (2.2)

This relation is also shown in figure 2.1, again for a simple two-dimensional case.

2.3.3 Additive Beamforming

In order to form a beam n pointing into a specific direction, the input signals are added together

(thus additive array) with certain additional phase shifts βi,n. These phase shifts determine the

direction of the formed beam. Figure 2.2 shows this process for one specific beam. In addition,

the signal from each individual antenna element can be attenuated by a certain amount, again

affecting the shape and direction of the resulting beam. This step is known as tapering, and a

variety of tapering functions a(−→pi) exist, leading to different sidelobe levels and beam widths.

Theoretically, one could specify an individual tapering function for each beam. In practice, one

1To obtain correct results when adding the response from several (sub-)arrays, it is important that their phase
centres coincide.

CHAPTER 2. ANTENNAS 10

x

y

w
p 1

D f

d i r e c t i o n o f i n c o m i n g
r a d i o w a v e

1
2 p

Figure 2.1: A simple phased array

x

y

i n c o m i n g
r a d i o w a v e

+

a 1 a 2 a 3 a 4

b 1 b 2 b 3 b 4

r 1 r 2 r 3 r 4

s 1 s 2 s 3 s 4

Figure 2.2: Beamforming summation

CHAPTER 2. ANTENNAS 11

tapering function for all beams is normally used. All processing steps are shown in figure 2.2.

Mathematically, this reception and beamforming process can be described as follows:

Reception of signal by all aerials i:

ri = e− j·2π·−→w ·−→pi (2.3)

Attenuate signal and apply phasing:

si = ri ·ai · e− j·βi,n (2.4)

Add up all components to form the beam:

S = ∑si (2.5)

2.3.4 Phase Angles for Butler Matrices

Butler Matrices use an optimised network of phase shifters to form multiple simultaneous beams

from a phased array antenna [BL61, Mue72]. Systematic methods are available to design Butler

Matrices of any size 2N [Moo64]. A ‘standard Butler Matrix’ with Nin inputs has an equal

number of outputs Nout = Nin = N, thus produces N beams. A Butler Matrix is normally used

with linear arrays with equally spaced elements connected to its inputs {1, . . . ,N} and applies

the following phase factors:

βi,n =
(

i− N +1
2

)
·
(n−1)− N−1

2
N
2

·π (2.6)

where the term (n−1)−N−1
2

N
2

·π is the phase progression from element to element for a given

beam number, and
(
i− N+1

2

)
is a factor that ensures symmetry to the origin (centre of the array).

With formulas 2.3 to 2.6 we can now calculate and plot the beam patterns of a 32 element

linear array by simply calculating the response of all outputs of the corresponding 32 port Butler

Matrix while looping through all possible signal directions. The result for a vertical slice through

the resulting pattern along the axis of the array is shown in figure 2.3. The green numbers are the

beam numbers, corresponding to the output ports of the Butler Matrix. Beam 9 is highlighted to

show the form of a single beam more clearly. The individual beam patterns exhibit the −13dB

sidelobe level typical for untapered linear arrays.

CHAPTER 2. ANTENNAS 12

2.3.5 Cosine Tapering

Tapering (i.e. attenuating) the signals from the individual antenna elements leads to differently

shaped beams. In general, the aim of tapering is to reduce the sidelobes. The drawback is that

the main beam is broadened in doing so.

If, for example, we taper the individual signals according to a cosine function as shown in

figure 2.4, the resulting beam pattern for the same Butler Matrix as in 2.3.4 will look like in

figure 2.5. Again, beam 9 is highlighted, and it is clearly wider than the original beam 9 in

figure 2.3. At the same time, however, the level of the first sidelobes is reduced to −32dB.

Other forms of cosine tapering are possible, for example according to the dotted line in

figure 2.4. This will lead to the beam pattern shown in figure 2.6.

The formula that was used to calculate the attenuation factors for the continuous line in

figure 2.4 is

ai =
1
2

(
cos

(
i− N+1

2
N−1

2 ·π

)
+1

)
(2.7)

Formula 2.8 below was used for the dotted line in figure 2.4.

ai =
1
4

(
cos

(
i− N+1

2
N−1

2 ·π

)
+3

)
(2.8)

2.3.6 Pairwise Addition

As Nielsen suggests in [Nie02b], with reference to [Mue72], a beam pattern similar to the one

in figure 2.6 can be achieved by pairwise addition of the output ports of a 32 port Butler Matrix

using 16 signal combiners connected to the 32 output ports of the Butler Matrix, as shown

in figure 2.7. This leaves us with 16 beams, the beam pattern of which looks like in figure 2.8.

Clearly, there is some resemblance between figures 2.8 and 2.5. Pairwise addition of output ports

therefore leads to similar results to cosine-shaped tapering, but without the need of additional

attenuators in the input signal lines, therefore reducing overall signal loss.

In figure 2.8, beam 5 is highlighted. Beam 5 is the addition of beams 9 and 10 of the original

constellation in figure 2.3.

CHAPTER 2. ANTENNAS 13

0102030405060708090100110120130140150160170180
−40

−35

−30

−25

−20

−15

−10

−5

0 1

elevation angle [°]

po
w

er
 [d

B
]

Beampattern
2 3 4 5 6 7 8 1011121314151617181920212223242526272829 30 31 329

Figure 2.3: Beams formed by a 32 port Butler Matrix connected to a linear antenna array. Cut
along the vertical plane containing the antenna elements.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3132
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

antenna element

at
te

nu
at

io
n

fa
ct

or

Cosine Tapering

Figure 2.4: Two different ways of cosine tapering for a 32 element linear array. Solid line shows
cosine tapering according to equation 2.7, dotted line shows ‘half’ cosine tapering according to
equation 2.8.

CHAPTER 2. ANTENNAS 14

0102030405060708090100110120130140150160170180
−40

−35

−30

−25

−20

−15

−10

−5

0 1

elevation angle [°]

po
w

er
 [d

B
]

Beampattern
2 3 4 5 6 7 8 1011121314151617181920212223242526272829 30 31 329

Figure 2.5: Beam pattern for cosine tapered input signals. Note that the level of the first sidelobes
is reduced to −32dB.

0102030405060708090100110120130140150160170180
−40

−35

−30

−25

−20

−15

−10

−5

0 1

elevation angle [°]

po
w

er
 [d

B
]

Beampattern
2 3 4 5 6 7 8 1011121314151617181920212223242526272829 30 31 329

Figure 2.6: Beam pattern for ‘half’ cosine tapered input signals

CHAPTER 2. ANTENNAS 15

 f r o m a e r i a l s

B u t l e r M a t r i x

+

b e a m s

+ + + + + + + + + + + + + + +

Figure 2.7: Pairwise addition of Butler Matrix outputs

0102030405060708090100110120130140150160170180
−40

−35

−30

−25

−20

−15

−10

−5

0 1

elevation angle [°]

po
w

er
 [d

B
]

Beampattern
2 3 4 6 7 8 9 10 11 12 13 14 15 165

Figure 2.8: Beam pattern of a 32 port Butler Matrix with outputs added pairwise

CHAPTER 2. ANTENNAS 16

2.3.7 Conclusion

With additive phased arrays one can achieve highly directional antennas. These arrays tend to

suffer from high sidelobe levels which can be reduced by tapering, in turn broadening the main

lobe.

Pairwise addition of the Butler Matrix outputs seems to be an interesting alternative to atten-

uating the input signals. It turns out, however, that the signal combiners needed to perform this

pairwise addition are rather more expensive than attenuators.

Also, the pairwise addition method obviously leaves no flexibility for modifications, whereas

the attenuator method enables one to shape the beams according to a multitude of tapering

functions, cosine tapering (figure 2.4) being only one of many possibilities. Based on these

results, it was decided to run initial ARIES Mills Cross experiments without using any kind

of tapering. Though this will be of limited use for operation as a riometer later on, we can

expect useful results from this configuration. In particular, we should be able to measure the

high sidelobes of the untapered array, giving us confidence that the receiving system is working

according to specification. The narrow, untapered pencil beams will also enable us to accurately

measure the location of strong radio sources, and compare these measurements to theoretical

simulations — thereby confirming correct alignment of the antenna array.

2.4 Mills Cross Antennas

2.4.1 A Brief History of Mills Cross Type Antenna Arrays

B. Y. Mills initially used three aerials connected together as Michelson-type interferometers

[TMGWS86] at a frequency of 101MHz to examine the galactic distribution of discrete radio

sources [Mil52]. Reasonable, albeit less than originally anticipated, accuracy was achieved,

with an average probable error in position of around 0.2% for strong sources and 2% for weak

sources.

What is now known as Mills Cross antenna is first described in [ML53]. Mills’s goal was

to construct an aerial system of high resolution but small area and low cost for investigations

in radio astronomy. Mills explicitly mentions that this kind of aerial system sacrifices gain (i.e.

effective area) for high resolution and low cost. This was more than acceptable because Mills’s

goal was to accurately map the positions of strong radio sources.

Mills original design is depicted in figure 2.9. Conventional linear dipoles were used as

CHAPTER 2. ANTENNAS 17

individual elements. Mills’s first operational cross-type system was a 24 + 24 element cross

operating at 97MHz.

Having obtained encouraging results from this first system, Mills built a 250× 2 + 250× 2

element Mills Cross type radio telescope for use at 3.5m (86MHz) [MLSS58]. Other telescopes

were developed at the same time, see for example [Sha58]. Christiansen and Mathewson used

a Mills Cross antenna array to scan the solar disk at a wavelength of 21cm with unprecedented

detail [CM58]. The interesting thing about this particular Mills Cross antenna is the fact that

Christiansen did not care about sidelobes. He designed the array in such a way that the spacing

between two adjacent lobes was large enough so that no two antenna lobes could fall on the sun

at the same time. Note that Christiansen only used one pencil beam at any given time. He made

successive scans of the sun during the course of several days to derive the brightness distribution

across the whole solar disc. He also employed phase shifters in one of the two arms of his Mills

Cross antenna array to steer the fan beam generated by this arm, therefore also changing the

position of the resulting pencil beam.

2.4.2 Working Principle of a Mills Cross Antenna Array

The working principle of a Mills Cross antenna array is as follows.

2.4.2.1 Fan Beams

Initially, each arm of the cross is considered as a separate linear additive phased array (see

section 2.3.1). Figure 2.9, panel (b) shows the idealised outline of the radiation patterns of the

individual arms for the zenithal case. Each arm forms what is called a fan beam. The pointing

direction of this fan beam can be influenced by appropriate phasing techniques such as the ones

described in section 2.3.3. For example, if we have an arm of 32 antennas positioned half a

wavelength apart from each other, and those antennas are connected to a 32 port Butler Matrix,

we get 32 fan beams like the ones depicted in figure 2.3.

It is important to understand that, at this stage, the two arms of the Mills Cross are completely

separate. Each arm forms fan beams of its own. If viewed from above and slightly idealised,

these fan beams will be perpendicular to each other, just as the linear phased antenna arrays that

were used to create them. (This is a simplified view for explanatory purposes. The fan beams

are in fact cone-shaped, as can be seen in many of the 3D radiation pattern plots to follow in this

and later chapters.)

CHAPTER 2. ANTENNAS 18

By themselves, the recordings from these fan beams are still rather useless. They cover a

large solid angle, the spatial resolution (at least in one direction) is still very poor, in fact it

equals the ‘resolution’ of a single antenna element. The direction of any signal recorded by such

a fan beam can only be estimated in one direction, and only if no other interfering noise sources

are present at the same time.

2.4.2.2 Cross-correlation, Pencil Beams

The idea that turns the Mills Cross antenna array into a high resolution array is based on cross-

correlation of the signals from two perpendicular fan beams. This will extract only the signals

that originate from the overlapping region of the two fan beams. A narrow pencil beam is

therefore being formed for each combination of a fan beam from one arm with a fan beam from

the other arm of the Mills Cross.

In case of a 32 + 32 antenna element Mills Cross array with a 32 port Butler Matrix for

each arm, 32× 32 = 1024 pencil beams are therefore being formed, though not all of them

are physically meaningful, and even fewer perform well enough in terms of noise level and

sidelobe behaviour to be suitable for further use. These issues will be discussed in more detail in

subsequent chapters, primarily for one particular system, the Advanced Rio-Imaging Experiment

in Scandinavia (ARIES).

Figure 2.10 is a 3D representation of the beamforming process. The two small panels on the

left show an example of a fan beam formed by a linear array of antennas along the y-axis (top

panel) and along the x-axis (bottom panel), respectively. The small inset in the upper right hand

corner of each panel shows an idealised top-down view of several fan beams generated by the

arm in question, with the shown fan beam highlighted.

The big panel on the right-hand side depicts the cross-correlation process. Two perpendicular

fan beams (shaded) are cross-correlated to produce a narrow pencil beam (solid) pointing in the

direction where the two fan beams intersect. Again, the diagram in the upper right-hand corner

shows an idealised 2D version of this process as viewed from above. Signals from the two green

fan beams are cross-correlated to derive the signal that is common to both fan beams and must

therefore originate from the intersecting area, depicted by a red circle.

CHAPTER 2. ANTENNAS 19

Figure 2.9: Original Mills Cross, taken from [ML53]. (a) Plan view of dipoles in cross arrange-
ment. (b) Idealised response of the cross arrangement, plan view.

Figure 2.10: Beamforming for a Mills Cross

CHAPTER 2. ANTENNAS 20

2.4.3 Disadvantages of a Mills Cross

The following sections list well-known disadvantages of a Mills Cross antenna array when com-

pared to a filled array. Note that these points don’t make a Mills Cross inferior to a filled array

antenna, since superiority/inferiority always depends on the intended use of a system. Later on

in this thesis we will investigate how these issues can be dealt with, and we will find that the

Mills Cross still offers advantages over a filled array for use in riometry, mainly due to the by

far smaller number of antenna elements required, translating into significant savings in terms of

money and real estate.

2.4.3.1 High Sidelobe Levels

This section explains why the Mills Cross antenna array produces higher sidelobes than a cor-

responding filled array for the untapered case. The Mills Cross forms the output signal of each

pencil beam by cross-correlating the signals from two perpendicular fan beams generated by

the two arms of the cross. The arms themselves are simple linear phased arrays and therefore

produce a sidelobe level of around −13dB (in the untapered case).

Suppose, the received time series from the two perpendicular fan beams are called jt and kt ,

respectively. Each signal has sidelobes, a source signal from the direction of the first sidelobe is

therefore attenuated by −13dB in power. The signal itself, however, is therefore only attenuated

by
√
−13dB.

The worst case happens when a source signal xt is received in the main lobe of one fan beam

and in the first sidelobe of the perpendicular fan beam. In this case the cross-correlation between

the two signals will only result in a power attenuation of –6.5dB:

pt = 〈 jt · kt〉 (2.9)

pt = 〈xt · (
√
−13dB · xt)〉 (2.10)

pt = −6.5dB · 〈xtxt〉 (2.11)

Of course, the well-established technique of tapering (see section 2.3.5) can be employed to

reduce sidelobes. We will touch on sidelobe issues for the Mills Cross again in more detail in

chapters 4, 9 and 10.

CHAPTER 2. ANTENNAS 21

2.4.3.2 Noise Behaviour and Bandwidth

Christiansen [CM58] mentions that he employed different receiver bandwidths depending on the

position of the observed source. He used a bandwidth of ‘several MHz’ for observations near

the zenith. For observations far from the zenith (in his case the sun in midwinter), he reduced

the bandwidth down to 0.3MHz. He notes that this had the effect of increasing the amplitude of

noise fluctuations. Quote: “The narrowing of the bandwidth for directions away from the normal

to the plane of the array is made necessary by the difference of the path length from the source

to the different parts of the array. This difference in path length corresponds to a difference in

phase which is not exactly the same at all frequencies in the pass band of the receiver. Hence for

a given direction of the source, the bandwidth of the receiver must be kept sufficiently narrow so

that phase differences over the pass band are not large enough to cause a significant deterioration

in the performance of the array.”

This effect has a limiting influence on the maximum usable bandwidth although first exper-

iments show this to not be a significant issue for ARIES (with a nominal bandwidth of 1MHz),

therefore this effect will not be discussed further in this thesis.

2.5 Step-by-Step Guide to Reception from a Mills Cross

Armed with the knowledge from the previous sections, this section aims to present a complete

and ordered view of the reception process from a Mills Cross type system from a signal process-

ing point of view. The purpose of presenting this material in detail is threefold. Firstly, to justify

the simplified approach taken during the simulations discussed in chapters 4 and 5. Secondly,

to lay the foundations for the radiation pattern simulations in chapter 6 and ultimately for the

GLEAM algorithm presented in chapter 10. Thirdly, to attempt to shed a bit of light on the mind-

boggling phasing issues relating to Mills Cross arrays, particularly when using them to observe

spatially distributed sources. With reference to figure 2.11, we can identify the following steps:

1. Any given antenna (element) will respond to a signal from any given direction as described

by the antenna’s radiation pattern. This pattern describes the antenna’s response to incom-

ing signals in the two polarisation components as described by two phasors (we adapt an

x-y description throughout this thesis, although any set of orthonormal base vectors will

work equally well).

CHAPTER 2. ANTENNAS 22

2. Just like the radiation pattern itself, any incoming signal can be described using two pha-

sors for the two polarisation components. Note that we need to use the same coordinate

system for the next step to be meaningful.

3. Ignoring an arbitrary phase offset (which is constant for all directions), the antenna will

exhibit a signal DirectivityX× conj(Ex_incoming)+ DirectivityY× conj(Ey_incoming)

at its terminals.

4. Beamforming networks, such as the additive beamformer described in section 2.3.3, will

combine (phase-shifted=delayed and tapered) versions of these signals to effectively form

a new radiation pattern, that of a fan beam in the Mills Cross case.

5. A cross-correlator such as used in a Mills Cross configuration will multiply the signals

from two such beamforming networks to produce the narrow pencil beam made up from

identical parts of the signals from the two fan beam inputs. This is the only non-linear

processing stage in the Mills Cross reception process.

It is at this stage, that phase offsets introduced by the beamforming networks cause a phase

offset in the resulting cross-correlated ‘power’ value for any given direction. As long as

only point sources are examined, this is not an issue, as we can always use the absolute

power value as a measurement of the power received from that point source. As soon as

we examine a spatially distributed source, however, this effect needs special consideration,

this will be discussed in further detail in chapter 10.

6. Throughout this description, we work with the basic assumption that signals from different

directions are uncorrelated. The cross-correlator will therefore never produce an output

for signals from two different directions, and the overall received power for any given

pencil beam can simply be calculated as the sum of all signals (from all directions). This

sum is the signal visible at the output terminals of the cross-correlator. Note that this is a

complex weighted sum according to the phase offsets mentioned above.

7. According to Kraus [Kra88] (from [Sin50]) the voltage response V of an antenna to a

wave of arbitrary polarisation is given by

V = k cos
MMa

2
(2.12)

Where MMa is the angle subtended by the great-circle line from polarisation state M to Ma

CHAPTER 2. ANTENNAS 23

and k is a constant involving field strength of the wave and size of the antenna. As we are

dealing with (incoming) signals of random polarisation, MMa will vary randomly between

0◦ and 180◦, averaging at 90◦. On average, for random polarisation, equation 2.12 will

therefore result in a constant factor < V >= k cos45◦ which we can safely ignore for all

considerations that are only interested in relative signal levels and/or phase relations.

In our modelling of the Mills Cross, we use the basic arrangement of figure 2.11. The following

discussion shows that, for any given direction of interest, even for randomly polarised incoming

waves, the phase difference detected by the cross-correlator will be constant and not dependent

on the actual state of polarisation of the incoming wave. Furthermore, the amplitude of the cross-

correlator output signal will be constant for any given power influx with random polarisation.

The incoming signal is received by the antenna, described by the radiation pattern β2,x(θ,φ)

and β2,y(θ,φ). The array patterns for arms A and B simply scale those signals in amplitude and

phase. In reality, the signals are combined before being passed through the array beamformer,

but this is a linear operation and could therefore equally well be performed separately for the

two polarisation planes.

Moving the ‘reception’ stage after the beamformer does not change the signal in any way

either, as this is again a completely linear operation. This is in fact why the notion of radiation

patterns is such a useful one, as we can now describe the response of an array made up of antenna

element patterns and cross-correlator by one resulting ‘combined’ radiation pattern. Let us now

consider phase and amplitude separately:

As we have just seen, the reception process will introduce the same phase offset into both

branches (representing both arms of a Mills Cross type antenna array) in figure 2.11. The cross-

correlator will therefore detect exactly the same phase difference between the two signals, in-

dependent of the actual received waveform, dependent only on the different phase offsets intro-

duced by the different beamforming networks of the two arms for any given direction of arrival.

This phase offset and how it depends on direction of arrival is an inherent system property.

The amplitude of the received signals in branches 1 and 2 will vary depending on how well

the antenna and incoming signals are matched. However, in the case of randomly polarised in-

coming signals, equation 2.12 tells us that, on average, we will see both signals attenuated by the

same constant value. On average, the observed signal amplitude of the cross-correlator output

for any given direction will therefore only depend on the properties of the underlying (combined)

radiation pattern and, moreover, will be proportional to the overall ‘combined’ radiation pattern

CHAPTER 2. ANTENNAS 24

Figure 2.11: Signal-processing view of reception of signals by a Mills Cross antenna array
from any one direction (θ,φ) and for one particular pencil beam b. Arm A consists of aerials
1...m, arm B consists of aerials n...p. inix and iniy are the x and y polarisation components of
the incoming radio wave (assumed to be identical for all aerials), β1,i are phase shifts (delays)
due to the location of the aerial in question relative to the phase centre of the array. β2,x and
β2,y describe the element radiation pattern in the x and y polarisation planes (assumed to be
identical for all aerials), ai are the tapering factors, β3,i are the delays introduced by the additive
beamformer for one particular (fan) beam, outb is the output signal for this particular direction
(θ,φ) and pencil beam b.

CHAPTER 2. ANTENNAS 25

power gain in that direction.

2.6 Summary

This chapter provided an introduction to antennas in general, filled phased array antennas and

finally Mills Cross type antenna arrays. This provides the background for the discussions in the

following chapters. In the next chapter we will show how these antennas are currently being

used in the field of riometry and how riometers can benefit from the increased spatial resolution

of a Mills Cross antenna array.

Chapter 3

Riometers

This chapter introduces Relative Ionospheric Opacity Meters (riometers). The process of how

riometers are used for measuring ionospheric absorption is explained and some of the scientific

uses of riometers are outlined. The concept of sky maps and radio stars are also introduced. The

chapter builds on the previous chapter about antennas (chapter 2). This chapter lays a foundation

for the following chapters, which are concerned with various design and development aspects of

the Advanced Rio-Imaging Experiment in Scandinavia (ARIES) riometer.

3.1 Working Principle

Riometers (Relative Ionospheric Opacity Meters) measure to what extent cosmic background

noise is being absorbed by the ionosphere. The acronym itself appears to have first been used

in [LL59]. Some literature uses the extended definition ‘Relative Ionospheric Opacity Meter us-

ing Extra Terrestrial Electromagnetic Radiation.’ Riometers measure this ‘ionospheric opacity’

indirectly by subtracting the actual received signal power (which depends on the current trans-

parency of the ionosphere) from a predefined quiet-day curve (QDC). The QDC represents the

power level that is received on a perfectly ‘quiet day,’ i.e. when no absorption occurs and the

ionosphere is completely transparent. Therefore, the difference between received signal power

and the corresponding QDC value directly represents absorption. A continuously updated list of

riometers can be found in [Mare].

Figure 3.1 is a Hammer equal-area projection [Paw05] of a map of the celestial sphere in the

galactic coordinate system (see appendix B, section B.1.8), with colour representing arbitrary

logarithmic power units. As an example, the yellow outlines give the position of one beam

26

CHAPTER 3. RIOMETERS 27

Date: 2002−10−30 IRIS−Beam: 31

Figure 3.1: Trace of IRIS beam 31 during one sidereal day

CHAPTER 3. RIOMETERS 28

(beam 31) of the IRIS riometer in Kilpisjärvi during the course of one day. The time difference

between any two outlines is 1 hour. The rotation of the Earth causes the beam to move on the

celestial sphere in a repetitive, predictable way. It takes exactly one sidereal day for the beam to

come back to its starting position.

A riometer continuously records the received power from its beam(s). On a perfectly quiet

day, the recording from this particular riometer (IRIS) for beam 31 would look like the red curve

in figure 3.2. The recorded power varies according to the sky temperature in the direction of the

beam, and it returns to the same value at the end of every cycle.

Such quiet days do seldom exist in reality, however. The actual recorded data during the

course of one day will look more like the blue line in figure 3.2. This line shows real data as

recorded by IRIS for beam 9 during the course of the day 2002-10-30.

Different methods for creating quiet-day curves (QDCs) from real recordings are discussed

by Tao [Tao04], see also [DS90] (Density method), [KDR85] (Inflection Point method), [MH07]

(Percentile method, manuscript in preparation) and references therein. In addition to empirical

methods, since we can plot the trace of beam 31 in figure 3.1, such quiet-day curves can also

be predicted from simulations, given that the temperature distribution of the cosmic background

noise and the radiation pattern of the riometer are known with sufficient detail. We will discuss

the generation of theoretical quiet-day curves in section 7.4 in chapter 7.

To arrive at a measurement for absorption, the entity of interest, a riometer now calculates the

instantaneous ratio of received signal level to expected (quiet-day) signal level. Per definition,

this quantity is called absorption. On a dB scale this operation amounts to a simple subtraction

of the QDC from the received signal.

The result of subtracting the received signal as depicted in figure 3.2 from the QDC in the

same figure is shown in figure 3.3. Per-beam absorption data as shown in figure 3.3 is the primary

output of a riometer.

Note that figure 3.3 also shows areas of ‘negative absorption.’ While a certain level of ‘neg-

ative absorption’ can be explained by the random nature of the received signal, strong ‘negative

absorption events’ indicate that more power has been received than expected. Common causes

for this are solar radio bursts, lightning and man-made interference. Usually, the cause of such

events can be identified based on the exact shape and duration of the event, though in some cases

this proves difficult and error-prone.

CHAPTER 3. RIOMETERS 29

 Power (beam 31)
2002−10−30 00:00:00 UT − 2002−10−31 00:00:00 UT @ 1 m res.

Kilpisjärvi, Finland (69.05° N, 20.79° E)

00 04 08 12 16 20 00
−114

−113

−112

−111

−110

−109

−108

−107

−106

−105

−104

time (h)

 P
o

w
er

 (
d

B
m

)
RX Power
QDC

Figure 3.2: IRIS QDC and recorded power for 2002-10-30

 Absorption (beam 31)
2002−10−30 00:00:00 UT − 2002−10−31 00:00:00 UT @ 1 m res.

Kilpisjärvi, Finland (69.05° N, 20.79° E)

00 04 08 12 16 20 00
−1

−0.5

0

0.5

1

1.5

2

time (h)

 A
b

so
rp

ti
o

n
 (

d
B

 @
 3

8.
2

M
H

z)

Figure 3.3: IRIS absorption for 2002-10-30

CHAPTER 3. RIOMETERS 30

3.2 Types of Riometers

Widebeam riometers (figure 3.4, panel (a)) are the simplest type of riometer. They consist of

a single aerial connected to a receiver and data logger and consequently have a very wide field

of view but no imaging capabilities. Widebeam riometers are useful for a general overview of

the current state of the ionosphere, but do not provide any information on the spatial structure

within their field of view.

The need for higher spatial resolution led to the development of imaging riometers (fig-

ure 3.4, panel (b)). They are typically made up of between 64 and 256 antenna elements, con-

nected as a phased array (see section 2.3 in chapter 2). The physical complexity of such a ri-

ometer is higher, since beamforming matrices and multiple receivers and/or switching circuitry

are required.

The Space Plasma Environment and Radio Science (SPEARS) group at Lancaster operate

an 8×8 aerial riometer system, also known as IRIS (Imaging Riometer for Ionospheric Studies,

[DR90]). The IRIS type of riometer was originally developed by the University of Maryland

[DR94]. The IRIS riometer run by the SPEARS group is located at Kilpisjärvi, Finland and

described in [BHH95]. An IRIS type riometer achieves a maximum angular resolution of 13◦ at

zenith [DR90].

A 256 element phased array imaging riometer such as the one described in [MMK+97]

achieves an angular resolution of 6◦ at zenith which translates to an area of about 11× 11km

at a height of 90km (90km is usually considered the average height of the absorbing region

for riometry purposes, although the actual absorption peak depends on the type of event being

observed).

There is still need for higher spatial resolution to resolve small-scale structures. However,

to increase the spatial resolution of a filled phased array antenna by n, the number of required

antenna elements increases with n2 (i.e. with n in both x and y directions). This renders high

resolution phased array antennas impractical. In fact, even a 256 element antenna array presents

a significant expense, and the physical requirements are substantial (a 256 antenna array for

operation at 38MHz requires a flat area of about 70×70m2 [Mur, MMK+97].

This led to the idea of a riometer based on the Mills Cross technique [ML53, Nie01], see

figure 3.4, panel (c). Such a riometer, based on the principles discussed in sections 2.4 and

2.5 in chapter 2, can achieve high spatial resolution with significantly fewer antenna elements.

CHAPTER 3. RIOMETERS 31

(a) widebeam

(b) phased array

(c) Mills Cross

Figure 3.4: Complexity of widebeam, phased array and Mills Cross type riometers

CHAPTER 3. RIOMETERS 32

Figure 3.5 compares the physical dimensions of several riometer layouts. To achieve n times the

resolution, the number of antenna elements required for a Mills Cross type antenna array only

increases linearly with n, since only the (one-dimensional) arms become longer.

The use of a Mills Cross type antenna array implies higher requirements for the signal pro-

cessing part of the system (see especially section 2.5 in chapter 2). We will look at some of the

signal processing aspects for ARIES in the following chapters.

A drawback of a Mills Cross type system compared to a filled phased array system is the

required integration time. The integration time required for a Mills Cross type system is gen-

erally higher, due to the reduced aperture of the antenna array. Preliminary results show that

the achievable integration time is still short enough to make a riometer based on Mills Cross

technique scientifically useful. More details on estimated achievable integration times will be

discussed in chapter 5.

3.3 The ARIES Riometer

The Advanced Rio-Imaging Experiment in Scandinavia (ARIES) as conceived by Nielsen in

[Nie01, NH97] is a 32+32 element Mills Cross type imaging riometer located in Northern Nor-

way near Tromsø. Figure 3.6 shows a long-distance shot of the instrument and its surroundings,

demonstrating how little impact a Mills Cross type antenna array has on its environment com-

pared to a filled array, see also the discussion in section 3.2 above. In fact, the riometer array

and control hut is just about visible in the centre of the image.

Figure 3.7 is a close-up view of the hut and a few central antenna elements. Finally, figure 3.8

shows the inside of the hut containing the receiver electronics. A block diagram of the hardware

part of the ARIES system is contained in appendix D courtesy of Peter Chapman, along with a

high-level schematic of the receiver circuitry. Note that while during initial tests all processing

including cross-correlation and post integration was done in high-level software (ARCOM, see

chapter 8), these initial investigations led to some of these tasks being taken over by a Field

Programmable Gate Array (FPGA). Figure D.4 in appendix D is a flow diagram illustrating the

FPGA-based processing steps as implemented by Keith Barratt, taken from [Bar07]. Also con-

tained in appendix D is a diagram (figure D.5) showing the physical layout of the ARIES antenna

array and the numbering scheme for aerials, fan and pencil beams as well as the orientation of

the coordinate system adopted throughout this thesis.

CHAPTER 3. RIOMETERS 33

Figure 3.5: Physical layout of several Mills Cross and filled array antenna configurations

Figure 3.6: Long-distance view of ARIES. Aerials and control hut are just about visible in the
centre of the picture.

CHAPTER 3. RIOMETERS 34

Figure 3.7: Close-up view of ARIES

Figure 3.8: Inside the ARIES control hut. This picture still shows the analogue beamforming
matrices and pre-amplifiers, which have later been replaced by fully digital beamforming.

CHAPTER 3. RIOMETERS 35

3.4 Scientific Applications of Riometry

As pointed out by Wild in [Wil06], “[...] it is not enough to observe the solar system via space

missions alone. Large spatial and long time scale measurements made by ground-based experi-

ments are required to complement localised measurements made by spacecraft during relatively

short missions.”

Riometers make a significant contribution to these long time scale measurements, with ab-

sorption measurements dating back to about 1935 [Har95, p. 66], first (single beam) riometer

datasets being available from 1953 [MS53] and the first multi-beam (imaging) riometers oper-

ating from about 1965 [Har69, Ans65]. In the auroral oval, absorption is predominantly due to

the precipitation of high-energy particles that produce enhanced electron density in the D and E

layers of the ionosphere [Kav02, Har95]. Absorption data as measured by riometers is therefore

used in a wide range of research. Some areas where riometer data plays an important role are

presented below.

3.4.1 Ionosphere

The ionosphere is that part of the Earth’s atmosphere (see figure 3.9) ranging from a height of

about 70km up to 1000km. The properties of this part of the atmosphere are determined by the

fact that the gas atoms and molecules are ionised. The ionosphere as a whole is still electrically

neutral, but ionisation enables the flow of electric current. Ionisation in the ionosphere is mainly

caused by solar radiation and the interaction of the solar wind with the Earth’s magnetic field

(magnetosphere). It is therefore dependent on location, local time of day, season and on the

current level of solar activity, which changes with the 11-year sunspot cycle [AR02].

The ionosphere is divided into different regions, or layers, based on the plasma density that

prevails in that layer. These layers have different properties. For example, the lower layers (D,

E) reflect radio waves of relatively low frequency (1–10MHz) and enable HF (high frequency)

communication over large distances [Bar02]. The higher F layer (sometimes divided into F1 and

F2 layers) reflects radio waves of higher frequencies. The exact properties and heights of the

different layers of the ionosphere at any given time can be probed with instruments such as an

ionosonde, an example is the EISCAT Dynasonde at Tromsø [Dav96].

CHAPTER 3. RIOMETERS 36

3.4.2 Riometer Observations

Riometer observations are unique in that they provide continuous information about the lowest

region of the ionosphere, the D layer. Due to their wide field of view and continuous coverage,

(imaging) riometers provide information on the spatial extent and lifetimes of precipitation fea-

tures that complement the spot measurements taken by radar and in-situ. Riometer observations

provide the spatial context within which to interpret radar data and reveal the dynamics of pre-

cipitation regions [CHHW97]. Other instruments such as radars or ionosonde are more sensitive

to higher layers. Riometer observations extend the total observable region downwards [Hon01].

Riometers are therefore often used together with other instruments, enabling the derivation of

the entire height profile of geophysical events. Such events are usually solar-driven and en-

able the study of the coupling process between the solar wind, the interplanetary magnetic field

(IMF) and the Earth’s atmosphere, with riometers observing the ‘footprint’ of these events in the

ionosphere.

3.4.3 Ionospheric Processes

Man-made modifications of the ionosphere, so-called ‘heater’ or ‘artificial aurora’ experiments

increase ionisation in small parts of the ionosphere using strong transmitters in the range of

several MW. Again, the results can be observed with riometers (and other instruments such

as optical cameras), and the obtained data allows insight into wave-plasma interactions and

chemical processes in the ionosphere.

3.5 Radio Stars

The bright radio sources in the sky stand out considerably from the cosmic noise background.

This causes effects like scintillation (rapid variations in apparent brightness of a distant object

when viewed through a medium such as the atmosphere or ionosphere, caused by refraction due

to small-scale variations in the medium density [Ric77]), which are not always wanted. In any

case, it is important to know what strong radio sources there are and where they come from.

This section gives a brief description.

Figure 3.10 shows some of the strong radio stars in the sky. We find, that at the frequency

of interest (the operating frequency of most riometers, namely around 38MHz — a protected

frequency band), the strongest radio sources in the northern hemisphere are Cassiopeia A and

CHAPTER 3. RIOMETERS 37

Cygnus A. It is interesting to note, that the quiet (undisturbed) sun is more than an order of

magnitude weaker at these frequencies, therefore the quiet sun is not usually visible in riometer

data.

For details about the spectra of Cas A, Cyg A and other radio sources, see for example

[BGPW77, KPW69].

The term ‘radio star’ is somewhat misleading and is merely used for historical reasons.

Sources of strong radiation are not necessarily associated with stars. The first ‘radio star’ was

discovered by J. S. Hey after the Second World War [Jen66, p. 52] in the constellation of Cygnus.

Soon after that, John Bolton discovered a smaller radio source in the constellation of Taurus, the

position of which coincided with the so called Crab Nebula. Finally, the strongest radio source,

Cassiopeia A, was discovered by Martin Ryle in 1947 [Jen66, p. 54].

3.5.1 Cassiopeia A

Cassiopeia A is a supernova remnant within our own galaxy. From observations of the motion

of individual diffuse filaments in the Cassiopeia nebulosity, it can be deduced that the initial

supernova explosion leading to the creation of Cassiopeia A must have happened about 320

years ago [Jen66, p. 56].

Cassiopeia A is becoming weaker over the years, recent studies show a clear decay in power.

This decay might just about be spotted in recorded IRIS measurements, though no effort to do

this has been undertaken as of yet.

3.5.2 Cygnus A

Cygnus A, the second brightest radio source in the sky, is an extragalactic radio source, situated

at a distance of about 550,000,000 light years from the Earth [Jen66, p. 77]. Cygnus A is a

so-called binary source: it consists of two centres of emission. This fact was first discovered by

R. C. Jennison in 1950 [Jen66, p. 55].

3.5.3 Simulating Reception from Radio Stars

Optical astronomers measure the brightness of objects by measuring the apparent magnitude, or

flux density, of the object. The flux density is a measure of the power received from the object

per unit frequency, per unit area [AST]. Power received from distant objects at radio wavelengths

is often given in units of flux density, the Jansky (Jy) [SCW]. 1 Jansky equals 10−26 W
m2·Hz , i.e.

CHAPTER 3. RIOMETERS 38

the power received from the object in question with a flux density of d Jy will be d ·10−26 Watts

per square metre of (effective) antenna aperture and per Hz receiver bandwidth.

The effective antenna aperture Ae f f in a given direction (θ,φ) can be derived from the gain

G(θ,φ) in that direction by

Ae f f =
λ2

4π
G(θ,φ) (3.1)

see, for example, [AST].

Thus, to determine the power Preceived f romsource received by a given telescope with gain

pattern G(θ,φ) and Bandwidth B from a (point) radio source with flux density F at location

(θsource,φsource) the following formula 3.2 can be used:

Preceived f romsource =
1
2

F ·Ae f f (θsource,φsource) ·B (3.2)

=
1
2

F · λ2

4π
G(θsource,φsource) ·B

The factor 1
2 once again coming from the fact that we can only receive power from one of

the two possible directions of polarisation.

3.6 Sky Maps

Knowledge of how the radiation coming from the sky is spatially distributed enables us to sim-

ulate reception of these signals without first having to build the actual instrument. This can

give useful information about the dynamic range required by the receiving equipment as well as

provide us with sample data before the instrument has even been built.

Sky maps map this cosmic background noise. A variety of sky maps exist, and they differ

widely in parameters like resolution and base frequency.

This section gives a short history of two sky maps that are suitable for our purposes. We will

use these sky maps in later chapters.

The noise power recorded in sky maps comes from the following different contributors

[SLM+90]: The relic or cosmic background radiation (CBR) Tcbr, the galactic (thermal plus syn-

chrotron) radiation Tgal , and the integrated flux of unresolved extragalactic sources Tex. Sironi et

al. [SLM+90] give the proportions at 600MHz (UHF) as:

CHAPTER 3. RIOMETERS 39

Tgal : Tcbr : Tex = 7 : 3 : 1 (3.3)

At VHF frequencies, the galactic radiation, whose temperature increases as the frequency

decreases, becomes even more dominant.

The CBR is the noise received ‘from the edge of the universe,’ and recent studies (for exam-

ple [TCC+03]) have succeeded to resolve that component, at least at microwave wavelengths. It

is thought that knowledge of the structure of this Cosmic Microwave Background (CMB) will

give new insights into the evolution of the universe.

The relative contribution of each of the three sources of radiation is not of particular interest

in this thesis, so when we talk about the Cosmic Noise Background in the following sections,

we will always refer to the resulting total measurable background noise T = Tgal + Tcbr + Tex.

This radiation forms a continuous background that can be mapped.

Some sky maps remove the effects of radio sources that can be clearly identified in the data,

like the bright radio stars Cassiopeia A and Cygnus A. We will describe how the specific sky

map handles these strong radio sources in the respective paragraphs below.

3.6.1 Purpose

In this thesis, sky maps will predominantly be used for the simulation of different configurations

of the IRIS and, more importantly, the ARIES riometer systems. These simulations will produce

theoretical QDCs for any given date and they can be used for evaluating dynamic range and

absolute power for each of the beams, for a variety of different beam configurations (fan beams,

tapered, untapered, etc.).

3.6.2 Requirements

For the purpose described above, the following main requirements for a suitable sky map can be

deduced:

• Coverage of at least the celestial hemisphere that is seen by radio telescopes located in

Northern Norway.

• Suitable resolution.

• Suitable frequency.

CHAPTER 3. RIOMETERS 40

• Suitable content.

3.6.3 Coverage

The received power by an arbitrary antenna–receiver–system can in simple terms be described as

the product of antenna radiation pattern R and power Pdetectable radiated by the the background

sky in the direction in question (calculated as discussed in section 3.6.7), integrated over all

possible directions as given in equation 3.4. See, for example, [Tao04].

Preceived =
Z

Ω

R(θ,φ)Pdetectable(θ,φ)dΩ (3.4)

With coordinates given in the horizontal coordinate system of the observer (see section B.1.5).

Since in our case only antenna systems on the Earth are considered, it is sufficient to deal only

with positive elevation angles, as the sky background power in the direction of negative eleva-

tion angles will be shielded by the Earth. Thus, to simulate reception by a given radio telescope

system at a given location on Earth, we only need to know about the sky background power for

that hemisphere of the sky that is not blocked by the Earth itself.

The pink area in figure 3.11 shows the relevant area for the two main systems concerned,

IRIS and ARIES, on an equal-area map of the whole sky. Due to the fact that these instruments

are located away from the poles, the hemisphere that is seen by IRIS/ARIES sweeps over more

than 50% of the total celestial sphere during one sidereal day. For good simulation results, we

need to use a sky map that covers all of this pink area.

As we will see later, not many sky maps are available that cover the whole area in question.

It will be shown, however, that even with simple interpolation one can get very good results as

long as the area of missing data is located in a region of the sky with low structural content.

3.6.4 Resolution

The sky maps themselves were recorded by some sort of receiving equipment, the angular (spa-

tial) resolution of which is obviously limited, even though some radio telescopes achieve ex-

traordinary resolutions nowadays, compared to the beginnings of radio astronomy.

If the resolution of the receiving equipment that was used to produce the sky map is worse

(i.e. coarser) than the resolution of the receiving equipment to be simulated, we cannot expect

to get useful results, as the sky map will have been subject to ‘smoothing’ due to the radiation

CHAPTER 3. RIOMETERS 41

pattern of the original recording system [BGS97, p. 49], and it is this ‘smoothed’ sky that we then

see with the simulated system. An important parameter to specify resolution is the beamwidth

of the receiving equipment that was used. This value needs to be smaller than the beamwidth of

the narrowest possible ARIES/IRIS beam (around 4◦).

3.6.5 Frequency

The frequency that the sky map was recorded at needs to match the intended operating frequency

of the instrument to be simulated as closely as possible. Even though scaling of a given map of

the radio background power is possible to a limited extent, the results derived from these scaled

sky maps will always be less accurate than the results from a sky map whose original frequency

matches the intended operating frequency of the equipment.

The fact that simple scaling is not sufficient, especially for large offsets between (original)

sky map frequency and required frequency, shows clearly in diagrams like the one in figure 3.10.

As different radio sources have different spectra, the cosmic sky background power does not vary

according to any one given function over the whole sky.

3.6.6 Content

Some sky maps have been manually ‘corrected.’ Sometimes this means that the brightest radio

stars have been removed from the given sky map, since they are not considered to be part of the

general cosmic noise background. This means, however, that the influence of these radio stars

needs to be taken into account separately. Although this can be done, it involves an additional

step and it would generally be preferable in our case to have all cosmic ‘background’ power

recorded in one place, namely the sky map.

3.6.7 Simulating Reception from a Sky Map

The power received from the background sky can be expressed by means of ‘equivalent noise

temperature’ TB in Kelvin (K). The Nyquist Relation relates temperature to power as follows:

Pavailable = k ·TB ·B (3.5)

where k is Boltzmann’s constant and B is the bandwidth of the receiver. Normally, an ad-

ditional factor 1
2 is introduced, as any given antenna will only be sensitive to one of the two

CHAPTER 3. RIOMETERS 42

polarisation modes. This leads to equation 3.6 below.

Pdetectable =
1
2

k ·TB ·B (3.6)

In case of the sky, power is not distributed uniformly across the whole spectrum, i.e. the

power received from the sky is not white noise. This leads to the fact that a map of the radio sky

taken around a certain frequency cannot easily be transformed into a map at a different frequency

(see also section 3.6.5), unless a certain power distribution is assumed. If the two frequencies

in question are not too far apart, the transformation can be done approximately, and this was

used, for example, by Tao [Tao04], who converted Cane’s sky map at 30MHz to 38.2MHz, or

by Cane himself [Can78], who constructed his 30MHz sky map from several existing sky maps

at slightly different frequencies.

For an example, the reader is referred to later chapters of this thesis, first and foremost

chapter 7. Figure 7.4 therein shows the simulated power received by simulated IRIS beams from

Cane’s sky map described in section 3.6.8.1 below during one day. One can clearly see the

peak when the respective beam swipes through the galactic plane. Note also, that not all peaks

appear as would be expected from the real data shown in the same figure. The real peaks are

(at least partly) due to the bright radio star Cassiopeia, and this radio star was removed from

this particular sky map (see also section 3.6.6). The influence of these radio stars can be taken

into account separately, as has been done, for example, in chapter 9 discussing first ARIES

experiment results.

3.6.8 The Sky Maps Used in this Thesis

The following sections describe several sky maps. Table 3.1 gives a summary of the sky maps

described. Simulation results using different sky maps will be presented in chapter 7.

A variety of other maps are available, even at the low frequency end of the spectrum. (For

example [Kas88], or see [DU90] for a table of low frequency observations. Also see [SKVa] for

a list of surveys that are included in the SkyView virtual telescope [SKVb] — most of these are

at much higher frequencies.) However, these surveys tend to cover only small parts of the whole

sky and are therefore unsuitable for our purposes (see also section 3.6.3).

CHAPTER 3. RIOMETERS 43

Figure 3.9: The atmosphere of the Earth, taken from [Jon02]

name frequency resolution coverage comments
<Cane78> 30.0MHz 11◦ whole sky made up from several maps

at different frequencies,
digitised by Huiyu Tao

[Tao04].
GEETEE 34.5MHz 0.7◦ nearly whole sky generated from observations

of the GEETEE telescope
(India) during one day

Table 3.1: Summary of discussed sky maps

CHAPTER 3. RIOMETERS 44

Figure 3.10: Bright Radio Sources, taken from [BGS97, p. 110]

CHAPTER 3. RIOMETERS 45

Figure 3.11: The part of the sky that affects ARIES/IRIS

CHAPTER 3. RIOMETERS 46

3.6.8.1 Cane’s Sky Map

This sky map at 30MHz was constructed by H. V. Cane in 1978 from the results of 4 sepa-

rate surveys [Can78]. These were the 38MHz survey of Milogradov-Turin and Smith (1973)

[MTS73] and the 10MHz survey of Caswell (1976) [Cas76] for the northern hemisphere and the

30MHz survey of Mathewson et al. (1965) [MBC65] and the 10MHz survey of Hamilton and

Haynes (1968) [HH68]. Some data has been included from an earlier 13MHz survey of Cane

(1975) [Can75].

Scaling the component maps to a common scale was not always straightforward. For exam-

ple, a comparison of temperatures at 30MHz with those at 38MHz for an overlapping region of

the two surveys show that the 30MHz temperatures are much greater than the 38MHz values,

even after allowing for the difference in frequency. This comes as no surprise, as we have al-

ready mentioned above (section 3.6.5) that the temperature of galactic radiation increases as the

frequency decreases.

This map was digitised by Huiyu Tao [Tao04], see figure 3.12. This map has been recorded

with beam widths better than or equal to 11◦. This is just about sufficient for IRIS simulations,

but does not seem adequate for ARIES simulations since, as mentioned in section 3.6.4 above,

it does not contain enough detail for (simulated) beams narrower than this native resolution.

3.6.8.2 GEETEE 34.5MHz Sky Map

This survey was made at 34.5MHz using GEETEE, the low-frequency telescope at Gauribidanur

[DU90]. This telescope was used in the transit mode, and by performing one-dimensional syn-

thesis along the N-S direction the entire observable sky was mapped in a single day. This survey

covers the declination range from −50◦ to +70◦ and the complete 24 hours of right ascension.

The sensitivity of the survey is 5 Jy/beam.

The worst resolution is 42 arcseconds which is easily sufficient for ARIES simulations.

As can be seen in figure 3.13, the survey does not cover the whole sky. For our simulations,

these areas have been filled with data from Cane’s sky map. As the missing data is in a lowly

structured region of the sky, the fact that the filled-in data has a much coarser resolution does

not seriously affect the simulation results.

The actual digital data [DSS95] for this sky map was provided by the NCSA Astronomy

Digital Image Library [ADI].

CHAPTER 3. RIOMETERS 47

Figure 3.12: Sky temperature in K as mapped by Cane’s sky map

Figure 3.13: Sky temperature in K as mapped by the GEETEE sky map. Extremely bright spots
are cropped at 10 ·104K

CHAPTER 3. RIOMETERS 48

3.7 Summary

This chapter introduced the main types of riometers (Relative Ionospheric Opacity Meters), sen-

sitive radio receivers connected to antenna systems of varying complexity. Riometers measure

absorption, i.e. how cosmic radiation is being absorbed by the Earth’s ionosphere. As well as

being an interesting topic for study by themselves, these long-term continuous coverage datasets

provide important background information for a wide range of scientific applications.

Sky maps and radio stars help to understand, simulate and verify the signals received by

riometers. The sky maps and radio stars introduced in this chapter will be used for these purposes

in later chapters.

Chapter 4

Functional Simulation of ARIES

In this chapter we introduce a set of programs to simulate the data flow through a Mills Cross

type system (see chapter 2, section 2.4) from source to the final beam output. These programs

(and the results they produce) help to deepen the understanding of the working principle of a

Mills Cross type system such as the one used for ARIES.

The simulations discussed in this chapter will also enable us to examine the signals inside the

system at various stages, providing test data even before any hardware has been built. This will

help to verify that the Mills Cross approach will indeed work as expected and that the suggested

approach is capable of delivering results as expected.

The fact that this simulation is done at signal level implies that it is not possible to simulate

long periods of time due to the amount of processing power and storage space required. For the

same reasons, the simulation cannot be carried out in real-time, and there is a practical limit to

the number of sources that can be simulated. Chapter 5 will introduce a different simulation that

is geared towards determining estimates for the required integration time in a realistic situation,

but the simulations in chapter 5 will not simulate the whole reception process but only the final

cross-correlation stage. In particular, the simulations presented here include knowledge about

the direction of incoming signals and about beamforming, all of which are details that are beyond

the scope of the simulations in chapter 5.

4.1 Data Flow

See figure 4.1 for a general description of the data flow through the simulation. The ‘magnetic

disk’ symbols represent data that is immediately accessible as files on the hard drive whereas

49

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 50

the rectangular boxes describe a data source or data processing step.

The whole simulation assumes a fixed operating frequency (38.2MHz by default, though

this can be changed easily, see section 4.2). All signals are oversampled 32 times (again, this

can be changed by modifying the program source code). Where necessary, linear interpolation

is performed, see the description in section 4.2. The following sections describe each stage of

the simulation in more detail. They relate directly to the description of the beamforming process

for a Mills Cross in chapter 2, section 2.4.

4.1.1 Reception

This stage simulates the signal path from far away signal sources (representing incoming cos-

mic radiation from the galaxy as well as the cosmic radiation background) down to reception

through an arbitrary number of aerials on the ground, see figure 4.2. The signal sources can

be random noise sources of different bandwidths as well as simple sinusoidal or step sources

(the latter being mainly useful for program testing purposes). All noise sources are located on a

(hemi-)sphere centred on the centre of the antenna system (see section 4.1.2), which forms the

origin of the model’s Cartesian coordinate system. The ionosphere is indirectly taken care of by

adjusting the signal intensity from each noise source as required. Other ionospheric effects apart

from signal attenuation (e.g. scintillation, variable delays) are not taken into account for this

model, since simulating ionospheric propagation is not the goal of this simulation, but rather the

understanding of the beamforming process for a Mills Cross type antenna system.

The signals from these sources are then received by aerials on the ground. These aerials can

be simulated at arbitrary locations (see section 4.2 for details). For the discussions presented in

the sections to follow, we use the layout of a 32+32 element Mills Cross antenna just like the

real ARIES antenna layout. We use aerials with isotropic radiation patterns, since the beams are

mainly influenced by the array factors, not by individual element radiation patterns (see chapter

2). Each aerial receives the sum of all the signals coming from all different sources, each one

delayed appropriately depending on the relative position of aerial and signal source, as described

in section 2.3.2 in chapter 2 (see especially figure 2.1).

The composite signal from all the sources looks different to each aerial due to the fact that

each aerial is located at a different location. The digital representation of this signal is stored

in a separate file for each aerial. This will result in n files for n simulated aerials (n = 64 in

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 51

the discussed case1). Each file contains the ASCII representation of one sample per line. The

simulation is usually run for a given number of samples s, resulting in n output files with s lines

each.

These files are by default called aerial<n>, n being the aerial number. These files represent

the output of stage 1 (the reception stage) of the simulation and can either be examined manually

or fed into stage 2 (the beamforming stage), see below.

4.1.2 Beamforming (Fan Beams)

The presently implemented beamformer for this model is the equivalent of a 32 port Butler

Matrix [BL61], applying appropriate phase shifts (delays) to the 32 input signals before adding

them up as described in section 2.3.4 (see especially equation 2.6 for N = 32). The input signals

from one arm of the array (say the W-E-arm, represented by the files aerial01 to aerial32)

are fed into one instance of the beamformer, which in turn delivers the signals received by each

beam in the output files beam01 to beam32, see figure 4.3. An identical copy of the beamformer

is used to process the input signals from the other arm (the S-N-arm).

At the end of the beamforming stage, the simulated signals received by each of the 64 (=

32+32) fan beams can be examined in the files beam01 to beam64, and/or be fed into the third

and final stage (cross-correlation) as described in section 4.1.3 below.

4.1.3 Cross-correlation and Integration

This stage combines the process of cross-correlating the 64 fan beams with each other (re-

sulting in the formation of — theoretically — 1024 pencil beam signals as described in sec-

tion 2.4.2.2) and integrating the power of these resulting signals. The cross-correlation and

integration processes were combined because of the huge amounts of data being produced at

the cross-correlation stage (one data stream for each pencil beam). A similar approach was

later taken in the actual design of the final system, with the FPGA hardware performing the

cross-correlation and integration steps before passing the data on to the ARCOM software (see

chapter 8).

The cross-correlator (figure 4.4) reads its input data from the files beam01 to beam64 gener-

1Note that the actual ARIES antenna array actually only consists of 63 aerials, one aerial being shared between
the two arms of the Mills Cross. For simplicity, and to make the simulations more generic, we build the simulated
array from two arms of 32 aerials each, with aerial 15 of the South-North arm being exactly co-located with aerial 15
of the West-East arm.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 52

Figure 4.1: Model data flow (summary)

Figure 4.2: ARIES system model, stage 1: Reception

Figure 4.3: ARIES system model, stage 2: Beamforming

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 53

ated during the previous (fan beamforming) stage. It cross-multiplies all the signals with each

other as shown in figure 4.4 and integrates the multiplication results for each beam. The result of

this stage is an array of 1024 (= 32×32) numbers in relative linear power units, representing the

power received by the 1024 pencil beams. Note again that not all of these beams are physically

meaningful, since not all fan beams actually overlap. See the results section (4.3) for a visual

explanation of this effect. Also note that the so-called fan beams are not flat (planar) fans but

rather have the shape of cones (see for example figure 2.10 in chapter 2).

4.2 Implementation Details

The three stages of the simulation are implemented by three separate C++ programs. Data is

passed on from one stage to the next through simple text files as described in section 4.1 above.

The whole simulation can be run automatically by invoking a simple shell script called run (see

appendix E.1), which in turn makes sure that all binary files are up-to-date and then sequentially

invokes each stage of the simulation. The following subsections describe the internal structure of

each of the three programs. The program for stage 1 (reception) is by far the most complex piece

of software in this simulation, since simulating reception requires detailed knowledge about all

noise sources and antenna elements as well as of all simulation parameters including operating

frequency and desired duration of the simulation. The programs for stages 2 (fan beamforming)

and 3 (cross-correlation and integration) are relatively straightforward since they do not require

any knowledge about how their input signals have been generated. Stage 3 is basically just a

simple loop, cross-multiplying and integrating all input signals.

4.2.1 Reception: model

The main model program performs the following steps:

1. Instantiate a CCommandLineOpts object to parse its command line arguments. CCom-

mandLineOpts itself encapsulates calls to the standard popt library [JT98, Tro] for com-

mand line argument handling.

2. Instantiate a ModelMasterControl object.

3. Initialise the ModelMasterControl object with the given command line arguments. Dur-

ing initialisation the ModelMasterControl object will create all sources and aerials as

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 54

specified by the command line arguments. See below for details.

4. Hand over control to the run() method of the ModelMasterControl object. See descrip-

tion below.

Table 4.1 shows all available command line arguments for the model program. This table has

been produced by calling model with the --help argument.

Figure 4.5 is a class diagram of the ModelMasterControl class and related classes.

4.2.1.1 ModelMasterControl::init()

On call to init(), the ModelMasterControl first sets some basic simulation parameters such as

sampling rate and operating frequency, all defined in one separate include file called modeldata.h.

It then creates all aerials that together make up the Mills Cross. Each aerial is represented by

a CAerial object. CAerial objects have the capability of autonomously receiving signals from

sources, see the description of the run() phase below.

Secondly, init() creates all the sources to be used in the simulation by calling the create-

Sources() member function, which in turn parses the .source file that contains direction and

amplitude of all sources. See appendix E.2 for an example .source file and explanation of

syntax. .source files do not necessarily need to be generated manually, in fact some PERL

[Wala, WCS96, Hie95] scripts have been written to generate .source files for certain cases,

some of which are presented in the results section below (section 4.3). After the call to create-

Sources() returns, the ModelMasterControl owns a number of CBrainySource objects. Each

CBrainySource object represents a signal source at a given location. It has the capability of

returning properly delayed signals depending on the relative position of source and receiving

aerial through the use of a CDelayBuffer object. The basic (‘dumb’2) signal source itself is

represented by a derivative of CNoiseSource. For clarity, only the CNoiseSource superclass is

shown in figure 4.5.

CNoiseSource objects and derived/related classes are described in more detail in chapter 5,

as they are also used in the integration time estimations presented there. See especially figure 5.1

for a class diagram of CNoiseSource and its derived classes.

For this discussion, it is sufficient to know that any given CNoiseSource object represents

2We call this kind of source ‘dumb’ since it does not know anything about its location and can only issue a
continuous stream of samples. This is different to CBrainySource objects which contain a CNoiseSource but are
also conscious of their location and of propagation delays.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 55

Figure 4.4: ARIES system model, stage 3: Cross-correlation and integration

option description
-f, –sourcefile=filename source definition file
-s, –nrofsamples=nr. of samples Number of Samples to calculate
-n, –noisesourcetype=type Noisesource: 1 = sine, 2 = wideband random, 3 =

narrowband random (CustomIIR), 4 = step
-c, –coefficients=filename filter coefficients for type 3 filters
-?, –help Show this help message
–usage Display brief usage message

Table 4.1: Available command line arguments for model

Figure 4.5: Class diagram for ARIES model

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 56

a certain type of noise source (e.g. a random noise source with a certain bandwidth) and will

advance in time by one step and return the current signal amplitude on each call to getSample().

4.2.1.2 ModelMasterControl::run()

The run() member function is one large loop. For each iteration, it firstly triggers each source

to issue one more sample by calling the respective issueSample() member function. issue-

Sample() will in turn retrieve a sample from the ‘dumb’ CNoiseSource and store it inside the

CBrainySource’s internal CDelayBuffer.

ModelMasterControl will then ask each CAerial to receive the combined signals from

every source by calling receiveSignals(). receiveSignals() will call getCorrectlyDelayedSam-

ple() for each individual source. getCorrectlyDelayedSample() is able to calculate the required

delay based on the position vector of the receiving aerial and the direction vector of itself (the

source). It will return the sample by looking it up in its CDelayBuffer which is essentially a

continuously updated look-up table (LUT) with linear interpolation. Linear interpolation en-

ables the CDelayBuffer to return sample values for every moment in time, even if they are not

multiples of the sampling period. In this simulation there is no need to go for higher-order inter-

polation mechanisms, since the internal sampling rate used throughout is (by default) 32 times

the operating frequency of ARIES, which is 16 times above the (required) Nyquist rate.

4.2.2 Fan Beamforming: beamform

The beamforming stage is implemented by a single C++ program called beamform. It takes

one command line parameter specifying the ‘starting aerial number’ n (see below). beamform

implements a sum- and delay beamformer for generating the same beams as the ones that would

be produced by a 32 port Butler Matrix. It makes use of the CDelayBuffer class described above

to delay samples from the aerials appropriately.

The general sequence of processing steps is as follows:

1. Get one set of samples (one line from the files aerial<n> until aerial<n+31> each).

2. For each beam direction: Sum the properly delayed samples and store the result in file

beam<m> where m stands for the beam number (plus an offset of n).

3. Repeat until no more samples are left in the input files.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 57

When beamform has finished, the user ends up with (in case of the ARIES simulations presented

here) 64 files (beam01–beam64) representing the signals received by each of the fan beams.

Again, these files can be examined directly or passed on into the next stage, cross-correlation

and integration.

4.2.3 Cross-correlation and Integration: xcorr

A third C++ program has been written to implement the cross-correlation and integration stage.

This program is called xcorr. It takes the signals from the fan beams and cross-correlates

them to produce the pencil beams. Due to the amount of pencil beams (theoretically 1024), the

resulting signals are not stored in files but integrated straight away, so that the result of this stage

is a matrix of 1024 values representing integrated cross-correlation results. The basic algorithm

is represented in full below, as it is at the heart of the Mills Cross working principle:

while(count < NrOfSamples)

{

// read 1 sample from each beam in the S->N arm

for(i=0; i<32; i++)

{

ifile[i+32] > > SN[i];

}

// read 1 sample from each beam in the W->E arm

for(i=0; i<32; i++)

{

ifile[i] > > WE[i];

}

// cross correlate samples

for(j=0; j<32; j++) // S->N

{

for(i=0; i<32; i++) // W->E

{

result[j][i] += SN[j] * WE[i];

}

}

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 58

} // while

store_result();

The last line calls a function store_result(), which stores the result[32][32] matrix in a plain

text file called result. This file can then be read by (for example) MATLAB to generate plots

of the simulation results. Some results are presented in the next section.

4.3 Results

Figure 4.6 is an example of a basic simulation. The .source file used for this simulation is

shown in appendix E.2. This and subsequent figures use MATLAB to map the 32× 32 result

matrix onto a hemisphere, thereby directly visualising the beam pointing directions. Each (dis-

torted) square represents one pencil beam that was generated during the cross-correlation and

integration phase as described in section 4.2.3. The red pin heads are a means of visualising the

directions of the sources used for the respective simulation as defined in the respective .source

file. This allows the observer to immediately verify whether the simulation is working correctly

and which input parameters (i.e. source directions) have been used.

Note that this way of displaying results is very different from the beam pattern plots pre-

sented in chapters 6 and 7. The plots in this chapter give no heed to beam patterns, they simply

project a square result matrix onto a hemisphere to visualise the main pointing direction of the

beam power values represented by the matrix. This is simply a convenient and less distorted way

of visualising results for many beams in one figure. It is physically correct in that the main point-

ing direction of all beams can immediately be seen in the plots as the centre of the respective

(distorted) square.

This visualisation also once again demonstrates the fact that some of the pencil beams do

not actually exist, namely all the beams that are represented by squares that do not lie within the

footprint of the hemisphere used for visualisation.

A colour scale from 0 to −20dB is used throughout this section unless otherwise noted. All

power values are therefore relative to the respective maximum value.

4.3.1 Three Sources

The three sources simulated for figure 4.6 are of equal power. The source at the zenith can

immediately be seen to equally affect the four pencil beams next to the zenith. Note that there is

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 59

Figure 4.6: 3 sources, 4×105 samples

Figure 4.7: 10 sources, 4×105 samples

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 60

(a) 1×105 samples

(b) 10×105 samples

Figure 4.8: The same 20 sources, different integration times

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 61

no zenithal beam with a 32 port beamforming matrix such as the one used in this simulation.

The source at 45◦ from zenith towards the positive x-axis is still exactly in the middle be-

tween two pencil beams in the y-direction, but not exactly between two beams in x-direction.

This can be seen by the already much weaker signal seen by the beams ‘above’ the pin.

The source down the positive y-axis is again quite well-centred between four pencil beams,

slightly biased towards the more zenithal ones.

4.3.2 Ten Sources

Figure 4.7 is an example of ten sources randomly distributed around the hemisphere. It clearly

shows the effect of different source directions on the responses from the individual pencil beams.

Also clearly seen can be the distortion of the beams that occurs towards the horizon. The ten-

source example demonstrates that given a long enough integration time, the Mills Cross can

indeed resolve multiple sources from different directions.

Note again that all figures presented here do not show beam projections in the sense of the

beam projections presented in chapter 6 (discussing the high-level riometer simulation toolkit

RIOSIM), but simply a visualisation of the 32× 32 result matrix and the directions associated

with each value in the matrix.

4.3.3 Long/Short Integration Time

The panels in figure 4.8 were generated using exactly the same .source file, defining a ring of

20 random noise sources of equal power around the zenith. However, for the simulation result

in panel (a), only 1×105 samples have been integrated, whereas panel (b) shows the result for

an integration length of 10×105, i.e. 10 times as long.

Comparing the two panels, one clearly sees the influence of integration time on the mea-

surements (or the simulation results in this case). Short integration times result in a ‘spotty’

(noisy) result, note the many erroneous signals around the top cusp of the hemisphere with quite

high power values of up to around −10dB. As one moves towards longer integration times, the

result gets less and less noisy, panel (b) already showing no erroneous values greater than about

−16dB.

The effect of integration time on the accuracy (noisiness) of the result will be investigated in

more detail in chapter 5.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 62

4.3.4 Phase Centre Offset

Figure 4.9 shows a problem that was encountered during the first tests of the simulation soft-

ware. In this simulation, 120 sources of equal power are distributed in a circle. The simulation,

however, yields very different source intensities. For this particular case, intensities have been

plotted directly as the linear signed values contained in the result matrix (not their absolute value

in dB as in the other figures). It can clearly be seen that the cross-correlation yields negative re-

sults in some areas, positive results in other areas, and there are four locations on the circle

where no power is detected at all.

Further investigation3 finally led to the conclusion that differences in the phase centres (an

arbitrary point in space used as a reference from which all relative phase offsets for signals

received from the antenna(s) are calculated) of the two arms that made up the Mills Cross in this

simulation were responsible for the effects. If the phase centres of the two arms do not match,

then, depending on the pair of fan beams being cross-correlated for a given pencil beam, the two

signals from the two fan beams have a certain phase difference. The cross-correlation of the two

signals will give different results depending on this phase difference. In particular, if the phase

difference is close to 180◦, the result will be negative. And if the phase difference is about 90◦,

the result of the cross-correlation will be close to zero. Although this issue was easily resolved

by ensuring common phase centres for the two arms, it was to be a forerunner of similar effects

encountered during initial experiments with the real ARIES system (see chapter 9).

Also in figure 4.9, note panel (a). This shows a 2D top-down view of the same simulation

result and therefore once again visually illustrates how the result matrix gets projected onto the

hemisphere in these figures. This panel once again makes clear that certain parts of the result

matrix, namely the four corners, cannot be associated with a physically meaningful direction of

arrival.

4.3.5 Ghost Images in the Sinusoidal Case

Figure 4.10 illustrates another phenomenon associated with the cross-correlation technique em-

ployed in a Mills Cross receiving system. Panel (a) is the result of a simulation run simulating

two random noise sources at the positions indicated by the pin heads. As expected, the respec-

tive pencil beams close to the direction of the source give high signal readings. Pencil beams

3This is one occasion where the flexibility of having different types of noise sources was really useful. In partic-
ular, a CStepNoiseSource allows one to trace a phase front through the whole system.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 63

(a) top-down view

(b) 3D view

Figure 4.9: Phase centre issues

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 64

(a) Two Random Noise Sources

(b) Two Sinusoidal Sources

Figure 4.10: Effect of pure sinusoidal sources

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 65

pointing away from the sources give negligible readings.

Panel (b) shows the same simulation, but this time employing sources that emit a perfect sine

wave. Not only do we get a strong reading in the directions we expect (as in panel (a)), we also

get (in this case two) ‘ghost images’ wherever two fan beams pointing at both sources overlap.

More precisely: Let us assume that a pencil beam A is formed by cross-correlating fan beams

FaX and FaY (i.e. pencil beam A is the overlapping area of fan beams FaX and FaY), and a pencil

beam B is formed by cross-correlating fan beams FbX and FbY . In the case of sinusoidal sources

we will then get two additional (erroneous) readings at the intersection of FaX with FbY and at the

intersection of FbX with FaY . This can be explained as follows: Since the signals from the two

sources are identical (they are pure sine waves), the cross-correlation stage cannot distinguish

between the two signal sources. In other words, the signal from one source correlates just as

well with the signal from the other source as it does with itself.

This is, of course, not the case with (two or more) random noise sources, since the signals

from any two random noise sources are per definition completely incoherent. The random nature

of the noise received from the sky is therefore the reason that the Mills Cross works as it should

and that ‘ghost images’ are not a problem in real applications.

4.3.6 ‘Negative Sidelobes’

A final interesting observation can be made by looking at figure 4.11. This is the result of simu-

lating one single noise source at the zenith, but similar to the figures relating to section 4.3.4 the

result matrix is plotted directly on a linear scale (not the absolute values on a logarithmic scale as

for the other figures in this chapter). In addition to the (expected) positive sidelobes, figure 4.11

clearly shows ‘negative’ sidelobes as well. This is again related to the way the Mills Cross

works. In case of the ‘negative’ sidelobes, signals from different order lobes from the two fan

beams get cross-correlated, and as later considerations will show (see chapter 9), these signals

inherently have phase offsets and these phase offsets get picked up by the cross-correlator. These

issues will be discussed in more detail in a later chapter (chapter 9, see especially section 9.7.2

and the corresponding figures 9.8–9.10).

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 66

4.4 Summary and Conclusions

The simulations described in this chapter followed the path of the signals received by a Mills

Cross antenna array from the source through aerials, beamformer and cross-correlator to the

output of the integrator. Some important conclusions can be drawn from the work on these

simulations and the simulation results:

• The proposed Mills Cross system works as expected in that we can determine the direction

of arrival of any given incoming signal, even in the presence of signals from other sources.

• The effect of longer integration times on the noise level of the result was visualised.

• The simulation used discrete sources. To simulate a continuous (noise) background, the

number of sources can be increased. The simulation shows qualitatively that it takes longer

integration times to resolve signal source directions if more power is being received from

off-target signal sources. Chapter 5 will quantify this observation.

• The findings from section 4.3.4 show that special care has to be taken concerning phase-

related effects that are unique to a Mills Cross system and do not occur in traditional filled

phased array systems like IRIS. In particular, the phase centres of the two arms of the

Mills Cross need to coincide.

• The model presented is computationally intensive even for a small number of sources and

very short integration times. To simulate real-life behaviour, one would need to approxi-

mate the continuous sky background as a large number of sources, and then integrate for

long durations. Chapter 5 tackles this problem by using a different model (eliminating

the simulation of the reception process) and showing that for purposes of determining

worst-case integration times, we do not need to simulate many sources.

• Following on from the previous point, this model is especially not suitable for near-real-

time simulations (e.g. simulation of the variation of received signal values during one

whole day). Again, a different approach (higher-level simulations) needs to be taken.

This will be done in chapters 6 and 7.

CHAPTER 4. FUNCTIONAL SIMULATION OF ARIES 67

Figure 4.11: ‘Negative sidelobes’

Chapter 5

Investigations into the Achievable

Integration Time

One of the main requirements for the Mills Cross imaging riometer experiment to succeed is to

understand how integration time affects the precision of the result. Specifically, we want to de-

termine the minimum required integration time that still gives us the required power resolution.

Even from the very first description of the Mills Cross (see section 2.4) it is clear that the noise

performance of such an array is inferior to that of a filled array. It is also clear, however, that

useful results can be obtained with the Mills Cross. The aim of this chapter is to establish the

minimum integration time that can be expected to give a scientifically useful precision.

The first step is to understand how different factors contribute to the required integration

time. These results are then used to extrapolate a realistic estimate of the required integration

time to achieve a certain instrument precision.

This chapter mainly describes a simulation approach to this problem. It is partly based on

an idea that came up during Prof. Yamagishi’s (National Institute of Polar Research — NIPR,

Japan) visit to Lancaster University in December 2001 [Yam]. The following section 5.1 will

describe the basic software structure that was used to run the simulations, section 5.2 will then

present the ‘Yamagishi’ approach and the results of the simulations that were run. Two more

mathematical approaches by Nielsen and Hagfors (both at Max Planck Institute for Solar System

Research — MPS, Germany) are also presented in sections 5.3 and 5.4, respectively. There is a

short summary at the end of this chapter.

Note that one goal of the work presented in this chapter was to come up with suitable op-

erating parameters for the first experiment. The experiment and the results obtained from it are

68

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 69

discussed in chapter 9.

5.1 Basic Simulation Software Structure

Since we want to simulate the behaviour of various parts of the ARIES system, all relevant

internal signals have to be represented as digital values. As we have already seen in the previous

chapter, data flow for all simulated experiments originates at some kind of radiating source in

the sky. This source, or many of these sources, model the continuous radiation received from

the sky, both from the cosmic noise background and from discrete radio sources like Cassiopeia,

etc.

In order to get a digital representation of an analogue signal, the analog signal has to be

sampled at a sampling rate which is at least twice as high as the highest frequency component

of the signal. This theorem is known as the sampling theorem, the minimum sampling rate is

known as the Nyquist-rate.

Even though the cosmic background noise does not have a limited bandwidth, the highest

useful frequency for the ARIES project is obviously limited by the aerials and receivers of the

system. So, since according to the above paragraph we cannot possibly find a finite sampling

rate to digitally represent a signal with infinite bandwidth, we will model the sky noise sources

as band-limited random noise sources.

This will not affect the validity of any of the obtained results, since, as stated above, the

receiver part of the system will limit the bandwidth of the signals anyway, and since this part of

the system is completely linear, we might as well reduce the bandwidth in the first place.

Especially, once we have band-limited noise sources, there is no need to immediately model

the receivers, as we already have a digital representation of the received signal.

Since one of the important issues to investigate will be the influence of different system

bandwidths on the behaviour of the overall system, we will start off by building a pool of random

noise sources with different bandwidths. We can then easily use any of these noise sources in

any of the models, and can therefore easily simulate the influence that a change in bandwidth

has.

Technically, each random noise source is a random number generator and a band pass filter in

series. In our case, this functionality is encapsulated in a class CNoiseSource and its subclasses,

as seen in figure 5.1. Subclasses of CNoiseSource not only implement random noise sources,

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 70

but also other kinds of noise sources. The class CSineWaveSource for example will prove

useful later on for studying the effect of one single noise source on the system, without having

to bother with long integration times due to the random noise characteristics of the test signal.

As can be seen in figure 5.1, the random noise source classes make use of a class CFilter,

whose subclasses represent various types of digital filters.

All random noise sources are designed to run at a sampling rate of 32×38.2MHz. This is 16

times the required sampling rate (see above) for a system operating around 38.2Mhz, not taking

into account any limitations in bandwidth that might enable us to downconvert the signal. By

sampling at such a high rate, we can later on study the effects of reducing the sampling rate,

starting from the quasi-analogue case. This will especially be done as part of the simulations in

section 5.2.8.

Table 5.1 lists all noise sources that have been used during the simulations in this chapter.

Note that all noise source classes contained in table 5.1 are derived from the same superclass

(figure 5.1), which means that a program using one of the noise sources does not necessarily

have to know exactly which kind of noise source it is dealing with. This is a key property of

object-oriented systems, known as polymorphism. It makes it easy to replace one kind of noise

source by another one, without having to change program code in several different locations.

Please note that source types 1 and 2 are implemented by the class CRandomNoiseSource,

whereas types 3 to 7 are implemented by the class CIIRRandomNoiseSource. Each instance

of CIIRRandomNoiseSource can be individually associated with a filter definition file from

which it creates its own CCustomIIRFilter. Those filters can easily be designed with existing

filter design tools. In our case, they have been designed with the MATLAB SPTOOL, which is a

part of the MATLAB Signal Processing Toolbox [Matc].

5.2 Yamagishi-Model

During his visit in December 2001, Prof. Yamagishi proposed a new, simple way of looking

at the cross-correlation process that is part of the working principle of any Mills Cross type

antenna array (see section 2.4). The following text firstly describes the idea, followed by detailed

descriptions of the simulations that were run. At the end, it derives some important results from

these simulations.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 71

CNoiseSource

+getSample()

CRandomNoiseSource

+getSample()

CIIRRandomNoiseSource

+getSample()

CStepNoiseSource

+getSample()

CSineWaveSource

+getSample()

CCustomIIRFilter

+doFilter()

CFIRBandpassFilter

+doFilter()

CFilter

Figure 5.1: Class diagram for noise sources in Yamagishi Model

ID implemented as class parameter file filter order measured bandwidth
and -type at –10dB

01 CRandomNoiseSource N/A 801 (FIR) 4MHz
02 CRandomNoiseSource N/A 201 (FIR) 17MHz
03 CIIRRandomNoiseSource cheb_02 6 (IIR) 0.6MHz
04 CIIRRandomNoiseSource cheb_01 8 (IIR) 1.0MHz
05 CIIRRandomNoiseSource cheb_03 8 (IIR) 2.0MHz
06 CIIRRandomNoiseSource cheb_04 10 (IIR) 4.0MHz
07 CIIRRandomNoiseSource cheb_05 12 (IIR) 15MHz

Table 5.1: Noise sources used in ARIES simulations

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 72

5.2.1 Idea

As described in section 2.4.2, beamforming for the Mills Cross is basically done in two steps.

The first step is forming the fan beams from each of the two arms of the Mills Cross. In a second

step, the received signals from each of the fan beams from one arm are cross-correlated with the

signals from each of the fan beams from the other arm of the Mills Cross.

The process of forming the fan beams from the two arms is well understood. Each arm of

the Mills Cross acts as a linear phased array of its own.

For now, we are only interested in the cross-correlation stage of the beamforming process.

The question is, how long an integration time is required to get results that satisfy a certain

precision criterion.

Figure 5.2 shows the cross-correlation stage of the beamforming process for one single pen-

cil beam. The areas j and k represent two fan beams formed by the West-East-arm and the

South-North-arm, respectively. As explained above, the signals from these beams are produced

by stage 1 of the beamforming process. Let us denote the time series of the signal received from

fan beam j by r j(t) and the signal received from fan beam k by rk(t), respectively.

Each of these beams receives signals from an (ideally infinite) number of random noise

sources. All these sources are completely independent from each other.

Both r j(t) and rk(t) therefore consist of all the signals received from all the sources within

the respective beam. Please note that we are not taking into account any sidelobes for the fol-

lowing observations. If we denote the signals from each of the sources in fan beam j by s j,i(t)

and the signals from each of the sources in fan beam k by sk,i(t), we can then write:

r j(t) =
n j

∑
i=1

s j,i(t) and (5.1)

rk(t) =
nk

∑
i=1

sk,i(t), (5.2)

assuming that we have n j sources in fan beam j and nk sources in fan beam k, respectively.

As a first simplification we will assume that we have an equal number of sources in both fan

beams j and k, thus n j = nk = n. As we will see in section 5.2.3, this does not affect the

suitability of the model for our purpose in any way. It will, however, reduce the number of

independent parameters for the model, which is a benefit from the programmer’s point of view.

It also makes it easier to evaluate the results.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 73

As can be seen in figure 5.2, not all sources s j,i are completely independent of the sources

sk,i. In fact, all the sources within the overlapping area c are common to both fan beams, and

it is the power received from these ‘coherent’ sources, that the cross-correlation stage of the

beamforming process is supposed to evaluate. Put another way, the nc signals from sources

in area c are received by both beams, and these are the signals that we want to isolate in the

cross-correlation stage of the beamforming process.

Let us denote the signals from the coherent sources within area c by sc,i. We can then express

r j and rk as follows:

r j(t) =
n−nc

∑
i=1

s j,i(t)+
nc

∑
i=1

sc,i(t) and (5.3)

rk(t) =
n−nc

∑
i=1

sk,i(t)+
nc

∑
i=1

sc,i(t). (5.4)

The cross-correlation stage of the beamforming process calculates the cross-correlation of

the signals r j and rk.

rp(τ) =
1
τ

τ

∑
t=0

r j(t) · rk(t) (5.5)

In the long run, rp is therefore a measure for the power received from within area c.

Since, in a simulation, we know all the signals s j,i(t), sk,i(t) and sc,i(t), not only can we

investigate the signals from the two fan beams as a whole, but we can also see how these signals

are made up of their components. This means we can directly ‘measure’ the power from area c.

A diagram that represents such a ‘measurement’ is shown in figure 5.3. The x-axis is in

arbitrary time units and the y-axis is in arbitrary power units. There are 10 sources of equal

amplitude in each fan beam, 2 thereof are located within the common area c, just like shown in

figure 5.2.

The curve denoted ‘rp(t)’ shows the result of the cross-correlation according to equation 5.5

above. In addition to rp, the diagram shows the power received from within area c (curve ‘c’),

calculated as

rc(τ) =
1
τ

τ

∑
t=0

(
nc

∑
i=1

sc,i(t)

)2

(5.6)

As expected, ‘rp(t)’ and ‘c’ coincide for large values of τ. The green curve, denoted as ‘i’,

shows the cross-correlation of the two incoherent parts of the two fan beams. As expected, this

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 74

c

b e a m kb e a m j

Figure 5.2: Two intersecting fan beams. Area c is termed the ‘coherent’ area in this chapter, that
is the area that is common to both fan beams.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

samples

re
su

lt

r
p
(t)

c
i

Figure 5.3: Measurement example

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 75

signal tends to 0 for long times τ, because the cross-correlated signals are completely uncorre-

lated.

As we can see in figure 5.3, the coherent signal reaches its final value fairly quickly, com-

pared to the cross-correlated signal from the two fan beams. This is due to the fact that the area

covered by the intersection of the two fan beams is much smaller than the total fan beam area.

Therefore, a good measurement of the accuracy of the measurement after a specific integra-

tion time really is the ‘normalised’ value of the received signal, defined as

rpN(τ) =
rp(τ)
rc(τ)

(5.7)

Since, as derived above, rt will tend to ct , we expect rpN to tend to 1.

If we now define a margin ε around 1, we can measure the integration time τ that is required

to get the measured value rpN within the range 1± ε.

An example plot of rpN(τ) can be found in figure 5.4, the horizontal dotted red lines showing

the margin ε = 0.02 = 2%, and the vertical red line showing the time T when rpN(τ) finally enters

that margin.

5.2.2 Aims

Our primary aim is to get a good estimate of the required integration time for the ARIES system.

Therefore, in the following sections, we will investigate how different experiment constellations

affect the required integration time. We can then deduce an estimated integration time for the

real ARIES system by taking into account all these results.

Firstly, we will investigate how the number of simulated sources affects the accuracy of our

results. This is done in section 5.2.3. Not too surprisingly, we will find that there is no need to

simulate many sources, in fact as little as 2 sources per fan beam are sufficient.

We will then show the relation between various source properties of interest and the result

of the cross-correlation:

• The influence of sources with different intensities (section 5.2.4) — which is in fact equal

to different sizes of fan beam-area and intersecting area.

• The influence of how close a boundary ε is set up on the required integration time (sec-

tion 5.2.5).

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 76

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

time (samples)

no
rm

al
iz

ed
 p

ow
er

total sources per fan beam: 2 − thereof coherent: 1 − source amplitude 1.0

Figure 5.4: Normalised simulation results

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 77

• How long it actually takes to get 50% (80%, 90%,...) of all experiments to reach the 1± ε

boundary (section 5.2.6).

• The influence of the bandwidth of the noise sources on integration time (section 5.2.7).

• The influence of different sampling rates on integration time (section 5.2.8).

For each of the following subsections, all parameters except the one under observation are kept

constant. In this way, the influence of each individual factor can be determined.

Having established all those factors that contribute to the required integration time, along

with a rough quantitative estimate of how big their influence on integration time is, we can then

calculate a minimum required integration time for our application. This is done in the final

section 5.2.9.

5.2.3 The Number of Noise Sources

How does the number of simulated noise sources affect the result of the simulation? Do we have

to simulate an infinite number of sources in order to get correct results? After all, the real sky

brightness is a continuous distribution.

To measure the influence of the number of sources, the simulations described in table 5.2

were run. All simulations were run for 1,000,000 samples at a sampling rate of 32×38.2MHz.

The cheb_05 source type (see section 5.1) was used (source bandwidth 15MHz).

As can be seen from this table, the same fraction of power is emitted from the sources in the

coherent area c compared to the power emitted from the incoherent areas.

A typical result of such a simulation can be seen in figure 5.4 (discussed previously). Figure

5.5 shows the results of all runs in a graphical form (histograms). The possible range for τ was

divided into 41 bins, shown along the x-axis of the diagrams. The y-axis shows how many values

of τ fall into each bin. Figure 5.5 shows the results of these simulation runs: Panel (a) shows the

results of simulation run 1, panel (b) shows the results of simulation run 2 and panel (c) shows

the results of simulation run 3, respectively.

All histograms look similar. In particular, we find the first peak to be around τ = 175000 in

each case. There is no significant difference in the result of the three simulations.

This leads to the conclusion that, rather than simulating a huge number of low power sources

in order to get meaningful simulation results, it is sufficient to simulate a few ‘high power’

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 78

(a)

(b)

(c)

Figure 5.5: Simulation results for different quantities of simulated noise sources. (a) run 1 (2
sources per fan beam), (b) run 2 (4 sources per fan beam), (c) run 3 (8 sources per fan beam)

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 79

sources. Knowing this, we can of course speed up any further simulations by using only a small

number of sources.

5.2.4 Noise Sources of Different Intensities

We now want to find out how the ratio of power received from outside the overlapping area to

power received from within that area affects the required integration time τ.

Since section 5.2.3 suggests that the results do not depend on the number of simulated

sources, we run the simulations in this section and in all the following sections with only three

sources:

Source 1 is unique to beam j, source 2 is unique to beam k and source 3 is the common

source within the the coherent area c.

In order to be able to easily compare the different results, all of the following experiments

are run according to the following rules:

• For each source configuration we run the simulation 500 times. This results in 500 values

for τ for each source configuration, distributed similarly to the values in figure 5.5.

• The values τ50% and τ80%, when 50% respectively 80% out of the 500 simulations reached

the ±ε boundary, are stored.

• These values are then used to compare the influences of different source configurations.

With these simulations, we are especially looking for answers to the following questions:

• How does the amount of incoherent radiation affect the necessary integration time τ?

• Does the required integration time τ solely depend on the ratio of total incoherent power

to coherent power, or does it make a difference if most of the incoherent power is received

from within one beam?

Table 5.3 shows the simulations that were run, along with the results. Figures 5.6 and 5.7 show

the results in a graphical format. Both figures show the power received from the incoherent part

of the fan beams normalised to the power received from the coherent part on the x-axis. The

y-axis shows τ50%, the number of samples that was needed for 50% of all simulations to reach

the 1± ε boundary.

The results were divided into two figures (5.6 and 5.7) for ease of viewing.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 80

Run Experiment nr. Sources per fan beam thereof coherent
1 1–100 2 1
2 101–200 4 2
3 201–300 8 4

Table 5.2: Simulations to determine the influence of the number of noise sources, source ampli-
tude=1.0

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

incoherent power / coherent power

τ 50
%

(1,1)−(2,2)−(3,3)−(4,4)−(5,5)
(1,0)−(2,0)−(3,0)−(4,0)−(5,0)
(1,1)−(2,1)−(3,1)−(4,1)−(5,1)
(1,2)−(2,2)−(3,2)−(4,2)−(5,2)

Figure 5.6: Influence of incoherently received power on the integration time. Part 1. The value
pairs in parentheses denote the conditions for each single measurement point, e.g. (3,2) means
source with relative power ‘3’ in fan beam 1 and source with relative power ‘2’ in fan beam 2.
All relative values are relative to the source power from inside the ‘coherent’ area c.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

incoherent power / coherent power

τ 50
%

(1,1)−(2,2)−(3,3)−(4,4)−(5,5)
(1,3)−(2,3)−(3,3)−(4,3)−(5,3)
(1,4)−(2,4)−(3,4)−(4,4)−(5,4)
(1,5)−(2,5)−(3,5)−(4,5)−(5,5)

Figure 5.7: Influence of incoherently received power on the integration time. Part 2. Explana-
tions see figure 5.6.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 81

As can be seen clearly in the graphical representation of these results, the worst case happens

when there is a strong source present in each of the two incoherent areas of the two fan beams.

Also, as the thick grey line (which represents the same data series in either figure) clearly indi-

cates, there is a linear relationship between the amount of incoherent power received from the

two fan beams and the time τ50% it takes for 50% of the measurements to reach a value within

the 1± ε boundary.

We conclude, that for accurate estimates of how long an integration time is required, we

need to simulate strong incoherent sources in both arms (clearly, having only one source results

in lower values for τ50%, as can be seen in figure 5.6), as this represents the worst-case situation.

From the measurement in figures 5.6 and 5.7 we can easily derive the linear relationship

between p = total incoherent power
coherent power and τ50% as

τ50%(p) = a1× p+b1 (5.8)

where, for the given measurements, we find a1 = 3.7678×105 and b1 =−3.52937×105.

5.2.5 The Effects of Varying ε

Because, in reality, we might be interested in getting results that are much more, or possibly less,

accurate than ±2%, a series of simulations was run for different values of ε. As before, each

simulation was run 500 times, and the value τ50% indicates after how long an integration time

50% of all simulation runs reached the 1± ε boundary. The simulations that were run are listed

in table 5.4, along with the results. The results can be viewed in graphical form in figure 5.8.

We can approximate the curves for small ε with straight lines. This was done for τ50% in

figure 5.8. These lines show the exponential relationship between ε and τ (note that the x-axis

has a logarithmic scale). Since we are interested in the required integration time for good results

(i.e. small ε), the non-exponential behaviour for large ε can be ignored.

The straight line approximation can be described as

τ(ε) = a2× log10ε+b2 (5.9)

where, for the given measurements, we find a2 =−1.6958×107 and b2 = 8.1550×106.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 82

Experiment amplitude amplitude amplitude
ID of source of source of source τ50% τ80% k

in beam 1 in beam 2 in coherent area
job01 1 1 1 400623 822659 0
job02 1.4142 1 1 635422 1392970 2
job03 1.7321 1 1 956465 1885439 5
job04 2 1 1 1127850 2192383 17
job05 2.2361 1 1 1453947 2609013 34
job12 1.4142 1.4142 1 1154188 2210206 11
job13 1.7321 1.4142 1 1444399 2813817 31
job14 2 1.4142 1 1957109 3695207 60
job15 2.2361 1.4142 1 2271122 3892246 81
job23 1.7321 1.7321 1 1875462 3458175 55
job24 2 1.7321 1 2168734 3827143 73
job25 2.2361 1.7321 1 2690699 3999378 99
job34 2 2 1 2654735 3998268 97
job35 2.2361 2 1 3144514 Inf 125
job45 2.2361 2.2361 1 3414824 Inf 151
jobz1 1 0 1 120857 272371 0
jobz2 1.4142 0 1 268369 531629 0
jobz3 1.7321 0 1 449572 890393 0
jobz4 2 0 1 545126 1092463 1
jobz5 2.2361 0 1 658451 1315792 0
jobz6 2.4495 0 1 795421 1628161 5
jobz7 2.6458 0 1 877658 1925866 5

Table 5.3: Simulations with sources of different intensities. 4,000,000 Samples. 500 runs. k
denotes the number of runs that did not reach the 1± ε boundary. ε = 2%. Source bandwidth
15MHz.

Experiment ID ε τ30% τ50% τ80% k
eps01 8.0% 121070 193909 421427 0
eps02 4.0% 522880 843783 1651782 0
eps03 3.0% 962579 1557933 3161771 1
eps04 2.0% 2362917 3386110 6777717 20
eps05 1.8% 2589395 3825576 7375680 28
eps06 1.5% 3468376 5177072 9262067 60
eps07 1.2% 4927062 7033661 inf 112
eps08 1.0% 6372734 8404444 inf 157
eps09 0.8% 7726645 9798213 inf 215
eps10 0.6% 9259003 inf inf 266
eps13 0.3% inf inf inf 379
eps14 0.2% inf inf inf 421

Table 5.4: Simulations with different boundary conditions ε. 10,000,000 Samples. 500 runs.
Source bandwidth 15MHz. The experiment simulated two equally strong sources (one in each
fan beam), each emitting 2 times the power of the coherent source. k denotes the number of runs
that did not reach the 1± ε boundary.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 83

10
0

10
1

0

2

4

6

8

10

12

x 10
6

ε [%]

τ
[s

am
pl

es
]

approximated τ
50%

τ
30%

τ
50%

τ
80%

Figure 5.8: Effect of different boundary conditions ε on integration time

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 84

5.2.6 Different τn%

The previous sections mainly used τ50% as an indicator as to how quickly an experiment reached

the set boundary (see section 5.2.4 for an explanation of τ50%). In this section we will show how

τ, i.e. the required integration time, varies, if we want a certain percentage of experiments to

reach the set boundary. We can easily get this information from one of the previous simulation

runs, in this case we selected the results from the runs ‘job01’, ‘job03’ and ‘job23,’ see table 5.3

already discussed in section 5.2.4.

Figure 5.9 shows the result in a graphical format. The x-axis is the percentage of experiments

that are to reach the 1± ε boundary, and the y-axis shows the corresponding value of τ that is

required to achieve this goal.

From the blue line (representing ‘job01’) in this figure we can infer that it takes about 8 times

(= 2954305
400623) longer for nearly 100% of all runs to reach the set boundary, than it takes for 50% of

the runs. Therefore it is reasonable to measure τ50% or even τ30%, we are nevertheless able to

predict how long it will take to get a much larger amount of runs to reach the set boundary.

5.2.7 System Bandwidth

For the sake of simulation speed, all simulations in the previous sections were run with noise

source ID 07 (see table 5.1). In this section we will investigate how the bandwidth of the noise

sources (and therefore the bandwidth of the whole system, as explained in section 5.1) affects

the required integration time. For this, the five experiments in table 5.5 were run.

Figure 5.10 shows the results in graphical form. As expected, half the bandwidth requires

roughly twice the integration time and vice versa.

5.2.8 Varying the Sampling Rate

With our model running at 16 times the required sampling rate (Nyquist-rate, see section 5.1)

the simulated signals resemble the analogue signal very closely.

However, for a real system, we are looking for a more efficient way of sampling, as the

amount of data grows proportionally with the sampling rate.

The simulations described in this section are run to find out how a reduction in sampling rate

affects the required integration time, respectively the amount of data required to get the same

result as with a higher sampling rate.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 85

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

n [%]

τ
[s

am
pl

es
]

job01
job03
job23

Figure 5.9: Required integration time to measure τ30%, τ50%,...,τn%

Experiment used filter bandwidth
ID parameter file τ30% τ50% τ80% k
ch1 cheb_01 1.0 MHz 3736746 5866927 9875740 82
ch2 cheb_02 0.6 MHz 5800412 7935051 Inf 145
ch3 cheb_03 2.0 MHz 1943446 3145463 5812332 23
ch4 cheb_04 4.0 MHz 1152412 1763927 3620320 2
ch5 cheb_05 15 MHz 287363 426201 902578 0

Table 5.5: Simulations with different bandwidths. 10,000,000 samples. 500 runs. k denotes the
number of runs that did not reach the 1± ε boundary. ε = 2%. All three noise sources issue the
same power.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9
x 10

6

source bandwidth [MHz]

τ 50
%

 [s
am

pl
es

]

Figure 5.10: Required integration time in samples versus system bandwidth

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 87

We run these simulations by simply omitting some of the samples issued by the simulated

random noise sources (described in section 5.1). This is a simple form of decimation, see for

example [Nie91]. As long as we stick to this simple but perfectly adequate approach of omit-

ting some samples, not much change to the existing program is required. Table 5.6 shows the

experiments that were run, together with the results. Figure 5.11 shows the results in graphical

form.

Not surprisingly, as the number of samples per period reduces, so does the number of total

samples required to achieve the same result. In fact, the ratio of required samples to sampling

rate remains roughly constant as long as the sampling rate is above the Nyquist rate. This can

clearly be seen in figure 5.11.

From this figure, we can also see that results start to become worse as soon as we get below

the Nyquist rate. It seems, however, that we still get results, although at the cost of a longer

integration time. This behaviour is known as aliasing and causes loss of information. Real

systems will not work as intended if the sampling rate goes below the Nyquist rate. For our

particular concern in this chapter, however, this is not of interest.

5.2.9 Conclusion

In this section we will use the results derived in the previous sections to calculate a minimum

required integration time for the ARIES system, according to the model described in this chapter.

We can get a first estimate for the required amount of samples from the relationships dis-

cussed in section 5.2.4. (The number of noise sources as discussed in section 5.2.3 has no

influence on integration time.)

In section 5.2.4 we derived a formula (5.8) that gives us the required integration time to

reach the 1± ε boundary, given the ratio of total incoherent power to coherent power. We can

estimate this ratio from existing data of the IRIS riometer.

The maximum power ever recorded in a single IRIS beam (apart from scintillation effects

that overload the IRIS receivers) was Pmax,IRIS =−105dBm. This amount of power is recorded,

when Cassiopeia A (see chapter 3) is located within the respective beam.

As shown in section 5.2.4, the worst case in terms of required integration time happens, when

there is a big source in both of the fan beams to be cross-correlated. Very pessimistically, we

therefore assume an equally strong source of about the power of Cassiopeia in both fan beams,

giving us a total incoherent power of about Pmax = 2×Pmax,IRIS =−102dBm.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 88

Experiment ID fs τ30% τ50% τ80% k
dec01 32.00 2654735 3998268 N/A 97
dec02 16.00 1131628 1696224 3743129 1
dec03 10.66 681846 1011096 2088641 0
dec04 8.00 501269 820403 1765324 0
dec05 6.4 428822 654436 1448093 0
dec10 3.20 207887 302672 639440 0
dec16 2.00 261884 404004 775031 42
dec24 1.33 88279 131415 283566 1
dec32 1.00 132568 200295 389125 44
dec48 0.66 83080 128975 283910 16
dec64 0.50 60138 97492 203648 13

Table 5.6: Simulations with different sampling rates. fs shows the effective sampling rate in
multiples of the operating frequency of the system (38.2MHz). 500 runs. dec00: 4e6 samples,
dec01-dec05: 10e6 Samples. dec16-dec24: 1e6 samples. dec32-dec64: 5e5 samples. Only 260
runs were simulated for experiment dec05.

Figure 5.11: Required integration time in samples versus sampling rate

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 89

The lowest power ever recorded from a single IRIS beam was during the high absorption

period around the 15th of July 2000. The received power was around Pmin,IRIS =−129dBm. This

is the noise received from the cosmic radio background, attenuated by very strong absorption in

the Earth’s ionosphere.

Now, the effective covered area of one of IRIS’s beams is about 16 times as large as the

effective area of an ARIES beam. This means, that the signal received from the coherent area

of the two fan beams that represents one pencil beam from ARIES is likely to be 1
16 th of the

minimum power recorded in an IRIS beam, so we have Pmin = 1
16 ×Pmin,IRIS =−141dBm.

Altogether, we end up with a worst-case ratio of total incoherent power to coherent power

as follows:

p =
Pmax

Pmin
=
−102dBm
−141dBm

=
10−102/10

10−141/10 = 3.98×103. (5.10)

The second contributing factor (see section 5.2.5) is the required precision of the result,

represented by ε. For now, we specify a boundary condition ε of 2%, which will give us results

with a precision of better than ±0.1dBm. As equation 5.8 is already based on ε = 2%, we do

not need to take equation 5.9 into account. However, this equation is still useful for evaluating

the required integration time for different values of ε.

In addition to the above factors, we do not want only 50% of all runs to arrive at the result,

but close to 100%. According to section 5.2.6 we therefore have to multiply the calculated

integration time by 8.

Finally, as τ is given in number of samples throughout the preceding sections, we need to

divide τ by the sampling rate in order to get the required integration time T in seconds. Note

that, according to section 5.2.8, the sampling rate does not affect the result as long as we are

sampling above the Nyquist rate.

Equation 5.11 below collates all this information into one equation.

T = (32×38.2×106 1
s
)−1×8× (a1× p+b1) (5.11)

And for the given values for a1, b1 and p as determined in the previous sections we find

TARIES,B=15MHz = 9.8s (5.12)

This is the worst-case required integration time for a system with a (quite unrealistic) band-

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 90

width of about 15MHz. The influence of different bandwidths is investigated in section 5.2.7

above. We find, that for a more realistic system bandwidth of 0.6MHz, we require about

7935051
426201 = 19 (see table 5.5) times the integration time calculated above, thus

TARIES,B=0.6MHz = 19×TARIES,B=15MHz = 186s. (5.13)

5.3 Nielsen’s Estimates

In [Nie02b, NHG04] Nielsen derives the fluctuations of absorption measurements in dB for the

Mills Cross cross-correlation riometer as

dA = 10log(1+
(N−1)2
√

2 · τ ·B
) (5.14)

as opposed to

dA = 10log(1+
1√
τ ·B

) (5.15)

for an antenna with arbitrary radiation pattern, but without the cross-correlation stage.

N in equation 5.14 stands for the fraction of total area of the two beams to be cross-correlated

compared to the overlapping area, τ is the integration time used, and B is the bandwidth of the

system.

Nielsen aims for a dA < 0.1dB and finds that for a bandwidth of 250kHz the required inte-

gration time is

τ > 3.2 ·10−3 · (N−1)4. (5.16)

He concludes that for an integration time in the range of 10 to 20 seconds, a fan lobe should

not be subdivided into more than about 10 pencil antenna lobes. This means that the power

received in a pencil lobe should exceed 10% of the total power received in the fan lobe.

For an array with N=16 as outlined in the original design [Nie01], Nielsen finds an inte-

gration time of τ = 300s. N=16 can be achieved by adding the outputs of each Butler Matrix

pairwise, or by linear/cosine tapering of the inputs, where cosine tapering gives preferable side-

lobe performance [Mue72], see also section 2.3.5.

In [Nie02b, chapter II], Nielsen goes on to describe a way of modifying the existing ARIES

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 91

antenna array to achieve smaller values for N. This can be achieved by adding a second set of

32+32 antennas, connecting each existing antenna to a new antenna half a wavelength apart.

This would produce narrower fan beams, thus reducing N. However, the field of view of the

system would also be reduced, from 300×300km to about 150×150km.

Finally, for the 2002 test, Nielsen suggests using the tapered system (i.e. N=16) and integrat-

ing for 5min. This should lead to observations that fluctuate about 0.1dB about the mean. Refer

to chapter 9 for the actual results obtained during this experiment.

5.4 Hagfors’s Estimates

In [Hag01b], Hagfors tackles some general issues that have been neglected in Nielsen’s report

[Nie01]. These include the effects of sidelobes, polarisation problems and the effect of snow on

the ground. None of these issues seem to be of particular concern for the 2002 experiment.

[HGH03] (based on earlier notes in [Hag01a]) goes into the details of the difference between

cross-correlation and filled aperture riometers. Without going into details of the statistical con-

siderations used in this description, we will only quote his final result. Hagfors states that “If

one inquires as to the amount of integration time one must have to make up this handicap [of the

Mills Cross] compared to the filled array, the integration time ratio must be larger by a factor of

100 to 900.”

If we use IRIS (B = 250kHz, τ = 0.045s) as an example of a filled aperture riometer, this

suggests an integration time for ARIES of about 5s to 45s.

5.5 Summary

Table 5.7 summarises the estimated integration times from the previous sections. Note that the

three very different approaches to determining reasonable integration times (Grill/Yamagishi,

Nielsen, Hagfors) lead to similar results, and later chapters will show that the Mills Cross system

can indeed achieve these integration times.

CHAPTER 5. INVESTIGATIONS INTO THE ACHIEVABLE INTEGRATION TIME 92

System specification Nielsen Hagfors Grill
B = 600kHz, untapered τ = 186s
B = 250kHz, cosine-tapered τ = 300s
B = 250kHz τ = 5...45s

Table 5.7: Summary of integration time estimates

Chapter 6

Radiation Pattern Simulations:

RIOSIM

Having looked at the basic working principles of antennas and riometers in chapters 2 and 3, this

and the following chapter operate on a slightly higher level of abstraction, focusing on radiation

patterns and how they can help in the evaluation and deployment of real system designs. As

discussed in chapter 2, the receiving properties of each antenna or system of antennas are fully

described by its associated radiation pattern. Depending on the point of view, this pattern is also

referred to as antenna directivity or sensitivity pattern. It describes how the antenna system in

question reacts to an incoming signal from any possible direction. In (imaging) riometry, we

want to have a clear peak sensitivity in one direction and as low a sensitivity as possible in all

other directions, in other words we want to form pencil-shaped beams with low sidelobes.

Now ideal pencil beams are unfortunately a purely theoretical thing, in fact many of the

chapters in this thesis come back to this issue. The aim of this chapter is therefore to simulate

the radiation pattern that various configurations of the Mills Cross can be expected to produce.

Nielsen did some radiation pattern simulations in [Nie01], and we will refer to this in the appro-

priate places. The main purpose is not to imitate work that has already been done, but to put it

into a greater, more versatile, context (framework), using the radiation patterns to derive results

that can be expected when operating the system as specified, and using these simulated results

for validating data received by real systems. The toolbox developed in this chapter will enable

us to apply all findings to arbitrary riometers or, in fact, antenna systems.

It is worth mentioning that there are different ways of actually deriving the radiation pattern

for (Mills Cross) antennas. While Nielsen’s results are based on theory, it is also possible to

93

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 94

simulate the Mills Cross, or any other antenna, using finite element method (FEM) software.

Initial steps toward this have already been taken by the author in collaboration with G. Dekoulis,

and although these are not discussed further in this thesis, FEM-simulated radiation patterns

are readily supported by RIOSIM and one example can be found in section 6.3.10 (discussing

the RNECPat class). FEM simulations give further insight into the real world behaviour of

antennas, as they can take into account real-life effects such as imperfect ground planes that

cause the real radiation pattern to deviate from its predicted theoretical shape.

6.1 Design Goals

Having verified the basic fitness of the Mills Cross system for our purposes in chapter 5, the

aim of this chapter is to use radiation patterns to simulate the actual results that we can expect

from the system. This includes simulations of the received signal during ‘quiet days’1 and

simulations concerning the influence of strong celestial radio sources, the latter enabling us to

predict, amongst other things, scintillation effects. All the results from this and the following

chapter have directly influenced the schedule for the various ARIES on-site experiments, first

and foremost the one whose results will be described in chapter 9.

Through the abstraction of radiation patterns, all results that are achieved in this chapter

can easily be applied to any riometer system, as long as its radiation pattern is known. Due to

a completely object-oriented approach, the core software does not have to be modified in any

way to be able to adapt to new radiation patterns. This means that we can, for example, predict

scintillation in every existing riometer with the same piece of software.

To summarise, the aims of the toolkit implemented in this chapter are to:

• Integrate different sources of radiation patterns (simulated, calculated, measured) into one

program/framework.

• Integrate digitised sky background noise maps.

• Enable creation of theoretical quiet-day curves based on the different available radiation

patterns and sky map(s).

1Similar simulations have been done by Huiyu Tao [Tao04] for the IRIS system, and some of the basics of this
chapter are based on Tao’s work. The tools developed in this chapter will, however, be much more flexible, as the
following sections will show.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 95

• Take into account tilted base planes and other imperfections of the instrument in question.

• Predict when certain radio stars will pass through which beam(s) and, based on this,

• predict scintillation effects.

• Enable the development of experiment schedules, taking into account the results of the

above simulations.

• Develop all these algorithms in a general way so that they can be applied to other existing

riometers.

The remainder of this chapter will describe the RIOSIM framework that was implemented for

performing the tasks above. This framework will be used throughout the rest of this thesis.

Chapter 7 in particular is dedicated to presenting some major applications.

6.2 Implemented Object Structure

With the background knowledge on coordinate systems (appendix B.1) a software structure can

be developed to represent the given problem in a flexible enough way to be able to solve all

the tasks at hand. This software consists of different layers, or building blocks, see figure 6.1.

The bottom layer provides all the necessary objects of the application (problem) domain. These

objects can then be used in higher-level layers to generate QDCs, predict scintillation etc.

There is also an independent collection of useful helper functions that are not part of any

objects and a small set of functions that are only used by RIOSIM internally and should not be

used by other applications. Finally, we have the application layer. Programs in this layer are the

ones that make use of the RIOSIM classes and functions.

From the general description of how antennas and riometers (or radiotelescopes in general)

work (see chapters 2 and 3), we find that we have to deal with three basic groups (types, classes)

of objects. A radiation pattern represents the sensitivity of the given aerial system under investi-

gation. The convolution of a radiation pattern with the cosmic sky background gives the received

signal strength. For the prediction of scintillation and for instrument alignment and calibration,

radio stars play an important role.

It is therefore sensible to implement a class hierarchy that integrates these principal objects.

The developed class hierarchy will be described in the following sections.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 96

6.3 Radiation Patterns: RRadPat and Descendants

Radiation patterns can be classified into a wide variety of different types. Although they all

describe antenna sensitivity, the way in which the actual sensitivity is calculated varies with the

type of antenna that is being described. Some antenna patterns have mathematical descriptions.

Others can be generated by simulation. Antenna patterns can be derived from the ground up

(for example the pattern of a crossed dipole derived from the mathematical description of the

radiation patterns of two individual dipoles), or by the use of some simplified description (as

used in, for example, RXDipNielsenPat — see section 6.3.5).

All types of radiation patterns commonly used in riometry have been integrated into the

object tree in figure 6.2. All radiation pattern objects are derived, directly or indirectly, from

the same base class RRadPat2. This results in complete interchangeability (‘polymorphism’), a

client that requests a RRadPat will also accept any of its descendants, for example the radiation

pattern of an isotropic radiator (RIsoPat) or the simulated radiation pattern generated by the

NEC finite-element simulation software (RNECPat).

Through RRadPat, all radiation patterns inherit a set of common functionality. They can

return the gain in any given direction in various formats through their method getGain(). They

can return plain text information about themselves. All radiation patterns also come with ex-

tensive plotting capabilities (implemented as common functionality in the base class RRadPat)

that enable the user to analyse and verify results simply by looking at a range of graphical rep-

resentations of the radiation pattern (section 6.3.2).

The following subsections will discuss the available common functionality of all radiation

pattern (RRadPat) objects. The final sections from section 6.3.4 onwards will deal with specifics

for certain concrete types of radiation patterns as represented by the bottom layer of objects in

figure 6.2. As a rule, these specifics need only be known when new radiation patterns are being

created. Once the radiation pattern has been created, it will behave in exactly the same way as

all the other types of radiation patterns. (Although some will be considerably slower than others

due to internal processing — one reason for not always using the most accurate or detailed

representation.)

All coordinates that are used within RRadPat and derived objects are per definition in the

horizontal spherical coordinate system (section B.1.5) described in the underlying ‘mathemati-

2We will ignore the base class motherofallobjects in this description. This class is a pure implementation detail,
providing common get/set and help functionality for all derived objects.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 97

Figure 6.1: RIOSIM architecture

Figure 6.2: RRadPat and descendants

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 98

cal’ spherical coordinate system (section B.1.2). All angles are expressed in radians. Azimuth

angles therefore run from 0 (North) through π

2 (West), π (South), 3π

2 (East) to 2π, elevation angles

from −π

2 (directly underneath) through 0 (at the horizon) to +π

2 (at zenith). The ‘mathematical’

spherical coordinate system as described in section B.1.2 is is the only coordinate system that

RRadPat knows (and needs to know) about, and it is being used consistently throughout the

RIOSIM toolkit.

6.3.1 Gain Retrieval

The primary objective of a radiation pattern is to represent antenna gain (directivity, sensitivity)

— see chapter 2. To retrieve this gain information, RRadPat provides the getGain() method.

getGain() maintains compatibility with simple power-based real-valued descriptions (as

used in previous versions of the RIOSIM toolkit as well as in MIA [Marc]), while also enabling

the use of complex gain values (describing phase offsets) and antenna polarisation.

getGain() takes matrices of azimuth and elevation angles and, depending on the requested

output format, returns the gain in linear power units, relative to an isotropic radiator, in all

directions defined by these angles:

a = GETGAIN(pattern, az, el), [a, AZ, EL] = GETGAIN(pattern)

Returns the power gain in linear power units relative to that of an isotropic radiator for all direc-

tions specified by az, el. If no directions are specified, getGain() returns the gain in all directions

as defined by a default grid with suitable resolution for the radiation pattern in question, the grid

itself is returned in AZ and EL.

[Ex, Ey] = GETGAIN(pattern, az, el), [AZ, EL, Ex, Ey] = GETGAIN(pattern)

Returns the electric field strength along the x and y polarisation planes for all directions specified

by az, el. Positive x-axis of the polarisation vector points towards zenith. If no directions are

specified, getGain() returns the gain in all directions as defined by a default grid with suitable

resolution for the radiation pattern in question, the grid itself is returned in AZ and EL.

6.3.2 Plotting

As mentioned above, every RRadPat object can plot the radiation pattern it represents in a

number of formats. This is useful to quickly visualise the basic properties of the given radiation

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 99

pattern. Sidelobes, beamwidth, etc. can be compared qualitatively to other radiation patterns.

All plotting functions take certain common parameters in the form of name-value parameter

pairs. If no special parameters are given, a plot with default settings is produced. In most cases,

this plot will be a good starting point for further customisation.

The following parameters are available for all plotting commands:

stepsize_az, stepsize_el Specify the granularity of the underlying spherical grid in azimuth and

elevation directions.

color An equation describing how colour information will be calculated in this plot. Defaults

to (Ex.*conj(Ex)+Ey.*conj(Ey)), giving the total power in both polarisation planes. (Note

the American spelling for consistency with existing MATLAB commands and toolboxes.)

color_scaling The scaling mode for the colour axis. At the moment, ‘linear’ and ‘db’ are sup-

ported. The external ‘scale’ function is used to perform the scaling. Defaults to ‘db’.

color_scalingreference Specifies a reference power value used for relative scaling. Defaults to

NaN (=no relative scaling for ‘linear’, automatic scaling relative to maximum for ‘db’)

color_min, color_max Colour values get capped at these minimum and maximum values. De-

fault to −20 and 0 for ‘db’.

only_upper_hemisphere Whether to plot the whole sphere, or just the upper hemisphere of

the radiation pattern. In riometry, antennas are usually located on a ground plane and

only receive signals from overhead, so it is usually sufficient to only deal with the upper

hemisphere of any given radiation pattern.

linestyle This parameter is passed on to the underlying low-level plotting functions to specify

style parameters for line segments.

6.3.2.1 Basic Plots

The following plotting commands produce two-dimensional graphical representations of the

radiation pattern. See the examples in figure 6.3, panels (a)–(c). All example plots show the

same radiation pattern (that of the IRIS riometer’s beam number 10).

plotlinear() This is the simplest and quickest plot, aimed at quickly evaluating the basic shape

of a radiation pattern. The x-axis shows azimuth, the y-axis shows elevation. By de-

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 100

azimuth angle [°]

el
ev

at
io

n
an

gl
e

[°]

0 45 90 135 180 225 270 315 360
0

15

30

45

60

75

90

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

(a) (b)

0102030405060708090
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

elevation [deg]

’c
ol

ou
r’

(c)

(d)

Figure 6.3: Basic plotting capabilities of a RRadPat radiation pattern object. Radiation pattern
shown is IRIS’s beam 10. (a) linear, (b) polar, (c) vertslice for AZ = 42◦, (d) 3D. Colour scales
in dB below maximum.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 101

fault, colour represents the power gain in the given direction, though, as for all plotting

functions, this can be customised with the color_xxx options.

plotpolar() This plot shows the same information as the linear type, but in a more commonly

used ‘polar diagram’ format. Elevation angle is proportional to distance from the centre

of the plot. 30◦, 60◦and 90◦ (π

6 , π

3 and π

2) are indicated by concentric black circles. Polar

plots will always be generated for the upper hemisphere only (0 ≤ EL ≤ π

2).

vertslice() This plot type is a line plot representing a vertical slice through the radiation pattern

at a specified azimuth angle.

6.3.2.2 Three-dimensional Plots

In addition to the colour-related parameters (see above), the 3D plotting function plot3() also

supports a similar set of parameters for radius scaling. Radius and colour information are there-

fore two completely independent datasets. Traditionally, the radius in a 3D plot of a radiation

pattern represents the logarithmic power gain in the given direction. By default, radius and

colour are therefore calculated using exactly the same expression. However, the separation

between colour and radius allows for plots that, for example, combine gain and phasing infor-

mation, such as the example in figure 6.4, panel (a). It also enables the generation of spherical

diagrams such as the one in figure 6.4, panel (b) that still maintain the appearance of the sim-

pler polar plot, while giving a much clearer (less distorted) representation of the actual radiation

pattern shape.

In addition to the parameters described in section 6.3.2.1 above, the following parameters

are supported for plot3():

radius An equation describing how radius information will be calculated in this plot. Defaults

to (Ex.*conj(Ex)+Ey.*conj(Ey)), giving the total power in both polarisation planes. Fig-

ure 6.4, panel (b), uses (ones(size(Ex)), which results in a constant radius of 1 for all

directions.

radius_scaling, radius_scalingreference, radius_min, radius_max Similar to the equivalent

color_xxx options described above, but referring to radius scaling.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 102

6.3.3 Contouring

Any RRadPat object can return its contours at a specified level below maximum gain through

the getContour() method. It does, however, not know anything about how to plot these con-

tours. This is a deliberate design decision, as plotting contours also requires knowledge about

projection methods and maps, both concepts that are only very loosely related to the concept of a

radiation pattern and according to the ‘high cohesion’ principle of object-oriented design should

therefore not be included in the design of a radiation pattern class. In order to plot radiation

pattern contours, all this additional knowledge is required, and it is the responsibility of the con-

tour plotting functions described elsewhere (chapter 7, section 7.1) to harness this knowledge to

actually plot radiation pattern contours.

6.3.4 The Radiation Pattern of a Simple Dipole: RLinDipPat

This class represents the radiation pattern of a (perfect) linear dipole according to equation 6.1

as adapted from [Kra88].

Eθ =
− jZ0I0e(− jβr)

2πr
× cos(βLcos(θ)/2− cos(βL/2)

sinθ
(6.1)

The length of the dipole can be specified in multiples of the operating wavelength λ using the

length parameter (represented by L in equation 6.1). The dipole is always centred on the origin

and aligned along the z-axis. To rotate it into another position, use this radiation pattern in

combination with RRotPat (section 6.3.9).

6.3.5 The Simplified Radiation Pattern of a Crossed Dipole: RXDipNielsenPat

Instead of calculating the response of a crossed dipole above (perfect) ground from the responses

of its individual components (a cross of dipoles driven by 90◦ phase shifted signals and a mir-

rored cross of dipoles to simulate reflective ground), a simplified approach is often more suitable.

This is especially true as soon as the array factor dominates the considerations, which is clearly

the case when looking at phased array antennas. RXDipNielsenPat describes the radiation pat-

tern of a crossed dipole above perfect ground as used by Nielsen in [Nie01] (his equation 19):

G = 2sin(2πh× sinθ), (6.2)

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 103

(a) (b)

Figure 6.4: Advanced 3D visualisation options. (a) 3D phase plot — colour scale from −π to
+π, (b) 3D polar diagram — colour scale as in figure 6.3 (b). Both panels show IRIS beam 10
as in figure 6.3.

(a) (b)

(c)

Figure 6.5: Some RRadPat-derived radiation patterns. (a) RLinDipPat, (b) RMulPat for two
perpendicular tilted linear arrays, this is the radiation pattern that is used to describe ARIES
pencil beam 595, (c) Object diagram for situation (b) showing the internal composition of this
particular RMulPat object.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 104

where h is the height of the half-lambda crossed dipole above ground and θ is the elevation

angle.

Figure 6.6 shows an example of an FEM-simulated radiation pattern for a crossed dipole

above a perfect ground plane (i.e. a mirrored crossed dipole) in comparison to the simplified

mathematical representation of a crossed dipole as used by Nielsen [Nie01] as represented by

RXDipNielsenPat. Whereas the pattern as used by Nielsen is perfectly symmetric to the z-axis,

the actual shape as simulated by miniNEC exhibits a slight dependency on azimuth angle. Also,

the miniNEC simulation (although not visualised in the figure) inherently gives signal strength

for both polarisation planes (Ex and Ey), whereas the simple formula used for RXDipNielsen-

Pat only returns overall signal strength, which RXDipNielsenPat returns as being entirely x-

polarised for simplicity.

It should also once again be noted that the differences in element patterns quickly grow

insignificant for phased arrays, as the array factor quickly starts to dominate the overall shape of

the radiation pattern, especially around zenith. See chapter 2 for a more detailed discussion of

phased arrays.

6.3.6 Linear Additive Arrays: RAddPat and RPharrPat

Additive linear phased arrays (see chapter 2) are used extensively in riometry. RAddPat (addi-

tive array pattern) and RPharrPat (phased array pattern) are designed to represent these types

of antenna systems. RAddPat supports an arbitrary number of antenna elements at arbitrary

locations and with arbitrary phasing. RPharrPat is a special case of RAddPat for rectangular

antenna arrays with fixed spacing and phasing. The beam patterns plotted in figures 6.3 and 6.4

are, in fact, all examples of RPharrPat objects (in this instance representing an IRIS riometer

beam).

Both RAddPat and RPharrPat use a single element pattern (again a RRadPat-derived

object) representing the radiation pattern of one antenna element. This is sufficient, as antenna

arrays usually consist of identical antenna elements.

It can be useful to additively combine two or more different radiation patterns, for example

for deriving the radiation pattern of a crossed dipole (consisting of two linear dipoles at 90◦

of each other). This is implemented in the RIndAddPat (additive array pattern made up of

individual elements), see section 6.3.7 below. Note that this will greatly increase the processing

and memory requirements compared to an additive array pattern made up of identical elements,

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 105

as each element pattern needs to be stored (and calculated) separately.

6.3.7 Additive Arrays of Individual Elements: RIndAddPat

This is the most generic form of an additive array radiation pattern. The array can be made up

of an arbitrary number of individual radiation patterns (element patterns), with each one located

at an arbitrary location and with an arbitrary phase delay. For any given direction of interest,

the array sensitivity will be determined as the correctly phased sum of the contributions from all

elements as described in chapter 2, section 2.3.3.

Compared to arrays consisting of identical elements (represented by RAddPat and RPhar-

rPat, see section 6.3.6 above), RIndAddPat will have greatly increased processing and memory

requirements, as each element pattern needs to be stored (and calculated) separately.

6.3.8 Multiplicative Arrays: RMulPat

Mills Cross type antenna arrays are multiplicative arrays (see chapter 2). The radiation patterns

from individual arms (each arm being a linear phased array) are multiplied together to form

pencil beams. RMulPat represents such multiplicative arrays. Each RMulPat object consists of

two RRadPat-derived antenna patterns. For any given direction of interest, the array sensitivity

will be determined as the product of the contributions from both elements. Figure 6.5, panel (b)

is an example of a RMulPat radiation pattern. This is in fact an untapered ARIES beam 595 as

returned by the beam factory function (see section 6.6.3).

Panel (c) in the same figure is an object diagram of this very RMulPat object. It can be seen

how RAddPat (for the two additive arrays forming the arms of the Mills Cross), RPharrPat

(as simplification due to the regular spacing), RRotPat (to take the sloping ground into account)

and RMulPat work together to represent an ARIES pencil beam.

6.3.9 Rotated Patterns: RRotPat

Antenna patterns are not always perfectly aligned with the principal axes of the observer’s co-

ordinate system. Instead of re-implementing rotation algorithms for each individual class (type)

of radiation pattern, a separate class RRotPat was developed. Objects of this class act as a

container for any RRadPat-derived object, and simply return a rotated version of the original

pattern, obtained by rotating the original pattern around the x, y and z-axes (in that order) by the

specified angles.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 106

Thus, ARIES fan and pencil beams can be properly rotated in accordance with the actual tilt

of the ARIES site, and linear dipole patterns can be placed arbitrarily in free space, despite the

fact that a RLinDipPat pattern is always aligned with the z-axis.

RRotPat uses a combination of matrix manipulations to correctly transform polarisation

information, see for example [Owe]. For each direction, the following steps are taken to produce

the correctly rotated version of the radiation pattern:

1. Rotate the required directions around z, y and x-axes (in that order) by the inverse of the

specified angles. This is because the specified angles describe the rotation of the radiation

pattern, whereas internally we perform the equivalent operation of rotating the observer

in the inverse direction.

2. Also rotate the local XY coordinate system (in which the polarisation information is spec-

ified) along with the corresponding observer directions.

3. Map the retrieved field intensities Ex and Ey onto the rotated coordinate system. The

resulting values are the polarisation information in the correct coordinate system.

6.3.10 FEM Simulated Radiation Patterns: RNECPat

Complex real-life antenna systems can often be simulated using FEM (Finite Element Method).

A popular tool employing the NEC FEM engine [BP77] is miniNEC, and several simulations

have been run using this tool.

Advantages of NEC simulations over theoretically derived radiation patterns are that they

can easily take into account environmental properties such as (imperfect) ground planes, inter-

fering metal surroundings and the material and dimensions of the actual antenna elements.

The disadvantage is that correctly modelling the antenna system under investigation is a

labour-intensive, time-consuming task (involving manual steps for each individual beam) and

FEM simulation tools have high processing requirements.

RNECPat loads NEC simulation results from a specified ASCII file. Any subsequent get-

Gain() requests will return gain values interpolated from the simulation results. Figure 6.6,

panel (b), is an example plot of a RNECPat object.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 107

6.3.11 MIA Antenna Directivity Adaptor: RMIAPat

S. Marple’s Multi-Instrument Analysis (MIA) toolkit ([Marc]) implements a getdirectivity()

function for instruments of type riometer. Being initially very basic and only suitable for the-

oretical filled phased array radiation patterns, this function has somewhat improved since the

inception of RIOSIM. Given the widespread use of MIA, RIOSIM includes an adaptor object to

enable it to directly utilise MIA directivity patterns.

A RMIAPat is created simply by calling the RMIAPat constructor with two additional

parameter-value pairs:

mia_instr to specify the MIA instrument object for which to create a radiation pattern.

mia_beamnr to specify the MIA beam number for which to create a radiation pattern, to be

seen in the context of the MIA instrument specified with the mia_instr parameter.

As for all RRadPat-derived objects, these parameters can also be changed at run-time using

RRadPat’s get() and set() methods.

Note that MIA’s directivity function does not include support for antenna polarisation, so a

RMIAPat object will always return the antenna radiation pattern as being entirely x-polarised.

This is not a problem for most applications, as they usually deal with antenna (power) gain, i.e.

the sum of the squared directivities in the x and y polarisation planes, see also the description of

RRadPat’s getGain() function in section 6.3.1.

6.4 Sky Maps: CSkyMap and Descendants

The second basic class of objects in RIOSIM is the cosmic sky background. It is represented

by class CSkyMap and its children, see figure 6.7. CSkyMap itself is able to return its current

projection onto the celestial hemisphere as seen by an observer on Earth at any given moment

in time. Three children of CSkyMap that were implemented initially will be described in this

section:

CTaohSkyMap is a ‘façade’ class [GHJV95, Dea02] for the sky map originally imple-

mented by Huiyu Tao [Tao04]. It uses all the original conversion functions used by Huiyu

Tao, as well as the original digital sky map as digitised by Huiyu Tao from a sky map at 30MHz

by Cane [Can78].

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 108

(a) (b)

Figure 6.6: Radiation pattern of a crossed dipole above ground. (a) Simplified pattern accord-
ing to equation 6.2; (b) FEM (miniNEC) simulation above perfect ground. The slightly non-
symmetric shape of the FEM simulation is just about visible.

Figure 6.7: CSkyMap and descendants

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 109

CGrillTaohSkyMap (figure 3.12) still uses the original digital sky map as used by Huiyu

Tao, but performs all coordinate conversions using function calls to the third-party SLALIB

library [Walb]. Originally thought to be more accurate, it turns out that the gain in accuracy is

only minor, as can be seen in figure 6.8, which shows the difference between the sky temperature

for a given slice of sky as determined by CTaohSkyMap as opposed to CGrillTaohSkyMap.

However, using the well-documented SLALIB coordinate conversion functions makes the

program flow much more transparent, significantly simplifying future changes to the code.

CSkyMap is designed to be extensible through new child classes, and the above implemen-

tations CTaohSkyMap and CGrillTaohSkyMap are only two possible implementations. In par-

ticular, Cane’s sky map suffers from low resolution, which becomes very noticeable when sim-

ulating reception by antennas with narrow, pencil-shaped radiation patterns. For most ARIES-

related simulations in this thesis, a higher-resolution sky map was used [DU90]. This sky map

is implemented by CGeeteeSkyMap (figure 3.13). Generally, through this object-oriented de-

sign technique, sky maps can be swapped in and out as required and existing algorithms can be

re-evaluated with higher resolution or better quality sky maps as these become available.

The following is a description of the main methods supported by CSkyMap-derived objects:

getskytemp_galactic Retrieves cosmic background temperature in Kelvins for directions as

specified by (a set of) azimuth and elevation coordinates in galactic coordinates (see ap-

pendix B). For most sky maps, the galactic coordinate system will be the ‘native’ coordi-

nate system, and this function will simply interpolate temperature values for the requested

directions without any further coordinate transformations.

getskytemp Retrieves cosmic background temperature in Kelvins for directions as specified by

(a set of) azimuth and elevation (horizontal) coordinates for a given universal time (UT)

and location on Earth. This involves converting the observer’s horizontal coordinates

into the native coordinate system of the sky map. See appendix B for more details on

coordinate systems and how to convert between them.

draw Plots an overview of the whole sky map, see figures 3.1, 3.11, 3.12 and 3.13 in chapter 3

for examples.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 110

0 50 100 150 200 250 300 350

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Azimuth angle [°]

R
el

. D
if

fe
re

n
ce

 in
 S

ky
 T

em
p

er
at

u
re

 [
%

]

CTaohSkyMap and CGrillTaohSkyMap compared for
01/05/2002, azimuth 0°...360°, elevation = 30°, location: IRIS

Figure 6.8: Difference in sky temperature as returned by CTaohSkyMap respectively CGrill-
TaohSkyMap

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 111

6.5 Radio Stars: CRadioStar

Radio stars are in a way quite similar to sky maps in that their position on the celestial hemi-

sphere depends on the time and place of the observer. Radio stars are represented by instances

of the class CRadioStar (see figure 6.9), and their main ability is being able to determine their

position in the observer’s coordinate system at any given time. Given that each radio star can be

uniquely identified by only its (galactic) coordinates and its flux density on Earth, an approach

following the ‘lightweight’ design pattern [GHJV95, Dea02] was taken for its implementation.

A CRadioStar object can be initialised to represent any arbitrary radio star, including fictitious

stars such as the North Celestial Pole, using its constructor or the catalogueLookup() member

function. This can conveniently be done at initialisation time by using code like “cassiopeia

= CRadioStar(’Cass A’).”

Each CRadioStar object supports the following method for querying its location:

getazel Return position of star in observer’s Az-El-coordinate system for the given time and

location of the observer.

CRadioStar objects will be used especially in the radio star tracker and scintillation predictor

applications in chapter 7.

6.6 Elementary RIOSIM Functions

In addition to the classes described above, RIOSIM comprises several ‘elementary’ functions.

These are not specific to any class, but instead perform general tasks related to the topic of

riometer simulations. These are the functions referred to by the orange box on the right-hand

side in figure 6.1. While many of these functions are trivial and will not be discussed further

here, the following list describes some of the more useful helper functions, and separate sections

below have been dedicated to describing the radiation pattern factory (section 6.6.3) and the

more complex coordinate transformation functions (sections 6.6.1 and 6.6.2) .

All functions discussed in this section can serve as building blocks for larger-scale real-life

applications, some of which will be described in the next chapter (7).

azeltriad Returns base vectors of a Cartesian horizontal coordinate system with the given ori-

gin, expressed as multiples of the base vectors of the underlying geographic coordinate

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 112

system. Useful for establishing a Cartesian coordinate system for an observer located on

the surface of the Earth.

pin3d Plots a ‘pin’ from O(0 | 0 | 0) to the given spherical coordinates (az,el,radius). If no

colour is specified, the default is used (red). Useful for pinpointing locations on a sphere,

used for example in figures 4.6 onwards in chapter 4 (which is otherwise quite unrelated

to RIOSIM).

scale Scales a set of values on a linear or dB scale, relative to the specified reference value.

stretch Scales a set of values to lie in the range low ≤ x ≤ high, with values exceeding the low

and high marks being set to either NaN, exactly the limit or any other specified value.

myscand, myscand_narrow Useful maps: Map projections are useful for many different plots

(for an example in this thesis see figure 9.12 in chapter 9) and are used extensively in

publications. myscand() plots a map of the ARIES site using the M_Map mapping tool-

box [Paw05] and MIA’s scand() function [Marc, function SCAND]. This map can the be

used for contour plots, etc., see also the applications in chapter 7, for example figures 7.1

and 7.2. The myscand() function is merely a shortcut to quickly arrive at a useful map

around the ARIES and IRIS sites. So is myscand_narrow(), which produces a zoomed-in

version of myscand().

6.6.1 Projecting Rays onto the Spherical Ionosphere: ‘projection1’

For a number of applications, it is useful to be able to plot the outline of the main beams (down to,

say, the −3dB borderline) projected onto the surface of observation, in our case the ionosphere,

which is for this case assumed to be a sphere with the centre of the Earth as origin and a radius

h + rE greater than the radius of the Earth rE , h being normally assumed to lie in the order of

90×103m as discussed in chapter 3.

Figure 6.10 shows the basic geometry. The coordinates of a given contour are in the horizon-

tal coordinate system (see section B.1.5) of the radiation pattern, respectively in its underlying

‘mathematical’ spherical coordinate system (section B.1.2). The position of the observer is given

in geographic coordinates (see section B.1.4), more exactly again in its underlying ‘mathemati-

cal’ spherical coordinate system.

After performing the operations described in B.2.1, the relative position of the two coordi-

nate systems (I — red and II — green) involved are known, and now the vector
−→
Q can be found

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 113

Figure 6.9: CRadioStar

B

r E

h

P

I

I I

x

Qe x
e z

A 2

A 1

Figure 6.10: ‘Projection 1’: Projection onto the ionosphere

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 114

as the vector from the centre of the Earth to the intersection of line (A1A2) with the ionosphere

as follows:

In coordinate system (I) we can describe the sphere B as follows:

x2 + y2 +(z+ rE)2 = (rE +h)2 (6.3)

(OX) can be expressed as

−→x = λ ·−→c (6.4)

where −→c represents vector in direction of the point on the contour in question.

We can now calculate the intersection of line (OX) and sphere B, and with −→c =


cx

cy

cz

find

that

λ =−czrE +
1
2

√
(2czrE)2 +4 ·2rEh+4h2. (6.5)

Vector
−→
Q expressed in coordinate system II is therefore

−→
Q =

−→
P +λ ·−→x (6.6)

=
−→
P +λ · (xx

−→ex + xy
−→ey + xz

−→ez), (6.7)

where xx, xy and xz specify the Cartesian coordinates of −→x , and −→ex , −→ey and −→ez are the

base vectors of coordinate system I expressed in coordinates of system II as calculated in sec-

tion B.2.1.

The coordinates of vector
−→
Q can now be expressed in geographical coordinates, and these

can be plotted onto a map.

This projection is being used in many applications. One example can be seen in figure 7.2,

discussed in section 7.2, where it is used to project the the track of a radio star as well as IRIS

beam contours onto the ionosphere at 90km height. Another example is the projection height

evaluation in chapter 9, see figure 9.12.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 115

6.6.2 Projecting a Spherical Cap onto a Flat Plane: ‘FLATM Projection’

Antenna radiation patterns and sky brightness distributions are usually, and most intuitively,

described in a spherical coordinate system. The mathematical spherical coordinate system (see

B.1.2) in this thesis uses a spherical coordinate system made up from azimuth angle θ (in the

XY plane, counterclockwise, starting from the positive x-axis) and elevation angle φ (between

XY plane and direction of interest, positive φ denotes positive z). For visualisation purposes

and further studies, a dataset on such a spherical grid often needs to be mapped onto a flat two-

dimensional surface. For IRIS absorption images, a projection algorithm that we will henceforth

call the ‘FLATM’ (for ‘flat metres’) projection is commonly used. This is a two-stage projection

that first calculates the intersection between a ray in the given direction and the ionosphere (at a

given height, 90km by default) and then maps the result onto a flat surface. The whole process

is shown in figure 6.11. This projection offers relatively little distortion around the zenith, with

distortion increasing with lower elevation angles. As the surface area of the ionosphere is much

greater than the area usually covered by any given instrument, the FLATM projection gives a

good (i.e. relatively undistorted) representation of the signal distribution at the height of the

ionosphere (or any other sphere centred on the Earth’s centre for that respect).

Note that of the interpolation algorithms discussed in chapter 10, only the original IRIS in-

terpolation algorithm inherently uses (relies on) the FLATM projection. The GLEAM algorithm

inherently interpolates in the coordinates of the underlying basis functions, only the results are

generally mapped back to FLATM projections for visualisation and comparison purposes.

6.6.3 Riometer Beam Factories: getbeampat() and getspecialbeampattern()

Constructing a RRadPat from its basic components can be a tedious task. Depending on the

complexity of the antenna, one needs to know about antenna spacings, phasing factors, physical

locations of the aerials, slope of the ground, etc. It seems therefore desirable to put this knowl-

edge into writing once, and then have the computer generate the appropriate RRadPat object

itself. A function which does this is also known as a factory function [Dea05], or just factory.

All the user needs to know is that it returns an object of type RRadPat. There is no need to care

or even know about the exact procedures and parameters that were used to create this object,

nor, indeed, the exact (RRadPat-derived) type of object returned.

The function getbeampat() is such a factory function. It takes the ID of a known riometer

that we want to create a RRadPat for and the number of the beam that we require. It returns a

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 116

RRadPat object representing the radiation pattern of the beam in question.

At the moment, getbeampat() knows the following riometer IDs:

kil The IRIS riometer at Kilpisjärvi.

tro The untapered 32+32 ARIES system.

trofan The fan beams of the untapered 32+32 ARIES system.

tr2 Untapered ARIES 16+16 system.

tr2fan Untapered ARIES 16+16 fan beams.

ram Tapered ARIES 32+32 system.

ram2007 ARIES system with digital beamforming as used from 2007 onwards.

special Beam definition will be retrieved using getspecialbeampattern(), see below.

getspecialbeampattern()

Especially during the preparations for the ARIES October 2002 experiment, it became necessary

to simulate a variety of custom configurations for the given 32+32 ARIES antenna array. Thus,

the getspecialbeampattern() function was developed. Similar to the getbeampat() function de-

scribed above, it takes a beam number and returns an appropriate RRadPat object representing

the radiation pattern of that beam. However, the meaning of the given beam number is taken

from a special ASCII file called specialbeams.txt. This file describes, how the radiation

pattern for any given beam number can be obtained, and getspecialbeampattern() uses this

information to create an appropriate RRadPat object.

Appendix F contains an example of such a beam pattern definition file. This is the file that

was used for the simulations for the October 2002 experiment, many beam numbers mentioned

in chapter 9 refer to the numbering scheme adopted in this file.

6.7 Summary

We introduced, and described the architecture of, a universal toolkit ‘RIOSIM’ for simulating

and visualising the behaviour of real-life riometer systems. We introduced the major players

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 117

(radiation patterns, radio stars and sky maps) and showed various example plots demonstrating

the use of these objects.

The RIOSIM toolkit is the logical progression from earlier lower-level simulations presented

in chapters 4 and 5. RIOSIM simulates system behaviour for arbitrary riometers or, in fact, an-

tenna systems. The ability to do so is essential for the development of new instruments such as

ARIES, enabling simulation of their behaviour long before any hardware has been developed or

deployed, and later confirming that the real (prototype) system performs according to specifica-

tion. In the following chapter we will discuss some more advanced applications making use of

this toolkit.

CHAPTER 6. RADIATION PATTERN SIMULATIONS: RIOSIM 118

Figure 6.11: FLATM projection as used for IRIS image data. Drawn to scale. Observer (instru-
ment) is situated at O. Published in [GSH05].

Chapter 7

Applications of the RIOSIM Toolkit

This chapter describes some advanced applications of the RIOSIM toolkit developed by the

author. RIOSIM was designed with many of these applications in mind (see chapter 6), and

this chapter aims to prove that RIOSIM fulfils these expectations and has in fact contributed

to the successful deployment of ARIES in various ways, as many of the applications presented

here have been used during initial investigations and deployment of the ARIES riometer. Some

have also proven useful for existing riometers, first and foremost IRIS. It should be clear from

the discussions in the previous chapters, that many of the applications presented here can easily

be implemented for other riometers, usually by simply changing the location, time and beam

pattern parameters appropriately.

7.1 Plotting Beam Contours onto the Ionosphere

One of the basic aims of imaging riometry is to spatially resolve the absorption information

obtained by the riometer. As absorption occurs within a well-defined height region, the region

illuminated by any given beam (as defined by the corresponding radiation pattern) can be deter-

mined by means of the ‘projection1’ algorithm described in section 6.6.1. However, all practical

radiation patterns do not exhibit sharp corners, i.e. do not expose sharp beam boundaries. In-

stead, for practical purposes, the −3dB cut-off is often used, i.e. the principal beam shape is

considered to be defined by the beam’s −3dB contour. A signal received at this boundary will

be attenuated by 50% compared to reception at the point of maximum sensitivity.

The −3dB beam contours projected onto the ionosphere can be thought of as the ‘footprint’

of the given beam in the ionosphere.

119

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 120

The code for plotting these footprints of a given radiation pattern is not included in the

RRadPat class, for the reason that the processing steps required do not only involve RRadPat

objects, but also a variety of other objects and algorithms. A basic axiom of object-oriented de-

sign is to keep the functionality of every single object limited (stick to the core competencies —

high cohesion), and to make it know as little as need be about its surroundings (loose coupling)

[Som04]. That is why, in this case, plotting beam contours onto the ionosphere is implemented

as a separate program. It makes, of course, use of RRadPat to retrieve the direction vectors of

the contour (this is core knowledge of the radiation pattern, internally implemented using the

MATLAB contour() function [Matb, function CONTOUR] in current RRadPat implementa-

tions), but in addition to that it also uses

• a map to plot the contours onto (using the mapping toolbox M_Map [Paw05])

• algorithms for projecting these contours onto the ionosphere (provided by projection1()

as described in section 6.6.1)

In particular, the following contour plotting functions are provided:

plotcontour()

The plotcontour() function simplifies the task of plotting a beam contour on a map using the

M_Map mapping toolbox [Paw05]. It assumes that a map has already been created, for exam-

ple by MIA’s scand() function or the myscand() function described in chapter 6, section 6.6.

Given a radiation pattern and a location on the Earth where this radiation pattern originates, plot-

contour() then plots the specified contour. Additional parameters allow the user to specify the

projection height (default 90km), the plotting colour, whether the contour should be labelled and

additional text to be printed at the centre of the contour. Also, some parameters get passed down

to RRadPat’s getcontour() function, namely the contour level (default −3dB) and the resolu-

tion of the grid to use for the contouring algorithm (defaults to the radiation pattern’s default

resolution).

No separate example for the output of plotcontour() is given here, the reader is referred

to figure 7.1 below, demonstrating the output of the plotmanybeams() function that relies on

plotcontour() to plot each individual beam. Also, plotcontour() and its relatives are used ex-

tensively throughout this thesis, other figures that use plotcontour() in various configurations

are, for example, figures 3.1, 9.8 and 9.12.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 121

plotmanycontours()

For studies involving the sidelobes of beams, a plot with many different contour levels of a single

radiation pattern is often useful, and this can easily be obtained with the plotmanycontours()

function. It behaves very similarly to the plotcontour() function described above. In addition

to all parameters supported by plotcontour(), plotmanycontours() also supports parameters

for specifying the number of contours to be plotted, the stepsize from contour to contour, and

whether to plot a legend (colourbar).

For an example plot, the reader is referred to the following section 7.2. Its figure 7.2 shows a

many-contoured plot of IRIS beam 38, together with the traces of Cassiopeia and Cygnus during

the course of one day. Figure 7.3 is a plot of the actual received data for the day in question (a

relatively quiet day). The time when Cygnus passes through the main lobe (around 12:00UT)

can be clearly seen in the data. The reason for the observed increase in scintillation around

16:00UT would be less obvious if only the −3dB beam contour were plotted. By using plot-

manycontours(), the increase in scintillation is seen to be directly associated with Cassiopeia

passing through a sidelobe at this time.

plotmanybeams()

It is often desired to plot the contours of several beams onto one map, for example for visualising

the field-of-view of a multi-beam (imaging) instrument. This can easily be achieved with the

plotmanybeams() function which itself calls plotcontour() for every beam it wants to plot.

plotmanybeams() retrieves the required radiation patterns using the getbeampat() beam pattern

factory, see section 6.6.3.

To illustrate the output of plotmanybeams(), and therefore also the output of the underly-

ing plotcontour() function, figure 7.1 shows the −3dB beam outlines of some of the central

ARIES beams and the 45 ‘good’ IRIS beams at 90km height, plotted onto an appropriate map

of Scandinavia.

Non-standard Contour Plotting

Note that beam contouring is not limited to the applications described above. The contour in-

formation returned by getcontour() can also be used for other types of plots. Figure 3.1 in

chapter 3, for example, is a map of the whole sky (produced by M_Map [Paw05]), with the

beam outline of IRIS beam 31 for every hour during one 24h cycle.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 122

 15oE
 18oE 21oE 24oE

 27oE

 67oN

 68oN

 69oN

 70oN

 71oN

2

3 4 5

6

8

9
10 11 12

13

14

15
16 17 18 19 20

21

22 23 24 25 26 27 28

29
30 31 32 33 34

35

36

37
38 39 40

41

42

44

45 46 47

48

Figure 7.1: ARIES central beams (red, unnumbered) and IRIS ‘good beams’ (yellow, numbered)
beam contours as produced by plotmanybeams(). Projection height 90km.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 123

7.2 Radio Star Tracker

For calibration and validation purposes, the movement of a radio star with time is often of

primary interest. For example, the passing of Cassiopeia through the main lobe of a beam was

used in the 2002 experiment to validate the fact that we were actually forming a pencil-shaped

beam of the predicted size, and to verify the exact pointing direction of the beam. See chapter 9

for more details on the October 2002 experiment.

Given an instance of CRadioStar, with its inherent capability to calculate its apparent lo-

cation for any given moment in time, and combining this with the ‘projection1’ method as used

above for contour plots, we can now implement a program to plot the diurnal path of the partic-

ular radio star represented by the CRadioStar object. If the path of the radio star is projected

onto the ionosphere together with a radiation pattern of a given instrument, the resulting graph

will give in a graphical form information as to when the given radio star passes through the given

beam of the instrument. This particular fact can be used as a form of scintillation prediction, an

application discussed in more detail in section 7.7.

A MATLAB program traceradiostar() was developed to perform the task of plotting radio

star traces. Given a specific date and a CRadioStar object, it plots the trace of that radio star

for the given date. Details about the necessary coordinate transformations (projection onto the

ionosphere) can be found in section 6.6.1.

Figure 7.2 is one example output of the radio star tracker. Included are the projection of

the radiation pattern of IRIS’s beam 38 onto the ionosphere at 90km height (see section 7.1), a

map of the relevant part of Scandinavia and the traces of the two major radio star Cassiopeia and

Cygnus for 20 January 2001. The time ticks are in UT (Universal Time, see section C.3).

Figure 7.3 is actual received (power) data for the day in question (a relatively quiet day).

The time when Cygnus passes through the main lobe (around 12:00UT) can be clearly seen

in the data. The reason for the observed increase in scintillation around 16:00UT can be seen

to be associated with Cassiopeia passing through a sidelobe at this time, an observation that is

simplified by the multiple contour levels in figure 7.2.

7.3 Simulated Reception: rxskymap() and Relatives

To simulate reception of cosmic noise through an antenna-receiver-system, not only does one

have to know the radiation pattern of the antenna and the brightness distribution of the sky at

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 124

 16oE 18oE 20oE 22oE 24oE 26oE

 68oN

 69oN

 70oN

 71oN

00
:0

0h 01
:0

0h

02
:0

0h

03
:0

0h
04

:0
0h

05:00h

06:00h

07:00h

08:00h
09:00h10:00h11:00h

12:00h

13:00h

14:00h

15:00h
16:00h

17:00h

18:00h

19:00h

20:00h

21:00h

22:00h
23:00h

00
:0

0h

01:00h

02:00h

03:00h

04:00h

05:00h

06:00h

07:00h08:00h

09:00h

10:00h

11:00h

12:00h

13:00h
14:00h

15:00h

16:00h

17:00h

18:00h

19:00h

20:00h

21
:0

0h

22
:0

0h

23
:0

0h

−21

−18

−15

−12

−9

−6

−3

0

Figure 7.2: Multiple contour levels for one radiation pattern (output from plotmanycontours()
for IRIS beam 38) together with radio star traces for 2001-01-20 (output from traceradiostar()
for Cygnus — outer trace and Cassiopeia — inner trace). See figure 7.3 for a plot of actual IRIS
power data for beam 38 on the day in question.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 125

 Power (beam 38)
2001−01−20 00:00:00 UT − 2001−01−21 00:00:00 UT @ 1 m res.

Kilpisjarvi, Finland (69.05 deg N, 20.79 deg E)

00 04 08 12 16 20 00
−113

−112

−111

−110

−109

−108

−107

−106

−105

time (h)

 P
o

w
er

 (
d

B
m

)

RX Power
QDC

Figure 7.3: IRIS power data for beam 38 on 2001-01-20

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 126

the given frequency, but receiver bandwidth and current time and location also play a role. The

rxskymap() function takes all these parameters, simulates reception by numerically integrating

the convolution of radiation pattern and sky brightness distribution and returns the received

power in Watts.

Note that rxskymap() and related functions (below) have been superseded by the QDC

generator described in section 7.4 below. We therefore keep the description deliberately short.

rxskymap_day_fast()

Similar to the rxskymap() function, rxskymap_day_fast() simulates reception for one whole

UT day at a given time resolution. For a riometer beam pattern and a sky map representing

cosmic noise background, this will give the theoretical QDC for the specified day. The suffix

_fast indicates that this function does not simply call rxskymap() repeatedly. Instead, it uses

a more efficient algorithm, retrieving the radiation pattern only once. This, however, means,

that rxskymap() and rxskymap_day_fast() have no program code in common. Therefore, any

algorithm changes to rxskymap() need to be applied to rxskymap_day_fast() separately.

rxskymap_day_fast_all_beams()

This function is built around rxskymap_day_fast(). Instead of receiving the QDC for one spe-

cific beam, it retrieves the QDCs for all beams specified. It retrieves the respective radiation

patterns using the getbeampat() factory function.

7.4 Quiet-Day Curve Generator

7.4.1 Introduction

The fact that we can have detailed information about the radiation pattern of a given (proposed)

instrument as well as about the sky brightness distribution implies that we can simulate the

power received by an antenna with that given radiation pattern, located at a known position on

the Earth.

If we do this for one complete (sidereal) day, we end up with a theoretical quiet-day curve

(QDC, see chapter 3). This curve will, of course, not contain any absorption effects, since it is

based on a static map of the sky brightness distribution and does not take the ionosphere into

account at all.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 127

The theoretically derived QDC is likely to deviate from the real recorded signal, even on a

perfectly quiet day, due to inaccuracies of the sky map in use and the inherent inaccuracies in

any theoretically derived radiation pattern. For example, most sky maps do not cover the entire

celestial sphere, so some areas consist of interpolated data. Some sky maps where originally

recorded at different frequencies, and all sky maps will contain to some extent sidelobe effects

from the original instrument that was used to record the map. Refer to section 6.4 for a list of

the sky maps that are currently integrated into RIOSIM.

Note that due to the object-oriented structure of RIOSIM, new sky maps can be added as

they become available, and they will seamlessly integrate with all the existing functions. Of

course, we can also use several sky maps simultaneously. This enables us to compare results

obtained from different sky maps to indirectly compare the suitability of the various sky maps

for the task at hand.

7.4.2 Mathematical Background

To generate a quiet-day curve, one simply loops through the time span in question. For each

moment in time, the convolution of antenna radiation pattern and radio background noise gives

the (simulated) received power. Plotting the resulting power values over time gives the QDC for

the period of time in question.

The exact formula that needs to be evaluated is given in, for example, [Tao04] as

Pr = k ·TA ·∆ f (7.1)

where Pr is the received power, k is Boltzmann’s constant and ∆ f is the bandwidth of the

receiver.

TA is the antenna temperature in Kelvin, calculated as

TA =
R

TB(θ,φ) ·G(θ,φ) · sinθdθdφR
G(θ,φ) · sinθdθdφ

(7.2)

where TB(θ,φ) is the sky background temperature in Kelvin at the given direction as returned

by CSkyMap::getSkyTemp() and G(θ,φ) is the antenna gain in the given direction as returned

by RRadPat::getGain().

To evaluate 7.2 numerically, the integral needs to be evaluated as a sum. Care must be

taken when evaluating this sum. For infinitely small steps ∆θ,∆φ → 0, the discrete sum and the

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 128

integral become the same. However, as the resolution within the simulation is not quite infinite

— in fact, only around 200 elevation angles are normally used for the sake of processing speed

— care must be taken to match the internally used resolution to the requirements of the radiation

pattern under investigation. The default resolution of the desired RRadPat object is usually a

good starting point.

7.4.3 RIOSIM Implementation: maketheoreticalqdc()

Several versions of quiet-day curve generators have been implemented since the inception of

the RIOSIM toolkit. The latest version, maketheoreticalqdc(), is the most versatile one, and

interfaces well with S. Marple’s MIA toolkit [Marc] in that it directly outputs mia_qdc objects.

Previous development versions were optimised for certain processing patterns, for example by

relying on an externally-instantiated sky map when deriving multiple QDCs. While this ap-

proach did show advantages in terms of the processing time required for certain simulations,

maketheoreticalqdc() sacrifices speed for versatility, enabling the user to create QDCs for ar-

bitrary radiation patterns and using arbitrary sky maps without having to know anything about

the internal workings of the quiet-day curve generator.

maketheoreticalqdc() can take the following parameters, but will use reasonable default

values for most parameters if omitted:

res_az, res_el Resolution for internal grid used during the discrete summation (equation 7.2).

instrument Instrument ID for which to calculate the QDC, this gets passed on to the radiation

pattern beam factory (see section 6.6.3) to create the actual radiation pattern objects for

the requested beams.

This can also be a MIA instrument object, in which case a RMIAPat adaptor (see sec-

tion 6.3.11) is used to utilise MIA’s directivity information instead of a native RIOSIM

radiation pattern for the QDC reception process.

beams The beam numbers for which to generate QDCs.

skymap The CSkyMap object to be used for simulating the reception process.

time Date around which the QDC will be calculated. The QDC will be generated for one

sidereal day, starting with sidereal midnight closest to the specified date. This parameter

is only of very limited use, as theoretical QDCs will be identical for all sidereal days. Real

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 129

QDCs, however, potentially vary with seasonal parameters such as snow depth, hence a

MIA QDC object knows about date and time.

resolution Time resolution for the QDC. The lower the time resolution (higher time span val-

ues), the quicker the simulation.

location Instrument location. (Take care when specifying existing MIA instruments with the

instrument parameter, in which case the location parameter will overwrite the instrument’s

inherent location.)

bandwidth Instrument bandwidth (overwrites default bandwidth) .

showtimebar Show a graphical progress bar using Chad English’s timebar() function [Eng02]

(turn off for non-interactive use) .

offset Arbitrary offset for post-calibration in dBm, used to shift the generated QDC up or down.

QDCs are returned in a way consistent with the existing MIA toolkit [Marc], namely rio_qdc

objects. Therefore, theoretical QDCs can be substituted in all the places where real QDCs would

otherwise be used.

Figure 7.4 shows a set of theoretical QDCs (red) for each IRIS beam, plotted using the

standard MIA toolkit functions. Underlayed are real QDCs as measured by IRIS (blue). An

offset has been introduced to match the absolute power of theoretical and measured QDCs.

The QDCs in figure 7.4 were generated using a CTaohSkyMap object and a RPharrPat

radiation pattern object, consisting of CXDipNielsenPat element patterns (the RRadPat ob-

ject returned by the riometer beam pattern factory for the ‘kil’ instrument). As can be seen,

the theoretical QDCs fit the real measurements very well. The somewhat flattened peaks in

the theoretically derived QDCs as compared to real data stem from the fact that the used sky

map contains only the continuous background noise, not the bright radio stars (see chapter 3

section 3.6).

7.4.4 Predicted ARIES QDCs for the 2002 Experiment

Armed with the quiet-day curve generator from the previous section, it is now possible to derive

simulated quiet-day curves for the beams of the (at the time non-existent) ARIES riometer. At

the time, no real data was available for comparison purposes, as ARIES pencil beams were of

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 130

Figure 7.4: Theoretical QDCs for IRIS (red) compared to real QDCs (blue). An offset has been
introduced to align the curves vertically.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 131

yet unprecedented thinness, and these simulations were an important step towards understanding

what sort of fluctuations to expect from the new instrument.

Quiet-day curves were derived for all the central pencil beams, as well as for all the special

beams as described by specialbeams.txt (see the description of the riometer beam radiation

pattern factory in section 6.6.3).

These curves were used for validating the received signal from the actual array during the

2002 experiment, and we will present a number of comparisons and results in chapter 9.

At this stage, we will simply present an overview plot of all QDCs for all central ARIES

pencil beams, see figure 7.5. This figure provides an insight into how much signal variation to

expect in any given beam. We can clearly see the relatively low variation in beams that point

near the celestial pole (around beams 304 and 305). Also, large variations due to beams passing

through the bright galactic plane and radio stars can be seen very clearly.

This is a good starting point for trying to identify a ‘worst-case’ beam for real-life investiga-

tion during initial experiment setups. We will expand on this topic in the next section.

7.5 Determining the Worst-Case ARIES Beam

For the first tests of the working principle of a cross-correlation riometer in the field, only a lim-

ited amount of prototype receiver hardware was available, and only a limited amount of beams

could be formed simultaneously (see chapter 9). It is therefore a good idea to come up with

some means of determining sensible beams to be investigated during such initial experiments.

One obvious choice is the zenithal beam due to the fact that it requires no phasing offsets

and is formed simply by adding together all the signals from the respective fan beam before

performing the cross-correlation (see chapter 2 for details on phased arrays and the working

principle of a cross-correlation array).

However, the zenithal beam is unlikely to be the worst-case beam in terms of system perfor-

mance. In fact, a quick glance at some simulated quiet-day curves in figure 7.5 shows that the

zenithal beam does not appear to be particular ‘special’ in that it does not show a lot of diurnal

variation.

The discussion and simulations in chapters 4 and 5 clearly indicate that required integration

time and noise level are directly related to the ratio of power received from the fan beams com-

pared to the power received in the overlapping area (the pencil beam). With respect to this, we

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 132

Figure 7.5: Simulated QDCs for the 716 ‘existing’ ARIES pencil beams for one day (x-axis).
Y-axis in logarithmic power units, ranging from −102dB to −92dB.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 133

can define the worst-case situation to be one with maximum power in one or both of the fan

beams, but low power in the actual overlapping area (the pencil beam).

To visualise how these ‘bad’ situations develop during the course of a sidereal day, a pro-

gram was developed that generates a time-lapse movie for one complete rotation of the Earth.

Figure 7.6 shows one frame of this movie for the ARIES 32+32 antenna array.

The left panel shows simulated received power for all pencil beams (a snapshot of the simu-

lated QDCs for the given moment in time). The right panel shows the power ratio

r =
power in both fan beams

power in the corresponding pencil beam
.

Thus, high r values represent ‘bad’ situations.

As can be expected, the worst situations occur when radio stars pass through the pencil or

fan beams. Out of several likely candidates, beam 595 was selected as the ‘primary worst-case

beam’ for the following reasons:

• At some stage, Cassiopeia passes directly through the centre of the beam.

• At other times, the beam points at relatively quiet parts of the sky.

• During these times, both Cassiopeia and Cygnus pass through the fan beams, resulting in

a high fan beam to pencil beam power ratio.

• This beam is relatively close to zenith, well within the primary area of interest (the antici-

pated field of view) for the final instrument.

• Due to its relatively zenithal pointing direction, the beam can also be expected not to suffer

from radiation pattern distortions and reflections that might appear closer to the horizon.

• Lastly, although this is of course true for most beams, it is worth mentioning that the beam

overlaps well with existing IRIS beams, enabling comparisons between recordings from

the prototype instrument (ARIES) and from a long-running, reliable existing instrument

(IRIS).

The discussion of the 2002 experiment (chapter 9) contains various comparisons between simu-

lated and actual received data for this beam, amongst others.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 134

7.6 Radiation Pattern Explorer RP

While the plotting capabilities of a RRadPat object are quite advanced, they lack interactivity

inasmuch as a new plot command needs to be issued for every plot parameter change. The

Radiation Pattern Explorer (RP) fills this gap by providing an interactive way to view (explore)

RRadPat objects, thereby helping the user to quickly get acquainted with the properties of any

given radiation pattern.

Figure 7.7 shows the main window of the Radiation Pattern Explorer as it appears when

invoked from the MATLAB command line with the RP command.

The Radiation Pattern Explorer window is divided into the following main areas:

1. The top line of the window is the radiation pattern selector. It is automatically populated

with all RRadPat objects that exist in the current MATLAB workspace. These will have

been created manually or through the use of some factory tool, for example the getbeam-

pat() function described in section 6.6.3 or the make_sample_radpats() function that

creates some example RRadPat objects.

2. The 3D view of the selected radiation pattern. This is essentially a plot as produced by the

plot3() function (see section 6.3.2). Checkboxes at the bottom of the plot allow the user

to switch on additional supporting elements like a semi-transparent sphere of radius 1 and

two different versions of three-dimensional coordinate axes. There are also controls for

rotating the plot in azimuth and elevation directions.

3. The polarisation explorer. To investigate the antenna polarisation for arbitrary directions,

this section provides controls for moving an ‘observer’ (the red arrow in the 3D view) to

any direction of interest. There is also a button to couple observer and camera movement.

The polarisation plot to the left of the controls will show antenna polarisation (in the Ex-

Ey-plane) at the given observer direction. For example. if the ‘observer’ is moved from

zenith towards the horizon of a linear array of (FET simulated) crossed-dipole radiation

patterns, one can clearly observe how the circular polarisation deteriorates more and more

into linear polarisation for lower elevation angles.

4. The plot parameters section. This enables the user to change a variety of plotting param-

eters without having to issue new plot3() commands each time. The terms used for the

colour and radius properties can be selected from a list of predefined options. Scaling for

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 135

Figure 7.6: One frame of the ARIES worst-case beam determination movie

Figure 7.7: RP, the radiation pattern explorer

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 136

both colour and radius axes can be manually specified or set to auto scaling. The step sizes

for the plot can be specified, for example to use quick low-resolution plotting initially, and

then produce higher-resolution plots once the scaling parameters have been adjusted to the

user’s liking.

5. There is also a ‘playground’ section, analogous to the ‘sandbox’ or ‘playground’ sections

that can commonly be found in Wikis [LC01]. This serves as a placeholder for exper-

imental additional commands, and at the time of this writing contains only one button,

‘Vertslice for current observer azimuth.’ This button creates a popup window containing

a vertical slice through the currently explored radiation pattern at the azimuth position

of the polarisation explorer’s observer. RRadPat’s vertslice() plotting function (see sec-

tion 6.3.2) is used to create this plot.

Whenever the radiation pattern plot is updated, the Radiation Pattern Explorer will print the full

plot3() command that was used to the MATLAB console. Thus, this command can then be

used in other scripts to plot the radiation pattern with exactly the same parameters outside of

Radiation Pattern Explorer.

7.7 Scintillation Prediction: scint_calc_mia()

Given a specific radiation pattern (for a specific beam of a specific instrument) as represented

by a RRadPat object, and a specific radio star as represented by a CRadioStar object, we can

combine the abilities of those two objects to determine how much power from a radio star is

received by the radiation pattern for any given relative position. Now, scintillation effects can

predominantly be observed when a radio star passes through highly-sensitive parts of the beam

pattern. Being able to calculate when this happens, and to what extent, together with knowledge

of the major radio stars that exist, enables us to predict when scintillation can be observed.

Furthermore, scintillation in existing data can be identified.

Predicting the presence of scintillation is scientifically important, as scintillation degrades

the quality of the data. Sensitive feature detection algorithms might not work reliably for periods

of scintillation. The quality of quiet-day curves might be degraded.

Note that in this approach we use our knowledge about the radiation pattern of the instru-

ment to determine the influence that a radio star has on the received signal. In section 11.1 we

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 137

propose a way of deriving an a-priori unknown radiation pattern by measuring the influence that

a particular radio star has on the received signal.

The following sections will firstly describe the MATLAB function scint_calc_mia() that

was developed by the author to predict scintillation effects for arbitrary MIA instruments. This

will be followed by a description of how this scintillation calculator can be integrated into a web

environment and therefore made available to external users using a standard web browser. This

application of using MATLAB programs as the underlying calculation engine for interactive web

pages is potentially useful in a variety of contexts. A similar application, though based around

different mechanics, now exists in form of the SPEARS Data Access Facilities. Appendix H

contains a description of this existing backend and a comparison between the two approaches,

along with some suggestions for future improvements.

scint_calc_mia() calculates when a given radio star enters and leaves which beam(s) of a

given MIA instrument. It returns a list of all these ‘events’ for one specified day.

Syntax

events = scint_calc_mia([’parameter-name’, ’parameter-value’ [, ...]]);

Input parameters

date Start of 1-day period for which to calculate scintillation effects.

mia_instr A MIA instrument object, scintillation events will be calculated for imaging beams

of this instrument, employing the RMIAPat adaptor class (see section 6.3.11).

star CRadioStar object. This radio star will be used for the calculations.

res timespan specifying the resolution of the simulation, defaults to one UT minute.

threshold Threshold in negative dBs when to consider the received signal as relevant for scin-

tillation.

silent Do not print any feedback to stdout.

Return value

events An n×3 cell array containing the n events that were found. events{i,1} is the date when

this event takes place in the format YYYY-MM-DD HH:MM:SS (UT), events{i,2} is 1

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 138

if the star enters the beam or 2 if the star leaves the beam and events{i,3} is the beam

number.

Figure 7.8 shows the output of scint_calc_mia() for 20 January 2001 for the IRIS instrument.

Compare this to the radio star traces and recorded data for the same day, for example in fig-

ures 7.2 and 7.3.

Description

Internally, scint_calc_mia() queries mia_instrument’s info() function for the beam numbers of

all imaging beams of this instrument. It then creates a RIOSIM RMIAPat object for each of

these beams. Then the location of the radio star is calculated for all times during the specified

day. This is done at a time resolution as specified with the res parameter, which defaults to one

UT minute. Since the power flux of the radio star is known, the power received by each beam

at each moment in time can be calculated by passing all the calculated radio star locations to the

RRadPat:getGain() function.

The results are then normalised to their maximum value and scaled to dBs. An edge detection

algorithm is now used to find all the ‘enter beam’ and ‘leave beam’ events. The list of events is

sorted by time and returned.

7.8 Running the Scintillation Calculator Remotely and Asynchro-

nously

Tools like the scintillation calculator from section 7.7 above are ideal candidates for remote

access through a web browser. That way, potential users will not require detailed knowledge

about any underlying (MIA, RIOSIM, etc.) toolkits. Neither would they require user accounts

on the computer that is performing the calculation. The following sections describe how to turn

scint_calc_mia() into a remotely accessible web-based tool.

We will use generic methods that will work not only for scint_calc_mia(), but for any MAT-

LAB function, using scint_calc_mia() merely as an example. Figure 7.9 is a sequence of screen-

shots of the end result: A scintillation calculator for all instruments known to MIA, accessible

through the web.

Note that although the chosen approach is generic in nature, it has some serious drawbacks,

and we will draw a short conclusion in section 7.8.5 below. More advanced remote invocation

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 139

> > events = scint_calc_mia(’date’,timestamp([2001 01 20 0 0
0]))

Using radiostar : Radio Star "Cassiopeia A (3C 461)"
Using date : 00:00:00 20 January 2001.
Using instrument : Kilpisjarvi [IRIS] (KIL #1).
Using time resolution: 1 m (UT).
Using threshold : -6dB.
Found 49 imaging beams.
Receiving from beams.......................................
edge detection in progress.......................................
events =
’2001-01-20 01:04:00’ [2] [3]
’2001-01-20 01:12:00’ [1] [4]
’2001-01-20 02:55:00’ [2] [4]
’2001-01-20 03:03:00’ [1] [5]
’2001-01-20 04:53:00’ [2] [5]
’2001-01-20 05:31:00’ [1] [13]
’2001-01-20 07:20:00’ [1] [20]
’2001-01-20 07:40:00’ [2] [13]
’2001-01-20 09:16:00’ [1] [27]
’2001-01-20 09:45:00’ [2] [20]
’2001-01-20 10:34:00’ [1] [26]
’2001-01-20 11:14:00’ [2] [27]
’2001-01-20 11:44:00’ [1] [33]
’2001-01-20 12:43:00’ [2] [26]
’2001-01-20 12:58:00’ [1] [32]
’2001-01-20 13:16:00’ [2] [33]
’2001-01-20 14:47:00’ [1] [31]
’2001-01-20 15:05:00’ [2] [32]
’2001-01-20 15:20:00’ [1] [24]
’2001-01-20 16:19:00’ [2] [31]
’2001-01-20 16:49:00’ [1] [23]
’2001-01-20 17:29:00’ [2] [24]
’2001-01-20 18:19:00’ [1] [16]
’2001-01-20 18:47:00’ [2] [23]
’2001-01-20 20:24:00’ [1] [9]
’2001-01-20 20:43:00’ [2] [16]
’2001-01-20 22:32:00’ [2] [9]
’2001-01-20 23:10:00’ [1] [3]
> >

Figure 7.8: Output of scint_calc_mia() for 20 January 2001

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 140

and job queuing systems exist, one of which is the custom framework used by MIA. Appendix H

contains a brief description and evaluation of the MIA approach. Commercial frameworks are

also available, for example the MATLAB Distributed Processing Toolbox [Mata].

7.8.1 XML Wrapper for scint_calc_mia(): SCINT_CALC_MIA_XML_WRAP-

PER.M

To make scint_calc_mia() accessible from outside MATLAB, some standard way of passing

parameters to and returning results from this function needs to be implemented that is indepen-

dent of MATLAB’s internal way of parameter passing. This is because MATLAB’s own way

only works from within the MATLAB environment, whereas we want to call scint_calc_mia()

directly from the ‘outside world.’

The Extensible Markup Language (XML) has evolved as a standard for describing arbitrary

data together with its metadata (data describing the data) [BPSM+06]. Well-written XML files

can easily be understood by both humans and computers alike, so XML seems an obvious choice

for data exchange between scint_calc_mia() and the outside world.

A wrapper function scint_calc_mia_xml_wrapper() has therefore been implemented. This

function takes only two parameters: The name of an XML file containing the input parame-

ters and the name of an XML file that will take the results. scint_calc_mia_xml_wrapper()

will parse the input XML file, translate the parameters contained in this XML file into the name-

value pairs required by MATLAB and pass them on to scint_calc_mia(). Once scint_calc_mia()

returns, scint_calc_mia_xml_wrapper() will take the results (in this particular case in the MAT-

LAB specific format of a cell array) and translate them back into XML. This XML data will get

written to the output file as specified by the second parameter.

Note that the functionality of marshalling and unmarshalling parameters could potentially

be integrated into the original scint_calc_mia() function. However, the aim of this section is

to show how to turn existing MATLAB functions into remotely invokable web-based services

without modifying the existing code.

7.8.2 Remote-Access Wrapper for SCINT_CALC_MIA_XML_WRAPPER.M:

scint_calc_mia_xml_wrapper.sh

While scint_calc_mia_xml_wrapper() is no longer dependent on MATLAB’s way of passing

parameters and results between functions, it still relies on access to the local file system since,

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 141

as described above, the parameters need to be written to an XML file which is then read by

scint_calc_mia_xml_wrapper(). Similarly, if some external process wants to read the results,

it has to be able to access the XML file that was written by scint_calc_mia_xml_wrapper().

A simple and secure way of executing processes remotely without having to rely on any ad-

ditional frameworks such as CORBA [Obj05], Gridservices (e.g. [Fos06], [Uni07]) or a home-

made framework such as the one used in MIA, is to use the Secure Shell (SSH) protocol

[BSB05]. However, SSH does not give direct access to the remote filesystem. Instead, SSH

will execute a given command on a remote machine, redirecting its standard input (stdin) and

standard output (stdout) to the local machine. It is through these two ‘tunnels’ that data can be

passed between the local and the remote machine.

A secondary wrapper in the form of a BASH [New05] shell script has therefore been devel-

oped. This wrapper takes arbitrary input through stdin (the standard input as tunnelled from

the invoking machine by the SSH protocol) and transfers this data to a temporary file. It then

calls the MATLAB scint_calc_mia_xml_wrapper() function with the name of that file and the

name of another (so far empty) temporary file. scint_calc_mia_xml_wrapper() will now read

its input parameters from the temporary file which has in fact been transferred from the remote

machine through the ‘stdin-tunnel.’ It will write the results to the second temporary file as de-

scribed in section 7.8.1 above. The BASH wrapper will then take the contents of this secondary

file (the results) and pass them through its ‘stdout-tunnel’ back to the remote machine. The

whole process of creating temporary files is completely transparent to the user of the remote

function call. All the user needs to do is to pass the input parameters in XML format to SSH

through stdin, and to process the XML output as it appears on stdout.

7.8.3 Asynchronous Remote Execution: run_scint_calc

In theory, the wrapper shell script described in section 7.8.2 could be invoked directly by the

webserver in response to a user request. However, it might take anywhere from a few seconds

up to several minutes to process the request, depending on the complexity of the task. Most

browsers time out after about 30 seconds, meaning that they would never get to see the results

of such a function call. There are also security issues, since CGI programs run with the effective

user ID of the webserver. This user ID would have to be granted remote execution rights for the

given remote machine. This would in turn mean that every CGI program would from then on

have remote execution rights on that machine.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 142

These considerations led to the development of yet another wrapper mechanism, this time

on the webserver, to avoid these drawbacks. It aims to achieve asynchronous execution and

fine-grained execution permissions. Since this wrapper will be run asynchronously, it also needs

some mechanism of indicating when the remote processing has finished. A convenient way of

doing this is through temporary files.

The wrapper that was developed is called run_scint_calc. This shell script takes two pa-

rameters, the first one specifying the file name of the temporary file to which the results of the

remote execution should be written. The second parameter specifies the name of the file con-

taining the input parameters. This file also serves the aforementioned secondary purpose: the

content of this file will be deleted by run_scint_calc to indicate that the remote processing has

finished and that the specified output file now contains valid data. This provides a way for the

webserver calling run_scint_calc to check whether remote execution has finished or not.

A final layer of indirection has been added to support fine-grained execution permissions.

Instead of calling run_scint_calc directly, the web server will call a suid_wrapper which in turn

will call run_scint_calc. Therefore, suid_wrapper is the only executable ever called directly by

the webserver. Through the suid mechanism, it will execute run_scint_calc under the effective

user ID of the owner of suid_wrapper. Therefore, only this user account needs to be granted

remote execution rights.

7.8.4 Summary: How to Asynchronously Invoke a MATLAB Function on a Re-

mote Machine from a Webserver

The UML sequence diagrams in figures 7.10 and 7.11 summarise the sequence of events de-

scribed in the preceding sections. Figure 7.10 shows the client (user and webserver) side1,

figure 7.11 shows the activities on the server (MATLAB) side. The following is a description of

events in chronological order:

Client side (figure 7.10)

1. User requests the scintillation calculator tool through his web browser. The web server

returns the start page.

2. User submits a request.

1Note that we refer to both the end user and the webserver as being on the client side in this description, although
these two entities can of course be located on two physically separate remote nodes.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 143

Figure 7.9: Three screenshots of the scintillation calculator as accessed through its web interface

Figure 7.10: Remote execution the hard way. Client side: From user request to remote applica-
tion invocation through SSH. For a description of this UML sequence diagram see section 7.8.4.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 144

3. Browser passes request parameters to the web server, which in turn passes them on to

processing.php.

4. processing.php writes the parameters to a temporary file “param_in” and runs the

suid_wrapper.

5. suid_wrapper runs run_scint_calc with required user privileges.

6. run_scint_calc reads the processing parameters from the “param_in” file and passes

them through the SSH tunnel to the remote machine, while at the same time invoking

the run_scint_calc_wrapper script on the remote machine.

7. The remote machine does the processing (see figure 7.11 and description below) and re-

turns the results through the stdout SSH tunnel.

8. run_scint_calc reads the results from the stdout SSH tunnel and writes them to a tem-

porary file “results”.

9. run_scint_calc signals that processing has finished by setting the file size of the “param_-

in” file to 0.

10. The periodically invoked processing.php script on the web server realises that process-

ing has finished and redirects the user’s browser to the “finished” web page.

11. The browser requests the “finished” web page, causing the finished.php script to be

executed.

12. finished.php reads the “results” file and returns the result in HTML format.

Server side (figure 7.11)

1. scint_calc_xml_wrapper.sh gets invoked from the SSH daemon.

2. scint_calc_xml_wrapper.sh reads all XML input parameters from stdin and writes them

to a temporary file.

3. scint_calc_xml_wrapper.sh runs scint_calc_mia_xml_wrapper() inside MATLAB.

4. scint_calc_mia_xml_wrapper() reads the input parameters from the XML file and in-

vokes the original scint_calc_mia() function.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 145

5. When scint_calc_mia() returns, scint_calc_mia_xml_wrapper() writes the results to a

temporary file “output” and terminates.

6. Control goes back to scint_calc_xml_wrapper.sh which reads the “output” file and

passes it back to the client through its stdout SSH tunnel.

7.8.5 Conclusion (Remote Asynchronous Execution)

The framework presented in the above subsections does achieve asynchronous remote execution

of MATLAB code triggered by a remote user through a web-based interface. It does not require

any modifications to the MATLAB function that is to be invoked.

However, the presented solution also has several drawbacks, namely:

• Complex interactions, as illustrated by the sequence diagrams. This makes maintenance

difficult and error-prone.

• No queuing for multiple requests (instead, all requests will try to execute simultaneously)

• No load limiting (even when the server is busy, it will still accept new requests, therefore

slowing down all currently running processes)

There are a number of potential solutions to these issues:

• Decoupling of client and server through a remotely accessible queuing system, e.g. a

database. This approach is taken by MIA, see appendix H.

• MATLAB Distributed Processing toolbox [Mata]. MATLAB itself has support for remote

invocation. This solution is expensive in terms of licensing costs.

• Other remote object frameworks (Webservices, Gridservices). These are also complex but

scale well to complex problems.

In conclusion, the presented framework helps to understand all issues related to remote invoca-

tion of existing MATLAB tools. It does perform well for this particular example. For large-scale

and more robust applications, a less hand-made solution is preferable.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 146

7.9 Summary

Several advanced applications of the RIOSIM riometer simulation toolkit were presented. These

take the basic functionality as provided by the various components of RIOSIM and combine

them with other RIOSIM components and/or external tools such as MIA or the mapping tool-

box M_Map to derive new data products. Many of these data products have been used in the

development, deployment and testing of the ARIES riometer.

A ‘do it yourself’ way of making such data products available through the World Wide Web

(WWW) was also discussed, and the limitations of such a hand-made asynchronous execution

engine were pointed out.

CHAPTER 7. APPLICATIONS OF THE RIOSIM TOOLKIT 147

Figure 7.11: Remote execution the hard way. Server side: From remote invocation to actual
execution of the original MATLAB function.

Chapter 8

Advanced Riometer Components:

ARCOM

This chapter defines a framework for a generic operating software for advanced riometer sys-

tems. It is roughly structured along the process activities of the software engineering cycle

[IEE07]. We will start off by stating the basic requirements, and then show how the ARCOM

(Advanced Riometer COMponents) architecture implements these requirements. This chapter

will not go into implementation details of every single function call. Instead it aims at providing

a general — although more abstract — description of the working principles involved. Detailed

information is contained in the ARCOM documentation [Gri06a], which is automatically gen-

erated and updated from the appropriately documented source code by Doxygen, a source code

documentation generator tool [vH06].

As most technical systems, the ARIES advanced riometer, which prompted the development

of the ARCOM framework, consists of a number of hardware and software parts. The system

design of ARIES exhibits many characteristics of a ‘Wicked System’ [Som04], in that the design

parameters and requirements are not well-defined at the outset, and are likely to change as the

system evolves from prototype to prototype and results from test campaigns feed back into the

system design.

The design of operating software for such a system presents unique challenges to the soft-

ware engineer seeking to support system evolution to the most flexible extent possible. This

chapter will look at what these challenges are, how they influenced the design of the ARIES op-

erating software, and how the implemented software architecture solves the ‘Wicked Problem.’

The ARCOM operating software is the result of a structured approach of defining goals, deriving

148

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 149

the overall architecture and finally designing, implementing, integrating, deploying and testing

the individual (software) building blocks that make up the overall system.

The software engineering process revolves around the basic activities of specification, de-

sign, implementation and testing (verification and validation) [Som04]. For complex systems,

an iterative (evolutionary) approach is usually taken in order to counteract some of the uncer-

tainties inherent to ‘Wicked Systems.’ This chapter will present the initially defined goals of the

software and how the developed ARCOM software meets these goals. Major design decisions

and, where appropriate, their superiority over alternative techniques will be discussed. Concepts

relating to the discipline of Software Engineering will be introduced and illustrated as necessary.

8.1 Design Goals

Due to the ‘wicked’ nature of the problem, the initial specification stage of the software design

process produced not so much requirements but goals, i.e. very general statements describing

what the software should and should not do. What distinguishes goals from requirements is

that they are sufficiently vague so that they will not unnecessarily narrow down the number of

design choices. Goals are not objectively verifiable (‘testable’) as they do not contain enough

detail to do so [Som04]. This is in line with the fact that at the initial design stage, those details

were not known, and the software to be developed would itself be used to elicit likely operating

requirements.

This section lists the basic requirements (goals) that the ARIES control software needs to

take into account. The following sections will go into details of how the implemented architec-

ture ARCOM (Advanced Riometer COMponents) fulfils these requirements.

Speed

On average, the system needs to keep up with the incoming data stream from the receivers. The

phrasing ‘on average’ is appropriate, because even though we must not lose any data, we need

not guarantee that all data is processed immediately. In engineering terms, this system can be

referred to as a ‘soft real-time’ system. Several tens of megabytes will have to be processed

per second when dealing with raw data streams. A system with 64 individual receiver channels,

each sampled at, say, 1MHz and 16bit complex sampling, will have a raw data rate of 64×2×

16bit×1MHz = 2GBit/s!

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 150

Run-time Reconfigurability

To a certain extent, we want to be able to reconfigure the system while it is running. For example

we want to continuously integrate an incoming signal, and then later on add functionality for

logging the incoming signal to a file. In this example, the logging should not affect the operation

of the integrator.

Expandability

We want to be able to develop new system functionality in the future. This new functionality

should integrate seamlessly with existing parts of the system.

On-line Status Information

We want to be able to query the current internal status of the system in sufficient detail at any

time, and without affecting the operation of the system.

Remote Control

Due to the physical remoteness of the site, all system functionality should be accessible from

off-site and through potentially slow communication links.

8.2 Basic ARCOM Structure

Figure 8.1 gives a layer-oriented overview of how ARCOM fits in with the other parts of an

advanced riometer system. This section discusses major aspects of the ARCOM architecture

(structure) and how these aspects contribute to fulfilling the design goals specified in section 8.1.

8.2.1 Component-based

One of the basic decisions that needs to be made during the very early stages of software design

is whether to implement the desired functionality in one monolithic block, or whether to split

the design into components, see figure 8.2. All but the most basic pieces of software will exhibit

some trace of component-based design. Yet even software designed around a component-like

structure can still result in a monolithic executable, with all pieces of the software being glued

together at compile-time. Based on the basic goals formulated in section 8.1, it follows naturally

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 151

that an advanced component-based design approach needs to be taken. Such an approach will

naturally allow for easy insertion and removal of components at run-time.

The decision towards a component-based design is a major step towards designing the overall

software structure. This decision alone is sufficient for the more detailed design outlined in the

following sections. However, for lack of a better location, some more specific implementation

details will be outlined here. As William Grosso points out in [Gro02], it is hardly ever necessary

to write one’s own componentry framework. In fact, there are compelling reasons not to do

so: Large parts of such a framework consist of code that deals with communication between

components. There is usually little point in re-inventing the wheel, and code that tries do do so

is likely to contain more errors than well-established existing frameworks. Excellent frameworks

exist, and table 8.1 shows three exemplary ones that are commonly used for applications such

as this one. The decision for CORBA was made mainly because it is well-supported on our

development platform of choice (Linux) and bindings for our implementation language (C++)

are readily available. However, it should be clear that the actual framework used has little

impact on the design. Also, the implementation described in this chapter makes use of only

a small portion of the functionality offered by the CORBA framework (figure 8.3), abusing it

as merely a way of simple (strictly client-server-type) inter-object communication and not using

any of the higher level CORBA services that provide common business logic such as transaction

processing, security management, asynchronous notification, etc.

8.2.2 Pipeline Architecture

From a technical point of view, it soon becomes clear that the basic functional model of any

operating software for instruments such as ARIES is that of pipelining. A simple example of

a pipelining architecture is shown in figure 8.4. A pipeline architecture follows the natural no-

tion of data flowing through the system, being processed as it does so. Data enters the system,

gets processed in various ways, and finally leaves the system. A pipelining architecture sup-

ports reuse of transformations, evolving the system by means of adding new transformations is

straightforward and concurrent systems (many processing paths processed simultaneously) are

readily supported. This model is obviously not limited to one input and one output, a fact that is

of major importance for the ARCOM architecture. As will be seen further on, several streams of

data may enter the system simultaneously, to be processed independently or combined together.

Results may be written to external disk straight away, or processed by components further down

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 152

Figure 8.1: Multi-layer view of ARCOM and its operating environment. DUNES is an indepen-
dent dial-up networking module implemented by the author and is not discussed further in this
chapter. Appendix I contains an overview of the functionality provided by DUNES. For more
details see the DUNES requirements document [Gri06b].

Figure 8.2: From monolithic spaghetti-code to fully component-based distributed applications.
An attempt was made to order common design practices according to how ‘component-based’
they are. Although this is in many senses comparing apples and oranges, this figure attempts to
give the reader a general idea as to which techniques are employed in which context and how far
up they are on the ladder of today’s programming concepts.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 153

Java RMI
(Remote Method
Invocation)

COM
(Component Object
Model)

CORBA
(Common Object
Request Broker
Architecture)

scope Specific to Java
programming
language.

In practice specific to
Microsoft Windows
operating systems.

Designed to be
system-independent.

support for
distributed
systems

Yes (requires Java) Yes (DCOM) Yes (Inter-ORB
communication)

cost Free with Java
Software Development
Kit

Free to use, various
levels of development
suites at different
costs.

Many free
implementations and
language bindings
readily available for
many different
operating systems.

Table 8.1: Comparison of three common componentry frameworks

Figure 8.3: Structure of a CORBA-based application, from [Som04]. ARCOM uses CORBA
only for client-server-style communication between application objects (top left).

Figure 8.4: An example of pipelining: Pipes on the UNIX command line. This example calcu-
lates the total size of all files in the current directory, starting off by outputting a list of all files
and their sizes with “ls” and using various other standard UNIX tools along the pipeline.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 154

the pipeline. A pipelining architecture inherently offers the following advantages (taken with

modifications from [Som04]), all of which are desirable for ARCOM and tie in with the goals

specified in section 8.1:

• It supports reuse of transformations.

• It is intuitive to think of the work done by the software in terms of input and output

processing.

• Evolving the system by means of adding new transformations is straightforward.

• Simple to implement as concurrent system (many processing paths processed simultane-

ously).

The major disadvantage of a pipelining model is that each transformation needs to agree on a

common input and output format in order to be able to tie in with the other transformations

along the processing pipeline. Section 8.6 below describes how this issue is overcome and in

fact turned into an advantage in ARCOM through the use of a versatile streaming data format.

Following on from the considerations above, and keeping in mind the goals as defined in

8.1, a set of three principal (meta-)components was designed (see figure 8.5). Every component

in the ARCOM software behaves like (is derived from) one of these principal components. The

core ARIES control software is therefore made up of only three structurally different compo-

nents, and even those have strong commonalities as far as inter-component communication is

concerned. We will first describe the three meta-components, and how real-life instantiations

of these components can interact in sections 8.2.4 onwards below. The discussion of specific

components as implemented in ARCOM is left for the later section 8.8 below. During the dis-

cussion, it will become clear how the structure presented addresses each of the requirements in

section 8.1. The three basic components are merely templates for real components that will be

derived from the basic components. Section 8.8 will describe the real components that have so

far been implemented.

8.2.3 High-speed Component Interconnect

In addition to the CORBA interfaces, which are being used for infrequent control tasks such as

starting and stopping components, all components that can take part in pipeline-based process-

ing are glued together through blocks of shared memory with strictly unidirectional data flow.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 155

Establishing a shared memory interface for data flow between components in the processing

pipeline allows for maximum speed as data is transferred between components, essentially only

limited by memory throughput of the processing hardware. All these shared memory blocks

share common characteristics, and these will be described in section 8.3 after having introduced

the basic ARCOM components. See figure 8.6 for an example of how several components work

together, this was in fact the software configuration for the October 2002 experiment (chapter 9).

Figure 8.7 represents a more recent configuration for the current FPGA-based system design (see

chapter 3, section 3.3 and appendix D).

8.2.4 Recorders

Recorders stand at the beginning of a processing chain (pipeline). Their responsibility is to col-

lect data from some (hardware) device and transfer it to the standardised shared memory inter-

face. Therefore, a recorder component needs detailed knowledge about the particular hardware

device it is designed to get data from. This could be an A/D converter, a GPS clock, environ-

mental sensors for measurements such as temperature and humidity, a camera, etc. The recorder

communicates with this device through a specialised Application Programming Interface (API)

specific to the respective hardware device. The API function calls normally get translated into

commands to an underlying device driver, and this driver will communicate directly with the

hardware device. Driver and API are usually third-party modules supplied with the respective

hardware.

A recorder component will typically only take input data from one specific (type of) hard-

ware device. Where data from several devices is required, multiple recorders will be used.

This helps to keep each recorder component highly cohesive (doing one task, but properly) and

loosely coupled (not depending on multiple other pieces of software), both very desirous prop-

erties for software components [Dea05].

A recorder also knows how to access an ARCOM shared memory interface. Therefore, it

can store data coming from the hardware into the shared memory interface, ready to be picked

up by (processor) components further down the pipeline.

Finally, like all ARCOM components, a recorder component understands the common AR-

COM CORBA commands as defined in the AComponent interface. See section 8.7 for more

information on the common CORBA interface.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 156

Figure 8.5: The three basic ARCOM (meta-)components

Figure 8.6: ARCOM example configuration as used during initial experiments. One ALogger
component logs all packets passing through the main shared memory interface, other ALogger
components only log the output of preceding processing stages. Additional components can be
added and removed at run-time. Command line tools or additional components can be used to
tap into any of the shared memory interfaces.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 157

8.2.5 Processors

Processor components are responsible for processing data. They get this data from a shared

memory interface (it will have been put there by other recorder or processor components further

up the processing pipeline). Therefore, they do not have to know anything about any specific

hardware, i.e. they do not need to know how the data got into the shared memory in the first

place. This distribution of tasks between recorder components and processor components keeps

both types of components well-focused (cohesive). Also, timing issues are no longer as critical

as in the case of a recorder component, because even though the processor component will have

to keep up with the incoming data flow on average (see our initial goals in section 8.1), the

shared memory interface inherently has the ability to transparently buffer data, thus decoupling

recorders and processors in the time domain. Section 8.3 gives more information about the

shared memory interface.

8.2.6 Adaptors

The purpose of an adaptor component is to provide a consistent CORBA interface to different

hard- and software components supplied by third parties. In this respect, an adaptor follows

the ‘façade’ design pattern [GHJV95, Dea02]. Any given adaptor component introduces an

additional (software) layer between the original (ARCOM incompatible) interface of the given

third-party software component and the rest of the ARCOM components. That way, third-party

components like, for example, the control software for an uninterruptible power supply (UPS),

can be accessed through a standard CORBA interface, just like any other ARCOM component.

In particular, they can be initialised with the init() command and their current status can be re-

trieved with the getStatus() command (see section 8.7). Adaptors do not access shared memory

interfaces.

8.3 Shared Memory Interface

Figure 8.8, panel (a), shows a basic data flow example from the hardware to the final result, in

this case a file on a hard disk. Data enters the system through the hardware device, shown as

the data acquisition card on the left. An ARCOM recorder component, A9812Recorder, reads

the data from the hardware by means of proprietary API function calls to the driver software

that comes with the respective hardware. This data is then encapsulated into ARCOM streaming

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 158

Figure 8.7: ARCOM example configuration for current FPGA-based design. Dashed compo-
nents are still under development. All recorder components feed into the same shared memory
interface. The resulting data stream gets stored to disk by the ALogger component. Selected
packets can be post-integrated and transmitted over the network in real-time. As in the previous
example, additional components can be added and removed at run-time and command line tools
or additional components can be used to tap into any of the shared memory interfaces.

(a)

(b)

Figure 8.8: Example of ARCOM data flow through a shared memory interface. (a) Component
configuration, (b) Internal data flow

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 159

packets and output to an ARCOM shared memory interface.

An ARCOM processor component, ALogger, connects to the output side of the shared

memory interface. The component retrieves data as it becomes available and, in this example,

simply stores it to disk.

Panel (b) shows how the overview diagram translates into more detailed internal processes.

The exact data flow shown in this panel is only valid for this particular combination of compo-

nents, whereas the more generic description in panel (a) can readily be used to describe a variety

of different component combinations. In the case shown, data flows from a hardware FIFO

(First-In, First-Out buffer) on board the data acquisition card to some reserved memory area

within the random access memory (RAM) of the processing computer. It is then the respon-

sibility of the A9812Recorder component to continuously cause the device driver to transfer

data from this internal buffer (that is inaccessible to all other programs) to the shared memory

interface.

The ALogger component finally reads data from the shared memory interface and writes it

to a file. It is important to understand that the ALogger component itself does not need to have

any knowledge whatsoever about how the data got into the shared memory interface. This means

that the ALogger component can be used to log data to files no matter where the data originates

from, or what information it contains.

Whilst we will leave the detailed description of how to use ARCOM shared memory inter-

faces to the ARCOM software documentation [Gri06a], we will describe the novel concepts of

this interface compared to simple blocks of shared memory [Ste98] here:

8.3.1 Multi-client

In all but the simplest pipeline configurations, the same stream of data will have to flow from one

source (recorder) to several destination (processor) components simultaneously. For example,

we might want to store raw incoming data to a file, and at the same time process (e.g. post-

integrate) that very same data. According to the principles of high cohesion and low coupling

mentioned previously, these tasks will be handled by two entirely separate processor compo-

nents. Both these components will connect to the same incoming shared memory interface.

ARCOM’s AShMemInterface implementation supports a virtually unlimited number of simul-

taneously connected clients. A maximum number of simultaneous clients needs to be specified

when creating any particular instance of a shared memory interface, though, as each client ‘slot’

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 160

takes up space in AShMemInterface’s internal data structures. An AShMemInterface main-

tains separate head and tail pointers for each client, and only frees up memory blocks that have

been processed by all clients. See section 8.4 for details on the internal workings of an ASh-

MemInterface. Should a client request to read more data than currently available, the function

call will block (i.e. the client component will go to sleep) until enough data becomes available.

This is analogous to normal synchronous I/O system calls.

8.3.2 Multi-master

Not only will more advanced pipeline configurations require the ‘forking’ of one data stream

into several separate branches (‘multi-client’ above), the opposite will also be required: data

produced by several different (recorder) components will have to be funnelled (multiplexed)

into one data stream. For example, one might want to combine raw incoming data, processed

(e.g. post-integrated) data and current readings from environmental sensors into one data stream

that then gets written to disk. In this scenario, each recorder component acts as a master to

the same shared memory interface. The ARCOM AShMemInterface shared memory interface

implementation supports an unlimited number of masters for any given instance of a shared

memory interface. Similarly to the maximum number of clients, a maximum number of masters

needs to be specified when creating any particular instance of a shared memory interface, as each

master ‘slot’ takes up space in AShMemInterface’s internal data structures. One curio about

multi-master capability is the existence of what we term a ‘ghost-master.’ As a shared memory

interface can exist without any connected masters (for example during system shutdown, or

when components are swapped in and out during run-time), an always present (but invisible to

clients) ‘ghost-master’ helps to ensure data consistency in these situations. See section 8.4 for

details on these internal data structures.

8.3.3 Block-based

Reads and writes from and to the shared memory interface happen in blocks of arbitrary sizes.

This makes the ARCOM shared memory interface ideal for streams of data packets, where each

packet consists of a well-defined, fixed-size header followed by a payload of arbitrary length.

Although the shared memory interface itself knows nothing about the specifics of ARCOM

packet streams (see section 8.6), the knowledge that incoming and outgoing data is packet-based

(block-based) allows the ARCOM shared memory interface to ensure consistency, e.g. when

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 161

dealing with buffer overflow situations. At the same time, since detailed knowledge about the

packet format is still the user’s (client’s/master’s) responsibility, loose coupling is maintained.

8.3.4 Simultaneous Read

As a separate ‘slot’ is allocated for each client, many clients can read data from the interface

quasi-simultaneously. Memory will only be freed up (reused) once the last client has read the

data.

8.3.5 Simultaneous Write

Even more importantly, our implementation of a streaming shared memory interface allows

multiple masters to write to the interface quasi-simultaneously. A master opens a memory block

of a certain size, and can then take as much time as needed to write data to the open block

of memory. Meanwhile, other masters can in turn open memory blocks as required. Memory

blocks will only be made readable to clients once the master has finished writing to the open

block of memory and closed it. Note that all ‘open’ requests are serviced in the order in which

they arrive, the interface acts as a time multiplexer for all incoming data streams.

8.3.6 Diagnosis

An AShMemInterface comes with a set of diagnostic functions to retrieve and visualise current

allocation information. An example of automatically generated graphical ‘snapshots’ of the state

of an example shared memory interface can be found in figure 8.11 as used during the discussion

of the internal data structures (section 8.4).

8.4 Shared Memory Interface Internals

Access to ARCOM shared memory interfaces is encapsulated into the AShMemInterface class

and its subclasses (figure 8.9). AShMemInterface encapsulates all functionality common to

both read (AProcShMemInterface) and write (ARecShMemInterface) access to the interface.

AShMemInterface is itself a valid class (as opposed to an abstract base class – ABC) and can be

instantiated directly if neither read nor write access is desired, e.g. for diagnostic purposes, aka

‘spy mode.’ In this case, only the state transitions on the left side of the diagram in figure 8.10 are

possible. As it is being used by an ARCOM component to access an ARCOM shared memory

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 162

Figure 8.9: AShMemInterface class hierarchy including the major class attributes and methods
of interest to users of shared memory interfaces.

invalid connected

master

client

connect(name)

create(name,size)

disconnect()

unlink(name)

ARecShMemInterface::attach()

AProcShMemInterface::attach()

AProcShMemInterface::detach()

ARecShMemInterface::detach()

dump()

connect(name)

create(name,size)

disconnect()

unlink(name)

ARecShMemInterface::attach()

ARecShMemInterface::detach()

dump()

AProcShMemInterface::attach()

AProcShMemInterface::detach()

Figure 8.10: AShMemInterface states

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 163

interface, any given instance of an AShMemInterface object will go through the states shown

in figure 8.10.

Internally, each shared memory interface consists of a block of shared memory organised as a

ring buffer. A separate control block maintains head and tail positions for each connected master

and client. The AShMemInterface class and its descendants encapsulate access to memory and

control block and sequentialise access in order to keep both blocks in a consistent state at all

times.

Both clients and masters attach and detach to/from a shared memory interface using the

attach() and detach() methods. They then request and relinquish permission to access a block

of memory within the ring buffer of the shared memory interface by calling openBuffer() and

closeBuffer(). This is roughly analogous to ‘normal’ file input/output operations. The success

or failure of openBuffer() also depends on the operating ‘mode’ that has been specified for the

interface in question. In ‘blocking’ mode, the call to openBuffer() blocks until the requested

amount of memory becomes available. In ‘gentle’ mode, an AExWouldBlock exception is

thrown. For master access, a third mode option exists: in ‘force’ mode, a block of memory is

forced open, and any clashing clients are forcibly disconnected. This ensures that high-priority

masters (for example an A9812Recorder component recording data from an A/D converter)

will never have to wait for slow clients further down the pipeline. This mode is invalid for client

access, as one cannot ‘force’ data to appear out of thin air.

Figure 8.11 shows some example transactions reading and writing data from/to an example

shared memory interface object ‘DemoShMem.’ The individual plots were generated by call-

ing the SVGdump() diagnostic function of the AShMemInterface instance for the interface in

question, resulting in an SVG (Scalable Vector Graphics) format file depicting graphically the

current internal state of the shared memory interface. The example itself was generated using the

command line tools in tools/shmemplayground/ to manually create, read from, write to, spy

on, etc. ARCOM shared memory interfaces. These tools are described in section 8.9.4 below.

The following is a description of the individual panels in figure 8.11, representing specific

successive moments in time. This description will serve to explain the data flow and internal

data structures working ‘behind the scenes’ inside an ARCOM AShMemInterface.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 164

t=0

t=1 t=4

t=2 t=5

t=3 t=6

Figure 8.11: An ARCOM shared memory interface in use. Tall (green) arrows indicate head
pointer position, short (black) arrows indicate tail pointer positions. For further description see
section 8.4.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 165

t=0

The interface has been created but no clients or masters are yet connected, indicated by the

square brackets around all client and master slots. Note that there seems to be one master

connected already (master 2). This is the ‘ghost-master’ that is always present and whose role

in maintaining a consistent dataset will become clear towards the end of this discussion. Head

and tail of the ‘ghost-master’ point at the same location, indicating an empty interface.

t=1

A master has connected to the interface. This master has written a block of five ‘X’ bytes to the

interface. Note how head and tail for both the real master (slot 0) and the ‘ghost-master’ (slot 2)

are incremented.

t=2

A client has connected but not yet read any data. Newly connected clients automatically start

off at the ghost-master’s head position, i.e. they will not see any data that is still in the process

of being written by a master at the time they connect.

t=3

A second master (master 1) has connected and opened a block of four bytes for output to the

interface. No data has been written yet. The first master (master 0) has then also requested to

write a block of 6 bytes by calling openBuffer(6). Both buffers are still open, indicated by the

lagging tail pointers for the masters. Note how all master head pointers point at the next free

position in the ring buffer.

t=4

Master 0 has finished writing to its data block and called closeBuffer(): head and tail point at

the same location. Master 1 is still writing data to its part of the ring buffer. Another client has

connected (Client 1) but cannot yet read any data.

t=5

Master 1 has finished writing to its data block. Both masters have disconnected (indicated by

the square brackets around the master slots). Note that the ‘ghost-master’ still exists, ensuring

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 166

that client heads and tails are kept in a consistent state and all clients can read all the remaining

data, even when no (external) master is connected to the interface. In fact, client 0 is in the

process of reading a block of four bytes. Client 1 still cannot read any data because no masters

are connected that would be capable of supplying new data.

t=6

Both clients have disconnected. The interface is empty again. Client head and tail pointers show

the last status just before the detach(). They will be re-initialised to the ghost-master’s head

position when a new client connects.

8.5 Log File Handling

Although not explicitly mentioned as a goal for riometer operating software, the fact that ri-

ometers are instruments designed for long-term observations implicitly acknowledges that data

storage for later retrieval is an essential part of their functionality. From the structural discussions

above it has already become clear, that the task of writing data to files on disk (‘log files’) will

primarily be the responsibility of one appropriately designed ‘processor’ component providing

a data sink at the end of some processing pipeline.

Even so, various other parts of the overall system will have to deal with these data files

later on, for the purposes of transferring, translating, post-integrating or generally reading and

analysing them.

For this reason, all functionality related to the handling of log files in the widest sense was

encapsulated in the class ALogFile and its children, see figure 8.12. Apart from the obvious

‘write data to a file’ functionality, this set of classes incorporates additional functionality stem-

ming from experiences with previous instruments and the knowledge of problems that can and

do arise with these.

In particular, ALogFile provides the following ‘above standard’ functionality:

8.5.1 Date/Time Awareness

Although ALogFile itself cannot actually determine the current time (a task that is left to the

client), ALogFile is aware of the concept of time and can use this knowledge when it comes

to automatically determining appropriate name sequences for log files (section 8.5.3) and for

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 167

reading data from several successive log files (section 8.5.6).

8.5.2 Automatic Intelligent Splitting

Depending on the type of data that is being recorded, log files can quickly reach rather unwieldy

file sizes in relatively short time spans. For example, when logging data that has an incoming

data rate of, say, 12MB/s (as during the October 2002 ARIES experiment, for example), a 30

minute recording will reach a size of 22GB, not including any overheads. It is usually considered

good practice to limit the size of any given log file. Files above a certain size tend to be awkward

to process, transfer and analyse. Some filesystems can only store files up to a certain size limit

(for example 4GB on FAT filesystems [Mic07]).

An ALogFileWriter will ensure that any given log file will never exceed a certain size limit.

It does this by creating a new file with increased sequence number whenever the current file is

about to reach the size limit. Any given log file might well end up being (slightly) smaller than

this limit, as ALogFileWriter makes sure that any particular chunk of data it is asked to write to

the file will always end up as a whole, complete chunk in the file. This means that, even though

ALogFile and relatives do not know anything about ARCOM packets or, in fact, any other

logical units contained in the data stream, clients (first and foremost an ALogger component in

our case) can ensure that packets are never truncated/corrupted, simply by always passing the

whole packet on to ALogFileWriter in one go.

8.5.3 Flexible Automatic Naming (Timestamping)

Log files need to be organised in some clear manner to enable later retrieval of datasets. For long-

term observations, some way of timestamping files is the obvious and widely used method of

choice. Once again sticking with the object-oriented (OO) principle of high cohesion, ALogFile

itself is not aware of current time, but instead relies on its caller to inform it about time and time

changes. It will then, however, automatically create appropriate file- and directory names based

on a freely configurable file name template.

Separation of time handling and file naming means that, for example, ALogFile can easily

be used to read and write files with timestamps in the past or future, for example for replaying

previously recorded events. Time information can come directly from the data written to file,

or from other sources like the local system clock or even an external GPS receiver, without any

changes being required to ALogFile.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 168

8.5.4 Overwrite/Out-of-order Protection

In the past, instruments have had to cope with the effects of unreliable time sources. Often, this

would result in the instrument overwriting existing data files (if the clock erroneously jumped

backwards) or creating incorrectly timestamped data files that would later on either get lost or

overwritten (if the clock erroneously jumped forwards).

ALogFile has a concept of ‘open’ versus ‘finalised’ files and directories. Files marked as

‘open’ (as in ‘open for subsequent write requests’) will allow the client to append data to them.

Once ALogFileWriter determines that the a new log file should be created, most likely because

of reaching the size limit or because of a change of time that results in a new file name, the file

will be closed and marked as ‘finalised,’ from which moment onwards ALogFileWriter will

refuse to open that file ever again in write mode.

A similar concept applies to directories, therefore implementing a 2-tier safety net: If the file

template is set up to, say, store files in subdirectories according to the current day of the month,

and a transition from one day to the next takes place, ALogFileWriter will not only finalise

(mark as ‘finalised’) the file itself, but also the subdirectory that contains it. All attempts to write

to that subdirectory in future will get rejected, causing a switchover to ‘emergency mode’ (see

below).

8.5.5 Fallback (Emergency) Mode

In addition to problems with inaccurate clocks, other error conditions can also arise, first and

foremost an out-of-diskspace error. If at all possible, we want an instrument not to stop record-

ing even in the presence of certain error conditions. Like the out-of-order protection mecha-

nism described above, these conditions will trigger the transition into what we term ‘emergency

mode.’ Specifically, ‘emergency mode’ gets activated automatically on encountering any of the

following (error) conditions:

• Attempt to write to a ‘finalised’ file.

• Attempt to write to a ‘finalised’ directory.

• Disk full error while writing to a log file.

• Manual ‘switch to emergency mode’ command.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 169

In ‘emergency mode,’ files will get written to a different path as specified using setEmergen-

cyTemplate(). It is a good idea to point this template to a physically separate disk or at least

partition.

In ‘emergency mode,’ files will no longer be timestamped (as the time information is poten-

tially unreliable anyway), but will simply bear increasing sequence numbers. As before, once a

file has been closed (‘finalised’), it will never be written to again.

In the case of ARCOM, files that have been written in ‘emergency mode’ can be further pro-

cessed using an appropriate pipeline of ARCOM packet tools (see section 8.9.5 below). In this

way, they can, for example, be reshaped appropriately for inclusion in the proper data archive,

once the error condition has been rectified.

8.5.6 Fuzzy Search

When it comes to reading log files, the exact name of the required file might not always be

known, for example because of clock inaccuracies. Also, a data archive might contain gaps due

to, for example, instrument failures.

The findFileForReading() function has the ability to automatically scan for the next avail-

able file starting from a given time. It does this by looping through a number of potential file

names relating to the specified as well as future dates — up to a maximum specified by setRe-

tries(). Both ‘open’ and ‘finalised’ files (see section 8.5.4 above) are considered in this search.

This functionality comes in very useful in, for example, the readfromlogfile ARCOM packet

tool (described in section 8.9.5 below), which will usually be able to locate the required data

file without too much fuss. (Note that readfromlogfile also implements some more advanced

backtracking capability, but the ability to do so requires knowledge of the ARCOM streaming

data format, which is beyond the knowledge horizon for ALogFile.)

8.5.7 Conclusion and Evaluation

The advanced logging concept as presented in this section has generally been found to perform

well. The fact that file and even directory names can change not only as they are being recorded

but also at a later stage (see the section on overwrite protection above), has, however, caused

issues with near-real-time file transfers via simple rsync or scp commands. It is not necessarily

straightforward to predict the appropriate file name to use in the transfer script, and even more

severely, the archive that is built up at the remote end will either not match the source archive,

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 170

because of the file name changes, or the renamed files will be transferred twice or have to be

renamed a-posteriori at the client end, the latter again not being straightforward.

This is compensated by the fact that errors and data corruption due to timing issues are now

greatly reduced and error conditions can much more easily be detected. If nothing else, the fact

alone that there exist ‘open’ files in an archive is a strong indication that something went wrong

at some stage.

Also, ARCOM does of course provide its own built-in mechanism for real-time data feeds,

see section 8.8.5, thereby potentially eliminating the need for real-time file-level transfers.

Implementation-wise, it has to be said that in this instance the parent/child relationship be-

tween ALogFile and ALogFileReader/ALogFileWriter is abusing the pure teaching of object-

oriented programming in that the relationship between reader/writer and ALogFile is more of a

‘makes use of’ relationship than an ‘is a’ relationship, i.e. inheritance is (ab)used as a practical

way of sharing common pieces of code although it does not actually accurately describe the

relationship between the two classes of objects. This design decision is acceptable in this case,

though, as ALogFileReader and ALogFileWriter essentially provide a certain functionality to

their clients, and the knowledge that they are both derived from a common class is unneces-

sary/irrelevant from a client’s perspective.

A final important property of ALogFile worth noting is that, despite all the intelligence

relating to ALogFile and relatives, the log files that end up on disk are still 100% pure ARCOM

streaming data (see section 8.6) files, i.e. a stream of valid ARCOM packets. This is because

ALogFile does not add or take away any of the information it is asked to write to files, so as

long as it is being fed with valid ARCOM packets, the result will always be an archive of valid

ARCOM packets (even though ALogFile itself does not even know about packets as such). This

means that existing operating system tools such as cat can be used to perform simple tasks

such as concatenating several files. For more advanced processing, the (ARCOM-specific) tools

described in section 8.9.5 would generally be used.

8.6 The ARCOM Streaming Data Format

As already noted in section 8.2, any pipelining architecture requires its individual processing

stages (components) to agree on a common data format for passing data down the pipeline. The

flexibility requirements faced by ARCOM compared to existing riometer systems are unique in

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 171

that the data format should accommodate both existing well-defined datasets and data produced

by yet-to-be-defined-and-implemented future components.

Generic multi-purpose data formats have come a long way, with XML (eXtensible Markup

Language) being the most prominent of these formats in recent years [BPSM+06]. XML is

uniquely flexible in that it is an inherently extensible format that can be customised to essentially

represent any possible dataset.

In fact, XML is widely used in inter-component communications, being the foundation of

such standards as SOAP (Simple Object Access Protocol) used in today’s Web- and Gridservices

[GHM+07]. The major drawback of XML when it comes to inter-component communication

between, in this sense closely coupled, components in a processing pipeline, is its text-based for-

mat. Parsing XML data, which allows for both variable-length tags and variable-length content

is processing intensive and therefore slow.

Several attempts are underway that try to resolve these issues by introducing a ‘binary’

format based around similar ideas. These attempts include “Fast Infoset” that encodes XML

into a compressed binary format [CT04] and many other proprietary solutions. However, none

of these formats were readily available and sufficiently defined at the design stage of ARCOM.

Also, they all still suffer from an unnecessarily flexible approach as far as ARCOM data process-

ing is concerned. However, it turns out that very similar requirements exist in quite a different

area, namely digital television. Equipment compliant with the Digital Video Broadcast (DVB)

standard uses pipeline architectures to multiplex, transmit, receive and de-multiplex streams of

images, audio, subtitles and many additional, quite unrelated, datasets such as teletext or IP (In-

ternet Protocol) packets. The underlying data format is the MPEG transport stream as described

in [ETS97] and the many references therein, for a concrete case see, for example, [ETS03].

Inspired by this, ARCOM defines a common ARCOM streaming data format, which, on the

highest level, consists of ‘packets,’ each packet in turn containing one or many ‘descriptors.’

This format combines all the advantages with respect to flexibility mentioned above, while still

being fast to process and access:

• Flexible: Define packet types as required.

• Future-proof: Unknown packet/descriptor types are simply ignored.

• Generic: A basic set of functionality can deal with arbitrary data streams.

• Hardware-friendly: External (hardware) data sources can be made to ‘speak’ ARCOM

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 172

simply by encapsulating their data output into appropriate ARCOM packets, an approach

very similar to ‘tunnelling’ in, for example, TCP/IP networking [BSB05]. This removes

the need for translation between incoming data and the common ARCOM streaming data

format.

• Fast to process and access: The binary format based on fixed-length headers is fast to

process in hard- and software.

A very similar approach has since also successfully been used for the SPARKLE high-speed

photometer [Gri06c], although in this instance memory bus and speed limitations of the micro-

controller hardware required some simplification.

Tables 8.2 and 8.3 list all currently defined ARCOM packet and descriptor types, respec-

tively. Figure 8.13 shows the definition of an ARCOMPACKET_FPGAPACKET packet as an

example of a complex ARCOM streaming data packet. Note that although the figure shows

the packet exactly as it is issued by a specific version of the FPGA firmware, ARCOM does

at no stage rely on the detailed knowledge of at which offset to find what data. Instead, the

packet is scanned for descriptors of interest, and the relevant data is extracted/processed, while

unknown/uninteresting descriptors or packets that do not contain descriptors of interest are sim-

ply skipped over (i.e. ignored). See the ARCOM source-level documentation for details on all

defined packet and descriptor types [Gri06a].

8.7 The CORBA Interfaces

The reason for designing the ARCOM architecture around a basic set of meta-components (adap-

tor, recorder, processor, see section 8.2) that all ‘speak’ CORBA on their control interface was

so that each component could be controlled using the same set of CORBA commands. This

is essentially the idea of polymorphism on a component level: a user can initialise, run, stop,

etc. any given component without having to know about any internal details. This is heavily

used by automatic startup and shutdown scripts such as the executor.pl script described in

section 8.9.3. Figure 8.14 is a UML diagram of the CORBA interface hierarchy for ARCOM

components. All components inherit the common commands init(), terminate() and getSta-

tus() from the basic AComponent interface. In addition, all recorder and processor components

inherit the run() and stop() commands.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 173

Figure 8.12: ALogFile and descendants

id Packet Type
0x01 ARCOMPACKET_TEXT
0x02 ARCOMPACKET_GPS_NMEA
0x05 ARCOMPACKET_TIMESTAMP
0x06 ARCOMPACKET_BASICDATA
0x07 ARCOMPACKET_RAWFPGADATA
0x11 ARCOMPACKET_FPGAPACKET
0x12 ARCOMPACKET_SHMEMSTATUS
0x13 ARCOMPACKET_TEMPDATA

Table 8.2: ARCOM packet types

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 174

id Descriptor Type
0x01 DESCRIPTOR_UTC_TIME
0x02 DESCRIPTOR_RAW_DATA_16BIT
0x03 DESCRIPTOR_CMPLX_DATA_64BIT
0x04 DESCRIPTOR_STREAM_ID
0x05 DESCRIPTOR_GPS_TIME
0x07 DESCRIPTOR_64_CPLX_POW
0x08 DESCRIPTOR_HOPF_GPS_INFO
0x09 DESCRIPTOR_RX_INFO
0x0a DESCRIPTOR_ARIES_CPLX_DATA
0x10 DESCRIPTOR_BITSTREAM_VERSION
0x11 DESCRIPTOR_SHMEMNAME
0x12 DESCRIPTOR_SHMEMCTLBLOCK
0x20 DESCRIPTOR_8BIT_CPLX_DATA
0x21 DESCRIPTOR_16BIT_CPLX_DATA
0x22 DESCRIPTOR_24BIT_CPLX_DATA
0x23 DESCRIPTOR_32BIT_CPLX_DATA
0x24 DESCRIPTOR_FFT_TAPER_INFO
0x25 DESCRIPTOR_POST_INT_INFO
0x26 DESCRIPTOR_RX_DC_OFFSETS
0x27 DESCRIPTOR_UNIXTIME
0x28 DESCRIPTOR_TEMP_READING

Table 8.3: ARCOM descriptor types

getStatus() return value meaning
error component does not exist

0 component not yet initialised
(‘newborn’)

1 component initialised but not running
≥ 2 component is running, exact meaning of

status value is component-specific.

Table 8.4: ARCOM component status values

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 175

Figure 8.13: ARCOMPACKET_FPGAPACKET. Note how the packet is made up of ‘descriptor’
entities, allowing the packet structure to adapt to new requirements without breaking existing
code. Diagram adapted from [Bar07].

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 176

Figure 8.14: ARCOM CORBA interfaces

(a)

(b)

Figure 8.15: Life cycle of an ARCOM component. (a) Adaptor, (b) Recorder/Processor

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 177

These four basic commands (init, run, stop and terminate) are sufficient to take any ARCOM

component through all stages of its life cycle, see figure 8.15. The getStatus() command is a

generic diagnostic command to enquire about the current state of any component, the returned

status value is defined as summarised in table 8.4.

Note that only the interfaces at the bottom of figure 8.14 do actually get implemented by

real ARCOM components (although for simple components the interface might well be an un-

changed copy of its ancestor). In this sense, interfaces in the top two levels of the ARCOM

CORBA interface hierarchy can be described as ‘virtual’ interfaces, i.e. interfaces that are never

directly implemented by any component. They only serve as a common base for derived inter-

faces and enable component-level polymorphism as described above.

Figure 8.14 shows that each individual ARCOM component can add to the common interface

by defining its own component-specific messages. This should only be used sparingly, as it obvi-

ously breaks the uniformness of all ARCOM components and requires special user knowledge of

the particular component in question. As can be seen, as of yet only the AADMXRCRecorder

component implements additional messages, in this case for enabling dynamic reconfiguration

of the FPGA hardware at run-time.

8.8 Selected ARCOM Components

All ARCOM components are configured through a central XML configuration file. Each com-

ponent supports the following set of basic configuration options:

IORFilename Name of the file to store this component’s CORBA Interoperable Object Refer-

ence (IOR) in.

id Unique integer ID to identify this component in log file messages.

In addition, each component may define additional configuration options.

8.8.1 AADMXRCRecorder

The ARIES riometer system employs an FPGA-based interface board to feed the signals from

64 digital receivers into the processing PC, see chapter 3, section 3.3 and appendix D. The

AADMXRCRecorder ARCOM component is responsible for retrieving this data stream from

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 178

the hardware and feeding it into the ARCOM infrastructure. This is a typical ARCOM recorder

component (see section 8.2.4).

AADMXRCRecorder encapsulates all knowledge about this particular type of hardware.

A number of configuration options enable flexible configuration based on the exact type of hard-

and firmware. On top of the common options, the following configuration options are supported:

ShMemInterfaceName The name of the shared memory interface that we should connect to as

a master.

cardindex The index of the ADMXRC card to use, in case there are several cards installed in

the system.

bitstream The file name of the binary FPGA bitstream file to use.

bufsize Receive buffer size: The size of one DMA transfer.

lclk LCLK frequency in Hz.

vclk VCLK frequency in Hz.

DumpRawData Transmit ARCOMPACKET_RAWFPGADATA packets with the raw data as

obtained from DoDMA()?

CookData Parse raw data and turn it into ARCOMPACKET_FPGAPACKET packets?

RawPacketFormat The type of packet to expect. Non-conforming packets are ignored.

AADMXRCRecorder also makes use of the ability to extend the existing ARCOM ARecProc-

Component CORBA interface (figure 8.14), providing two additional methods loadbitstream()

and uploadparam() for run-time firmware and parameter upload to the FPGA hardware, respec-

tively.

8.8.2 A9812Recorder

The A9812Recorder component reads 1-, 2- or 4-channel digital data from a PCI-based AD-

LINK PCI9812 A/D converter board [adl07] as used during the initial ARIES investigations

(see chapter 9). A8912Recorder encapsulates all knowledge about this particular type of hard-

ware. A number of configuration options enable flexible configuration based on desired mode

of operation. On top of the common options, the following configuration options are supported:

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 179

ShMemInterfaceName The name of the shared memory interface that the component should

connect to as a master.

samplingrate Requested sampling rate for synchronous sampling of all channels in Hz.

channels Number of channels to convert (0=only channel 0; 1=channels 0 and 1; 3=channels

0,1,2,3).

8.8.3 ADemoRecorder

The ADemoRecorder is an ARCOM recorder component that sends (test) data to a shared

memory interface. It can generate different kinds and sizes of test data at user configurable time

intervals. Some of the data produced can also be useful in production systems, for example the

timestamp packets containing local time information.

On top of the common options, the following configuration options are supported:

ShMemInterfaceName The name of the shared memory interface that the component should

connect to as a master.

interval How often the component sends a data packet to the shared memory interface (specified

in seconds).

mode What type of packets to send to the shared memory interface. One of the following

operating modes:

• random_small: send random ‘small’ data packets.

• random_big: send larger random data packets.

• random_both: send a mixture of ‘small’ and ‘big’ packets.

• timestamps: send an ARCOMPACKET_TIMESTAMP packet containing the current local

system time.

8.8.4 ALogger

The ALogger component is a versatile logging component based around the ALogFile family

of classes (see section 8.5 and also [Gri06a]). ALogger writes data streams to files on disk.

Courtesy of ALogFile and derivatives, files are automatically named and split according to user

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 180

preference. Section 8.5 outlines the novel functionality and basic design decisions behind the

ALogFile family of classes together with a short evaluation and comparison to existing log

file handling concepts. See the detailed source documentation for the ALogFile class for an

implementation-level description of the concepts behind ALogFile.

On top of the common options, the following configuration options are supported by ALog-

ger components:

ShMemInterfaceName The name of the shared memory interface that the ALogger component

should read incoming data from.

maxfilesize The maximum file size of each individual log file in bytes. This size will not be

exceeded in any case.

logfiletemplate Path to the log files. May contain placeholders for time and date information

and sequence numbers. For a detailed description of the syntax of this entry see ALogFile

in [Gri06a].

emergencytemplate Emergency path for log files. ALogFile will automatically switch into

‘emergency mode’ and start storing files at this location if it cannot write to the standard

log file path, e.g. because of a ‘disk full’ error condition.

8.8.5 ATCPTransmitter and ATCPReceiver

The ATCPTransmitter component interfaces ARCOM shared memory interfaces to TCP/IP-

based networks. An ATCPTransmitter component transmits (forwards) all (or selected) pack-

ets from an ARCOM shared memory interface to one or multiple TCP connections. Like all

ARCOM components, ATCPTransmitter assumes that the shared memory interface contains

valid ARCOM packets (section 8.6). From a TCP/IP point of view, the ATCPTransmitter is a

server, as it simply waits for incoming connections, and on acceptance of a new connection starts

transmitting data over this connection. From an ARCOM point of view, the ATCPTransmitter

is a processor, since it processes data coming from the shared memory interface.

The ATCPReceiver is the counterpart to the ATCPTransmitter. On receiving a run() com-

mand through its CORBA interface, it establishes a TCP/IP connection to a (remote) ATCP-

Transmitter component. It then listens for incoming packets and outputs all valid ARCOM

packets to its shared memory interface, therefore acting as an ARCOM recorder component.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 181

These two components together allow for the operation of distributed ARCOM systems

sharing common data streams. Note, however, that one of the design goals for the ARCOM

shared memory interfaces was high-speed communication. As network communication is in-

evitably much slower and more unreliable than direct shared memory access, these components

can only be used for moderate (on-site) or low (off-site) data throughput. They find their use

in remote monitoring of non-critical summary data produced by summariser components (see

also the suggestions for future system configurations in chapter 11) and in debugging and testing

scenarios.

The following configuration options are supported by ATCPTransmitter and ATCPRe-

ceiver:

ShMemInterfaceName The name of the shared memory interface that the component should

read data from (ATCPTransmitter) or write data to (ATCPReceiver).

tcpport Port to connect to (ATCPReceiver) or port to listen on for incoming connections

(ATCPTransmitter).

server Only for ATCPReceiver: the IP address of the corresponding ATCPTransmitter com-

ponent to connect to.

8.8.6 AFromLogRecorder

The AFromLogRecorder is an ARCOM recorder component that takes a stream of ARCOM

data packets from a (set of) log file(s) and transmits them onto its shared memory interface.

Thus, this component is ideally suited for replaying situations after they have happened. Equally

well, it can be used to simulate and evaluate system behaviour with synthetically generated or

simulated data, with the AFromLogRecorder replacing a ‘real’ (as in ‘recording from real

hardware’) recorder component, but all the processor components further down the pipeline

being the same as in an actual ‘real’ system. This component had already been used to stream

(converted) data from old pre-ARCOM riometers through various ARCOM components before

any physical hardware was available.

Similar to ALogger, the AFromLogRecorder component is based around the functionality

of the ALogFile family of classes (see section 8.5 and also [Gri06a]).

The following configuration options are supported by AFromLogRecorder:

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 182

ShMemInterfaceName The name of the shared memory interface that this instance of AFrom-

LogRecorder will connect to as a master.

interval Time interval at which to send out (bursts of) packets to the interface (time in seconds).

mode One of the following operating modes:

• pause_always: pause after every packet for the time given in <interval>.

• pause_after_data: send out packets in bursts, only pausing after sending a packet that is

known to contain ‘data.’

startdate The date and time for which to start transmitting data from the log file. ISO format

(YYYY-MM-DD hh:mm:ss).

logfiletemplate Path to the log files. For a detailed description of the syntax of this entry see

ALogFile in [Gri06a].

8.8.7 Future Components

During the initial evolution of the ARCOM framework, some components were ‘left behind’

and therefore only exist in old versions, and some only conceptionally (i.e. have never been

implemented). Both these categories are included in the following list of future components.

These components will fit into the existing ARCOM framework and can be implemented as

required for future projects.

• AIntegrator to post-integrate incoming data to higher time resolutions (as used with

A9812Recorder in figure 8.6).

• ACrossCorrelator to cross-correlate data streams (as used with A9812Recorder in fig-

ure 8.6).

• AWatchdogTrigger to re-trigger a hardware watchdog as long as all watched components

and interfaces are alive and active.

• ASummariser to produce summary information about a data stream.

• ACompressor and ADecompressor to compress and decompress incoming ARCOM

packet streams.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 183

• A1WireRecorder to read temperature (and potentially other environmental data) from

Dallas Semiconductor’s 1-Wire temperature sensors [Max07].

• AUDPTransmitter to transmit real-time summary information to remote clients via the

User Datagram Protocol (UDP).

8.9 Low-level Support Tools (ARCOM Tools)

Eventually, every architecture has to manifest itself in real-life applications to fulfil its purpose

and prove its usefulness. This section describes the tools that were implemented for dealing with

ARCOM components and their data inputs and outputs. These tools enable day-to-day operation

and maintenance of ARCOM-based systems and are part of the ARCOM distribution. The

following section (8.10) will outline some even lower-level implementation specifics, serving as

a starting point for those who want to implement new ARCOM components.

8.9.1 ARCOM CORBA Message Dispatcher (sendcmd)

The CORBA standard itself defines generic methods for interacting with unknown CORBA

components through dynamic interface discovery at run-time. However, as an easy way of

interacting with running ARCOM components through their CORBA interface, a command line-

based tool was implemented.

This tool already knows about the ARCOM specific CORBA interfaces, and can be used to

manually request the status of individual components and change their current state. It can also

be used internally by higher-level scripts to programmatically initialise, start, stop and check the

status of any currently active component. Currently, these scripts include the executor.pl

(section 8.9.3), the simple graphical user interface gui1.tcl (section 8.9.2) as well as the

init.d/arcom startup script [Gri06a].

Usage examples

sendcmd takes the CORBA Interoperable Object Reference (IOR) of the desired component

as the first parameter and the name of the method to invoke as the second parameter. Some

messages require further parameters, and these are specified after the method name as required.

./sendcmd

syntax: ./sendcmd <ior> {init|run|stop|terminate|getstatus

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 184

| uploadparam|loadbitstream }

This will invoke the respective method for the specified CORBA

ARecProcComponent (including derived components).

As no parameters were specified, sendcmd prints a short help message that tells us how to use

the sendcmd program. Note that only the first five commands are generic ARCOM commands,

the remainder (uploadparam, loadbitstream) are specific to certain ARCOM components (the

AADMXRCRecorder in this case).

./sendcmd ‘cat /arcom_running/aadmxrcrecorder-ior‘ getstatus

orb init - string to object - narrow - invoking getstatus()

status is: 2

This invokes the getStatus() method of the component described by the IOR in /arcom_run-

ning/aadmxrcrecorder-ior. Every ARCOM component stores its IOR in a file when it is

started (the file name can be configured by one of the parameters in the component’s section of

the ARCOM configuration XML file, see section 8.10), and it is the contents of this file that we

need to pass to the sendcmd tool using the UNIX ‘backtick’ mechanism [Coo06].

From the output of the command it can be seen that the A9812Recorder component in

question is currently actively running (status ≥ 2, see table 8.4), i.e. transferring data from the

receiver hardware to its shared memory interface, to be processed by other components further

down the processing pipeline.

./sendcmd ‘cat /arcom_running/aadmxrcrecorder-ior‘ uploadparam

param/param-1M4-noise-10s-on-3590s-off.param

orb init - string to object - narrow - invoking uploadparam()

transmitting the following data:

0000: ff ff ff ff

0004: c0 5c 15 00 .\..

0008: 01 00 0a 00

000c: 06 0e 00 00

The above command will upload a new set of operating parameters as specified in the file

param/param-1M4-noise-10s-on-3590s-off.param to the firmware running on the AD-

MXRC recording hardware. This is an AADMXRCRecorder component-specific command,

and its invocation will fail if the addressed component is not of AADMXRCRecorder type.

This particular example sets an integration time of 1.4 million samples and causes the ARIES

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 185

receiver noise source to be switched on for 10 seconds every hour, but note that the exact format

of the parameter set is application-specific and will not be discussed further here.

8.9.2 Graphical User Interface (gui1.tcl)

gui1.tcl (figure 8.16) is an easy-to-use graphical user interface (GUI) to control the state of

ARCOM components. It builds on the functionality provided by sendcmd (section 8.9.1) for

the actual component communication. For user convenience, the colour of the ‘getstatus’ but-

ton reflects the current status of the component in question: grey=no reply, red=newborn, or-

ange=initialised, green=running. Note that this interface can only be used to send standard

ARCOM messages to components, component-specific messages need to be sent through the

sendcmd tool.

8.9.3 Automated Startup and Shutdown (executor.pl)

Manually starting up an ARCOM system with many components, and shared memory interfaces

between them, can be an arduous and error-prone task. The executor.pl script automates this

task. It can be used to start up and shut down a predefined ARCOM system configuration.

executor.pl takes its commands from two special sections <startup> and <shutdown> in the

system-wide ARCOM XML configuration file, see the following excerpt:

<arcomconfig>

[...individual component configuration sections go here...]

<startup>

<option delay="5"/> <!-- default delay after each command in seconds -->

<createshmem name="nice_little_shmem" size="1000000" masters="7" clients="8" />

<launchinitrun type="alogger" name="default" />

<launchinitrun type="ademorecorder" name="default" />

<launchinitrun type="aadmxrcrecorder" name="default" />

</startup>

<shutdown>

<option delay="2"/>

<stopterminate type="alogger" name="default" />

<stopterminate type="aadmxrcrecorder" name="default" />

<stopterminate type="ademorecorder" name="default" />

<unlinkshmem name="nice_little_shmem" />

</shutdown>

</arcomconfig>

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 186

This example starts up a basic ARCOM system consisting of an AADMXRCRecorder (re-

corder) component, an ADemoRecorder (recorder) component and an ALogger (processor)

component, connected through a one million byte shared memory interface. See [Gri06a] for

details on all available commands and options.

8.9.4 Shared Memory Playground

For diagnostic and debugging purposes, it is useful to be able to interact not only with individual

ARCOM components, but also with the shared memory interfaces that connect them. The vari-

ous command line-based tools in the tools/shmemplayground/ directory were developed for

such low-level interaction. These tools allow the user to create and delete ARCOM shared mem-

ory interfaces, write raw data to them, read raw data from them, and produce diagnostic output

of the current state of a given shared memory interface. In fact, the example in figure 8.11 (dis-

cussed in section 8.4) was created using these tools. Table 8.5 provides a brief summary of all

available tools.

8.9.5 ARCOM Packet Tools

These tools allow the inspection and manipulation of ARCOM packet streams (section 8.6).

Each tool can be invoked straight from the command line. Unless otherwise noted, these tools

will take their input from stdin and output their processed result to stdout. This allows for

them to be combined together by using standard UNIX pipes (‘|’), very similar to the pipelining

example given earlier (section 8.2 referring to figure 8.4). The following paragraphs will give a

brief description of these tools, together with some commonly used examples. For more details

on functionality and available parameters for any given tool, the reader is referred to the low-

level documentation and the usage examples given therein [Gri06a]. All tools can be found in

the tools/arcom_packet_tools/ directory.

Note that each tool will also respond to being called with the ‘-?’ parameter by outputting a

help message containing all valid command line options with a brief explanation.

8.9.5.1 Generic ARCOM Packet Tools

packetdumper. Output a brief (1-line) or extensive clear-text dump of any incoming AR-

COM packet. Can also be configured to only dump the payload-part of a packet, in either

binary or hexdump formats.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 187

Figure 8.16: gui1.tcl: A simple GUI for controlling ARCOM components

tool use to...
createshmeminterface ...create an ARCOM shared memory interface

with the specified number of client and master
slots.

unlinkshmeminterface ...delete (remove) a specified ARCOM shared
memory interface.

writetoshmem ...output sequences of bytes to a specified
ARCOM shared memory interface.

writepacketstoshmem ...output a selection of (hard-coded) ARCOM
streaming data packets to a specified ARCOM
shared memory interface. This is a predecessor
of the more generic functionality available in the
ARCOM packet tools (see section 8.9.5).

readfromshmem ...read sequences of bytes from a specified
ARCOM shared memory interface as they
become available.

readpacketfromshmem ...read ARCOM streaming data packets from a
specified ARCOM shared memory interface.
This is a predecessor of the more generic
functionality available in the ARCOM packet
tools (see section 8.9.5).

spyshmeminterface ...regularly print the current internal status of a
specified ARCOM shared memory interface to
the console. This will also create regular
graphical representations in SVG format, just
like the ones shown in figure 8.11.

Table 8.5: ARCOM low-level shared memory tools

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 188

packetplotter. Graphically plot the contents of incoming ARCOM packets. A variety of

different packet types and plotting styles are supported. In combination with readfrom-

shmem (below), this is useful for monitoring the contents of packets as they pass through

a system’s shared memory interfaces. The plotter is especially useful during the setup and

calibration phases of instrument deployment.

packetfilter. Only packets of specified type(s) will be passed through, all other packets

will be ignored.

readfromlogfile. Read ARCOM packets from a (set of) ARCOM log file(s) on disk. Start

and end times of the period of interest can be specified, along with template strings to

identify the set of log files to use. This tool automatically loops through all relevant

ARCOM log files with the help of the ALogFile class (see section 8.5) and will also

backtrack through earlier log files if the first file opened is found to already contain data

newer than the specified start time.

readfromshmem. Connect to the specified shared memory interface and read packets as they

pass through the interface. This is very useful for spying on traffic as it passes through an

interface, for example in combination with packetdumper or packetplotter.

packetiser. Identify valid ARCOM packets in an incoming (garbled) data stream. This is

useful to recover data from corrupted files, where parts of packets have been lost. The

packetiser detects packet boundaries based on the ‘magic’ value in packet headers, and

resynchronises in the case of broken packets. The output of the packetiser will always

be a stream of valid ARCOM packets.

8.9.5.2 More Specialised ARCOM Packet Tools

The following tools are more specialised in that they are only useful for a small number of packet

types. They will still deal with arbitrary ARCOM packet streams, of course, but they will only

process the packets that they were designed for.

extractfpgadata. Export some of the data contained in FPGAPACKET ARCOM packets

as lines of ASCII text. Useful for importing small amounts of data into third-party tools

by means of a generic ASCII import filter.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 189

fpgapacketsanitychecker. Look at all incoming FPGAPACKET packets and check if

they contain continuously increasing (GPS) timestamps and a reasonable number of sam-

ples per integration period. Sudden jumps in time and number of samples will be detected

and flagged up. Useful during instrument setup as well as during normal instrument oper-

ation.

fpgapacketcropper. Compress (crop) the data contained in FPGAPACKET packets by

throwing away unneeded parts and reducing the resolution of integer numbers contained

in FPGAPACKET packets. Which parts of the data are kept is determined by command

line options and/or a separate configuration file. Useful for transferring selected datasets

over low-speed network (modem) links.

fpgapacketuncropper. Reverse the cropping process done by fpgapacketcropper by

expanding all data inside the FPGAPACKET packets back to its original size, filling any

gaps with zeros.

8.9.5.3 Usage Examples

Hexdump of next arriving packet in shared memory interface:

./readfromshmem -n 1 -s nice_little_shmem -v | ./packetdumper -p

| od -t xC -A x

Summary info of all timestamp packets in log file starting 2005-11-17 00:00h:

./readfromlogfile -f ’2005-11-17 0:0’ -t ’/arcom_log/%YYY/%YYY-%M

-%D-*/%YYY-%M-%D_%h_####_*’ -v -d | ./packetfilter -t 5 -p

| ./packetdumper -aB

Read 300,000 packets from the log file, filter for only FPGAPACKET packets and extract ASCII

data for offsets 1 and 33:

./readfromlogfile -f ’2005-12-08 16:0’ -n 300000 -t ’/arcom_log/

%YYY/%YYY-%M-%D-*/%YYY-%M-%D_%h_####_*’ -v -d | ./packetfilter

-t 17 -p | ./extractfpgadata -o 1 -o 33 > extractpower_2_200508.log

8.10 Component Implementation Details

This section explains how each individual ARCOM component is implemented by listing which

files are involved and what they are used for. The A9812Recorder component will be used as

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 190

an example, the structure being identical for all components.

The ultimate level of detail can be found in the extensive Doxygen-generated documentation

[Gri06a], which can be found in the doc/html/ directory of the ARCOM distribution.

Though all components are to some degree multithreaded [NBF96] through their use of the

MICO CORBA implementation [PR00], especially recorder and processor components will usu-

ally implement (at least) a separate thread for activities performed during their ‘running’ state.

For the exemplary component described here, this thread is contained inside the main imple-

mentation file (aadmxrcrecorder_impl.cpp), but could equally well be defined in a separate

source file.

All files specific to a particular component are located in the component’s directory, in this

case aadmxrcrecorder/. Primarily, all that an ARCOM component does is implement its re-

spective CORBA interface and the ‘run’ state behaviour. As figure 8.14 shows, AADMXR-

CRecorder implements two methods — uploadparam() and loadbitstream() — specific to

this component. These are defined in AADMXRCRecorder’s CORBA Interface Definition

Language (IDL) file aadmxrcrecorder.idl.

Table 8.6 shows the names of the important files in the component’s directory together with

their purpose. In addition to the files described in this table, each component will also make use

of some files common to all ARCOM components, providing underlying ARCOM functionality.

Except for the ARCOM configuration file (which can be located anywhere and is being read at

run-time), these files are all located in the common/ subdirectory, and table 8.7 lists the names

and purposes of the more important ones. For details, the reader is referred to the extensive

descriptions in [Gri06a].

8.11 Summary

The ARCOM software architecture provides a versatile run-time environment for a variety of

scientific instruments and can readily be tailored to support a wide range of data acquisition and

processing tasks. ARCOM is not limited to ARIES, or even riometers. The component-based ap-

proach, together with high-speed pipelining through dedicated shared memory interfaces, allows

for unprecedented flexibility and run-time reconfigurability of an ARCOM-based instrument,

thus successfully solving the ‘Wicked Problem’ of ever-evolving systems. The ARCOM archi-

tecture and associated data structures such as the ARCOM packet format are well-documented

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 191

file name purpose
aadmxrcrecorder.idl CORBA Interface definition for the AADMXR-

CRecorder component, specified in IDL (Interface
Definition Language).
Note that every component’s interface will inherit (at
least indirectly) from the AComponent and, in case of
a recorder or processor, the ARecProcComponent inter-
faces (figure 8.14). These two are purely ‘virtual’ inter-
faces that are not directly implemented by any component.
They only serve as a common base for the derived inter-
faces.

aadmxrcrecorder-
_impl.cpp

Implementation of the AADMXRCRecorder_impl class.
This class defines the behaviour of the AADMXR-
CRecorder component and needs to implement the
CORBA AADMXRCRecorder interface as defined in
aadmxrcrecorder.idl.

aadmxrcrecorder-
_impl.h

Declaration of the AADMXRCRecorder_impl class to
go with aadmxrcrecorder_impl.cpp (see above).

main.cpp This file contains the main() function, i.e. the function that
gets invoked by the operating system when the compo-
nent gets invoked. main() simply instantiates an object
of class AADMXRCRecorder_impl, registers it with the
CORBA ORB and then waits until this object terminates
itself (in response to a terminate() message). There is
very little need to customise the content of main.cpp, as
all component logic should be contained in the component
implementation class AADMXRCRecorder_impl.

aadmxrcrecorder-
config.cpp

Definition of the component’s configuration class AAD-
MXRCRecorderConfig. This class extends the generic
ARCOMComponentConfig class (which in itself is de-
rived from XMLConfig) and deals with parsing the AR-
COM XML configuration file for component-specific con-
figuration options. An instance of this object will be
utilised during the initialisation phase (init).
In case of the AADMXRCRecorder component,
AADMXRCRecorderConfig is responsible for parsing
all parameters outlined in section 8.8.1.

aadmxrcrecorder-
config.h

Declaration of the AADMXRCRecorderConfig class to
go with aadmxrcrecorderconfig.cpp (see above).

makefile This file outlines how the binary executable for this com-
ponent is built. It is read by make during the build process
and usually requires little customisation.
The make file also controls the (totally transparent) cre-
ation of CORBA stubs and skeletons for the component’s
CORBA interface.

aadmxrcrecorder.cpp,
aadmxrcrecorder.h

These files are created automatically by the CORBA IDL
compiler based on the CORBA interface definitions in
aadmxrcrecorder.idl.

Table 8.6: Important ARCOM component files

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 192

and various tools support the user during setup and day-to-day operation.

Since its inception, ARCOM has also been deployed for the Advanced Imaging Riometer

for Ionospheric Studies (AIRIS). Other instruments have also benefited from ARCOM concepts,

for instance the new high-speed photometer for optical emission measurements (SPARKLE)

developed by the author, which employs a packet-based streaming data format very similar to

the one used by ARCOM.

CHAPTER 8. ADVANCED RIOMETER COMPONENTS: ARCOM 193

file name purpose
logmacros.h Defines macros and helper functions for sending nicely

formatted log messages to the /var/log/messages mes-
sage log.

arcompacket.h Declares and defines all data structures and helper func-
tions related to the ARCOM packet data format as out-
lined in section 8.6. This file is the ultimate reference to
all things ARCOMPacket.

logfile/* These files define ALogFile and derived classes for writ-
ing to and reading from ARCOM streaming packet log
files. See also the description of the ALogger and
AFromLogRecorder components in sections 8.8.4 and
8.8.6 and the description of ARCOM log file handling in
section 8.5.

ashmeminterface/* The files in this subdirectory define the AShMemInter-
face and derived classes used to access ARCOM shared
memory interfaces, see section 8.3.

Table 8.7: ARCOM files in the ARCOM/common/ directory

Chapter 9

First Experiment Results

This chapter contains discussions of the different results obtained from the October 2002 ARIES

experiment. During the October 2002 experiment, a variety of datasets has been recorded for

different configurations of a preliminary ARIES system. The data recorded comprised several

hundred gigabytes of raw input data as recorded from the A/D converters connected to the beam-

forming network, as well as integrated data derived from the raw data in real-time. Integrated

data is available for most of the time.

Also included is a short note on different ways of post-integrating data to justify the ap-

proach that was used during the experiment. This note also shows how our current way of

post-integrating data from our IRIS riometer introduces (negligible) inaccuracies.

9.1 Experiment Setup

Figure 9.1 gives an overview of the hardware setup available during the experiment. Also, a

widebeam riometer was set up using a separate crossed dipole antenna near the basement. This

widebeam antenna has been recording power from 2002-10-20 until 2002-10-31 with only minor

interruptions. In addition, IRIS data is available for the entire time span.

Receiving (and recording) capability was limited to two simultaneous channels. Due to the

non-availability of Butler Matrices, phasing leads had been designed to allow additive beam-

forming (see chapter 2, section 2.3.1) for the vertical case and a pre-determined ‘worst-case’

(beam 595) pointing direction.

The two single-channel receivers could be switched manually between the different configu-

rations. Most recordings were taken with a 16+16 antenna configuration (ignoring the outermost

194

CHAPTER 9. FIRST EXPERIMENT RESULTS 195

8 antenna elements on each side). A noise source and manual variable attenuator were also avail-

able for calibration purposes (section 9.6). Table 9.1 gives an overview of the major datasets that

were recorded. In addition, raw input data was recorded for the following periods of time:

• 2002-10-28, 13:00h – 15:00h

• 2002-10-29, 07:00h – 09:00h

• 2002-10-29, 13:00h – 16:00h (alternating between sampling rates 1.1MHz and 2.2MHz)

• 2002-10-29, 17:00h – 19:00h

Output from the two prototype receivers was fed into an ADLINK 9812 A/D converter, which

interfaced to the ARCOM software for logging, cross-correlation, post-integration and visualisa-

tion. Suitable software configurations as used during the experiment and data flow are presented

in the discussion of ARCOM in chapter 8, see especially figures 8.6 and 8.8.

9.2 Note on Different Ways of Post-integrating Data

The current version of the MIA toolkit [Marc] post-integrates (IRIS) data by taking the mean

of the dBm values. This appears to work fine so far. Nevertheless, the setresolution() method

[Marb] has been designed with customisable post-integration functions in mind [Mard].

An alternative to the current approach is to take the mean of the linear power data in mW

instead of the mean of the logarithmic data in dBm. It is worth investigating the different results

one obtains with these different methods, this may also shed some light on why scintillation

appears in IRIS data the way it does instead of, for example, averaging out [Mard].

Results of this comparison can be seen in figure 9.2. The figure shows data from one par-

ticular IRIS pencil beam (beam 9) during one particular day (2002-10-30). The yellow plusses

are the original IRIS data as retrieved by the MIA getdata() function [Mara] for ‘one second’

resolution.1

The cyan line (shown with x-marks in the magnified insets) is averaged IRIS data as pro-

duced by MIA with the setresolution() function [Marb]. We can see that setresolution() inte-

grates a certain amount of samples, returning the average of these samples. This reduces the

time resolution of the resulting data, as can be seen clearly in the inset diagrams (cyan line).

1The term ‘resolution’ can be ambiguous, see section 9.3 for a more detailed discussion of the terms ‘resolution’
and ‘integration time’ as commonly used in MIA.

CHAPTER 9. FIRST EXPERIMENT RESULTS 196

Figure 9.1: Hardware available during the October 2002 experiment

date / time (UT) configuration available data
19/10/02 15:00 – 20/10/02 06:00 widebeam (X32)

reception with 2
receivers, different gain
settings

1.5s-integrated data
sampled at 3.3MHz

20/10/02 17:00 – 21/10/02 04:00 ditto 1s-integrated data @
3.3MHz

21/10/02 16:00 – 24/10/02 09:00 untapered 32+32
zenithal fan beams

1s-integrated data @
3.3MHz, with gaps, a
little cross-correlated
data, partly wrongly
calculated

24/10/02 21:00 – 25/10/02 12:00 ditto 1s-integrated data and
2s-cross-correlated data

25/10/02 21:00 – 26/10/02 18:00 incorrectly wired 16+16
beam

1s-integrated data and
0.5s-cross-correlated
data

26/10/02 21:00 – 27/10/02 22:00 zenithal 16+16 fan
beams

ditto

27/10/02 23:00 – 04/11/02 10:00 worst-case 16+16 fan
beams

ditto

04/11/02 13:00 – 05/11/02 13:00 worst-case 32+32 fan
beams

ditto

Table 9.1: Available datasets as recorded during October 2002 experiment

CHAPTER 9. FIRST EXPERIMENT RESULTS 197

Figure 9.2: Different averaging methods, demonstrated for IRIS pencil beam data

CHAPTER 9. FIRST EXPERIMENT RESULTS 198

One way to maintain the high time resolution while still averaging the data is to use a sliding

window to calculate the mean around every original sample. This maintains the original time

resolution. Apart from this, the results obtained by this method are identical to the previous ones

(black line).

Now to the difference between post-integrating (averaging) the dBm-values instead of the

original linear power values. The black line shows the yellow dBm-data post-integrated to 200s

integration time (i.e. averaged over 200 samples). This gives essentially the same result as

obtained by the MIA setresolution() function (the cyan line), only with higher time resolution:

all samples on the cyan (low time resolution) line coincide with their counterparts on the black

line.

On the other hand, the blue line shows the result of integrating the original yellow data in

the linear power domain, i.e. before converting the values to dBm. We can observe the following

facts:

• During quiet times (inset 2 around 15:30 in figure 9.2), no significant difference between

the two methods can be noticed. In fact, if we magnify the diagram further, we find that

the difference between the two curves is approximately 0.001dBm.

• During periods of strong scintillation (inset 1 around 2:30 in figure 9.2), post-integration

in the dBm domain gives a result around 0.04dBm below the linearly post-integrated re-

sult. We cannot easily convert this absolute value into a percentage since during times of

scintillation it is unclear which value should be used as a reference.

• Approximately the same effect can be observed for periods of absorption (inset 3 around

20:22 in figure 9.2). The dBm post-integrated values are around 0.03dBm below the

linearly post-integrated values. This translates directly into an error of about 1.5% relative

to the absorption at the time (around 2dB).

9.2.1 Conclusion

From the observations above we can conclude:

• Post-integrating data in the dBm domain does introduce a slight offset from the ‘correctly’

(i.e. linearly) integrated values.

CHAPTER 9. FIRST EXPERIMENT RESULTS 199

• This offset is negligible during quiet times, and about the same as the specified resolution

of IRIS (0.05dBm) during times of scintillation or absorption.

• This will affect IRIS absorption data, because the quiet-day curves used to calculate ab-

sorption are produced from quit-day recordings, which we have found to have only a very

slight offset, whereas the current power data, especially during absorption events, will

have a higher offset.

• It is not deemed necessary to change the algorithm that is currently used in MIA for IRIS

data, as this would involve reprocessing all the existing data and no significant increase in

accuracy can be expected because of the small values involved.

• However, for the discussions in the following sections, we will use the linear post-integra-

tion method for both IRIS and ARIES data, mainly because ARIES data is not (yet) fully

integrated into MIA anyway.

9.3 Note on the Terms ‘Resolution’ and ‘Integration Time’

In MIA, the terms ‘resolution’ and ‘integration time’ are sometimes used slightly ambiguously.

‘Resolution’ primarily refers to the time resolution of the dataset in question. For example, if

we have one sampled value for each second, the data is said to have a ‘resolution’ of 1s.

However, in MIA, the term ‘resolution’ often implies a certain integration time, i.e. the time

during which the input data was integrated. Now, if we change the resolution of a dataset from,

say, 1s to 2s using the MIA setresolution() function [Marb], not only will this result in only half

the number of samples, it will also post-integrate the samples, so that each resulting sample is

the mean of two original samples.

In other words, as well as having changed the (time-)resolution of the data, we have also

changed the effective integration time. Most of the time, this is what we intended to do anyway.

Sometimes, however, we want to maintain the high time resolution even though we are post-

integrating the data. This can be achieved with a sliding window algorithm (filter) as mentioned

in section 9.2. It is also worth noting that data from an IRIS type system that is commonly

referred to as ‘1s’ data (meaning a time resolution of 1s as well as an integration time of 1s) has

in fact only been integrated for approximately 47ms due to the working principle of the IRIS

receiver hardware. See section 9.4.2.1 for a more detailed discussion of this topic.

CHAPTER 9. FIRST EXPERIMENT RESULTS 200

9.4 Relative Noise Intensity ARIES–IRIS

From previous mathematical and simulated results (see especially chapter 5) we expect the cross-

correlated ARIES fan beam data to be noisier compared to IRIS data for any particular integra-

tion time. However, a first look at the ARIES results showed that “the width of the 1s-traces in

ARIES and IRIS are compatible” [Nie02a] i.e. they are approximately the same width. This is

unexpected and we will try to shed some light on this in the remainder of this section.

9.4.1 Expected Result

We expect the noisiness of the signal to become worse for shorter integration times and/or

smaller bandwidths. Generally, we expect the signal from an ARIES pencil beam to be much

noisier than a signal from an IRIS pencil beam. Reasons for this are:

• An ARIES pencil beam is looking at a much smaller area of the sky than an IRIS pen-

cil beam. Therefore, we expect to receive less power, so the signal-to-noise ratio will

decrease.

• ARIES pencil beams are formed through cross-correlation of two fan beams. The fan

beams themselves have strong sidelobes and will pick up strong signals from all over the

sky. It will therefore take longer to isolate the pencil beam by cross-correlation compared

to how long it takes to form a pencil beam with a filled array (see the simulations done in

chapter 5).

9.4.2 Analysis

The relative noise of the data was determined by calculating the standard deviation s of several

different detrended datasets. The standard deviation s gives a measurement for the ‘width’ of

the trace; 99.7% of all data points will fall into a 6s interval. Therefore we now have a means

of plotting the trace width of recorded data for different parameters, first of all for different

integration times.2

Of course, this can also be done for existing IRIS data, therefore enabling us to compare the

two techniques.

2The width could also be determined for different receiver bandwidths, however, during the October 2002 exper-
iment, data was only recorded at one fixed bandwidth due to time and equipment constraints.

CHAPTER 9. FIRST EXPERIMENT RESULTS 201

00 04 08 12 16 20 00
−114
−113
−112
−111
−110
−109
−108
−107
−106
−105
−104

po
w

er
 [d

B
m

]

(1) input data

ARIES T=1s (−4dBm)
IRIS T=’1s’
IRIS T=1s

00 04 08 12 16 20 00
−5
−4
−3
−2
−1

0
1
2
3
4
5

po
w

er
 [d

B
]

(2) detrended ARIES input data

00 04 08 12 16 20 00
−5
−4
−3
−2
−1

0
1
2
3
4
5

po
w

er
 [d

B
]

(3) detrended IRIS input data

00 04 08 12 16 20 00
0

0.5

1

1.5

2

6s
 [d

B
]

(4) sliding window 6 * standard deviation (windowsize=2400s)

sample point ARIES
sample point IRIS
ARIES T=1s
ARIES T=10s
ARIES T=200s
IRIS T=’1s’
IRIS T=1s
IRIS T=’200s’
IRIS T=20s

10
−2

10
0

10
2

10
4

10
−2

10
−1

10
0

integration time T [s]

tr
ac

e
w

id
th

 6
s

[d
B

]

(5) trace width vs. integration time

ARIES
’IRIS’
IRIS

Figure 9.3: Beam width versus integration time. ARIES worst case beam versus IRIS beam 9
for 2002-10-30.

CHAPTER 9. FIRST EXPERIMENT RESULTS 202

Figure 9.3 shows some results for 2002-10-30. The top panel shows the two basic input

datasets: ARIES data from the ‘worst-case’ beam 595 (see chapter 7), integrated to 1s integration

time and IRIS data from IRIS beam 9, with the highest possible ‘resolution’ of ‘1s’ (which has

in effect an integration time of only 47ms, see section 9.4.2.1 below). The panel also shows the

same IRIS data post-integrated to a physically correct integration time of 1s by averaging over

1000ms
47.5ms ≈ 21 source samples.

Panels 2 and 3 show the same data post-integrated to different integration times, for ARIES

and IRIS data, respectively. Also, the data has been detrended by subtracting a 900s average

of the respective dataset from the raw data. Detrending makes it easier to visually compare the

trace widths.

Panel 2 shows ARIES data post-integrated to integration times of 1s, 10s and 200s respec-

tively. Panel 3 shows IRIS data at the original physical integration time of 47ms (designated

“T=‘1s”’) and post-integrated IRIS data for physical integration times of 1s (designated “T=1s”,

generated by averaging 21 samples), 9.5s (designated “T=‘200s”’, generated by averaging 200

samples) and 20s (designated “T=20s”, generated by averaging 420 samples).

Panel 4 summarises the information from panels 2 and 3. It shows the standard deviation

(×6) for each of the curves in panels 2 and 3, calculated using a sliding window mechanism with

a window size of 2400s. Therefore, we now have measurements for the trace widths at every

moment in time.

Note the two vertical lines (‘sample point ARIES’ and ‘sample point IRIS’). The values at

the intersection of these lines with the ARIES respectively IRIS trace width curves are used to

produce the diagram in panel 5. These sample points were positioned manually at what seems

to be a reasonably quiet time (no scintillation, no absorption) for the respective dataset.

Panel 5 shows the trace width of the data over the respective integration time on a double

logarithmic scale. The magenta line shows the relationship between integration time and trace

width for ARIES data. The green lines show the relationship between integration time and trace

width for IRIS data, where the dotted green line uses the ‘physically correct’ integration times as

described in section 9.4.2.1, whereas the solid green line uses the integration times as commonly

referred to in MIA.

CHAPTER 9. FIRST EXPERIMENT RESULTS 203

9.4.2.1 Note on How to Interpret the Term ‘1s Data’ for an IRIS Type Riometer

There are different possibilities of interpreting IRIS data: What we commonly refer to as 1s

data is really data that has only been integrated for far less than 1s due to the working principle

of the IRIS system: The 49 outputs from the phasing network are fed into only 7 receivers.

This is achieved by time-division switching, each receiver being fed by one of 7 columns of 7

beams. The power level for each beam is recorded once per second, and switching is arranged

so that each second is divided into 8 time slots, the 7 beams being connected for 125ms in turn

[BHH95].

The IRIS manual [DR94, p. 10] describes that the sampling process also involves a 25ms

pause before the output of the A/D converter is integrated for 95ms, followed by another 5ms

pause. The effective integration time for the analogue part of the system (the La Jolla Riometer,

[La 74]) was adjusted to 6ms [DR94, p. 10], which is much smaller than the 95ms during which

the signal is integrated in the A/D conversion process. Therefore this larger time constant of

95ms dominates, which would result in an effective integration time in the order of 95ms.

The IRIS riometer employs a noise-balancing technique, where an internal noise source is

constantly adjusted to match the power of the received signal, thereby making the measure-

ment independent of receiver gain changes. This is achieved by continuously switching between

receiving the external signal and receiving the signal from the internal noise source with a fre-

quency as high as 583Hz and a duty-cycle of 50% [La 74]. Therefore the effective integration

time of IRIS (the time that we are actually looking at the signal) is normally considered to be

somewhere in the region of 95/2 = 47.5ms, and this is what we will use for the following dis-

cussions.

One implication of these findings is that, in order to obtain IRIS data with an effective inte-

gration time of 1s, we need to post-integrate 1000ms
47.5ms ≈ 21 so-called IRIS 1s data samples. This

technique will not give very accurate results when used with rapidly (i.e. with time constants

smaller than 21s) fluctuating input signals, as the 21 post-integrated samples are spaced approx-

imately 1s apart in time and will therefore not cover 1s of input data but 21s. However, for

relatively constant input signals where the sole purpose of integrating is to reduce the noise, it

will not make any difference whether the data to be integrated was contiguous or not.

CHAPTER 9. FIRST EXPERIMENT RESULTS 204

9.4.2.2 Note on Post-integration Techniques for Complex Samples

Raw ARIES data as recorded by the test system used during the October 2002 experiment con-

sists of complex samples. Obviously, post-integrating (averaging) these raw samples is not the

same as post-integrating (averaging) the absolute values of these samples. See figure 9.4 (the

figure is for a post-integration time of 400× 0.5s = 200s). In fact, the only correct way is to

post-integrate the original complex samples. This is also how the raw data samples from the

A/D converter are integrated in the first place. This means that we cannot easily convert, say,

ARIES data that has been (post-)integrated for 10s to data with an integration time of, say, 60s.

Instead, we always have to start from the original, complex samples, which in this case (the

October 2002 experiment) are available with an integration time of 0.5s for most of the experi-

ment’s duration.

9.4.3 Conclusion

In conclusion, regarding the trace width as a measurement for the precision of the data, table 9.2

shows the accuracy that we can achieve with IRIS/ARIES for different integration times. This

is the textual representation of the bottom panel in figure 9.3.

9.5 Relative Noise Intensity for Different ARIES Beams

Of course, the same considerations as in section 9.4 can also be used to compare two different

ARIES beams. In this section we will compare the zenithal 16+16 ARIES beam to the worst-

case ARIES beam 595.

The results can be found in figure 9.5. The zenithal beam seems to be worse than beam 595.

The table in section 9.4.3 incorporates these results. It turns out that beam 595 is not actually

the ‘worst-case’ beam as far as noise is concerned. Comparisons between all pencil beams were

not possible within the constraints of the 2002 experiment setup, and are therefore not covered

in this thesis.

9.6 The Dynamic Range of the Receivers

One concern that was raised is that it may well be that because we were operating at the very

low end of the dynamic range of the receivers, we cannot record any form of absorption because

CHAPTER 9. FIRST EXPERIMENT RESULTS 205

00 04 08 12 16 20 00
−112

−110

−108

−106

−104

−102

−100

−98

−96

−94

−92

time [hours]

po
w

er
 [d

bm
]

ARIES 16+16 worst case pencil beam for 2002−10−30

abs(smooth(x,400))
smooth(abs(x),400)

Figure 9.4: Difference between post-integrating (complex) raw data and post-integrating pre-
processed data

T=1s T=10s T=21s T=200s T=420s
IRIS 0.53dB 0.20dB 0.13dB 0.04dB 0.03dB

ARIES beam 595 0.90dB 0.56dB 0.45dB 0.29dB 0.23dB
ARIES zenithal beam 3.38dB 2.19dB 1.23dB

Table 9.2: Achievable accuracy for different integration times. Figures in italics are interpolated
respectively extrapolated from the graph in figure 9.3, panel 5.

CHAPTER 9. FIRST EXPERIMENT RESULTS 206

00 04 08 12 16 20 00
−114
−113
−112
−111
−110
−109
−108
−107
−106
−105
−104

po
w

er
 [d

B
m

]

(1) input data

ARIES beam 595, T=1s
ARIES zenithal beam, T=1s

00 04 08 12 16 20 00
−5
−4
−3
−2
−1

0
1
2
3
4
5

po
w

er
 [d

B
]

(2) detrended ARIES beam 595 input data

00 04 08 12 16 20 00
−5
−4
−3
−2
−1

0
1
2
3
4
5

po
w

er
 [d

B
]

(3) detrended ARIES zenithal beam input data

00 04 08 12 16 20 00
0

1

2

3

4

5

6s
 [d

B
]

(4) sliding window 6 * standard deviation (windowsize=2400s)

sample point beam 595
sample point zenithal beam
595 / T=1s
595 / T=10s
595 / T=200s
zenithal / T=1s
zenithal / T=10s
zenithal / T=200s

10
−2

10
0

10
2

10
4

10
−1

10
0

10
1

integration time T [s]

tr
ac

e
w

id
th

 6
s

[d
B

]

trace width vs. integration time

ARIES 595
ARIES zenithal

Figure 9.5: Beam width versus integration time (zenithal beam). ARIES beam 595 (2002-10-30)
versus ARIES zenithal 16+16 beam (2002-10-27).

CHAPTER 9. FIRST EXPERIMENT RESULTS 207

further attenuation of the incoming signal will get lost in the noise floor of the receivers.

Figure 9.6 shows calibration curves for the two receivers as recorded 2002-10-25, 15:44UT.

Those curves were recorded by manually stepping through a 60dB input power range in −1dB

steps, one step every 15 seconds. The input power was generated by a noise source followed by

the manually operated attenuator, see the bottom path in figure 9.1. The x-axis is linear time, the

y-axis in the top panel is in arbitrary linear power units as output by the integrator (T=1s) of the

respective receiver. The y-axis in the bottom panel is in arbitrary dB units.

To the right of the calibration curves, we show two sets of recorded data for each receiver,

the diagrams share the same y-axis scaling. We can see that, when looking at the logarithmically

scaled plots, we are always operating in the lower half of the total dynamic range of the receivers.

9.6.1 Conclusion (Dynamic Range)

Even though we are operating at the bottom end of the dynamic range of the receivers, it seems

we are not too close to or even below the noise floor. However, as can be seen clearly, especially

in the top panel in figure 9.6, we certainly do not make use of the full available resolution of the

A/D converter (12bit). For the final system, care will be taken to exploit the full A/D range.

9.7 Influence of the Radio Stars Alone

The readings from the experimental cross-correlated ARIES beams contain features that, at the

time, were not easily explainable. This section will compare these readings to the simulated

influence of only the strongest two radio stars, Cassiopeia and Cygnus. This is to show how

much the recordings are influenced by these stars alone.

9.7.1 The Radio Stars

Figure 9.7 shows the ARIES 16+16 worst-case beam (beam 3501) recordings for 2002-10-30,

together with the simulated influence of Cassiopeia alone, Cygnus alone and Cassiopeia and

Cygnus together. Also, the simulated QDC is shown. These simulations were performed using

the RIOSIM package as developed by the author and described in chapters 6 and 7. Please note

that the absolute dBm-values in figure 9.7 are not too meaningful, as calibration is arbitrary at

this stage.

We can observe the following facts:

CHAPTER 9. FIRST EXPERIMENT RESULTS 208

−160−140−120−100
0

2

4

6

8

10

12

14

16

18
x 10

12

calibration power [dBm]

Calibration

ra
w

 p
ow

er
 [l

in
ea

r]

Rx 1
Rx 2

00 04 08 12 16 20 00
0

2

4

6

8

10

12

14

16

18
x 10

12

t

Dataset 1

Dynamic Range Considerations / linear scale

00 04 08 12 16 20 00
0

2

4

6

8

10

12

14

16

18
x 10

12 Dataset 2

t

−160−140−120−100
130

135

140

145

150

155

160

165

calibration power [dBm]

Calibration

ra
w

 p
ow

er
 [d

B
]

Rx 1
Rx 2

00 04 08 12 16 20 00
130

135

140

145

150

155

160

165

t

Dataset 1

Dynamic Range Considerations / dB scale

00 04 08 12 16 20 00
130

135

140

145

150

155

160

165
Dataset 2

t

Figure 9.6: Receiver working range and signal dynamic range

CHAPTER 9. FIRST EXPERIMENT RESULTS 209

• The simulated QDC shows a steady increase as we get nearer to the peak (18:00UT), then

the simulated QDC values decrease

• The recorded data follows the same general trend.

• The peak due to Cassiopeia in the main lobe is clearly visible in the recorded data.

• Where the radio star simulations predict a strong influence of Cassiopeia and/or Cygnus

on the beam, we often observe a significant decrease in received power.

• This suggests a phase difference between the signals from the two fan beams, due to

reception in different sidelobes or in one main lobe and one sidelobe, which reduces the

result of the cross-correlation.

• The most prominent example is around 15:00UT, where Cygnus is in the main lobe of

the NS fan beam and in the second sidelobe of the EW fan beam. See the following

section 9.7.2 for a more detailed discussion of this phenomenon.

9.7.2 Phase Considerations

With the untapered ARIES array as used for the October 2002 experiment, we get very strong

sidelobes in the two linear arrays, and therefore even more so in the pencil beam, for an expla-

nation see chapter 2, section 2.4.3.1. The resulting signal is a kind of ‘weighted sum’ of the

incoming signals from all lobes. In other words, it is generally impossible to tell what exactly

was going on in the main lobe, because even though the signals received from the main lobe are,

of course, part of the resulting signal, all the signals coming from the sidelobes are by no means

negligible and, if strong enough as a whole, they can even obscure (i.e. influence in positive and

negative direction) the signal from the main lobe completely.

However, when we have a very strong point source moving along a known path, the influence

of that point source is likely to dominate the signal from the beam in question. With ARIES,

we do have two such prominent point sources, Cassiopeia and Cygnus, the two radio stars.

Figures 9.8 and 9.9 show the traces of the two radio stars (Cygnus is the outer circle, Cassiopeia

the inner circle) projected onto the ionosphere at 90km height. Also shown in these figures

are the −3dB,−6dB,−9dB, ... outlines of the two ARIES 16+16 fan beams (figure 9.8) that

together form the 16+16 worst-case pencil beam. Figure 9.9 shows this pencil beam. The labels

on the star traces are in UT for 2002-10-30.

CHAPTER 9. FIRST EXPERIMENT RESULTS 210

We find that for the time in question, around 15:00UT to 16:00UT, Cygnus passes through

the main lobe of the NS fan beam (2503), see figure 9.8 panel (b). At the same time, as we

can see in panel (a), Cygnus passes through the second sidelobe of the EW fan beam (2502).

Figure 9.10 shows the amplitude and phase response of a linear phased array of 16 elements, as

is used to create the ARIES fan beams in this experiment. One finds that the average phase for

a signal coming from the sidelobes is offset by ±90◦ compared to the average phase in the main

lobe. For point sources, this phase difference can therefore amount to 180◦ and more, depending

on the exact position of the point source relative to the sidelobes.

In the case of these particular two fan beams, we receive the same strong signal originating

from Cygnus, but with a phase difference of somewhere between 90 and 180 degrees. Because

this strong signal dominates the received signal in spite of all the other sidelobes, the complex

correlation between the signals from the two fan beams will represent this phase shift. We

can clearly observe this fact in figure 9.7 (15:30UT). As the star passes through this particular

position, the complex result of the cross-correlation picks up the phase difference resulting in a

very much reduced final result.

Similar observations can be made for other times, the other most noticeable event in the

dataset presented is probably around 8:30UT, where the real component of the cross-correlated

signal again gets very much reduced, whereas the absolute value remains approximately con-

stant. This indicates a phase shift of around 90◦.

9.7.3 Conclusion (Influence of Radio Stars)

• Strong signals from the sidelobes modify the cross-correlated signal from the pencil beam.

• Because the signals from the sidelobes have a relative phase difference, the cross-corre-

lated signal may get significantly reduced. This reduction in signal is an effect specific to

the Mills Cross due to the cross-correlation stage. It does not happen in IRIS type filled

array systems.

• So far, the only way of avoiding this seems to reduce the sidelobes significantly before the

cross-correlation takes place, i.e. by tapering the two linear arrays. This is in accordance

with Nielsen’s findings in the original report [Nie01]. We will discuss a more permissible

post-processing (interpolation) approach in chapter 10.

• Therefore, the reduction in signal, which may at first glance be conceived as inexplicable,

CHAPTER 9. FIRST EXPERIMENT RESULTS 211

actually proves that the cross-correlation approach is working as expected.

9.8 A Comparison of IRIS Pencil Beams to ARIES Pencil Beams

for Several Days

Another issue that was raised is that the ARIES recordings seem to vary quite severely from

day to day. In order to quantise this observation, figure 9.11 compares ARIES recordings for

the period from 2002-10-28 till 2002-11-03. During this time, ARIES was configured for beam

3501, the 16+16 pencil beam pointing into the ‘worst-case’ direction. The dataset for 2002-10-

29 contains some faulty data because of ongoing experiments at the ARIES site during that day

(see experiment log for details). That is why the green lines in figure 9.11 should not be taken

too seriously.

The top panel in figure 9.11 shows the recordings from ARIES, post-integrated to an inte-

gration time T=400s, taking the absolute value of the resulting complex samples.

The middle panel shows again the recordings from ARIES, post-integrated to an integration

time T=400s, but this time only the real part of the complex result is plotted.

The bottom panel in figure 9.11 shows IRIS beam 9 data, again post-integrated to T=400s

for the same period.

9.8.1 Conclusion

What at first glance seems a very high variation from day to day seems to come from the gen-

erally very disturbed conditions during the period in question. This can be derived from the

fact that we also see significant variation in IRIS pencil beam data for this period, although not

as high as in ARIES data, which was again expected since the ARIES pencil beam in question

is twice as narrow as the IRIS one, therefore picking up finer structures and showing larger

variations.

Long after the experiment had finished, it was also realised that the prototype receivers are

very sensitive to (ambient) temperature changes, resulting in both gain and offset drifts. This

will also affect the October 2002 recordings to some extent. No independent temperature data

was collected.

CHAPTER 9. FIRST EXPERIMENT RESULTS 212

9.9 Effect of Height Variation on Beam Intersection with IRIS (80–

100km)

Most of the beam contour maps throughout this thesis were produced by intersecting the beam

pattern in question with a spherical ionosphere at a height of 90km above the Earth’s surface

(see chapters 3, 6 and 7). When determining, which IRIS beam(s) are looking at the same piece

of ionosphere as a given ARIES beam, this height of 90km was used for the calculations. In this

section we examine how the projection height influences the locations of the projected beam

outlines.

Figure 9.12 shows ARIES and IRIS beam projections for three different projection heights.

Panels (a), (c) and (e) show the whole field of view for the two systems at 80km, 90km and

100km projection heights, respectively. Panels (b), (d) and (f) on the right-hand side show a

magnified view around ARIES beam 3501 recorded during the October 2002 experiment around

2002-10-30. Beam 3501 is the big yellow contour, the small yellow contour is beam 3001, a

32+32 pencil beam pointing in the same direction as the recorded beam 3501. This contour is

included for comparison purposes. The magenta contours are IRIS beams 9 and 10, from left to

right.

9.9.1 Conclusion

• Changing the projection height changes the relative positions of ARIES and IRIS beam

contours.

• For reasonable projection heights between 80km and 100km, the changes are rather small.

• Figure 9.12 shows that ARIES beam 3501 is always closely co-located with IRIS beam

10, as far as only the main lobe is concerned.

• Therefore, it makes sense to compare, say, recorded ARIES beam 3501 data to IRIS beam

10 data for the same time, no matter what the exact height of the absorption event might

have been.

• We must keep in mind that ARIES beam 3501 as recorded has very strong sidelobes that

lead to effects as described especially in preceding sections 9.7 and 9.8.

CHAPTER 9. FIRST EXPERIMENT RESULTS 213

9.10 Summary

The first ARIES experiment has proven that the Mills Cross (cross-correlation) technique allows

increased spatial resolution — even for the same number of antennas used — compared to a filled

array riometer. However, as predicted, at the same time it leads to an increased noise level in the

measurements with adverse effect for the minimum integration time. For filled array riometers

the integration time can be as low as 1
8 s; for a correlation system the integration time will need to

be at least some seconds to achieve comparable uncertainties. This agrees with the simulations

that were initially carried out by the author and others (chapter 5). The measurements also

indicated that antenna sidelobes introduce phase delays that can result in both signal reduction

and increase especially in the presence of a strong noise source (radio star).

The experiment showed the need to suppress the sidelobes of such a system to a level even

below the one determined by simulations and previous theoretical calculations due to the sensi-

tivity of the Mills Cross to phasing differences in the signals coming from the two arms of the

cross. This is achievable with appropriate tapering functions (see chapter 2). In addition, adap-

tive beam steering will be able to mask the influence of the strongest sources of interference,

the radio stars, see the suggestions for future developments in chapter 11. In any case, this first

experiment has proven that, together with advanced high-level processing software, a riometer

based on the Mills Cross technique will be able to image absorption with sufficient temporal and

unprecedented spatial resolution.

CHAPTER 9. FIRST EXPERIMENT RESULTS 214

00 04 08 12 16 20 00
−120

−115

−110

−105

−100

−95

−90

t [h]

Simulated Influence of Cas / Cyg during 2002−10−30

po
w

er
 [d

bm
]

Cas
Cyg
Cas + Cyg
QDC
ARIES 2002−10−30, T=400s, ABS
ARIES 2002−10−30, T=400s, REAL

Figure 9.7: Influence of the strong radio stars

CHAPTER 9. FIRST EXPERIMENT RESULTS 215

−21

−18

−15

−12

−9

−6

−3

0
ARIES beam 2502, 2002−10−30

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

00:00h

01:00h

02:00h

03:00h

04:00h
05:00h 06

:0
0h

07
:0

0h

08
:0

0h

09
:0

0h

10
:00

h

11:00h

12:00h

13:00h

14:00h
15:00h16:00h

17:00h

18:00h

19:00h

20:00h
21:00h

22:00h

23:00h

00:00h

01:00h

02:00h

03
:0

0h 04
:0

0h

05
:0

0h

06
:00

h

07:00h

08:00h

09:00h

10:00h

11:00h
12:00h13:00h

14:00h

15:00h

16:00h

17:00h

18:00h

19:00h
20:00h

21:00h

22:00h

23:00h

(a)

−21

−18

−15

−12

−9

−6

−3

0
ARIES beam 2503, 2002−10−30

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

00:00h

01:00h

02:00h

03:00h

04:00h
05:00h 06

:0
0h

07
:0

0h

08
:0

0h

09
:0

0h

10
:00

h

11:00h

12:00h

13:00h

14:00h
15:00h16:00h

17:00h

18:00h

19:00h

20:00h
21:00h

22:00h

23:00h

00:00h

01:00h

02:00h

03
:0

0h 04
:0

0h

05
:0

0h

06
:00

h

07:00h

08:00h

09:00h

10:00h

11:00h
12:00h13:00h

14:00h

15:00h

16:00h

17:00h

18:00h

19:00h
20:00h

21:00h

22:00h

23:00h

(b)

Figure 9.8: The radio stars’ influence on beam 3501. Part A: fan beams

CHAPTER 9. FIRST EXPERIMENT RESULTS 216

−21

−18

−15

−12

−9

−6

−3

0
ARIES beam 3501, 2002−10−30

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

00:00h

01:00h

02:00h

03:00h

04:00h
05:00h 06

:0
0h

07
:0

0h

08
:0

0h

09
:0

0h

10
:00

h

11:00h

12:00h

13:00h

14:00h
15:00h16:00h

17:00h

18:00h

19:00h

20:00h
21:00h

22:00h

23:00h

00:00h

01:00h

02:00h

03
:0

0h 04
:0

0h

05
:0

0h

06
:00

h

07:00h

08:00h

09:00h

10:00h

11:00h
12:00h13:00h

14:00h

15:00h

16:00h

17:00h

18:00h

19:00h
20:00h

21:00h

22:00h

23:00h

Figure 9.9: The radio stars’ influence on beam 3501. Part B: pencil beam

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15

20

si
gn

al
 s

tr
en

gt
h

∆ angle between aerials [rad]

Linear Phased Array, 16 aerials

−4 −3 −2 −1 0 1 2 3 4

−180

0

180

si
gn

al
 p

ha
se

 [°
]

∆ angle between aerials [rad]

Figure 9.10: Amplitude and phase response of a 16-element linear phased array

CHAPTER 9. FIRST EXPERIMENT RESULTS 217

00 04 08 12 16 20 00
−115

−110

−105

−100

−95
ARIES beam 3501, absolute value, T=400s

po
w

er
 [d

bm
]

00 04 08 12 16 20 00
−115

−110

−105

−100

−95
ARIES beam 3501, real part only, T=400s

po
w

er
 [d

bm
]

00 04 08 12 16 20 00
−115

−110

−105

−100

−95
IRIS beam 9, T=400s

po
w

er
 [d

bm
]

2002−10−28
(2002−10−29)
2002−10−30
2002−10−31
2002−11−01
2002−11−02
2002−11−03

Multiple Days of ARIES and IRIS Data

Figure 9.11: Pencil beam comparison for multiple days

CHAPTER 9. FIRST EXPERIMENT RESULTS 218

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

386

418

450

482

514

546

578

610

291

323

355

387

419

451

483

515

547

579

611

643

675

707

260

292

324

356

388

420

452
484
516
548

580

612

644

676

708

740

197

229

261

293

325

357

389
421
453
485
517
549
581

613

645

677

709

741

773

805

166

198

230

262

294

326

358
390
422
454
486
518
550
582
614

646

678

710

742

774

806

838

135

167

199

231

263

295

327
359
391
423
455
487
519
551
583
615
647

679

711

743

775

807

839

871

136

168

200

232

264

296

328
360
392
424
456
488
520
552
584
616
648

680
712

744

776

808

840

872

105

137

169

201

233

265

297
329
361
393
425
457
489
521
553
585
617
649
681

713

745

777

809

841

873

905

74

106

138

170

202

234

266
298
330
362
394
426
458
490
522
554
586
618
650
682
714
746

778

810

842

874

906

938

75

107

139

171

203

235

267
299
331
363
395
427
459
491
523
555
587
619
651
683
715
747

779

811

843

875

907

939

76

108

140

172

204

236

268
300
332
364
396
428
460
492
524
556
588
620
652
684
716
748

780

812

844

876

908

940

45

77

109

141

173

205

237

269
301
333
365
397
429
461
493
525
557
589
621
653
685
717
749
781

813

845

877

909

941

973

46

78

110

142

174

206

238
270
302
334
366
398
430
462
494
526
558
590
622
654
686
718
750
782

814

846

878

910

942

974

47

79

111

143

175

207

239
271
303
335
367
399
431
463
495
527
559
591
623
655
687
719
751
783

815

847

879

911

943

975

48

80

112

144

176

208

240
272
304
336
368
400
432
464
496528
560
592
624
656
688
720
752
784

816

848

880

912

944

976

49

81

113

145

177

209

241
273
305
337
369
401
433
465
497
529
561
593
625
657
689
721
753
785

817

849

881

913

945

977

50

82

114

146

178

210

242
274
306
338
370
402
434
466
498
530
562
594
626
658
690
722
754
786

818

850

882

914

946

978

51

83

115

147

179

211

243
275
307
339
371
403
435
467
499
531
563
595
627
659
691
723
755
787

819

851

883

915

947

979

52

84

116

148

180

212

244
276
308
340
372
404
436
468
500
532
564
596
628
660
692
724
756
788

820

852

884

916

948

980

85

117

149

181

213

245

277
309
341
373
405
437
469
501
533
565
597
629
661
693
725
757

789

821

853

885

917

949

86

118

150

182

214

246

278
310
342
374
406
438
470
502
534
566
598
630
662
694
726
758

790

822

854

886

918

950

87

119

151

183

215

247

279

311
343
375
407
439
471
503
535
567
599
631
663
695
727

759

791

823

855

887

919

951

120

152

184

216

248

280

312
344
376
408
440
472
504
536
568
600
632
664
696
728

760

792

824

856

888

920

153

185

217

249

281

313
345
377
409
441
473
505
537
569
601
633
665
697
729

761

793

825

857

889

154

186

218

250

282

314

346
378

410
442
474
506
538
570
602
634
666
698

730

762

794

826

858

890

187

219

251

283

315

347

379

411
443
475
507
539
571
603
635

667

699

731

763

795

827

859

220

252

284

316

348

380

412
444
476
508
540
572
604
636

668

700

732

764

796

828

285

317

349

381

413

445

477
509
541

573

605

637

669

701

733

765

318

350

382

414

446

478

510

542

574

606

638

670

702

734

415

447

479

511

543

575

607

639

2

3
4

5

6

8

9
10 11 12

13

14

15
16 17 18 19

20

21

22 23 24 25 26 27 28

29

30
31 32 33 34

35

36

37

38 39 40
41

42

44

45
46

47

48

(a) 80km (b) 80km, zoomed

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

386

418

450

482

514

546

578

610

291

323

355

387

419

451

483

515

547

579

611

643

675

707

260

292

324

356

388

420

452

484

516

548

580

612

644

676

708

740

197

229

261

293

325

357

389

421

453
485

517
549

581

613

645

677

709

741

773

805

166

198

230

262

294

326

358

390

422
454
486
518
550
582

614

646

678

710

742

774

806

838

135

167

199

231

263

295

327

359

391
423
455
487
519
551
583
615

647

679

711

743

775

807

839

871

136

168

200

232

264

296

328
360
392
424
456
488
520
552
584
616
648

680

712

744

776

808

840

872

105

137

169

201

233

265

297

329
361
393
425
457
489
521
553
585
617
649
681

713

745

777

809

841

873

905

74

106

138

170

202

234

266

298
330
362
394
426
458
490
522
554
586
618
650
682

714

746

778

810

842

874

906

938

75

107

139

171

203

235

267

299
331
363
395
427
459
491
523
555
587
619
651
683
715

747

779

811

843

875

907

939

76

108

140

172

204

236

268

300
332
364
396
428
460
492
524
556
588
620
652
684
716

748

780

812

844

876

908

940

45

77

109

141

173

205

237

269
301
333
365
397
429
461
493
525
557
589
621
653
685
717

749

781

813

845

877

909

941

973

46

78

110

142

174

206

238

270
302
334
366
398
430
462
494
526
558
590
622
654
686
718
750

782

814

846

878

910

942

974

47

79

111

143

175

207

239

271
303
335
367
399
431
463
495
527
559
591
623
655
687
719
751

783

815

847

879

911

943

975

48

80

112

144

176

208

240

272
304
336
368
400
432
464
496
528
560
592
624
656
688
720
752

784

816

848

880

912

944

976

49

81

113

145

177

209

241

273
305
337
369
401
433
465
497
529
561
593
625
657
689
721
753

785

817

849

881

913

945

977

50

82

114

146

178

210

242

274
306
338
370
402
434
466
498
530
562
594
626
658
690
722
754

786

818

850

882

914

946

978

51

83

115

147

179

211

243

275
307
339
371
403
435
467
499
531
563
595
627
659
691
723
755

787

819

851

883

915

947

979

52

84

116

148

180

212

244

276

308
340
372
404
436
468
500
532
564
596
628
660
692
724

756

788

820

852

884

916

948

980

85

117

149

181

213

245

277

309
341
373
405
437
469
501
533
565
597
629
661
693
725

757

789

821

853

885

917

949

86

118

150

182

214

246

278

310
342
374
406
438
470
502
534
566
598
630
662
694
726

758

790

822

854

886

918

950

87

119

151

183

215

247

279

311
343
375
407
439
471
503
535
567
599
631
663
695

727

759

791

823

855

887

919

951

120

152

184

216

248

280

312

344
376
408
440
472
504
536
568
600
632
664
696

728

760

792

824

856

888

920

153

185

217

249

281

313

345

377
409
441
473
505
537
569
601
633
665

697

729

761

793

825

857

889

154

186

218

250

282

314

346

378
410
442
474
506
538
570
602
634

666

698

730

762

794

826

858

890

187

219

251

283

315

347

379

411
443
475
507
539
571
603
635

667

699

731

763

795

827

859

220

252

284

316

348

380

412

444

476
508

540
572

604

636

668

700

732

764

796

828

285

317

349

381

413

445

477

509

541

573

605

637

669

701

733

765

318

350

382

414

446

478

510

542

574

606

638

670

702

734

415

447

479

511

543

575

607

639

2

3
4

5

6

8

9
10 11 12

13

14

15
16 17 18 19

20

21

22 23 24 25 26 27 28

29

30
31 32 33 34

35

36

37

38 39 40
41

42

44

45
46

47

48

(c) 90km (d) 90km, zoomed

 14oE 16oE 18oE 20oE 22oE 24oE

 68oN

 69oN

 70oN

 71oN

386

418

450

482

514

546

578

610

291

323

355

387

419

451

483

515

547

579

611

643

675

707

260

292

324

356

388

420

452

484

516

548

580

612

644

676

708

740

197

229

261

293

325

357

389

421

453

485

517

549

581

613

645

677

709

741

773

805

166

198

230

262

294

326

358

390

422

454

486

518

550

582

614

646

678

710

742

774

806

838

135

167

199

231

263

295

327

359

391

423
455
487
519
551
583

615

647

679

711

743

775

807

839

871

136

168

200

232

264

296

328

360

392
424
456
488
520
552
584
616

648

680

712

744

776

808

840

872

105

137

169

201

233

265

297

329

361
393
425
457
489
521
553
585
617
649

681

713

745

777

809

841

873

905

74

106

138

170

202

234

266

298

330

362
394
426
458
490
522
554
586
618
650

682

714

746

778

810

842

874

906

938

75

107

139

171

203

235

267

299

331
363
395
427
459
491
523
555
587
619
651
683

715

747

779

811

843

875

907

939

76

108

140

172

204

236

268

300
332
364
396
428
460
492
524
556
588
620
652
684
716

748

780

812

844

876

908

940

45

77

109

141

173

205

237

269

301

333
365
397
429
461
493
525
557
589
621
653
685

717

749

781

813

845

877

909

941

973

46

78

110

142

174

206

238

270

302
334
366
398
430
462
494
526
558
590
622
654
686
718

750

782

814

846

878

910

942

974

47

79

111

143

175

207

239

271

303
335
367
399
431
463
495
527
559
591
623
655
687
719

751

783

815

847

879

911

943

975

48

80

112

144

176

208

240

272

304
336
368
400
432
464
496
528
560
592
624
656
688
720

752

784

816

848

880

912

944

976

49

81

113

145

177

209

241

273

305
337
369
401
433
465
497
529
561
593
625
657
689
721

753

785

817

849

881

913

945

977

50

82

114

146

178

210

242

274

306
338
370
402
434
466
498
530
562
594
626
658
690
722

754

786

818

850

882

914

946

978

51

83

115

147

179

211

243

275

307
339
371
403
435
467
499
531
563
595
627
659
691
723

755

787

819

851

883

915

947

979

52

84

116

148

180

212

244

276

308

340
372
404
436
468
500
532
564
596
628
660
692
724

756

788

820

852

884

916

948

980

85

117

149

181

213

245

277

309

341
373
405
437
469
501
533
565
597
629
661
693

725

757

789

821

853

885

917

949

86

118

150

182

214

246

278

310

342
374
406
438
470
502
534
566
598
630
662
694

726

758

790

822

854

886

918

950

87

119

151

183

215

247

279

311

343

375
407
439
471
503
535
567
599
631
663
695

727

759

791

823

855

887

919

951

120

152

184

216

248

280

312

344

376
408
440
472
504
536
568
600
632
664

696

728

760

792

824

856

888

920

153

185

217

249

281

313

345

377

409
441
473
505
537
569
601
633

665

697

729

761

793

825

857

889

154

186

218

250

282

314

346

378

410

442

474
506
538
570

602

634

666

698

730

762

794

826

858

890

187

219

251

283

315

347

379

411

443

475

507

539

571

603

635

667

699

731

763

795

827

859

220

252

284

316

348

380

412

444

476

508

540

572

604

636

668

700

732

764

796

828

285

317

349

381

413

445

477

509

541

573

605

637

669

701

733

765

318

350

382

414

446

478

510

542

574

606

638

670

702

734

415

447

479

511

543

575

607

639

2

3
4

5

6

8

9

10 11
12

13

14

15
16 17 18 19

20

21

22 23 24 25 26 27 28

29

30
31 32 33 34

35

36

37

38
39 40

41

42

44

45

46
47

48

(e) 100km (f) 100km, zoomed

Figure 9.12: ARIES / IRIS beam projections onto different heights

Chapter 10

A New Approach to Image

Interpolation in Riometry

In this chapter, we present data recorded by ARIES, and how phasing issues affect the image

output. We develop a metric for quantitatively comparing the quality of different image inter-

polation methods and apply this metric to various simulations. The traditional approach for

riometer image interpolation (as used by IRIS) is presented, and its drawbacks are pointed out.

We suggested two new approaches to riometer image interpolation in [GSH05], mainly using

IRIS data due to the fact that no longer periods of complete (i.e. all-beam) ARIES data were yet

available. This is now no longer the case, and in this chapter we will mainly present results using

real ARIES data and simulations of the ARIES system. Before doing this, however, sections 10.1

and 10.2 below contain some more information on motivation, the currently used approach to

image interpolation, the new algorithm and some additional background information.

10.1 Motivation

Sidelobes often generate additional complications in riometry. Especially in standard phased

array-based imaging riometers, the first sidelobes of any given beam are never below a level

of −13dB from the main lobe, see chapter 2. Especially during periods of high solar activity,

strong bursts of radio noise will be received through sidelobes and falsely classified as coming

from the pointing direction of the main lobe of the corresponding beam. Scintillation seen by a

sidelobe will affect the main beam reading, even though the main beam might be pointing in a

direction entirely free of scintillating strong radio sources.

219

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 220

This problem is not as severe in multiplicative array type riometers, since the sidelobes need

to be reduced considerably even before the cross-correlation stage in order to prevent errors due

to phase differences, see the initial investigations and analyses in chapter 9.

Furthermore, however, the so-called ‘image data’ from fixed beam instruments still consists

of a finite number of data points per ‘image,’ 49 in the case of IRIS type riometers. This requires

interpolation between the available data points to come up with a complete image, and leads to

the question which interpolation method is most appropriate, given that the data points do not

really represent (power) values at certain discrete directions but are instead integrated values

over the whole sky, convolved with the respective beam pattern.

Since the general shape of each beam (beam pattern) can be calculated theoretically, and has

been found to be consistent with actual observations1, see for example figure 9.7 in chapter 9, we

can try to use this additional knowledge to derive a more accurate representation of the spatial

distribution of the received noise power, therefore no longer relying on the simpler interpolation

methods.

We will describe a new approach, GLEAM, in section 10.3, including some notes on its

actual implementation in MATLAB. This will be followed up by several case studies to evaluate

its performance using both real and simulated data.

10.2 Prerequisites

In this section we introduce some general facts that are used for the observations in the following

sections. We explain the role that obliquity factors (do not) play for the observations. Many

plots in this chapter use the FLATM projection method as introduced in chapter 6, see especially

figure 6.11.

10.2.1 The Need for Image Interpolation

As already repeatedly mentioned in earlier chapters, see for example figure 7.1 in chapter 7,

imaging riometers are still based around a set of beams pointing in different directions. The more

beams, the finer the level of detail that can be resolved. For data analysis, the raw beam data

(a time series of power values for each beam) needs to be interpolated onto a (usually regularly

1Beam patterns can also be measured experimentally, though in case of riometers and to the author’s knowledge
this has not been done. One approach would be to use strong radio stars as known noise sources, though of course
these stars cannot be moved around freely, so one would have to be content with the natural diurnal variation of their
location(s). This is one of the suggestions for future work presented in chapter 11.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 221

spaced) grid, an image. This image is a spatial representation of the observed area. Along with

the imaging capabilities of riometers came the necessity to spatially interpolate between the

measurements in order to form a real image of the observed area. Time series of these images

can then be used for further studies like analysing the motion of absorption patches [MHMH04]

and serve as a source for more advanced diagrams such as keograms, movies and virtual beams,

which allow a closer look at the spatial distribution of structures and motion. These images

can also be directly compared to images from other imaging instruments, for example optical

cameras [dPKH02].

A major feature of interpolated images is that they enable, to a certain extent, the abstraction

from beam data to data for arbitrary pointing directions of interest, sometimes called ‘virtual

beams.’

We will introduce the traditionally used interpolation method below, and then proceed to

present and evaluate a new, alternative, approach. As an introduction, figure 10.1 compares

real IRIS and real ARIES data for one specific moment in time. Each dataset is shown as

a simple square matrix plot giving the instantaneous power values for each beam. Note how

ARIES data forms more of an image simply due to the fact that there are more data values

per unit area. See also the contour plot comparing ARIES and IRIS beam contours in chapter 7

(figure 7.1). Nevertheless, these plots still do not directly represent sky brightness, they are beam

power values. We will come back to this issue, and how GLEAM improves on this, below. We

will present both ‘traditional style’ interpolated images and GLEAM-based interpolated images

further down.

10.2.2 Traditional IRIS Interpolation Algorithm

For current IRIS type systems, riometer absorption images are usually created by interpolating

between absorption values for individual beams. The locations of the beam centres serve as

grid points for subsequent linear interpolation. This technique generally produces good results.

However, the fact that the actual shape of the imaging beams is not considered, potentially intro-

duces errors and can lead to misinterpretations. In particular, any given imaging beam receives

signals not from one direction but from a range of directions around the beam centre, depending

on the beamwidth, which itself is inversely proportional to the extents of the receiving antenna

(see chapter 2). Also, a not always negligible fraction of signal is received from sidelobes that

point in a significantly different direction to that of the main beam.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 222

The methods proposed in this chapter are inherently different in that they take the shape of

the receiving beams into account. In doing so, they have the potential to compensate for the

effects of sidelobes, to overcome the spatial constraints of linear interpolation (thus extending

the field of view) and to uncover features that may not show up in traditionally interpolated

images.

IRIS power/absorption images as created by the Multi-Instrument Analysis Toolkit (MIA)

[MH04] use a projection similar to the FLATM projection to map the location of the 49 beam

centres onto a flat two-dimensional grid2. MIA assumes that the recorded power/absorption

values originate from the respective beam centre (the direction of maximum gain, also referred

to as beam axis or boresight) and then uses linear interpolation to fill the space between the

beam centres. An example of this can be seen in figure 10.2 (left panel), together with the

triangles that are used internally by the two-dimensional linear interpolation algorithm. The

vertices of the triangles coincide with the 49 beam centres. As the four corner beams (1, 7, 43,

49) have significant sidelobes [AGW72] and the assumption of all power being concentrated at

the beam centre does not even approximately hold, these beams are usually ignored, leading to

an interpolated image as depicted in figure 10.2 (right panel). Therefore the useable working

area for this algorithm is defined by the convex envelope of the beam centres projected onto a

flat grid by the FLATM projection.

Apart from the general inaccuracy stemming from the ‘all power is coming from the main

beam pointing direction’ assumption, one other major drawback of this algorithm can imme-

diately be seen in figure 10.2. Consider the bright (red) horizontal band that is visible in both

panels. This is our galaxy, and it extends far beyond the instrument’s field of view. However,

in both the left (49 beam) and the right (45 beam) case, the bright band seems to terminate well

within the field of view. This is due to the fact that the linear interpolation algorithm fills the

space in question by interpolating along a line between the two outermost beams, and there are

no suitable beams closer to the centre to set the picture right. Similarly, any observed absorption

patch moving into the field of view will appear much weaker — or cut off — in the interpolated

image until it makes its way into the central area. To avoid this, the nominal field of view has to

be reduced further so as to only cover the densely beam-populated area in the central part of the

figure.

2Recent versions of MIA now use a default grid based on geographic latitude and longitude for interpolation,
as geographic coordinates are more universally useful and accepted. This does not change the basic interpolation
algorithm, however. We will stick with the FLATM projection in this paper, because it does not introduce any
asymmetric distortion effects and is independent of instrument location.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 223

2 4 6

1

2

3

4

5

6

7
0

500

1000

1500

2000

10 20 30

5

10

15

20

25

30
0

200

400

600

800

Figure 10.1: Non-interpolated IRIS (left) and ARIES (right) data for 2007-03-20 08:45. Also
shown are the positions of the two strongest radio stars, Cassiopeia (+) and Cygnus (o), for the
respective instrument locations as calculated by RIOSIM. Colour scales are in raw linear power
units.

−1 0 1

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
5

−1 0 1

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
5

Figure 10.2: ‘Traditional’ IRIS image interpolation. Distances in metres. Colour represents
arbitrary linear power units. Left panel shows Delaunay triangulation for all 49 beams, right
panel shows Delaunay triangulation for only the ‘good’ beams, i.e. all IRIS beams except for the
four corner beams 1, 7, 43 and 49.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 224

10.2.3 Role of Obliquity Factors

The interpolation algorithms as discussed in this chapter all deal with interpolation of power

data on the positive hemisphere seen by the receiving instrument. The data is not interpreted

in any way prior to processing. In particular, no assumptions are implied as to the media that

the incoming signals traversed prior to reception, i.e. no correction factors (in this case known

as obliquity factors) for the varying observed thickness of the absorbing layer etc. are applied

to the data. When comparing actual signals to theoretical signals based on convolution of beam

patterns and sky map (as can be done with RIOSIM, see chapters 6 and 7), obliquity factors need

to be taken into account as soon as there is an absorbing layer of electrons present. This layer

appears thicker with decreasing elevation angles. See figure 10.3: The apparent thickness d′ of

the absorption layer decreases with increasing observation elevation angle φ. The law of sines

for 4ABC allows us to derive angle β:

sinβ(φ) =
sin(φ+90◦)

re +h
· re (10.1)

from which we can derive the obliquity factor δ(φ) simply by looking at 4B′C′A′ (as long

as d � (re +h)):

δ(φ) =
d′(φ)

d
=

1
cosβ(φ)

(10.2)

The left panel in figure 10.3 shows a plot of δ(φ) for elevation angles 0◦ ≤ φ ≤ 90◦ and

h = 90km (blue line). For comparison reasons, δ(φ) is also shown for an (unrealistic) height

h = 1000km (red line). This is essentially a ‘lower amplitude’ version of δ(φ) for h = 90km.

The dashed line is δ(φ) = 1/cos(90◦ − φ) as used in [HD02]. This is an approximation of

equation 10.2 that can be seen to work well for elevation angles φ > 30◦.

Obliquity factors will also have to be taken into account when it comes to deriving absorp-

tion from the input data, but in this chapter we are solely dealing with (spatial) interpolation

of the underlying raw received power data. Existing algorithms can then be used to derive

quiet-day curves (QDCs) and absorption data for arbitrary directions (‘virtual beams’) within

the usable working area of the given interpolation algorithm. See for example [BHH95] (IRIS),

[DS90] (Density method), [KDR85] (Inflection Point method) and [MH07] (Percentile method,

manuscript in preparation) and references therein for discussions of various approaches to gener-

ating QDCs. Note, however, that equation 10.2 only works well if there is actually a well-defined

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 225

absorption layer present. For quiet-day absorption, equation 10.2 generally exaggerates the ex-

pected results. This is because quiet-day absorption happens over a large range of heights, not

within one narrow layer.

Note that this use of obliquity factors is different from the traditional use, where obliquity

factors are applied to received power values from each beam, either ignoring the beam shape or

including the effects of the beam pattern in the ‘effective’ obliquity factor [HD02]. The obliquity

factor in equation 10.2 does not relate to beams but simply to viewing directions.

10.2.4 Metric

To compare the performance of the various algorithms and parameter sets, the following metric

is used. This rates reconstructed images according to how similar they are to the original (in

case of results based on simulated reception), or how they compare to a pre-selected reference

image (in case of images created from real data, in which case there is no ‘original’ image that

can be used as a reference).

The metric is based around the square of the difference in brightness summed up for all

directions and weighted by area to compensate for the distortions introduced by the spherical

coordinate system.

m =
1

4π

Z
θ,φ

(B(θ,φ)−Bcur(θ,φ))2 cosφdθdφ (10.3)

For comparing results of interpolation methods whose data products do not actually cover the

whole hemisphere, we will simply zero out the non-applicable area (typically elevation angles

below some threshold φ0) in all datasets prior to calculating the similarity metric. We will refer

to such values as mel≥φ0 .

10.3 The Parametrised Model Interpolation Method (GLEAM)

We will first describe the general approach, this is not specific to using spherical harmonics, but

is indeed valid for any kind of model that can be parametrised with a set number of parameters

less than or equalling the number of concurrently available data points. The initial ideas behind

GLEAM were conceived in discussions with Senior [Sen]. We will then proceed to evaluate the

influence of various particular base models and evaluate their ‘quality’ with respect to the metric

introduced in section 10.2.4.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 226

Rather than starting with an unknown power distribution (which is of course what we will

be doing later on), let us assume for a moment that we know the spatial power distribution P

across the visible hemisphere, i.e.

P(θ,φ) = known (10.4)

We also know the radiation pattern for each of the given instrument’s N beams for all possible

directions (θ,φ):

B1...N(θ,φ) = known (10.5)

Given the power distribution and the radiation patterns, we can now calculate the power

response (the power received) pn,simul for each beam n. This is the same method that can also be

used to derive theoretical quiet-day curves (as in chapter 7 or in [RDVvB91]):

pn,simul = k ·
Z

θ,φ
P(θ,φ)Bn(θ,φ)cosφdθdφ (10.6)

k is a constant that can be used for calibration purposes. The N values pn,simul directly

correspond to the received power as measured by the receivers for beams 1...n.

If we now find a way of representing the power distribution P in equation 10.4 by means

of M ≤ N parameters instead of an infinite number of discrete values, we can work our way

backwards from the actual received power values and derive (an approximation of) the original

power distribution P, denoted Pmodel .

Let us assume that Pmodel is a linear combination of M functions of (θ,φ), weighted by γm,

i.e. a function of the direction as specified by (θ,φ) and of M parameters γ1...γM as follows:

Pmodel(θ,φ,γ1...γM) = γ1 · f1(θ,φ)+ γ2 · f2(θ,φ)+ ...+ γM · fM(θ,φ) (10.7)

In order to determine the parameters γ1...γM, we make use of equation 10.6, replacing the

simulated results pn,simul with the actual measurement results pn (n = 1...N) from the N beams

and the ‘known’ sky brightness distribution P (equation 10.4) with the modelled brightness

distribution Pmodel (equation 10.7):

pn = k ·
Z

θ,φ
Bn(θ,φ)Pmodel(θ,φ,γ1...γM)cosφdθdφ (10.8)

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 227

We expand equation 10.8 using the definition of our model in equation 10.7:

pn = k ·
Z

θ,φ
Bn(θ,φ) · [γ1 · f1(θ,φ)+ γ2 · f2(θ,φ)+ ...+ γM · fM(θ,φ)]cosφdθdφ (10.9)

Rearranging:

pn = γ1 · k ·
Z

θ,φ
Bn(θ,φ) f1(θ,φ)cosφdθdφ (10.10)

+ γ2 · k ·
Z

θ,φ
Bn(θ,φ) f2(θ,φ)cosφdθdφ

+ ...

+ γM · k ·
Z

θ,φ
Bn(θ,φ) fM(θ,φ)cosφdθdφ

Combining all constant terms into constants c:

pn = cn,1γ1 + cn,2γ2 + ...+ cn,MγM (10.11)

which can be written as one matrix equation for all N beams:

P = C×Γ. (10.12)

In other words, we get one linear equation with M unknowns {γ1...γM} for each of the

N beam patterns. This set of equations can be solved (possibly in a least-squares sense for

N 6= M) and therefore the unknown model parameters {γ1...γM} can be determined. Once these

parameters are known, the (model) sky brightness can be calculated in any arbitrary direction

(θ,φ) by using equation 10.7.

Figure 10.4 is a diagram of how real and simulated data, real, mapped and reconstructed

brightness distributions, sky brightness distribution model and model coefficients are inter-

related. In the following sections we will traverse this graph on various paths to demonstrate

applicability and evaluate real-world behaviour of this method.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 228

Figure 10.3: Obliquity factor δ correcting for apparent thickness of absorption layer (drawing
not to scale)

Figure 10.4: Inter-relations of the parametrised interpolation model method (GLEAM)

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 229

10.3.1 Implementation Notes

Note that we do not need to know about the required directions
−→
di from the outset, we only need

to define a grid for numerically integrating equation 10.10, this grid does not directly relate to

the possible output directions, it is only used for the integration (summation) process, therefore

limiting the accuracy of the results if chosen too wide-meshed. Once we have defined this

‘internal’ grid, the M-by-N matrix C (made up of the values c1...N,1...M in equation 10.11) can

be computed. For any given set of input values bn we then only need to solve the system of

linear equations (equation 10.12) and then use equation 10.7 to calculate the interpolated power

values for arbitrary directions (θ,φ). In this sense GLEAM has ‘self-interpolating’ properties,

meaning that once we have calculated the coefficients c, we are not limited to certain predefined

directions. Instead, equation 10.7 will directly give results for any desired direction (θ,φ).

10.4 Suitable Orthogonal Basis Functions

To demonstrate how a linear sum of orthogonal basis functions can be used to approximate

any given brightness distribution, we approximate three different synthetically generated test

distributions using different sets of basis functions and calculate the similarity metric as defined

in equation 10.3 (section 10.2.4) for each one. Figure 10.5 shows the results. The top three

images are the original distributions, with the reconstructed images being displayed beneath

their respective original for various basis functions. The similarity metric m is also given for

each case.

As expected, it can be seen that, for the same number of coefficients, use of spherical har-

monics results in a much higher similarity than, say, the crude ‘polar block’ approach. Note that

images that resemble a typical sky brightness distribution (left column) appear to be represented

especially well.

10.4.1 ‘Polar Blocks’

For initial testing purposes, a basic set of orthogonal functions has been implemented in the

gleam_orth_polarblock functor. These functions divide the upper hemisphere up into little

chunks or ‘blocks,’ hence the name. Each function only has a value of 1 within its own little

block, and is 0 everywhere else. Thus, these functions are inherently orthogonal. As can be

seen in figure 10.5, interpolation results are crude. Nevertheless, the polarblock functor serves

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 230

Figure 10.5: Examples of direct orthogonal basis functor fits for three different source images.
Left column: theoretical sky map as produced by CGrillTaohSkyMap, middle column: highly
detailed test image, right column: high-contrast simple shapes. Top row shows original (source)
image, remaining rows show image reconstructed from fitting coefficients.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 231

its purpose of demonstrating the working principles behind GLEAM for a straightforward case.

10.4.2 Spherical Harmonics

Spherical harmonics [Hob55] can be used to describe intensity distributions around a sphere.

See, for example, [San92] for a geophysical application. Spherical harmonics are useful be-

cause they form an orthogonal basis for functions on the sphere in a manner analogous to sines

and cosines on the interval [0,2π]. We are, of course, only using a finite number of spherical

harmonics to approximate these functions, as is often done for Fourier sine/cosine series.

Spherical harmonics are solutions to Laplace’s equation in spherical coordinates [Wei02].

Without going into any further mathematical details, we stick to the practical description of the

properties of spherical harmonics as found in [PFTV88]:

“The spherical harmonic Ylm(θ,φ),−l ≤m≤ l, is a function of the two coordinates θ,φ on the

surface of a sphere. The spherical harmonics are orthogonal for different l and m, and they are

normalised so that their integrated square over the sphere is unity.”

The degree of the spherical harmonic in question is depicted by l, the order by m. The spher-

ical harmonics are related to associated Legendre polynomials Pm
l by the following equation

([PFTV88]):

Ylm(θ,φ) = Km
l Pm

l (cosθ)eimφ (10.13)

Since we are only dealing with real numbers, we will use real spherical harmonics defined

as follows [Gre03]:

Ylm(θ,φ) =


√

2Km
l cos(mφ)Pm

l (cosθ), m > 0
√

2Km
l sin(−mφ)P−m

l (cosθ), m < 0

K0
l P0

l (cosθ), m = 0

(10.14)

In both equations 10.13 and 10.14, the scaling factor K is defined as:

Km
l =

√
(2l +1)

4π

(l−|m|)!
(l + |m|)!

(10.15)

Note that this scaling factor (equation 10.15) is constant for any given l,m. For our purposes

we can therefore ignore this part, the weighting coefficients will automatically adjust themselves

to accommodate for this missing factor.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 232

For modelling the sky brightness distribution according to equation 10.7, we need a linear

combination of a number of spherical harmonics less than, or at the most equal to, the number of

available beam power readings N (49 in case of the IRIS observations, or anything up to about

500 for ARIES when using the central 556 ARIES beams). For ease of implementation, we

establish a unique order between the spherical harmonics starting with f1 = Yl=0;m=0 and then

moving on to higher degrees, cycling through all possible orders m = −l, ...,0, ...,+l for each

degree, until we arrive at, for example, f49 = Yl=6;m=6. Figure 10.6 is a graphical representation

of the first 49 real-valued spherical harmonics including order and degree values for each graph.

10.4.3 Adjusted Spherical Harmonics

Ordinary spherical harmonics as described in 10.4.2 have the disadvantage of modelling the

brightness distribution over the surface of a complete sphere, resulting in relatively low resolu-

tion at any given region of interest. Especially, in our case, a riometer will only ever ‘see’ at

most a hemispherical subsection of the whole sky. It would be sensible to choose a set of basis

functions, which represent the power distribution over the hemisphere alone. One possibility is

capped spherical harmonics [Hai85]. However, capped spherical harmonics can be complex to

implement and can result in a range of computational problems [ST97]. Therefore, in the inves-

tigations presented in this chapter, we use a simple approximation to spherical capped harmonics

called ‘adjusted spherical harmonics’ as proposed by DeSantis [San92]. It is based on a coordi-

nate transformation that ‘adjusts’ (compresses) the elevation angles φ in the original definition

of the spherical harmonic to those of interest (in our case the visible hemisphere). By employing

these adjusted spherical harmonics, we effectively double the resolution in the hemisphere of in-

terest. We still use the same logical order of spherical harmonics as described in section 10.4.2

above.

Simulations to evaluate how much of an advantage these ‘adjusted’ spherical harmonics

show over ordinary spherical harmonics produced the result shown in figure 10.7. It turns out

that, at least for our type of images, no clear advantage can be achieved. If anything, only

very moderate improvements appear to be achievable by using compression factors of about 1.5

in some cases. Hence, no fitted images using ‘adjusted’ spherical harmonics are included in

figure 10.5 and the subsequent discussions.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 233

Figure 10.6: The first 49 real spherical harmonics. l=degree, m=order. Colour scale ranges from
−1 (blue) to +1 (red).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

compression factor

G
LE

A
M

 m
et

ric

deg=3

deg=4

deg=18

Figure 10.7: The influence of various compression factors on a direct fit of a sky map to ‘ad-
justed’ spherical harmonic basis functions of various degrees. ‘GLEAM metric’ is the quality
metric calculated according to equation 10.3 for the respective fit. Lower values are better.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 234

10.5 MATLAB Implementation

For flexibility and ease of use, the GLEAM algorithm was implemented in two independent

parts. gleam_orth_basis_functor and derivatives (figure 10.8, right-hand side) are functors that

provide sets of orthogonal basis functions, along with their respective calculate() methods to

evaluate their value for any given (set of) direction(s) (θ,φ). There is also a function sum()

for calculating the weighted sum of a given set of basis functions according to the specified

weighting coefficients. The weighting coefficients might have been calculated by the GLEAM

algorithm (see below), or by a direct fit such as calculated by gleam_fit().

The GLEAM algorithm itself (as implemented by gleam_genericalgorithm, see figure 10.8,

left-hand side), needs to know about various other parameters, namely

• The instrument for which to run the algorithm. This is because we require knowledge of

the individual beams’ radiation patterns (equation 10.5).

• If prior knowledge in the form of ‘mean’ coefficients is to be included, we also need to

know about the instrument’s location in order to simulate power reception. For this case,

a suitable sky map can also be specified.

• The beam numbers of all beams that are to be included in the fitting process. Note that as

opposed to simple interpolation as described in section 10.2.2, even beams with significant

degradation might be able to contribute something to the overall accuracy of the modelled

brightness distribution.

• Potentially, error bars for any input values can also be specified, for example for putting

less emphasis on more unreliable beam readings.

• Finally, the GLEAM algorithm needs to know which (set of) basis functions to use when

solving equation 10.12. This is indicated by the ‘aggregation’ arrow in figure 10.8.

In addition to calculating a set of weighting coefficients (which can then be passed to gleam_-

orth_basis_functor::sum() for retrieving the modelled brightness distribution) for any given

input data, gleam_genericalgorithm can also display various debugging-type information, in-

cluding quality indicators for the result based on the input error bars and rank of the internal

matrix C.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 235

Figure 10.8: GLEAM class diagram

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 236

10.6 Performance with Simulated ARIES Data

10.6.1 Comparison with Sky Map

Using the radiation patterns and sky maps as discussed in chapters 6 and 7 to generate simulated

received power values for the ARIES riometer, we can then apply the GLEAM algorithm to these

simulated received values in order to reconstruct a model of the original sky brightness distribu-

tion, resulting in a set of coefficients {γ1...γM}. With these coefficients, we can reconstruct the

sky brightness distribution, and since all values stem from a simulated sky (the sky map) in the

first place, we can then directly compare reconstruction and original using the metric defined in

section 10.2.4.

As an additional measurement of the accuracy of the reconstruction, we also yet again sim-

ulate power reception, this time using the reconstructed sky as brightness distribution for the

simulation. We expect these simulated beam power values to closely match the ‘original’ ones.

All these results are shown in figures 10.9 to 10.12, for four different example constellations.

The four figures are laid out identically, the following description is valid for each one of figures

10.9 to 10.12.

The top left-hand panel shows the sky map for the particular moment in time that the sim-

ulation was run for. The top central panel shows a direct fit of the model that was used in the

respective simulation to this sky map, and its similarity metric. This process is depicted by paths

‘1a’ and ‘1b’ in figure 10.4: knowing about the model, a set of coefficients is derived directly

from the sky map using a least-squares fit (path ‘1a’). These coefficients are then fed straight

back into the model, resulting in a direct-fit modelled brightness distribution (path ‘1b’).

The sky map in combination with the theoretical radiation patterns for (a subset of) all riome-

ter beams can also be used to simulate reception (as discussed more extensively in chapters 2 and

7). See path ‘2a’ in figure 10.4. This leads to the simulated beam power values depicted in the

left-hand bottom panel (shown together with further simulated beam power values as discussed

below). The central bottom panel shows the same values on a 32×32 matrix plot, with colour

representing linear power units.

These simulated beam power values can then feed into the GLEAM solver (path ‘2b’ in

figure 10.4), which does not require additional prior knowledge in this purely simulated case.

GLEAM will output a set of best-fit coefficients based on the input complex beam power values,

and these parametrise the model to produce a model brightness distribution (path ‘3’). The top

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 237

Figure 10.9: GLEAM with simulated ARIES data; Constellation 1. (a) Simulated sky map,
(b) direct fit of model to sky map, (c) GLEAM fit using simulated received beam power values
shown in (d), (e) simulated received beam powers visualised as 32×32 matrix, (f) comparison
between simulated received beam powers from sky map versus from GLEAM reconstruction.
Further explanations see text.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 238

Figure 10.10: GLEAM with simulated ARIES data; Constellation 2. Explanation see fig-
ure 10.9.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 239

Figure 10.11: GLEAM with simulated ARIES data; Constellation 3. Explanation see fig-
ure 10.9.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 240

Figure 10.12: GLEAM with simulated ARIES data; Constellation 4. Explanation see fig-
ure 10.9.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 241

right-hand panel shows this resulting distribution together with the similarity metric comparing

it to the original sky map.

To go round full circle, this reconstructed brightness distribution can once again be used

as the source for a simulated power reception, and the simulated received power values should

match the ones ‘received’ from the original sky map closely. All three sets of power values are

shown in the bottom left-hand panel as mentioned earlier, and the bottom right-hand panel shows

the power ratio between GLEAM-fit reconstructed beam power and directly sky map-derived

power for each beam on a 32×32 matrix plot, with the colour scale ranging from 80% to 120%.

In addition to the metrics calculated in the upper panels, the (in)homogeneity of the matrix in the

lower right-hand panel is yet another measure of how well the reconstruction worked, and which

beams are particularly out. The colour scale is a direct measure of the relative difference be-

tween absolute-power-from-original-sky-map and absolute-power-from-reconstituted-sky-map

for each beam. The ringing effect produced by the spherical harmonics functors for strong point

sources is especially evident in this kind of plot.

Table 10.1 summarises the configurations used, and results achieved, for the four figures 10.9

to 10.12. Simulations were run for both a set of 556 central ARIES beams and a larger set of

716 central beams. Two different moments in time, i.e. sky map orientations, were simulated.

An example using the generally inferior polarblock set of basis functions is also provided for

comparison (figure 10.12).

The metric as calculated for the figures discussed above only takes values above an elevation

angle of 30◦ into account, for two reasons: (1) As will also be seen in later figures using real data

(see section 10.7.2), GLEAM performs badly around the horizon, primarily due to the fact that

antenna sensitivity tends towards zero as one approaches the horizon (effective antenna aperture

goes to zero), so there is very little information present in the data for GLEAM to extract. (2)

For later comparison with the ‘traditional’ interpolation algorithm, we have to limit ourselves

to the largest common field of view of the two algorithms, which, for the traditional algorithm

is limited by the locations of the lowest beam centres together with the distortion introduced

by interpolating in the FLATM coordinate system (and not on the native spherical coordinate

system of the receiving antenna). This effectively limits the field of view, for which reasonable

data in all azimuth directions is available, to el ≥ 30◦ for the central 556 ARIES ‘good beams.’

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 242

ca
se

fig
.

tim
e

m
od

el
be

am
s

di
re

ct
-fi

tm
et

ri
c

gl
ea

m
-fi

tm
et

ri
c

tr
ad

iti
on

al
in

te
rp

.m
et

ri
c

1
10

.9
20

06
-0

2-
22

07
:0

0h
sp

ha
rm

(d
eg

re
e

19
)

ce
nt

ra
l5

56
be

am
s

(‘
go

od
be

am
s’

)
m

el
≥

30
◦
=

7.
2e

8
m

el
≥

30
◦
=

7.
3e

8
n/

a
(s

ee
te

xt
)

2
10

.1
0

20
06

-0
2-

22
07

:0
0h

sp
ha

rm
(d

eg
re

e
19

)
ce

nt
ra

l7
16

be
am

s
(‘

ex
is

tin
g

be
am

s’
)

m
el
≥

30
◦
=

7.
2e

8
m

el
≥

30
◦
=

7.
3e

8
m

el
≥

30
◦
=

7.
1e

8

3
10

.1
1

20
06

-0
2-

22
20

:0
0h

sp
ha

rm
(d

eg
re

e
19

)
ce

nt
ra

l7
16

be
am

s
(‘

ex
is

tin
g

be
am

s’
)

m
el
≥

30
◦
=

3.
1e

8
m

el
≥

30
◦
=

3.
1e

8
m

el
≥

30
◦
=

3.
0e

8

4
10

.1
2

20
06

-0
2-

22
07

:0
0h

po
la

rb
lo

ck
(1

2
ri

ng
s)

ce
nt

ra
l7

16
be

am
s

(‘
ex

is
tin

g
be

am
s’

)

m
el
≥

30
◦
=

7.
3e

8
m

el
≥

30
◦
=

7.
4e

8
n/

a
(s

ee
te

xt
)

Table 10.1: Summary of GLEAM performance with simulated ARIES data. Refers to figures
10.9 to 10.12. Important differences in the simulation configurations from figure to figure are
emphasised in bold. A degree 19 spherical harmonics model uses 361 coefficients, a 12-ring
polarblock uses 349 coefficients. Further explanations see text.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 243

10.6.2 Comparison with Traditional Image Interpolation

In figures 10.13 and 10.14 we compare the respective cases shown in figures 10.9 to 10.12 to the

traditional IRIS interpolation approach. Figure 10.13 shows the image at various stages in the

interpolation process, for visualisation and reference purposes. This is a good demonstration of

the distortions involved in the various projections. Figure 10.14 shows the interpolated images

for each of the 3 different cases 1–3 together with the value of the similarity metric (again cal-

culated for el ≥ 30◦ due to the field of view being limited by the elevation angles of the actually

used beams in the traditional algorithm. (No metric has therefore been calculated for case 1, as

the beams don’t fully cover the area el ≥ 30◦.) Case 4 in figure 10.12 only differs from the other

cases in that polar blocks are used as underlying basis functions for the GLEAM algorithm. This

is of no influence on the traditional algorithm, hence the traditional image would look identical

to that for the case in figure 10.10. As said above, no metric was calculated for case 1 due to the

even smaller field of view. In the traditional interpolation method, case 1 behaves identical to

case 2, so long as only the central area covered by both configurations is considered. Note that

scaling for the traditional algorithm is somewhat arbitrary, as this algorithm interpolates beam

power values which are related to, but not the same thing as, the sky brightness distribution.

These values have been scaled so that their mean value matches the mean of the ‘considered’

part of the sky brightness distribution, before calculating the metric.

10.6.3 Behaviour in the Presence of Absorption

Deviating from the virgin sky map, we now simulate an absorption patch by attenuating the

signal from a certain part of the sky as illustrated in figure 10.15. The path that the absorption

patch takes from beginning until end of the simulation is also show by means of ‘snapshots’

at 5 time unit intervals. In order to have fewer parameters, (sidereal) time was ‘frozen’ for

these simulations, i.e. the position of the sky map relative to the observing instrument remains

constant while the absorption patch moves through the field of view. This is why the time scale

is in arbitrary time units.

Figure 10.16 records the simulated beam readings for the beams highlighted in figure 10.15

over time, with the simulated absorption patch moving through the sky as depicted in fig-

ure 10.15. Panel (a) shows raw beam received power values, panel (b) is the GLEAM sky

brightness reconstruction in the respective beams’ main pointing directions.

All power/brightness values are shown on a dB scale, relative to their quiet-day levels, i.e. the

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 244

(a)
(b)

(c) (d)

Figure 10.13: Visualisation of the traditional image interpolation algorithm for ARIES. (a) 32×
32 matrix plot of simulated beam power values; (b) interpolated image in FLATM coordinate
system, together with vertices of triangles used for interpolation; (c) same as (b), but only beam
centres highlighted; (d) polar plot of (c), again with highlighted beam centres.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 245

(a) Case 1

(b) Case 2 (c) Case 3

Figure 10.14: Performance of the traditional interpolation method for the three constellations
1–3. No metric is calculated for case 1 because the area covered does not encompass the whole
el ≥ 30◦ area. The two m values for cases 2 and 3 compare directly to those in figures 10.10 and
10.11.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 246

Figure 10.15: Path of a simulated absorption patch across a ‘frozen’ sky map. FLATM-
projection down to el = 20◦. Also shown are the beam centres of some ARIES beams.

(a)

(b)

Figure 10.16: Simulated power readings during absorption event for selected beams. (a) beam
power, (b) GLEAM reconstructed brightness in main pointing direction. X-axis in arbitrary time
units corresponding to the time scale shown in figure 10.15.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 247

levels without the presence of the simulated absorption patch. Due to the ‘frozen’ time axis, the

quiet-day levels are perfectly constant. The solid lines show the variation of beam (sky) power

as the simulated absorption patch moves through the sky along the path indicated in figure 10.15.

As expected, beam 200, which is located directly in the path of the absorption patch, shows

a clear reduction in signal for both cases during this time (3 ≤ t ≤ 9). More importantly, how-

ever, it can be seen that, for example, beam 306, which is clearly not in the path of the patch,

nevertheless suffers from its presence, see the period 6 ≤ t ≤ 10. Worse still, whereas in a filled

array type riometer we would simply expect this beam to show a certain amount of absorption

(as the effect of the beam’s sidelobes: some of the sidelobes are covered by the absorption patch,

therefore reducing overall received power for that beam), in case of a cross-correlating riome-

ter, this beam actually observes an increase in power due to a decrease in negative correlation

(some area of the sky that is seen by the fan beams with a ∼ 180◦ phase shift are obscured by

the ‘absorption’ patch). This is the ‘negative correlation’ issue alluded to before (see especially

chapters 4 and 9). To a lesser extent, this effect is also visible in the readings for beam 496,

shortly before (8 ≤ t ≤ 9) and after (12 ≤ t ≤ 16) the patch touches that beam.

Due to the fact that GLEAM knows about the complex radiation patterns, we expect the

GLEAM reconstruction to lessen, if not eliminate, this effect. Panel (b) in figure 10.16 shows the

reconstructed brightness values in the main pointing directions of the same set of beams (now

referred to as ‘virtual beams’). Again, beam 306 is clearly outside the path of the absorption

patch. It can be seen that, while the reconstruction does improve matters, some remnant of the

effect still remains. A certain amount of ringing is also evident, caused by the sharp boundaries

of the simulated absorption patch.

10.6.4 Additional Theoretical Knowledge

In preparation for the GLEAM runs with real data, we now introduce additional information

derived from simulations. This information can be used as ‘additional knowledge’ in the real

data scenario discussed in section 10.7 below.

Our primary source of additional knowledge is the expected general shape of the sky bright-

ness distribution. By directly fitting our model to a theoretical sky map for several specific times

during one (sidereal) day, we can get an idea of how the weighting coefficients for that particular

model are expected to vary over time. This was visualised in figure 10.17 for the coefficients

of a degree 19 gleam_orth_spharm-based direct fit at 10 minute intervals during the course of

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 248

one day. Coefficients 7, 13, 21, 31 and 57 are labelled. We can see that each coefficient tends to

oscillate within a certain range about some mean value. This can be fed into the GLEAM solver

in the form of expected value and associated error bars (path ‘5a’ in figure 10.4).

In addition, a simple ‘damping’ prior knowledge can also be used to reduce the overshooting

evident in GLEAM interpolated images. This knowledge simply consists of a target value of 0

for every coefficient, along with relatively large error bars.

The generic GLEAM implementation in gleam_genericalgorithm supports easy addition

of new prior knowledge (path ‘5b’ in figure 10.4) by adding the appropriate equation-generating

lines to the calculate() function. It is likely that more advanced forms of prior knowledge can

also be devised, which may well depend on specific underlying basis functors. The currently im-

plemented functionality (simulated sky map knowledge and damping knowledge) can be applied

for all functors.

10.7 Performance with Real ARIES Data

In this section, we will apply the GLEAM algorithm to real ARIES data. As a prerequisite, we

will investigate how closely the simulations match the real recordings (section 10.7.1). A good

match is important, as GLEAM relies on adequate knowledge about the receiving instrument’s

beam patterns to correctly fit the modelled sky brightness distribution to the data. Section 10.7.2

contains examples of real data GLEAM interpolations.

The data flow adhered to in this section is indicated by paths ‘3’, ‘4’ and ‘5’ in figure 10.4:

Real recorded power values (resulting from the convolution of the real beam radiation patterns

with the real sky brightness distribution) form the input to the GLEAM algorithm (path ‘4’). For

any moment in time, this results in a set of coefficients, which parametrise the sky brightness

model (path ‘3’). Additional knowledge (see section 10.6.4 above) from direct sky map fits (path

‘5a’) and other sources (e.g. general damping — path ‘5b’) may also be included.

10.7.1 Comparison of Real ARIES Data to Simulation

For the interpolation algorithm to work adequately, it is necessary to describe the beam patterns

of the receiving instrument correctly in both phase and amplitude. During initial experiments,

the actual hardware was changed several times, from initial phasing leads to analogue Butler

Matrix electronics to fully digital beamforming in various untapered and tapered flavours and

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 249

configurations. This makes comparisons difficult, and for accurate simulations each type of

beamformer needs to be accurately modelled in software. We will first provide an impression of

how closely real recorded data and simulation match for the latest system incarnation, and having

confirmed that they do indeed match, will then proceed to apply the GLEAM algorithm to real

ARIES power data. The resulting images will be compared to images generated by interpolating

between beam centres in the ‘IRIS’ way (section 10.2.2).

For the investigations in this chapter, we will mainly be concerned about reconstructing the

sky brightness distribution on medium (minute) timescales. We will therefore mainly be using

60s post-integrated data.

The ‘earlobe’ plots presented below are based on multi-day (sidereal) average values. This

is essentially an ‘unbiased’ quiet-day curve calculator in that it does not make assumptions as

to whether the data consists of mainly spikes or absorption and tries to calculate a suitable

envelope, but simply derives a mean quiet day. Provided a large enough dataset (1 month works

adequately) is available, smooth quiet-day curves can be obtained. In figure 10.18, we plot some

of these as ‘earlobes’ (i.e. their variation over time) on the complex plane. The corresponding

plots for all 1024 ARIES beams can be found in figures G.1 (overview) and G.2 to G.7 (zoomed-

in) in appendix G. Figure 10.18 is a an even further zoomed-in view of figure G.1, used here to

explain the plot format.

Each panel contains data specific to one ARIES beam. The MIA (high-level standardised)

and raw (as output by the FPGA firmware) beam numbers are given in the top left corner of each

panel.

The yellow curve is actual ARIES data for one day, specifically 2007-03-23, a reasonably

undisturbed (quiet) day. The data has been averaged (post-integrated) to 30 seconds. The curve

shows the diurnal variation of the (complex) beam power value on the complex plane. The origin

is the centre of the plot, the positive real axis extends to the right and the positive imaginary axis

to the top. The scaling is identical for all panels. For cleaner plots, no labels have been plotted,

as the absolute values at this stage are arbitrary (linear) raw ADC units.

The black curve is a one-month average centred on 2007-03-23. This is essentially a quiet-

day curve as discussed in chapter 3, calculated by the following unbiased averaging algorithm:

1. Collect all raw (1 second) sample values for current time ±(0...60)s± (0...15)×86163s

(86163s is the duration of one sidereal day).

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 250

2. Sort all these samples in ascending order.

3. Throw away the bottom and top thirds.

4. Calculate the mean of the remaining samples. This is the (unbiased, i.e. neither favouring

high nor low values) quiet-day value for this moment in time.

5. Increment current time by 30s, repeat until end of day.

Note that this algorithm favours neither high power (e.g. through solar interference etc.) nor low

power (absorption), but provides a well-balanced mean value. This is opposed to the bias often

used in riometry quiet-day curve generators that try to establish the upper envelope of a set of

sidereal power variation recordings. Here, for comparison with simulations, we are interested in

as unbiased a view as possible.

Together, the yellow and black curves give an idea of how the mean recording varies from

any actual day.

Finally, the red curve is the simulated power variation during one day, calculated purely

theoretically from sky map and beam radiation patterns as described in chapter 7.

It can be noted that real data and simulation are generally in good agreement in both phase

and amplitude (see also the plots for all beams in appendix G). This is an important prerequisite

for running the GLEAM algorithm with real data.

10.7.2 Real Data Image Plots / Movies

This final section presents sequences of power image data generated from real ARIES data for

both a quiet and a disturbed dataset. For each case, images generated using the traditional

interpolation method are also shown for comparison. Figure 10.19 is a sequence of images for

the whole day 2007-03-23 at 1h intervals for both the traditional (top panel) and the GLEAM

(bottom panel) interpolation methods.

Figure 10.20 is a temporal zoom into the 24min block at 8:00–8:23 on 2007-03-23 aiming

to show the minute-to-minute variation for both algorithms. The colour axis in all panels is in

arbitrary linear power units. Note that, for GLEAM, these power units directly relate to sky

brightness (temperature), as GLEAM internally uses a model of sky temperature. To obtain an

impression of the ‘raw’ performance of GLEAM biased as little as possible by simulations, all

figures for this section were generated without making use of additional prior knowledge in the

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 251

form of sky map-derived mean coefficient values and error bars. A coefficient damping factor

of ‘1’ as described in section 10.6.4 is used.

The final sequence of images (figure 10.21) is the graphical representation of an absorption

event as recorded on 2007-03-24 between 4:00h and 8:00h. Pictures are at 10 minute intervals.

10.8 Summary and Conclusions

The motivation behind interpolating riometer images was presented, along with various prereq-

uisites. The traditional image interpolation algorithm as used within the SPEARS group was

explained. The new GLEAM approach was then developed and applied to several simulated and

real ARIES datasets in different configurations.

Deriving GLEAM interpolated images from simulated beam data (section 10.6) shows that

GLEAM interpolated images have a tendency to show ‘ringing’ effects when using spherical

harmonics as the underlying basis functions. This is especially evident in the vicinity of strong

point-like power sources, and can be seen well in panels (b) and (f) of figures 10.9 to 10.11 and,

to a lesser extent, also in figure 10.12.

Compensating for the effects of negative correlation is one of the main reasons behind in-

vestigating this alternative image interpolation method, and this was shown to work as expected

(section 10.6.3), although the ringing effect makes results less clean than was hoped for, see

especially figure 10.16.

The availability of final ARIES data from the complete and fully working system from 2007-

03-05 onwards allowed applying GLEAM to real data, this was done in section 10.7. An initial

comparison between real and simulated data was used to confirm the close match between real

and simulated recordings, confirming that the beam pattern descriptions as used internally by

GLEAM are accurate. Sequences of GLEAM images were then plotted, along with traditionally

interpolated images, for a whole day, a short period of 24 minutes and a period of absorption.

GLEAM accurately represents the sky brightness in all three cases. Whereas the traditional

interpolation method produces artefacts due to the interpolation grid and sidelobes, spherical

harmonics-based GLEAM images tend to contain the ringing effects alluded to earlier. Also,

variations affecting the whole image from instant to instant, as opposed to the more localised

issues seen in the traditional approach, are evident in the GLEAM interpolated images. Some

methods to further improve the performance of GLEAM will be suggested in chapter 11.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 252

In general, GLEAM images produce good maps, down to elevation angles below the point-

ing directions of the beams used in the traditional approach, making best use of what little

information the data contains about these regions. GLEAM interpolated images are a major

step from beam-centred thinking towards the more generic approach of considering continuous

descriptions (in both time and space) of sky brightness the primary output of a new generation

of riometers.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 253

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
12

time (multiples of 10min)

va
lu

e

7

13

21

31

57

Figure 10.17: Diurnal variation of model weighting coefficients for direct sky map fit. Shown are
the coefficients for a gleam_orth_spharm functor of degree 19. Some of the higher-amplitude
curves have been labelled with their respective coefficient number.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 254

Figure 10.18: ARIES real and simulated complex beam data for 12 exemplary beams. Each
panel is a plot of power data over one sidereal day on the complex plane. X-axis is the real axis
from left (negative) to right (positive), y-axis is the imaginary axis from bottom (negative) to
top (positive), origin is at the centre. Each panel is for one ARIES beam and includes 1-month
average (black)±15 days of 2007-03-23, single-day data (yellow) for 2007-03-23 and simulated
data (red). Axis scaling in arbitrary linear power units.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 255

(a) (b)

Figure 10.19: Sequence of ARIES power images for 2007-03-23. (a) Traditional interpolation
algorithm, (b) GLEAM interpolation algorithm.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 256

(a) (b)

Figure 10.20: Sequence of ARIES power images for 2007-03-23, temporal zoom for 8:00h–
8:23h. (a) Traditional interpolation algorithm, (b) GLEAM interpolation algorithm.

CHAPTER 10. A NEW APPROACH TO IMAGE INTERPOLATION IN RIOMETRY 257

(a) (b)

Figure 10.21: Sequence of ARIES power images for absorption event 2007-03-24 4:00h–8:00h.
(a) Traditional interpolation algorithm, (b) GLEAM interpolation algorithm.

Chapter 11

Summary, Conclusions and Outlook

This chapter summarises the thesis. Many different research areas, engineering disciplines and

ideas have been touched upon during the course of this thesis. In the effort of making the work as

self-contained as possible, many of these ideas have been found to protrude over the set bound-

aries in both time and space. Therefore, this chapter also contains various ideas, suggestions

and directions for future activities, improvements and research, demonstrating how the work

presented in this thesis can serve as a foundation for exciting future developments in riometry

and beyond.

11.1 Riometer Simulation Toolkit

The preceding chapters followed the development cycle of the Advanced Rio-Imaging Experi-

ment in Scandinavia (ARIES), a new type of imaging riometer based on a Mills Cross antenna

array. Such an array antenna achieves an angular (spatial) resolution identical to that of a filled

phased array, but with significantly fewer antenna elements. In the case of ARIES, only 63 an-

tenna elements are needed due to the Mills Cross design as opposed to 1024 for a filled phased

array with the same resolution. Simulations both at signal level and at a more abstract level

concerned with the radiation (reception) properties of the antenna system and beamforming net-

work were executed, showing the feasibility and expected behaviour of such a riometer system.

Low-level simulations served to explain and verify every step of the reception process, tracing

signals all the way from the noise sources in the sky through to the cross-correlator (chapter 4).

A separate set of simulations (chapter 5) was specifically aimed at determining achievable inte-

gration times and it was found that useful integration times are indeed achievable, an outcome

258

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 259

that was later confirmed by experimental results (chapter 9).

The simulations led to the development of a universally applicable riometer simulation

toolkit, RIOSIM. This toolkit was subsequently used throughout the thesis for simulating and

visualising high-level concepts such as beam outlines (footprints), radio star footprints and three-

dimensional representations of complex-valued radiation patterns. It forms the basis for more

specific tools such as a theoretical quiet-day curve generator (section 7.4), a radio star tracker

(section 7.2) and the generic scintillation calculator described in sections 7.7 and 7.8. RIOSIM

was used to predict (and confirm) ARIES beam alignment during the various prototyping stages.

Especially the ability to predict not only the influence of the continuous sky background but also

of the predominant radio stars (point sources) allows for very accurate confirmation of beam

pointing directions. RIOSIM is also essential for simulating ARIES reception for the investiga-

tions of the new riometer image interpolation algorithm (GLEAM) in chapter 10, as it forms the

basis for the algorithm’s knowledge about the instrument’s beam patterns as used in the GLEAM

solver.

It should be noted that RIOSIM is in no way specific to one particular riometer, such as

ARIES, or even to riometers in general, but is fully modularised around the basic concepts of

radiation patterns, radio stars and sky maps (section 6.2). It is therefore capable of simulating

the behaviour of arbitrary antenna arrays.

For example, RIOSIM’s support for FEM simulated beam patterns (section 6.3.10) opens

up new opportunities of replacing theoretically calculated radiation patterns with individually

FEM-simulated beam patterns for each individual antenna beam. This has the potential to result

in a more accurate digital representation of real riometer system radiation patterns, therefore

potentially leading to improved results for all algorithms and analyses that rely on knowledge of

beam shapes, in this thesis particularly the GLEAM fitting process (chapter 10), beam footprint

plotting (section 7.1) and derived algorithms such as quiet-day curve (QDC) generation (sec-

tion 7.4) and scintillation prediction (section 7.7). Realistic FEM-modelling of riometer beams,

especially for multi-beam instruments, requires significant processing power and modelling ef-

fort.

With RIOSIM, future hardware improvements will be able to feed back directly into the

simulations. For example, improved hardware capable of measuring receiver phase offsets can

directly improve the accuracy of received power simulations and therefore also the more ad-

vanced applications such as GLEAM: In chapter 10 we noted that the ‘earlobe’ plots of com-

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 260

plex ARIES received beam power generally show good agreement between simulated and real

recorded values. Nevertheless, discrepancies of up to about 30◦ in phase between real recordings

and simulated readings are evident for some beams, for example MIA beam 947 in figure G.7.

It is likely that this can be explained with non-ideal behaviour of the receivers. Modifications to

the FPGA part of the system to directly feed the calibration signal through to the cross-correlator

without going through the beamforming process will allow measurements of these phase offsets

and their behaviour with time and temperature, ultimately allowing us to compensate for these

effects by taking them into account at the beam pattern simulation stage.

An implementation of an asynchronous processing framework providing remote access to

RIOSIM applications was presented in section 7.8 for the example of the RIOSIM scintillation

calculator and this was found to be quite cumbersome. The existing web-based Space Plasma

Environment and Radio Science (SPEARS) group data request facilities are described in ap-

pendix H, along with some suggestions as to how these could be re-implemented for a new

generation data request system based on recent developments and requirements and the conclu-

sions drawn from section 7.8.

In addition to making use of FEM-simulated radiation patterns, real beam pattern anal-

yses (beam shape measurements) appear possible and such results can then be fed back into

RIOSIM’s beam pattern descriptions: Riometer observations rely on knowledge about the ri-

ometer’s beam shapes (see chapters 2 and 3). GLEAM relies heavily on accurate beam descrip-

tions. So far, theoretical and modelled beam radiation patterns have been used. For the proposed

investigations, the primary goal is to verify the theoretical beam pattern of the riometer in ques-

tion using actual measurements. The secondary goal is to then use the information from these

observations to derive a more accurate beam pattern by adjusting the parameters determining the

theoretical radiation pattern shape to fit the observations as closely as possible. This improved,

i.e. more accurate, beam pattern can then be used as a basis for cleaning the raw image data with

algorithms such as GLEAM more effectively. One idea to achieve this cost-effectively is to use

radio stars passing through the beams as calibration point sources. For example, the amount of

scintillation observed for a given radio star at any given time relates to beam sensitivity in that

direction. To cover all possible (although admittedly still rather limited) locations of the radio

stars, a dataset of one day’s worth of data is needed. At first thought, this does not necessarily

have to come from a contiguous period of time. However, since we are interested in determining

the beam shapes as accurately as possible, it seems adequate to eliminate as many sources of

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 261

error as possible. Also, long-term IRIS recordings suggest that the beam shapes change with

certain environmental parameters, especially snow depth. A constant snow depth cannot be

guaranteed for long periods of time. Later on, if several datasets from different times of the year

are found to be suitable, it may even be possible to compare the derived beam patterns and get a

first quantitative measurement of how the beam patterns change with the seasons.

11.2 Advanced Riometer Operating Software

Operating ARIES both during its various prototype stages and in its final system configuration

necessitated the development of a flexible operating software, ARCOM, see chapter 8. The

structure (architecture) of this software was designed to address the ‘Wicked Problem’ of an

ever-evolving system. The software is based around a set of interchangeable components, con-

nected into a multi-branched pipeline through block-based multi-client shared memory inter-

faces and individually controlled through CORBA command interfaces. Three basic types of

components exist. Recorders retrieve data from a hardware device such as the ARIES FPGA

or a network of temperature sensors and feed it into a processing pipeline. Processors manip-

ulate (process) data, for example by post-integrating or archiving. Adaptors provide a native

ARCOM CORBA command interface for existing third-party hard- and software like uninter-

ruptible power supplies (UPS) or watchdog timers. This structure is supported by a streaming

data format not unlike the one used in digital television (DVB). Together with several low- and

high-level tools for day-to-day operation and data maintenance, ARCOM can readily be tailored

to support a wide range of data acquisition and processing tasks for a variety of instruments.

ARCOM is therefore not limited to ARIES, or even riometers. Since its inception, it has in

fact also been deployed for the Advanced Imaging Riometer for Ionospheric Studies (AIRIS).

Other instruments have also benefited from ARCOM concepts, for instance the new high-speed

photometer for optical emission measurements (SPARKLE) developed by the author, which em-

ploys a packet-based streaming data format very similar to the one used by ARCOM.

In the field of riometry, the fully modular design of ARCOM achieves unprecedented flexi-

bility and expandability with exciting new possibilities emerging as communication infrastruc-

ture improves. Originally only linked to the wider internet by a low-speed dial-up internet con-

nection, with more and more instruments having access to ‘always-on’ internet connectivity, live

data feeds are becoming a possibility, even for permanent use, not just for temporary campaign

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 262

use as used to be done over dial-up connections.

Such live data feeds can feed into forecasting, or at least ‘nowcasting,’ systems, for example

early-warning systems for space weather effects. The ARCOM architecture readily supports this

kind of application (see the ARCOM component diagrams in chapter 8, for example figure 8.7),

and some possible usage scenarios have been outlined as examples in the deployment diagrams

in figure 11.1. Panel (a) shows a basic configuration with the main PC taking over the additional

role of live broadcaster through an extra ARCOM component linked into the running system.

This component simply filters out specific (beam) data of interest and broadcasts these directly to

recipients of the live data feed in the form of ARCOM packets encapsulated into User Datagram

Protocol (UDP) packets. A post-integrator component inserted between filter and transmitter

can potentially post-integrate the raw 1s values to longer integration times.

In this scenario, the task of creating higher-level data products (for example absorption time

series or images) is left to the recipient, which may or may not be an ARCOM-based system.

For many recipients and/or further data processing, a scenario like in panel (b) is more

suitable. The main PC only ever connects directly to a secondary ‘server’ node located on the

UK internet backbone. This server, running a separate ARCOM installation, takes over the

tasks of post-processing and broadcasting the data, ensuring that the control PC does not get

overloaded and reducing the security risks associated with the control PC directly connecting to

outside nodes beyond the control of the system operators.

The scenario in panel (c) is a variation of (b) geared towards maximised (both on-site and

off-site) availability of useful data products in real-time. The main control PC transmits live

power data to a secondary processing node on-site. ARCOM components on the processing node

maintain a local data archive, calculate quiet-day curves and images at appropriate resolutions,

display this information for local users and transmit summary information across a network link

to further remote processing and/or live viewer nodes, depending on availability and speed of the

connection. As in scenario (b), the off-site processing node is responsible for data dissemination

and definitive archival. Additional services such as video streaming to the WWW and web data

requests can also be run on this or additional co-located nodes. Again, processing overhead on

the main control node is kept to a minimum.

All scenarios are readily supported by the ARCOM architecture. Much of what is suggested

here had actually originally been devised as suitable configuration for deployment, but later got

abandoned due to limited funding and hardware availability at the time.

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 263

Following on from the discussion above, fat-client support for ARCOM streaming on- and

off-site live visualisation is an important area of future work. An initial demonstrator in form

of a Java application ‘mon’ has already been developed, allowing users one-click access to a

‘rich media’ experience of live ARCOM data streams through their web browser in combination

with Sun’s Java Web Start [Sun05] technology. Rolling out such a solution to the community

or even the general public might result in significant publicity and contribute to making science

(and particularly riometry) more approachable. For load-balancing reasons, i.e. to guarantee

that instrument operation remains unaffected no matter how many users connect in through

the Web Start interface, such a configuration will require a multi-node setup such as the ones

suggested above, see figure 11.1 panels (b) and (c). The current demonstrator only supports

basic beam projection plotting for incoming ARCOM data streams, but could be expanded to

display any information contained in the data stream, including instrument health, environmental

temperature monitoring, live surveillance camera images, etc.

In future, with the availability of even more powerful signal processing hardware, ARCOM

will also readily support next level digital beamforming. For ARIES in its current incarnation,

the analogue beamforming matrix (Butler Matrix) to form the fan beams from each arm of

the Mills Cross has already been replaced by a purely digital implementation on an FPGA.

Nevertheless, this configuration means that the positions of the fan beams are fixed. It may be

beneficial to steer the fan beams so as to avoid interference from the strongest radio stars. Beam

steering can in principle be achieved with digital beamforming techniques through appropriate

parametrisation. Real-time closed-loop control of beam pointing directions with null tracking

will require additional implementation work on the FPGA side and a new component on the

ARCOM high-level software side.

11.3 A Novel Approach to Riometer Image Interpolation

Initial raw ARIES recordings were presented in chapter 9. Raw recorded data is not necessarily

the most useful data for subsequent scientific analysis, and as a first step towards higher-level

data products, the need for image interpolation and the traditional interpolation method as used

for, e.g., the IRIS riometer, were introduced. This led to the development of a new type of ri-

ometer image interpolation algorithm (GLEAM) that, by inherently knowing about instrument

specifics such as complex beam directivity patterns, fits the real recorded data to a model of the

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 264

actually observed sky brightness distribution. GLEAM results were presented in the form of

image sequences, and these were also compared to images generated by the traditional method.

Even without very specific prior knowledge, such as simulated received power based on syn-

thetic sky maps, the GLEAM approach delivers performance that alleviates some of the short-

comings of the traditional approach. In particular, GLEAM interpolated images are no longer

limited to the convex envelope of the beam centres used during the interpolation, effects of neg-

ative correlation and sidelobes due to the Mills Cross beamforming principle are reduced and

there are no interpolation artefacts at the borders of the image. Interpolated images such as the

ones produced by GLEAM lead the way to lessening the emphasis on individual beams, with im-

ages (i.e. power values in arbitrary ‘virtual beam’ directions) becoming the primary data product

of next generation riometers.

Availability of these image sequences can then lead to quiet-day curve (QDC) and ab-

sorption calculations based on images (virtual beams): With a next generation riometer out-

putting sky brightness in arbitrary ‘virtual beam’ directions, existing algorithms can be used

to derive quiet-day curves (QDCs) and therefore absorption for these directions, see for exam-

ple the discussion in section 3.1. In addition, the notion of a quiet-day sequence of images

(a quiet-day movie) is now meaningful, and new methods can be developed to produce these

three-dimensional (two spatial dimensions plus time) descriptions of quiet days, interpolating,

weighting and averaging the raw brightness data in all three dimensions as appropriate. These

three-dimensional methods promise higher accuracy QDCs that adjust better to environmental

changes and eliminate the need for operator-verified, fixed quiet-day curve periods of, say, 14

days, such as currently used with IRIS. They will help to further reduce the need for manual in-

tervention, thereby providing more objective and repeatable absorption measurements. A basic

version of a three-dimensional method was implemented for producing the mean data plots in

figures 10.18 and G.1–G.7, albeit still at (real) beam level. See the description in section 10.7.1.

Further improvements to GLEAM might eliminate some of the issues encountered in chap-

ter 10 and are readily supported by GLEAM’s object-oriented architecture. As pointed out

in chapter 10, a certain amount of ‘ringing’ seems to be inherent to any image generated by

GLEAM. Nevertheless, to further improve the performance of the GLEAM algorithm and min-

imise these effects, several approaches suggest themselves:

Instead of feeding post-integrated data into the GLEAM solver (as done in chapter 10), it

might be beneficial to feed the raw 1s data into GLEAM and then post-integrate the modelled

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 265

result generated by GLEAM. This should potentially make the GLEAM interpolated images

smoother and minimise the differences from frame to frame. As an additional experiment, the

calculated coefficients could also be averaged before calculating the corresponding brightness

distributions, though this is likely to be inferior to post-integrating the resulting image, as each

coefficient affects all parts of the interpolated image.

Additional prior knowledge might be devised. As pointed out in section 10.6.4, this is likely

to depend on the type of underlying basis functions used.

A suitable implementation of a ‘capped harmonics’ functor might help to maximise the

achievable level of detail for any given number of coefficients (see figure 10.5). [Hai88], [Hai85]

and [ST97] might be useful starting points.

Using received power information from all beams (even the degraded ones) might contribute

to a further slight increase in interpolated image quality, albeit no major improvement should

be expected from this as these beams contain little information, see the comparison between the

556-beam and 716-beam cases in table 10.1.

As suggested by [Sen], altogether different methods of modelling the sky brightness distri-

bution may also be investigated. This includes splines and the maximum entropy method. Useful

starting points are [PFTV88], [Rei85] and [SK05]. Note that these methods will require an it-

erative approach, which is inherently different from the matrix inversion approach as used by

GLEAM.

Although not detailed further in this thesis, due to the underlying RIOSIM toolkit, it is

straightforward to apply GLEAM to data from other riometers. This has already been done for

IRIS data during initial development of GLEAM as published in [GSH05]. At the time, results

were less than satisfactory. With the current capabilities of incorporating prior knowledge, con-

siderable improvements can be expected. Applying GLEAM to 256 beam (16×16 aerial) filled

array riometers will also be an interesting investigation.

The availability of good quality images from multiple riometers will enable absorption

height triangulation: Using absorption data from two or three imaging riometers, the height

profile of the absorbing regions can be derived by means of triangulation and/or tomography.

This is one of the scientific goals of ARIES. With the availability of interpolated images cover-

ing wide fields of view, methods that have successfully been employed for optics in the past (see

for example [AKK05]) can be applied to imaging riometer data from instruments with overlap-

ping fields of view.

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 266

By bringing together knowledge from various areas of Engineering and Physics, it is hoped

that the multi-disciplinary developments presented in this thesis will contribute to advancing

instrumentation and analysis methods in riometry and beyond, thereby making valuable contri-

butions to, and providing foundations for, a wide range of future research.

CHAPTER 11. SUMMARY, CONCLUSIONS AND OUTLOOK 267

(a)

(b)

(c)

Figure 11.1: Advanced ARCOM deployment examples supporting real-time data feeds

Appendix A

Glossary

absorption Attenuation of an incoming signal due to the properties of the medium, e.g. the

ionosphere. Absorption varies with frequency of the signal as 1
f 2 .

ABC Abstract Base Class

abstract (base) class A term used in object-oriented programming for classes that cannot be in-

stantiated. Abstract classes usually form the base for more concrete implementation

classes.

aka also known as

ARCOM Advanced Riometer COMponents. Operating software developed for advanced ri-

ometer systems, based on a componentry framework and high-speed shared mem-

ory interfaces for component interconnection. See chapter 8.

CBR Cosmic Background Radiation

CGI Common Gateway Interface. A standardised way of passing information from a

web server process to third-party programs and back in response to an HTTP request

from a client.

CMB Cosmic Microwave Background

COM Component Object Model. A framework for software componentry mainly used by

Microsoft Windows operating systems.

componentry In Software Engineering: A design principle for complex software systems. A

software component is an independent software unit that can be composed with

268

APPENDIX A. GLOSSARY 269

other components to create a software system [Som04]. Examples of popular com-

ponentry frameworks are Microsoft’s COM and OMG’s CORBA. Components usu-

ally try to encapsulate a highly coherent set of functionality, while themselves only

exhibiting loose coupling to other components.

concrete class As opposed to an abstract (base) class. A class that can be instantiated to create

a useable object.

CORBA Common Object Request Broker Architecture. A vendor-independent architecture

and infrastructure for software components to work together over networks [HV99,

PR00, Obj05].

crossed dipole see ‘turnstile antenna’

DUNES Dial-up NEtworking for remote Stations. A piece of software developed by the au-

thor to access remote nodes via telephone modem, supporting cost-effective oper-

ating modes that dial up to local internet service providers (ISPs) instead of relying

on long-distance telephone connections. See appendix I and [Gri06b].

FEM Finite Element Method. A method of solving complex mathematical systems by

dividing them up into a number of finite elements and iteratively calculating a nu-

merical solution. Used, for example, in the NEC (Numerical Electromagnetic Code)

program to analyse the electromagnetic response of an arbitrary structure consisting

of wires and surfaces in free space or over a ground plane [BP77].

footprint The area covered by a given antenna beam on the surface of interest. Satellite

footprints describe the area on the surface of the Earth where reception is possible.

In riometry, riometer beam footprints are often projected onto the ionosphere to

show the spatial extent of any given beam.

functor In object-oriented (OO) programming: An object that can (only) provide a well-

specified piece of functionality, for example evaluating a function (as represented by

the functor in question) at specific points. Often implemented using polymorphism.

GMST Greenwich Mean Sidereal Time. See section C.4.

great circle In spherical trigonometry: A circle (on a sphere) whose centre coincides with the

centre of the sphere. Examples of a great circle are the equator or any line of equal

APPENDIX A. GLOSSARY 270

longitude.

Grid A collaborative network, which lets people share computing power, databases, in-

struments and other on-line tools securely across corporate, institutional, and geo-

graphic boundaries without sacrificing local autonomy. (Definition taken with slight

modifications from [Uni07].)

Gridservice As opposed to a simple Webservice, a Gridservice is usually a stateful service pro-

vided by a processing Grid, and initially instantiated by the client using a service

factory. Each client will receive (a reference to) its own instance of the requested

Gridservice.

HTTP Hypertext Transfer Protocol. A set of rules for exchanging files, heavily used on the

World Wide Web (WWW) and more recently for Web- and Gridservices.

IDL (1) Interface Definition Language. A generic term for specifying messaging inter-

faces. More specifically, in CORBA, a C++-like language for specifying CORBA

interfaces.

(2) Interactive Data Language. A data visualisation and analysis software by RSI,

Inc., similar in features to MATLAB.

ionosphere The part of the Earth’s atmosphere ranging from a height of about 70km up to

1000km. The properties of this part of the atmosphere are determined by the fact

that the gas atoms and molecules are ionised. The ionosphere as a whole is still

electrically neutral, but ionisation enables the flow of electric current. Ionisation in

the ionosphere is mainly caused by solar radiation and the interaction of the solar

wind with the Earth’s magnetic field (magnetosphere). See section 3.4.1.

IOR Interoperable Object Reference. The CORBA term for an identifier that uniquely

identifies any given CORBA object (component) at run-time.

IRIS Imaging Riometer for Ionospheric Studies. An imaging riometer with 8×8 antenna

elements [BHH95]. In particular the riometer operated by the Ionosphere and Radio

Propagation Group at Lancaster University [IRI].

isotropic radiator An imaginary antenna that emits unpolarised radiation with equal intensity in

all directions.

APPENDIX A. GLOSSARY 271

keogram Time-space-diagram used to show how a slice of (image) data varies with time.

Commonly used to identify movement of structures through the field of view of an

imaging instrument.

LAST Local Apparent Sidereal Time. See section C.5.

LUT Look-up table. A table that associates a given set of input values with certain out-

put values. LUTs are often used to speed up processing: all possible results are

precomputed and then stored in a LUT instead of computing them on-the-fly. A

CDelayBuffer object (see 4.2.1.2) is an implementation of a linearly-interpolating

LUT.

MATLAB A data visualisation and analysis software by The Mathworks, Inc [Matb]. Exten-

sively used in the SPEARS group at Lancaster University, especially for MIA. See

also IDL.

metadata Data describing data. For example, a time series of data points on its own only

contains the data itself. Metadata is used to describe what this data is about. For

example, metadata could describe that this series of data points represents absorp-

tion data at a time resolution of 5 seconds starting at midnight on 5 May 2003. One

of the reasons why XML has turned out to be so popular is that it tries to directly

associate data and metadata inside the same file.

MIA Multi Instrument Analysis Toolkit [Marc, MH04]

NaN Not a Number. A numerical value to represent the fact that there is no numerical

value for the value in question. Often used to indicate ‘missing data.’

obliquity factor When a ray (for example a radio wave) traverses a layer of matter in a non-

perpendicular direction, that layer appears thicker than it really is. Therefore, ab-

sorption measured in some off-zenith direction needs to be corrected for this oblique

viewing angle. Several methods exist for this correction. One method is to simply

calculate the ratio of apparent thickness to real thickness for the main pointing di-

rection (see chapter 10, section 10.3). Advanced methods try to take the shape of

the receiving antenna beam pattern into account (‘effective obliquity factor’), see

for example [HD02].

APPENDIX A. GLOSSARY 272

OO Object-Orientation. Also object-oriented design. An approach to software design

that seeks to divide (software) systems up into interacting ‘objects,’ each with its

own capabilities (responsibilities) and properties (attributes). Objects share com-

mon functionality by means of inheritance. Basic design rules of object-oriented

programming are that each class of objects should encapsulate a well-defined slice

of functionality and that interfaces between objects should be clearly defined and

enable loose coupling (little interdependency) between objects.

pABC purely Abstract Base Class. An abstract base class containing no implementation

code whatsoever. The C++ equivalent of a (Java) ‘interface.’

phase centre (of an antenna or antenna array.) An (arbitrary) point in space used as a reference

from which all relative phase offsets for signals received from the antenna(s) are

calculated. To correctly combine the radiation patterns of two (arrays of) antennas,

the phase centres need to coincide.

polymorphism In object-oriented (OO) programming: The fact that objects of classes that are

derived from a common interface appear identical to external entities, therefore

allowing them to be swapped in and out at run-time.

Prime Meridian The meridian that passes though Greenwich, UK. This meridian defines the

origin of longitude.

QDC Quiet-Day Curve. The QDC represents the power level that is received during one

sidereal day on a perfect ‘quiet day,’ i.e. when no absorption occurs. There are sev-

eral ways to derive a QDC, for example the inflection point method as described

in [KDR85] or the empirical method used by IRIS. See also the discussion in sec-

tion 10.2.3.

real-time Often further divided into soft and hard (stiff) real-time. A hard real-time sys-

tem places stringent timing requirements on the processing of data passing through

the system, whereas soft real-time systems have more relaxed timing requirements

where occasional delays are non-fatal. Examples of hard real-time systems are CNC

(computerised numeric control) manufacturing machines, where processing delays

would result in extensive damage to the machine. An example of a soft real-time

system is a domestic central heating controller.

APPENDIX A. GLOSSARY 273

riometer Relative Ionospheric Opacity Meter. Measures absorption of cosmic radiation in

the ionosphere. See chapter 3.

riometry Science to do with riometers.

RIOSIM A toolkit for simulating riometers developed in this thesis, see chapter 6.

scintillation A term for rapid variations in apparent brightness of a distant object when viewed

through a medium such as the atmosphere or ionosphere. Caused by refraction due

to small-scale variations in the medium density. See for example [Ric77].

sidereal time Time with respect to the stars: sidereal time uses stars outside our solar system as

a fixed point of reference. The Earth rotates around its axis in one sidereal day. A

sidereal day is about 4min shorter than a ‘regular’ day due to the fact that a ‘regular’

day is measured with respect to the sun, and not only does the Earth rotate around

its axis, it also rotates around the sun, thereby taking slightly longer for a ‘complete’

revolution with respect to the sun.

SVG Scalable Vector Graphics. An XML-based file format for the description of vector-

based drawings. Will be read natively by next generation web browsers. Currently

supported through external applications and/or plugins.

TCP/IP Internet Protocol: Transport Control Protocol. A connection-oriented protocol used

to transfer data over potentially unreliable networks and guaranteeing that all data

arrives unharmed and in its original order.

turnstile antenna Two linear dipole antennas perpendicular to each other, connected with a 90◦

phase shift between them. Also often referred to as ‘crossed dipole.’

UDP User Datagram Protocol. A connectionless but fully routable internet protocol. Its

low overhead makes it ideal for real-time data dissemination.

UML Unified Modelling Language. A way of describing systems graphically in an object-

oriented way. The UML defines several standard diagram types such as Class Dia-

grams and Sequence Diagrams. The UML was originally designed by James Rum-

baugh, Ivar Jacobson and Grady Booch (aka ‘The Three Amigos’), all three widely

recognised for their contributions to the development of object-oriented technology

[BRJ00, RJB99].

APPENDIX A. GLOSSARY 274

VPN Virtual Private Network. Several Computers that are logically connected to form

a secure, private network. There is no dedicated physical connection between the

hosts. Instead, some public network (e.g. the internet) is used to virtually connect

the hosts. Communication on such a network is usually encrypted to ensure privacy.

Webservice A simple service accessed through the standard HTTP (web) protocol. A Webser-

vice usually provides relatively simple information in response to one single query

by the client. No state information is usually retained over multiple requests. See

also Gridservice.

Wicked System In Software Engineering, the term ‘Wicked System’ is used to describe complex

systems that are conceptually difficult to design and implement. In this context, the

term ‘wicked’ refers to the fact that the requirements for such a system are not well-

defined, and any given implementation is likely to in turn change the requirements

and therefore the system design [Som04].

Wiki A WikiWikiWeb system as originally devised by Ward Cunningham [LC01]: “The

simplest online database that could possibly work.” A collaborative WWW-based

platform allowing any visitor to view and edit pages using a simple markup lan-

guage.

XML Extensible Markup Language. A flexible text format developed by the World Wide

Web Consortium (W3C). XML is playing an increasingly important role in the

exchange of a wide variety of data on the web and beyond (Webservices, Grid)

[Qui03].

zenith The point directly overhead.

Appendix B

Astronomical Coordinate Systems

B.1 Astronomical Coordinate Systems

During the course of this work, several different coordinate systems had to be used. This section

discusses some details about the different coordinate systems that are used in Astronomy. Unfor-

tunately, there is quite a variety of them, and many ambiguities can arise. Different coordinate

systems are used in different fields of Astronomy. As the riometer model needs to know about

locations on Earth as well as in the sky, it is essential to be familiar with the different coordinate

systems in use, along with knowledge of how to convert between them.

This appendix briefly describes what coordinate systems there are, and what they are used

for. The ones that are directly relevant for the work to follow are then explained in more detail,

together with explanations on how to convert between them.

Note that most of the coordinate systems presented are spherical coordinate systems, de-

scribing a position on the surface of a sphere, as opposed to three-dimensional coordinate sys-

tems. This is because Astronomy often deals with objects that are so far away from the observer,

that the actual distance is no longer of interest, but only the direction in which the object in

question can be found. In that case, dealing with — two-dimensional — spherical coordinates

helps reduce the complexity of the problem. However, there are benefits in using real three-

dimensional coordinate systems, these include a more consistent behaviour that can be described

with vector equations, and constant precision over the whole space [Vin98]. More details will

be discussed in the descriptions of the different coordinate systems.

The information in this appendix has been collated from several different sources, the most

important ones are [Vin98, Walb, Sma62].

275

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 276

Table B.1 gives an overview over the most commonly encountered coordinate systems in

Astronomy. Not all of those systems will be described in detail later on, because not all of them

are particularly relevant for this work. It seems reasonable, however, to at least introduce the

basics of all these commonly used coordinate systems.

B.1.1 Common Basics

All of the coordinate systems in table B.1 need some means of specifying their principal position

in space. The coordinates then describe the position relative to those principal components. In

the case of Cartesian coordinates, this principal construction is the unit vector triple {ex,ey,ez}.

These vectors are perpendicular to each other. The triple {ex,ey,ez} is called a triad, and a

vector to any position in three-dimensional space can be expressed as a linear combination of

these three principal vectors.

Similarly, all the spherical coordinate systems in table B.1 are based on a principal circle,

and a fixed point on that circle. The coordinates then describe the position of an arbitrary point

on the sphere relative to those principal components. Thus the main difference between all

the coordinate systems in table B.1 is — apart from different naming conventions — that their

fundamental components are different.

The following sections will discuss the relevant spherical coordinate systems in more detail.

In particular we will define the spatial relation between each of the spherical coordinate systems

and the Cartesian coordinate system. This will enable us to convert coordinates from one system

to another, using the Cartesian coordinate system as an intermediate. Direct conversions from

one spherical coordinate system to another are, of course, also possible, and these will be applied

and derived where applicable. The main benefit of converting from one spherical coordinate

system to another directly is speed, as there is only one (generally less computationally intensive)

step involved, as opposed to two steps for converting to Cartesian coordinates and then to the

target spherical coordinate system.

However, using the Cartesian coordinate system as an intermediate allows us to perform

the same set of operations on coordinates that were originally specified in different coordinate

systems, without the need to re-implement the necessary algorithms. One example is rotation

around the origin by an arbitrary amount. This can be implemented in Cartesian coordinates

with a simple matrix multiplication.

It has to be noted that even with the two-step coordinate conversion using an intermediate

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 277

N
am

e
ba

si
c

un
its

us
ed

to
de

sc
ri

be
th

e
po

si
tio

n
of

...
ce

nt
re

of
co

or
di

na
te

sy
st

em
C

ar
te

si
an

x,
y,

z
po

in
ts

in
sp

ac
e

ar
bi

tr
ar

y
fix

ed
or

ig
in

m
at

he
m

at
ic

al
az

im
ut

h
θ

,e
le

va
tio

n
φ

po
in

ts
on

a
sp

he
re

ce
nt

re
of

sp
he

re
el

ec
tr

om
ag

ne
tic

az
im

ut
h

an
gl

e
φ

,p
ol

ar
an

gl
e

θ
po

in
ts

on
a

sp
he

re
ce

nt
re

of
sp

he
re

ge
og

ra
ph

ic
lo

ng
itu

de
,l

at
itu

de
φ

te
rr

es
tr

ia
lo

bj
ec

ts
ce

nt
re

of
th

e
E

ar
th

ge
om

ag
ne

tic
ge

om
ag

n.
lo

ng
itu

de
,g

eo
m

ag
n.

la
tit

ud
e

te
rr

es
tr

ia
lo

bj
ec

ts
ce

nt
re

of
th

e
E

ar
th

ho
ri

zo
nt

al
al

tit
ud

e
a,

az
im

ut
h

A
ce

le
st

ia
lo

bj
ec

ts
ob

se
rv

er
fir

st
=l

oc
al

eq
ua

to
ri

al
H

A
h,

de
cl

in
at

io
n

δ
ce

le
st

ia
lo

bj
ec

ts
ce

nt
re

of
th

e
E

ar
th

(s
ec

on
d)

eq
ua

to
ri

al
R

A
α

,d
ec

lin
at

io
n

δ
ce

le
st

ia
lo

bj
ec

ts
ce

nt
re

of
th

e
E

ar
th

ec
lip

tic
ec

l.
lo

ng
.λ

,e
cl

.l
at

.β
ce

le
st

ia
lo

bj
ec

ts
(c

en
tr

e
of

th
e

E
ar

th
)

ga
la

ct
ic

ga
l.

lo
ng

itu
de

lII
,g

al
.l

at
itu

de
bII

ce
le

st
ia

lo
bj

ec
ts

(c
en

tr
e

of
th

e
E

ar
th

)
su

pe
rg

al
ac

tic
SG

L
,S

G
B

ce
le

st
ia

lo
bj

ec
ts

(c
en

tr
e

of
th

e
E

ar
th

)

Table B.1: Common coordinate systems

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 278

Cartesian coordinate system, conversion is in most cases not straightforward, because the relative

position of the underlying Cartesian coordinate systems to each other are normally not constant,

but need to be determined based on variables such as time of observation, position of observer,

etc. [Walb]. Also, strictly speaking, some of the coordinate systems are not based on entirely

orthogonal axes, but are slightly distorted [Walb]. For our discussion, this will not be considered,

as we can achieve adequate accuracy without taking these properties into account.

The following sections will firstly describe the three general coordinate systems that are

used for specifying the positions of points on an arbitrary sphere. We will then discuss coordi-

nate systems that are used to describe positions on the Earth, moving on to coordinate systems

describing the celestial sphere centred on the Earth. Finally, we will reach the coordinate sys-

tems that no longer rely on any of the properties of the Earth. The latter coordinate systems are

mentioned in this place only for reasons of completeness, no further use will be made of them

in this thesis.

The following explanations will make use of certain terms (great circle, zenith, etc.) that are

explained in the glossary.

B.1.2 The ‘Mathematical’ Spherical Coordinate System

This coordinate system is widely used in mathematics. Mathematical software like MATLAB

[Matb] usually includes functions for converting between the mathematical spherical coordinate

system and the Cartesian system. See [Matb, functions cart2sph and sph2cart].

The mathematical spherical coordinate system is directly coupled to an underlying Cartesian

system. These two systems share the same origin. Azimuth θ and elevation φ are then angular

displacements in radians measured from the positive x-axis, and the x-y plane, respectively. A

third variable, r, can be used to specify the distance from the origin to a specific point in direction

(θ,φ).

This coordinate system is the basic spherical coordinate system for all software developed

in this thesis.

B.1.3 The ‘Electromagnetic’ Spherical Coordinate System

This coordinate system is closely related to the mathematical one described in section B.1.2.

The difference is, that in case of the ‘electromagnetic’ spherical coordinate system, the angular

displacement from the positive x-axis is referred to as Azimuth angle φ, and θ is the angle

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 279

measured from zenith downwards towards the x-y plane, referred to as Polar Angle [Kra88, p.

24]. This naming confusion can cause quite a lot of trouble. The ‘electromagnetic’ spherical

coordinate system is mainly used in books on electromagnetics, with antennas often pointing in

zenith direction, identified by small Polar Angles θ.

B.1.4 The Geographic Coordinate System

The geographical coordinate system is used to describe a position on the surface of the Earth or,

in fact, on any celestial body. We will stick to the Earth for the following explanations.

The Earth spins around its axis. The North and South Poles are where this (imaginary) axis

meets the Earth’s surface, the equator is the great circle perpendicular to the axis, and therefore

midway between the two poles. To describe a location on the surface of the Earth, we use latitude

and longitude (two coordinates, because the surface is two-dimensional). A great circle through

the poles and the location to specify, X , is called a meridian of longitude. The latitude of X is

then the angular distance along this meridian from the equator to X , usually measured in degrees

from −90◦ at the South Pole to +90◦ at the North Pole.

There is no obvious point of origin for measuring longitude; for historical reasons, the zero-

point is the meridian which passes through Greenwich, England (also called the Prime Merid-

ian). The longitude of X is the angular distance along the equator from the Prime Meridian to

the meridian through X . Longitudes are usually measured from 0◦ to 180◦ East of the Prime

Meridian and from 0◦ to 180◦ West, following the directions of the arrows in figure B.1. Some-

times, longitudes are also measured East or West 0◦ to 360◦. Note that the geographic coordinate

system only forms a right-handed coordinate system if longitude is measured Eastwards.

Note

Be aware that the geographic coordinate system discussed in this section uses the centre of the

Earth as its origin. It does not necessarily assume that the Earth is an ideal sphere, but all mea-

surements take place relative to the centre. This gives what is known as geocentric coordinates

as opposed to geodetic coordinates which are based on the local vertical at the location of the

observer, taking into account the flattening of the Earth.

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 280

Relationship to the Cartesian Coordinate System

For maximum similarity with the ‘mathematical’ spherical coordinate system, we define the

relationship between the geographic coordinate system and the Cartesian coordinate system as

shown in figure B.1: The x-axis points towards the intersection of equator and Prime Meridian,

the z-axis points towards the North Pole.

B.1.5 The Horizontal Coordinate System

This is the simplest celestial coordinate system. It uses the horizon as seen by the observer as its

fundamental circle. The poles are the zenith overhead and the nadir underfoot; these are defined

by the local vertical, for example by using a plumb-line.

We can now draw a great circle through zenith, nadir and our target object X . The altitude of

object X is then defined as the angular distance along this vertical great circle from the horizon

to X , measured from −90◦ at nadir to +90◦ at zenith.

We then need a fixed point of origin on the horizon, before we can specify the azimuth of

object X . This fixed point is attained by looking at where the spin axis of the Earth intersects

the celestial sphere, the intersection points are the North and South Celestial Poles. The vertical

(great) circle through these is called the principal vertical. Where this intersects the horizon,

it gives the North and South cardinal points (the North point is the one nearest to the North

Celestial Pole). Midway between these are the East and West cardinal points.

The azimuth of object X is now the angular distance around the horizon from the North

cardinal point to the vertical (great) circle through X , measured from 0◦ to 360◦ westwards.

An interesting property of the horizontal coordinate system is the fact, that the altitude of the

North Celestial Pole in the horizontal coordinate system is equal to the latitude of the observer

specified in the geographic coordinate system.

Relationship to the Cartesian Coordinate System

For maximum similarity with the ‘mathematical’ spherical coordinate system, we define the

relationship between the horizontal coordinate system and the Cartesian coordinate system as

shown in figure B.1: The x-axis points towards the intersection of equator and principal vertical,

the z-axis points towards the zenith.

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 281

x
y

z
e l e v a t i o n

a z i m u t h

x
y

z
P o l a r a n g l e

a z i m u t h

(a) mathematical (b) electromagnetic

x
y

z
l a t i t u d e

l o n g i t u d e (E a s t)

N o r t h P o l e

S o u t h P o l e

" P r i m e M e r i d i a n "

G r e e n w i c h ,
E n g l a n d

E q u a t o r

C e n t r e o f
t h e E a r t h

l o n g i t u d e
(W e s t)

E a r t h

S

x
y

z
a l t i t u d e

a z i m u t h

z e n i t h

n a d i r

" P r i n c i p a l V e r t i c a l "

N o r t h C e l e s t i a l
P o l e

h o r i z o n

o b s e r v e r

n o r t h c a r d i n a l
p o i n t

N

E

W

(c) geographic (d) horizontal

x
y

z
d e c l i n a t i o n

h o u r a n g l e

N o r t h C e l e s t i a l P o l e

S o u t h C e l e s t i a l P o l e

" t h e " c e l e s t i a l m e r i d i a n

z e n i t h

c e l e s t i a l e q u a t o r

o b s e r v e r

x
y

z
d e c l i n a t i o n

N o r t h C e l e s t i a l P o l e

S o u t h C e l e s t i a l P o l e

c e l e s t i a l e q u a t o r

o b s e r v e r

r i g h t a s c e n s i o n

v e r n a l
e q u i n o x

(e) local equatorial (f) second equatorial

x
y

z
g a l a c t i c l a t i t u d e

N o r t h G a l a c t i c P o l e

S o u t h G a l a c t i c P o l e

g a l a c t i c e q u a t o r

o b s e r v e r

g a l a c t i c l o n g i t u d e

c e n t r e
o f g a l a x y

(g) galactic

Figure B.1: Common coordinate systems

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 282

B.1.6 The First Equatorial = Local Equatorial Coordinate System

The horizontal system depends on place (because the sky appears different from different points

on Earth) and on time (because the Earth rotates, and each star appears to trace out a circle

centred on the North Celestial Pole).

The first equatorial coordinate system is a first step towards a coordinate system that is fixed

on the sky, independent of the observer’s time and place. For this, the fundamental circle is no

longer the horizon but the celestial equator. The celestial equator lies directly above (in the same

plane as) the Earth’s equator.

Any great circle between the NCP and the SCP is now a meridian. The one which also

passes through the zenith (as seen by the observer) and the nadir is called the celestial meridian.

It is identical to the principal vertical in the horizontal coordinate system (section B.1.5). The

point where the celestial meridian crosses the southern half of the equator is the zero-point for

the first equatorial system.

The direction of an object X can now be described by drawing a meridian through X . The

declination of X is then the angular distance from the celestial equator to X , measured from

−90◦ at the South Celestial Pole to +90◦ at the North Celestial Pole. The Hour Angle of X is

the angular distance between the meridian of X and the celestial meridian, measured westwards

and normally expressed in hours (0h−24h), hence the name Hour Angle.

The first equatorial coordinate system is still tied to the observer’s here-and-now, but over

short periods of time the object’s declination will not change. This fact is used for observing

stars with telescopes mounted on so-called equatorial mounts.

Relationship to the Cartesian Coordinate System

For maximum similarity with the ‘mathematical’ spherical coordinate system, we define the

relationship between the first equatorial coordinate system and the Cartesian coordinate system

as shown in figure B.1: The x-axis points towards the southern intersection of celestial equator

and the celestial meridian, the z-axis points towards the North Celestial Pole.

B.1.7 The (Second) Equatorial Coordinate System

The second equatorial coordinate system finally reaches the aim of being independent from

the observer’s position on Earth. To accomplish this, the second equatorial system still uses

the celestial equator as its fundamental circle, just like the first equatorial coordinate system

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 283

described in section B.1.6. However, the zero-point is now no longer defined by the observer’s

zenith, but by a fixed point on the celestial equator called the vernal equinox, or the First Point

of Aries1.

Like before, the declination of an object X is the angular distance from the celestial equator

to X , measured on a meridian through X and ranging from −90◦ at the South Celestial Pole to

+90◦ at the North Celestial Pole.

However, the second coordinate is now called Right Ascension (RA), and this is the angle

along the celestial equator measured eastwards from the vernal equinox to the meridian of X .

Like HA, RA is measured in hours (0h− 24h). Note that it goes in the opposite direction,

compared to the HA in the first equatorial coordinate system (section B.1.6).

Relationship to the Cartesian Coordinate System

For maximum similarity with the ‘mathematical’ spherical coordinate system, we define the re-

lationship between the second equatorial coordinate system and the Cartesian coordinate system

as shown in figure B.1: The x-axis points towards the vernal equinox, the z-axis points towards

the North Celestial Pole.

B.1.8 The Galactic Coordinate System

The galactic coordinate system is no longer based on any of the properties of the Earth. Galactic

coordinates describe the directions of objects relative to the galactic plane. The fundamental

great circle is therefore the intersection of the galactic plane with the celestial sphere. This circle

is called the galactic equator. The only fact where the Earth still comes in is in the definition of

the Galactic Poles. The North Galactic Pole is defined as that pole in the same hemisphere as

the North Celestial Pole.

The galactic latitude bII can now be defined as the angular distance from the galactic equator

to the object X , measured along a great circle through the Galactic Poles and X . Galactic latitude

bII ranges from −90◦ at the South Galactic Pole to +90◦ at the North Galactic Pole.

The zero-point for galactic longitude is the centre of the galaxy. The galactic longitude lII

of object X is the angular distance around the galactic equator from the centre of the galaxy to

the great circle through X , measured eastwards from 0◦−360◦.

1Despite the name, the vernal equinox is not fixed within the zodiac of Aries, but will itself move slowly through
the sky [Walb].

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 284

Relationship to the Cartesian Coordinate System

For maximum similarity with the ‘mathematical’ spherical coordinate system, we define the re-

lationship between the galactic coordinate system and the Cartesian coordinate system as shown

in figure B.1: The x-axis points towards the centre of the galaxy, the z-axis points towards the

North Galactic Pole.

B.1.9 The Geomagnetic Coordinate System

This coordinate system is used to describe positions relative to the magnetic field of the Earth.

Lots of different definitions for geomagnetic coordinates exist, and generally they depend on

time (epoch) and sometimes on complex magnetic models. Consequently, the use of geomag-

netic coordinates can lead to much confusion, and as these coordinate systems are of no further

consequence to this thesis, we will not discuss them further here. [GPP92] and [TUP+87] are

good starting points.

B.2 Converting Between Coordinate Systems

In order to correctly convert between the different coordinate systems mentioned in section B.1,

it is obviously not sufficient to just change the scales of the different coordinates. As different

systems have different origins, it is necessary to express the base vectors of one system in terms

of the base vectors of another system. In addition to that, a position vector is needed to specify

how the two origins are related to each other.

B.2.1 Relation Between Horizontal and Geographic Coordinates

We illustrate this for the most often required example of converting between geographic lon-

gitude/latitude (geographic coordinate system, see section B.1.4) and the horizontal coordinate

system of an observer on the surface of the Earth.

We use the underlying Cartesian coordinate system of both systems as described in the re-

spective sections above. Now the problem shows itself as depicted in figure B.2.

We are looking for the base vectors −→ex , −→ey and −→ez , expressed as multiples of the base vectors

−→x , −→y and −→z of the basic geographic coordinate system. The observer is located at a position

described by
−→
X . −→ex , −→ey and −→ez can then be determined by using the following relationships:

−→ez Same direction as
−→
X , unit length.

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 285

−→ex Lies in the same plane A as
−→
X and −→z . If A intersects z-axis in positive half-axis,

then −→ex =
−→
PX∣∣∣−→PX
∣∣∣ , otherwise −→ex =−

−→
PX∣∣∣−→PX
∣∣∣ .

−→ex Forms a right-handed Cartesian coordinate system together with −→ez and −→ex .

From these relationships, a function azeltriad() was developed that returns the base vectors −→ex ,

−→ey and −→ez as multiples of −→x , −→y and −→z , given the position of the observer
−→
X . This function is

part of the RIOSIM package as described in chapter 6.

B.2.2 First to Second Equatorial Coordinate System

As sections B.1.6 and B.1.7 explain, the first equatorial coordinate system still depends on the

rotation of the Earth, whereas the second equatorial coordinate system does not. Declination δ

is the same in both systems, and hour angle h and right ascension α are related as follows:

h = θ−α (B.1)

where θ is the local apparent sidereal time and α is the (calculated) apparent right ascension

of the object in question at the given time. The local apparent sidereal time is determined as

described in section C.5.

B.2.3 First Equatorial to Horizontal Coordinate System

The final conversion from first equatorial to horizontal coordinates is straightforward, as the

relation between the two coordinates remains fixed for any given location of the observer on

Earth. Horizontal coordinates follow from first equatorial coordinates by means of rotation.

The same rotation applied in the opposite direction converts from first equatorial to horizontal

coordinates.

B.2.4 Catalogued Star Coordinates to Current, Observable Coordinates

The position of stars (or more generally astronomical objects) is normally catalogued using a

certain coordinate system. The most widely used catalogue is the FK5 catalogue [FSL+88],

and together with many others, it gives the positions of stars in mean Right Ascension α and

mean declination δ, thus coordinates in the so called (second) equatorial coordinate system, see

section B.1.7.

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 286

Epochs

As described in section B.1.7, this coordinate system uses the plane of the equator as its fun-

damental plane, and the vernal equinox as the fixed point in space specifying the origin of α.

As has been briefly mentioned already, both these positions are not fixed in space. Therefore,

FK5 coordinates have to be specified together with the date the coordinate system was based on,

for example ‘equinox J2000’ where J2000 specifies the Julian epoch 2000, with ‘epoch’ being

another word for ‘instant in time.’ Specifically, epoch J2000 is defined to be 2000 January 1.5

in the TT timescale (see appendix C for more information about timescales).

Proper Motion

On top of that, most astronomical objects are not fixed in space with respect to the ‘fixed back-

ground.’ Instead, ’proper motion’ can be observed, and is normally catalogued as well. Proper

motion µα = α̇ is the observed change of α, usually specified in radians per century. Similarly,

µδ = δ̇ is the change in δ.

Now, one obviously not only has to specify position, coordinate system and proper motion,

but also the date when the astronomical object was observed at the specified position, since it

will have moved on since then.

Therefore, a full star catalogue entry contains (α,δ) in (second) equatorial coordinates of a

given year (e.g. ‘α = 22h34m10s.761, δ = +276◦.281 equinox J2000’), the proper motion terms

(µα,µδ) and a date when the object was observed at the given position, e.g. ‘epoch J2000.’

Luckily, most catalogues reduce both dates to the same date. All values given in the FK5

catalogue, for example, are valid for epoch J2000 in the coordinate system based on equinox

J2000.

Precession and Nutation

Unfortunately, as mentioned under ‘Epochs’ above, the position of the points that the equatorial

coordinate system is based on varies with time, i.e. the coordinate system is constantly moving

relative to the distant sky background. By far the largest influence is caused by the so-called

‘precession of the equinoxes’ [Walb]. The positions of the equinoxes change with time due

to the precession of the Earth’s axis. Confusingly, two terms have been established for this:

luni-solar precession describing the low frequency (one period in 26,000 years) main effect,

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 287

and nutation describing the smaller high frequency terms. Note that precession and nutation are

simply different frequency components of the same physical effect.

In addition, the planets in our solar system influence the Earth-Moon system, causing the

ecliptic to rotate slowly. This is called planetary precession.

Planetary precession and luni-solar precession together are called general precession, and

this is what is still included in the various ‘mean’ coordinates, whereas the influence of nutation

is not. See below.

Mean Place

As mentioned above, catalogues usually contain the ‘mean place’ of the object in question, the

term ‘mean place’ meaning that the low frequency component of precession (‘general preces-

sion’, see section B.2.4) has been included in these coordinates, while the higher frequency

components have been removed. So the object in question might never have been observed at

the specified place!

Aberration

The finite speed of light combined with the motion of the observer around the sun during the

year causes apparent displacements of the positions of the stars. This effect is called annual

aberration. In addition, there is a small contribution called diurnal aberration due to the rota-

tion of the Earth. Also, the so-called E-terms describe the influence of the Earth’s orbit being

elliptical instead of circular.

Conversion FK5 to Horizontal

Let’s assume we know the coordinates of an object in terms of (α,δ,µα,µδ), with equinox and

position both reduced to the same epoch, e.g. J2000. In order to find the coordinates where the

object can be observed at a given time in the horizontal coordinate system of an observer on

Earth, we need to follow the following steps:

1. apply proper motion from catalogued data — this will leave us with new coordinates

(α∗,δ∗) specifying the position of the star for the time in question, but still in the coordi-

nate system of, say, J2000.

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 288

2. apply rotation caused by precession/nutation of the Earth’s axis since the catalogued

epoch, and allow for ‘annual aberration’ due to the movement of the Earth relative to

the object in question

3. convert the resulting coordinates to the first equatorial coordinate system by taking into

account the rotation of the Earth

4. adjust for ‘diurnal aberration’

5. convert the resulting coordinates to the horizontal coordinate system which is fixed in

relation to the first equatorial coordinate system, given a fixed location of the observer on

the Earth.

6. Observations at high frequencies would now have to take into account refraction effects

as well. However, waves of the frequency in question in our case (around 38MHz) pass

through the Earth’s atmosphere without being conceivably refracted.

B.2.5 Horizontal Coordinates to Galactic Coordinates

This conversion is needed for example if we have a digital representation of a background sky

temperature map (see section 6.4) and want to calculate how the sky temperature is seen by a

particular observer on Earth. The ‘native’ coordinate system of the observer is the horizontal

coordinate system, and we have to convert these coordinates all the way to galactic coordinates

which are normally used for sky maps.

Referring to the previous section, the following steps need to be followed:

1. convert horizontal coordinates to first equatorial coordinates, given the location of the

observer on Earth

2. adjust for ‘diurnal aberration’

3. convert to second equatorial coordinate system

4. apply rotation caused by precession/nutation and allow for ‘annual aberration’

5. convert the resulting FK5 J2000.0 coordinates to galactic coordinates

APPENDIX B. ASTRONOMICAL COORDINATE SYSTEMS 289

Figure B.2: Conversion from geographic to horizontal coordinates

Appendix C

Timescales

Coordinate systems are not the only issue that can cause a lot of confusion when it comes to

running exact simulations. A variety of different scales for measuring time exist, and their

relationships to each other are described in this appendix. Timescales are also important for the

design of the ARCOM operating software (see chapter 8).

Tables C.1 and C.2 list the most widely used timescales together with their basic properties.

The timescales of relevance for the current work will be discussed in more detail in the following

sections. Large parts of these sections are compiled from information in [Walb]. For a real-time

display of several timescales see [RTC].

C.1 International Atomic Time TAI

This timescale is established by a number of atomic clocks around the world. The basic unit is

the SI second [SI], which itself is defined in terms of a defined number of wavelengths of the

radiation produced by a certain transition in the Caesium 133 atom.

TAI is a continuous timescale, meaning that there are no leap seconds.

C.2 Coordinated Universal Time UTC

UTC shares the same basic unit with TAI. UTC is the basis of civil timekeeping, most time zones

differ from UTC by an integer number of hours. As opposed to TAI, UTC keeps in sync with the

sun. It does so, even though the Earth’s rotation is slightly variable, by occasionally introducing

a leap second. The International Earth Rotation Service [IER] determines whether or not a leap

second will be inserted. It can only be inserted at the end of the months of December and June.

290

APPENDIX C. TIMESCALES 291

UTC cannot be expressed in Julian Date, as ambiguities would arise during leap seconds.

C.3 Universal Time UT=UT1

UT1 is a continuous timescale that keeps in sync with the mean sun. As the Earth’s movement

is slightly variable, the basic unit of the UT timescale is variable as well. UT is obtained by

looking up the value of ∆ = UT1−UTC in tables published by the International Earth Rotation

Service [IER] for the date concerned. This quantity is kept in the range ±0s.9 by means of UTC

leap seconds, as described in section C.2 above. It is possible to predict ∆ with an accuracy

sufficient for pointing telescopes etc.

C.4 Greenwich Mean Sidereal Time GMST

Sidereal Time is the ‘time of day’ relative to the stars rather than to the Sun. After one sidereal

day the stars come back to the same place in the sky, apart from sub-arcsecond precession

effects. Because the Earth rotates faster relative to the stars than to the Sun by one day per year,

the sidereal second is shorter than the solar second; the ratio is about 0.9973.

The Greenwich Mean Sidereal Time GMST is linked to UT1 by a numerical formula. There

are, therefore, no leap seconds in GMST, but the second changes in length along with the UT1

second, and also varies over long periods of time because of slow changes in the Earth’s orbit.

This makes the timescale unsuitable for anything except predicting the apparent directions of

celestial sources.

C.5 Local Apparent Sidereal Time LAST

Local Apparent Sidereal Time (LAST) is the apparent right ascension of the local meridian,

from which the hour angle of any star can be determined knowing its Right Ascension α. It

can be obtained from GMST by adding the East longitude (corrected for polar motion in precise

work) and the equation of the equinoxes. The latter is an aspect of the nutation effect described

in section B.2.4.

APPENDIX C. TIMESCALES 292

C.6 Network Time Protocol (NTP) Timescale

The Network Time Protocol is a standard internet protocol to synchronise clocks of different,

spatially distributed, hosts [NTPb]. The NTP timescale is based on UTC and therefore shares

the SI second as its basic unit. An NTP timestamp is a 64bit integer value with the high order

32 bits representing the number of seconds since the start of the current era and the lower 32

bits representing fractions of seconds. The current NTP era began with a counter value of 0 at

0h on the 1st of January 1900. However, the NTP timescale does not know anything about leap

seconds. This means that, whenever a UTC leap second is inserted, a new NTP timescale is

effectively established. During a potential leap second, the current NTP time remains constant.

C.7 GPS Timescale

The GPS timescale itself (also known as GPS Composite Clock or GPS time) is broadcast by

the Global Positioning System (GPS) in the GPS navigation message and can be received with

a simple GPS receiver [HFM02]. This is known as one-way GPS time transfer. A GPS receiver

locks onto one satellite and receives a broadcast message. The broadcast message contains the

satellite-specific offset between the received GPS clock information and the basic GPS clock as

well as the current offset between GPS time and UTC(USNO). UTC(USNO) stands for the cur-

rent UTC as determined by the United States Naval Observatory (USNO). With this information,

the GPS receiver can derive UTC(USNO).

GPS time is measured in full weeks and seconds since start of the GPS timescale. To convert

between GPS and UTC timescales, it is good to know that a fixed relationship exists between

TAI and GPS time, see for example [Obsb]. GPS time 0 was at 00:00:00h on January 6th, 1980.

At that time, the difference between GPS timescale and UTC timescale was 0 seconds. From

[Obsa] it can be seen that the TAI timescale was offset by 19 seconds from UTC at that time

(TAI−UTC= 19.0). A table with the complete history of leap seconds is published by the United

States Naval Observatory, see [Obsa]. Based on this table, RIOSIM (see chapter 6) implements a

pair of functions — utc2gps() and gps2utc() — to convert between the two timescales. Note that

these functions will need to be updated as new leap seconds are introduced. It should be noted

that such conversions are usually only necessary after the dataset in question has been recorded,

so that up-to-date knowledge of leap seconds is not needed for data recording, especially as the

GPS transmitters continually transmit the current TAI−UTC value.

APPENDIX C. TIMESCALES 293

abbrev. name basic unit main properties
TAI International

Atomic Time
SI second Continuous (no leap seconds).

Therefore (increasing) time lag be-
tween TAI and UTC.

UTC Coordinated Uni-
versal Time

SI second Basis for civil timekeeping.
Leap second to keep in sync with the
sun.
If those leap seconds are inserted or
not is determined by the International
Earth Rotation Service [IER]. They
may only be introduced at the end of
the months of December and June.

UT=UT1 Universal Time variable
‘second’

Mean solar time.
Continuous.
Needed for computing sidereal time.
Derive UT1 from UTC by looking
up (UT1-UTC) in tables published by
the International Earth Rotation Ser-
vice [IER].

Table C.1: Timescales (1)

APPENDIX C. TIMESCALES 294

abbrev. name basic unit main properties
GMST Greenwich Mean

Sidereal Time
≈ 0.9973
variable
‘seconds’ =
solar second

Mean time relative to stars.
Continuous.
Linked to UT1 by a numerical formula.

LAST Local Apparent
Sidereal Time

as above Apparent right ascension of the local
meridian. Obtained by adding East
longitude of location and equation of
equinoxes to GMST.

TT Terrestrial Time SI second Currently: TT=TAI+32.184s
TDB Barycentric Dy-

namical Time
variable
‘second’

Differs from TT by an amount which
cycles back and forth by between 1 and
2 milliseconds due to relativistic ef-
fects.

NTP Network Time Pro-
tocol Timescale

SI second Standard protocol to distribute time in-
formation between computers. See
[NTPa]. NTP timescale is constantly
re-synchronised with UTC. Therefore,
a ‘new’ NTP timescale is established
after each UTC leap second.

GPS Global Positioning
System Timescale

SI second GPS time is the time that is distributed
through the Global Positioning Sys-
tem (GPS). It uses the same basic unit
as UTC, but does not contain leap
seconds. Instead, the current offset
from UTC is transmitted as part of the
GPS navigation message, allowing the
derivation of UTC from the GPS time.

Table C.2: Timescales (2)

Appendix D

ARIES System Diagrams

The following pages contain diagrams outlining various aspects of the Advanced Rio-Imaging

Experiment in Scandinavia (ARIES) system. The following diagrams are provided:

• ARIES block diagram (figure D.1, courtesy of Peter Chapman).

• ARIES receiver block diagram and photograph (figures D.2 and D.3, courtesy of Peter

Chapman).

• ARIES FPGA data flow (figure D.4, courtesy of Keith Barratt).

• ARIES physical layout, numbering scheme and coordinate system orientation (figure D.5).

295

APPENDIX D. ARIES SYSTEM DIAGRAMS 296

Figure D.1: ARIES block diagram. Courtesy of Peter Chapman.

APPENDIX D. ARIES SYSTEM DIAGRAMS 297

Figure D.2: ARIES receiver block diagram showing a single channel. A 64 channel, 14bit,
1.5MSPS simultaneously sampled receiver has been developed specifically for the ARIES
project. The complex (in-phase & quadrature) digitised signals from each of the 64 receiver
channels are output as multiplexed serial data; this helps reduce the wiring between the receiver
rack and the PC-mounted FPGA. Courtesy of Peter Chapman.

Figure D.3: ARIES receiver PCB. Two channels are co-located on a standard 220mm×100mm
Eurocard. 32 such receiver boards are required for the complete system and are housed, along
with oscillators, calibration noise source and other peripheral electronics, in an industry standard
12U 19” sub-rack. Courtesy of Peter Chapman.

APPENDIX D. ARIES SYSTEM DIAGRAMS 298

Figure D.4: ARIES FPGA data flow. Courtesy of Keith Barratt, taken from [Bar07].

APPENDIX D. ARIES SYSTEM DIAGRAMS 299

Figure D.5: ARIES physical layout, numbering scheme and coordinate system orientation as
used throughout this thesis. Fan beams are numbered in the same way as aerials. The fan beam
that points West is therefore number 1, the fan beam pointing North is number 64.

Appendix E

File Excerpts for ARIES Model

E.1 run Shell Script for ARIES Model

This is the simple shell script as mentioned in section 4.2.

#!/bin/sh

build model files

cd cpp

make

make -f beamform.mak

make -f xcorr.mak

cd ..

delete all previous output data

rm data/*

run model

./model $*

run butler matrices

./beamform 1

./beamform 33

300

APPENDIX E. FILE EXCERPTS FOR ARIES MODEL 301

run cross correlator

./xcorr

E.2 Sample Source Definition File

This is an example of the format of the *.source files as used by the ARIES model. This

particular .source file is actually the one that was used to create figure 4.6. The three sources

defined herein were used to verify the correct orientation of the model’s coordinate system.

source definition file for ARIES model_v2

#

lines starting with # are comments.

#

each line has the following format:

x y z a etc.

#

where (x,y,z) = direction vector of source

(a) = amplitude

(etc.) = additional information (ignored)

1 0 1 1 to indicate x-axis

0 1 2.5 1 to indicate y-axis

0 0 1 1 to indicate z-axis (zenith)

E.3 Example Output of a Simulation Run

The following is the screen output of a simulation run. This particular simulation is the one that

was run for section 4.3.5.

[grill@egb024000005 model_v2]$./run -f sources/ghost_sources.so

urce -s 400000 -n 2

/home/aurora/grill/prg/model_v2/cpp

make: ‘model’ is up to date.

APPENDIX E. FILE EXCERPTS FOR ARIES MODEL 302

make: ‘beamform’ is up to date.

make: ‘xcorr’ is up to date.

Sourcefilename: sources/ghost_sources.source

NrOfSamples...: 400000

NoiseSrcType..: 2

FilterCoeff...: coeff/standard.coeff

Model Master Control proudly presents the model parameters:

InternalSamplingFrequency = 1.2224e+09 Hz

Maximum required delay buffer = 570 Samples

We’re aiming to calculate 400000 Samples

The noise sources are of type 2.

The IIR filter coefficients: coeff/standard.coeff.

* creating aerials... Mills Cross antennas created.

* reading sources from sources/ghost_sources.source...

more than 0 sources so far...

Amazing! We have 2 sources!

Running model...

progress: Nearly finished, closing files... OK

Forming beams from aerials (1:32)...

* opening files.

* adding and delaying...

nr. of lines is 400000

progress: That’s it! Beams are stored in ’data/beamXX’.

Forming beams from aerials (33:64)...

* opening files.

* adding and delaying...

nr. of lines is 400000

APPENDIX E. FILE EXCERPTS FOR ARIES MODEL 303

progress: That’s it! Beams are stored in ’data/beamXX’.

Cross correlating 400000 Samples.

progress: finished. Result stored in ’result’.

[grill@egb024000005 model_v2]$

Appendix F

Specialbeams.txt

This is the parameter file that was used for the October 2002 experiment preparations. It is

interpreted by the RIOSIM function getspecialbeampattern() as described in section 6.6.3.

#

specialbeams.txt

#

#

This file defines special beams that can be generated

using the ARIES Mills Cross antenna array.

#

This file is interpreted by GETSPECIALBEAMPATTERN.M.

#

Lines starting with ’#’ are comments.

#

Each line describes one beam and has the following fields:

#

<nr> <type> <additional_parameters>

#

<nr> is the unique number of the beam to be defined

<type> is either A[dditive_array] or M[ultiplicative_array]

#

For type A the <additional_parameters> are:

<nr> A <sizex> <sizey> <dphasex> <dphasey>

304

APPENDIX F. SPECIALBEAMS.TXT 305

a linear phased array will be created with these parameters

#

For type M the <additional_parameters> are:

<nr> M <beam1> <beam2>

a multiplicative array will be created from the two specified beams,

these beams themselves need to be defined in the file, too.

#

#

NOTES:

o All beams defined in this file will be rotated to correct for

the slope of the ARIES site.

#

o The individual radiation pattern of each single element is

a CXDipoleNielsenPattern.

#

o Physically, the ARIES antenna array consists of two arms of

32 antennas each. Therefore, all type A beams should be arrays

of either size 1xX or Yx1.

#

o refer to 20020906_MillsCrossCoordinateSystem.ppt for a description

of the coordinate system used.

#

o It may prove useful to use the following number ranges

in order to avoid ambiguities:

2000:2999 for fan beams (formed by linear additive array)

3000:3999 for pencil beams (formed by multiplying two fan beams)

#

#

SEE ALSO:

GETSPECIALBEAMPATTERN, ARIES_contour*

#

fan beams (2000:2999)

APPENDIX F. SPECIALBEAMS.TXT 306

2000 A 32 1 0 0 # zenithal fan beam NS

2001 A 1 32 0 0 # zenithal fan beam EW

2002 A 32 1 0.490874 0.0 # this should give us trofan 46

2003 A 1 32 0.0 0.490874 # this should give us trofan 19

beams > 2500 are for the 16+16 array

2500 A 16 1 0.0 0.0 # zenithal fan 1

2501 A 1 16 0.0 0.0 # zenithal fan 2

2502 A 16 1 0.490874 0.0 # a fan beam for the 16+16 array

2503 A 1 16 0.0 0.490874 # ditto

pencil beams (3000:3999)

3000 M 2000 2001 # zenithal pencil beam

3001 M 2002 2003 # this should give us tro 595

beams > 3500 are for the 16+16 array

3501 M 2502 2503 # a 16+16 beam at the same location as beam tro_595

3502 M 2500 2501 # a zenithal 16+16 pencil beam

Appendix G

ARIES ‘Earlobe’ Plots

These are the complex phase and amplitude plots for all ARIES beams, including 1-month av-

erage (black) ±15 days of 2007-03-23, single-day data (yellow) for 2007-03-23 and simulated

data (red) for each beam. Each panel is a plot of power data over one sidereal day on the complex

plane. X-axis is the real axis from left (negative) to right (positive), y-axis is the imaginary axis

from bottom (negative) to top (positive), origin is at the centre. Axis scaling in arbitrary linear

power units. Further details see chapter 10.

Figure G.1 is an overview of the central 676 beams, figures G.2 to G.7 are larger versions

for all beams.

307

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 308

Figure G.1: ARIES ‘earlobe’ plots: all central 676 beams

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 309

Figure G.2: Zoomed-in version of figure G.1, part 1

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 310

Figure G.3: Zoomed-in version of figure G.1, part 2

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 311

Figure G.4: Zoomed-in version of figure G.1, part 3

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 312

Figure G.5: Zoomed-in version of figure G.1, part 4

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 313

Figure G.6: Zoomed-in version of figure G.1, part 5

APPENDIX G. ARIES ‘EARLOBE’ PLOTS 314

Figure G.7: Zoomed-in version of figure G.1, part 6

Appendix H

MIA’s Asynchronous Processing

System

The following paragraphs give a brief outline of the scheduling mechanism that is used by the

WWW-based MIA data access facilities as originally developed by S. Marple.

It is important to note that when the MIA scheduling system was first conceived, it was not

designed to be a scheduling system at all. Instead, as far as retrieving data was concerned, the

only additional task it handled was logging all data requests. This information was needed by

the funding body, and maintaining the data request logs manually was tedious and error-prone.

Based on these requirements, Marple designed a set of database tables that would be used to log

the details of each request made by users through the web interface. At this stage, the requests

still had to be processed manually.

It was only afterwards, that the need for automatic processing arose due to a constantly

increasing user base and therefore a constantly increasing number of data requests. Since all

the information was stored inside the logging database anyway, a straightforward solution was

implemented in the form of a backend process that continuously watched the database for new

log entries and launched an automated processing stage whenever a new log entry was detected.

Therefore, a scheduling system had been created from the existing roots of the logging sys-

tem, meaning that most of the existing logging code could be reused. Unfortunately, this system

turns out to have some drawbacks, all based around the fact that it evolved from a simple logging

system with scheduling capabilities added as an afterthought.

315

APPENDIX H. MIA’S ASYNCHRONOUS PROCESSING SYSTEM 316

H.1 Request-specific Structure

The originally devised logging system included one separate table for each type of data request.

This table would have columns according to the specific type of request. For example, the

table for riometer image plot requests would have a column that specifies the requested mapping

height, whereas a mapping height is not required for magnetometer data requests and is therefore

not included in the magnetometer data request table.

However, this means that whenever a new type of data request needs to be added to the

system, multiple changes need to be made by the administrator:

• A new table for the new kind of request needs to be added to the database.

• The processing backend needs to be informed about this new table, it needs to watch this

table for changes and launch a processing tool whenever a new request is detected.

• The processing tool needs to be able to handle data in exactly the format supplied by the

database table.

H.2 Centralised Organisation

As described, addition of a single type of request requires changes to nearly every part of the

system. This may not be a problem in small systems. In fact, a single administrator can normally

take care of this task, ensuring that the system remains dependable and free of errors.

However, as the system grows and several programmers need to add different kinds of pro-

cessing engines, the advantages of such a centralised, integrated approach quickly turn into

disadvantages. For a multi-developer system, it is advantageous to separate the complex func-

tionality into independent subsystems that would then no longer rely on one single administrator

whenever new types of processing engines need to be added.

H.3 Some Suggestions for Future Implementations

It is clear from the previous sections, that the currently implemented system has its limitations

when it comes to dealing with multi-user (as in ‘multi-developer’) scenarios in an efficient way.

For a further expanding data access facility, eventually a new system should be implemented,

APPENDIX H. MIA’S ASYNCHRONOUS PROCESSING SYSTEM 317

based on the long-term experience with the current one. The main parts of such a system would

be

• Web Frontends to collect data from authorised end-users, encapsulate this data into a suit-

able message and send this message to the job queuing subsystem.

• A Job Queuing Subsystem to collect all authorised processing requests and send them to

suitable processing engines, sorted by their respective priority.

• Processing Engines that process the job requests as managed by the job queuing subsys-

tem and return the results in some standard format.

• Web Frontends that take the results as produced by the processing engine and display them

to the end-user.

Note that in such a system the individual subsystems are no longer tightly coupled. A process

submitting tasks to the job queuing subsystem would not have to know about any internal data

formats of the job queuing subsystem. Inversely, the job queuing subsystem would no longer

need to know about each individual type of job request and all the parameters associated with

this particular request. Instead, it would merely act as an intermediary, passing the job request on

to a suitable processing engine as soon as one becomes available, and informing some frontend

when processing has finished.

Appendix I

DUNES Overview

DUNES (Dial-up NEtworking for remote Stations) provides the following functionality to a re-

mote computer system (taken from the DUNES requirements document [Gri06b]), also included

is a state diagram of the main DUNES state machine (figure I.1).

1. Manually establish and keep up dial-up internet connection. The local user can trigger

dial-up to the internet. DUNES will try to establish a dial-up connection. The connection

will be kept up (redialled) until manually terminated or until watchdog timeout.

2. Automatically establish dial-up internet connection, transfer data, hang up. Auto-

mated processes can ask for the internet connection to be established and taken down.

Watchdog timeout will still be active.

3. Local status information: Connecting/connected/disconnected/time-to-hangup. Pro-

vides feedback to the local user: Is the connection up?

4. Remote dial-in. In offline periods, incoming phone calls can establish a TCP/IP con-

nection with the system. Maximum connection time can be specified, after which the

connection will be cut.

5. Call back. Remote dial-in causes system to dial up. A remote caller can dial in and trigger

a dial-up. The system will hang up, dial up to the internet and stay online for a predefined

period of time.

6. Free call back. Modem RING causes system to dial up. A RING on the modem is

sufficient to trigger a short dialled-up period. Can be enabled/disabled.

318

APPENDIX I. DUNES OVERVIEW 319

7. Scheduled regular online periods. The system will go online during regular predefined

time periods.

8. Hang-up watchdog. Auto hang-up after predefined time period (timeout), can be re-

triggered=extended.

9. Fallback internet providers. The system will have a list of internet providers. If a

connection with the preferred provider cannot be established, it will fall back to other

providers.

10. UDP Notification. The system will send a UDP info packet to a list of predefined ad-

dresses whenever it comes online. This packet will include IP address, name, and addi-

tional information such as time, internet provider, etc.

11. DynDNS registration. The system will register with at least one dynamic DNS provider

to allow easy access through fixed host names.

APPENDIX I. DUNES OVERVIEW 320

Figure I.1: State diagram of main DUNES state machine

Bibliography

[ADI] NCSA astronomy digital image library. Available from: http://adil.ncsa.

uiuc.edu/.

[adl07] ADLINK Technology, Inc. PCI-9812/9810 4-Ch 20MHz Simultaneous Analog

Input Cards, 2007. Available from: http://www.adlinktech.com/PD/web/

PD_detail.php?pid=33.

[AGW72] Noach Amitay, Victor Galindo, and Chen Pang Wu. Theory and analysis of

phased array antennas. Wiley-Interscience, New York, 1972.

[AKK05] M. Ashrafi, M. J. Kosch, and K. Kaila. Height triangulation of artificial optical

emissions in the F-layer. In Kosch [Kos05], pages 8–16.

[Ans65] Z. A. Ansari. A narrow-beam antenna array for radio wave absorption studies in

the auroral zone. Proceedings of the IEEE, 53:530–532, May 1965.

[AR02] Bertram Arbesser-Rastburg. Space weather — effects on navigation and commu-

nication systems, July 2002. Presentation at the Alpbach Summer School 2002.

[AST] Radio astronomy tutorial. Available from: http://fourier.haystack.mit.

edu/urei/tutorial.html.

[Bar02] Les Barclay. Ionospheric effects and communication systems performance. In

Proceedings of the 10th Ionospheric Effects Symposium, page 1. JMG Associates,

Ltd., May 2002.

[Bar07] Keith Barratt. ARIES FPGA documentation. Technical report, Lancaster Univer-

sity, 2007.

[BGPW77] J. W. M. Baars, R. Genzel, I. I. K. Pauliny-Toth, and A. Witzel. The

absolute spectrum of CAS A - an accurate flux density scale and a set

321

http://adil.ncsa.uiuc.edu/
http://adil.ncsa.uiuc.edu/
http://www.adlinktech.com/PD/web/PD_detail.php?pid=33
http://www.adlinktech.com/PD/web/PD_detail.php?pid=33
http://fourier.haystack.mit.edu/urei/tutorial.html
http://fourier.haystack.mit.edu/urei/tutorial.html

BIBLIOGRAPHY 322

of secondary calibrators. Astronomy and Astrophysics, 61:99–106, October

1977. Available from: http://adsabs.harvard.edu/cgi-bin/nph-bib_

query?bibcode=1977A%26A....61...99B&db_key=AST.

[BGS97] Bernhard F. Burke and Francis Graham-Smith. An Introduction to Radio Astron-

omy. Cambridge University Press, 1st edition, 1997.

[BHGC04] K. Barratt, F. Honary, M. Grill, and P. Chapman. Advanced Rio-Imaging Ex-

periment in Scandinavia—ARIES: Technical implementation aspects. In Kosch

[Kos04], page 65. Poster presentation.

[BHH95] S. Browne, J. K. Hargreaves, and B. Honary. An imaging riometer for ionospheric

studies. Electronics and Communication Engineering Journal, 7(5):209–217, Oc-

tober 1995.

[BL61] J. Butler and R. Lowe. Beam-forming matrix simplifies design of electronically

scanned antennas. Electronic Design, 12:170–173, 1961.

[BP77] G. J. Burke and A. J. Poggio. Numerical Electromagnetic Code (NEC) — Method

of Moments. A User-Oriented Computer Code for Analysis of the Electromagnetic

Response of Antennas and other Metal Structures. Naval Ocean Systems Center

San Diego CA, 1977. Technical document.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maier, François Yergeau,

and John Cowan. Extensible markup language (XML) 1.1. Technical report, The

World Wide Web Consortium (W3C), 2006. Available from: http://www.w3.

org/TR/xml11/.

[BRJ00] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Complete UML Training

Course. Prentice Hall PTR, 25th May 2000.

[Bro36] George H. Brown. The “turnstile” antenna. Electronics, 9:15+, April 1936.

[BSB05] Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes. SSH, The Secure

Shell: The Definitive Guide. O’Reilly, Sebastopol, CA, 2nd edition, 2005.

[Can75] H. V. Cane. Low frequency maps of the Galaxy. In Astronomical Society of

Australia, Proceedings, volume 2, pages 330–331, October 1975.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1977A%26A....61...99B&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1977A%26A....61...99B&db_key=AST
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/

BIBLIOGRAPHY 323

[Can78] H. V. Cane. A 30 MHz map of the whole sky. Australian Journal of Physics,

31:561–565, 1978.

[Cas76] J. L. Caswell. A map of the northern sky at 10 MHz. Monthly Notices of the

Royal Astronomical Society, 177:601–616, 1976.

[CHHW97] P. N. Collis, J. K. Hargreaves, W. G. Howarth, and G. P. White. Joint imaging

riometer – incoherent scatter radar observations: A four-dimensional perspective

on energetic particle input to the auroral mesosphere. Advances in Space Re-

search, 20(6):1165–1168, 1997.

[CM58] W. N. Christiansen and D. S. Mathewson. Scanning the sun with a highly direc-

tional array. Proceedings of the Institution of Radio Engineers, 46:127+, 1958.

[Coo06] Mendel Cooper. Advanced Bash-Scripting Guide, 2006. Revision 4.2.01. Avail-

able from: http://linuxreviews.org/beginner/abs-guide/en/.

[CT04] John Cowan and Richard Tobin. XML information set. Technical report, The

World Wide Web Consortium (W3C), 2004. Available from: http://www.w3.

org/TR/xml-infoset/.

[Dav96] Chris Davis. An introduction to the EISCAT dynasonde, June 1996. Available

from: http://www.eiscat.rl.ac.uk/dynasonde/description.html.

[Dea02] John Deacon. Design patterns. London, UK, 2002. Course material.

[Dea05] John Deacon. Object-Oriented Analysis and Design. Addison-Wesley, Harlow,

2005.

[dPKH02] C. F. del Pozo, M. J. Kosch, and F. Honary. Estimation of the characteristic energy

of electron precipitation. Annales Geophysicae — Atmospheres, Hydrospheres

and Space Sciences, 20(9):1349–1359, 2002.

[DR90] D. L. Detrick and T. J. Rosenberg. A phased-array radiowave imager for studies

of cosmic noise absorption. Radio Science, 25(4):325–338, July–August 1990.

[DR94] D. L. Detrick and T. J. Rosenberg. System Manual for the Imaging Riometer

for Ionospheric Studies (IRIS). Institute for Physical Science and Technology,

University of Maryland, 1994.

http://linuxreviews.org/beginner/abs-guide/en/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.eiscat.rl.ac.uk/dynasonde/description.html

BIBLIOGRAPHY 324

[DS90] G. R. Drevin and P. H. Stoker. Riometer quiet day curves determined by the

density method. Radio Science, 25(6):1159–1166, November–December 1990.

[DSS95] K. S. Dwarakanath, N. Shankar, and T. S. Shankar. All sky survey at 34.5

MHz from GEETEE. Astronomy Data Image Library, page 1, December

1995. Available from: http://adsabs.harvard.edu/cgi-bin/nph-bib_

query?bibcode=1995ADIL...KD...01D&db_key=AST.

[DU90] K. S. Dwarakanath and N. Udaya Shankar. A synthesis map of the sky at

34.5 MHz. Journal of Astrophysics and Astronomy, 11:323–410, Septem-

ber 1990. Available from: http://adsabs.harvard.edu/cgi-bin/nph-bib_

query?bibcode=1990JApA...11..323D&db_key=AST.

[Eng02] Chad English. TIMEBAR function for MATLAB, 2002. Available from: mailto:

cenglish@myrealbox.com.

[ETS97] ETSI. Digital video broadcasting (DVB); a guideline for the use of DVB specifi-

cations and standards. TR 101 200. Technical report, European Telecommunica-

tions Standards Institute, 1997. Available from: http://www.etsi.fr.

[ETS03] ETSI. Digital video broadcasting (DVB); specification for service information

(SI) in DVB systems. TR 101 211. Technical report, European Telecommunica-

tions Standards Institute, 2003. Available from: http://www.etsi.fr.

[Fos06] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. Jour-

nal of Computer Science and Technology, 21(4):513–520, 2006.

[FSL+88] W. Fricke, H. Schwan, T. Lederle, U. Bastian, R. Bien, G. Burkhardt, B. Du

Mont, R. Hering, R. Jährling, H. Jahreiß, S. Röser, H.-M. Schwerdtfeger, and

H. G. Walter. Fifth fundamental catalogue (FK5). Part 1: The basic fundamental

stars. Veröffentlichungen Astronomisches Rechen-Institut Heidelberg, 32:1–106,

1988.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vissides. Design pat-

terns. Addison-Wesley, Reading, Mass., 1995.

[GHM+07] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-

rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version 1.2 part

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ADIL...KD...01D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995ADIL...KD...01D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990JApA...11..323D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990JApA...11..323D&db_key=AST
mailto:cenglish@myrealbox.com
mailto:cenglish@myrealbox.com
http://www.etsi.fr
http://www.etsi.fr

BIBLIOGRAPHY 325

1: Messaging framework. Technical report, The World Wide Web Consortium

(W3C), 2007. Available from: http://www.w3.org/TR/soap12-part1/.

[GHN+03] M. Grill, F. Honary, E. Nielsen, T. Hagfors, G. Dekoulis, P. Chapman, and H. Ya-

magishi. A new imaging riometer based on Mills Cross technique. In 7th Inter-

national Symposium on Communication Theory and Applications, pages 26–31,

Ambleside, UK, 13th–18th July 2003.

[God] God. Paul’s letter to the Ephesians. The Bible, Eph 3:20. New International

Version (NIV). Available from: http://www.biblegateway.com/passage/

?search=eph3;.

[GPP92] G. Gustafsson, N. E. Papitashvili, and V. O. Papitashvili. A revised corrected ge-

omagnetic coordinate system for epochs 1985 and 1990. Journal of Atmospheric

and Terrestrial Physics, 54(11–12):1609–1631, December 1992.

[Gre03] Robin Green. Spherical Harmonic Lighting: The Gritty Details. Sony Computer

Entertainment America, 2003. Available from: http://www.research.scea.

com/gdc2003/spherical-harmonic-lighting.html.

[Gri06a] Martin Grill. ARCOM Distribution Documentation. Lancaster, UK, 2006. Gen-

erated by Doxygen. Available from: ARCOM/doc/html/index.html.

[Gri06b] Martin Grill. DUNES requirements document. Technical report, Lancaster Uni-

versity, 2006.

[Gri06c] Martin Grill. SPARKLE requirements document. Technical report, Lancaster

University, 2006.

[Gro02] William Grosso. Java RMI. O’Reilly, Sebastopol, CA, 2002.

[GSH05] Martin Grill, Andrew Senior, and Farideh Honary. Two new approaches to spatial

interpolation with inherent sidelobe suppression for imaging riometers. In Kosch

[Kos05], pages 23–36.

[Hag01a] Tor Hagfors. Comparison of the performance of the cross correlation and the

filled aperture imaging riometers. Written during his visit to the Lancaster Uni-

versity, November 2001.

http://www.w3.org/TR/soap12-part1/
http://www.biblegateway.com/passage/?search=eph3;
http://www.biblegateway.com/passage/?search=eph3;
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.html
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.html
ARCOM/doc/html/index.html

BIBLIOGRAPHY 326

[Hag01b] Tor Hagfors. Some notes on the cross correlation imaging riometer. Written

during his visit to the Lancaster University, October 2001.

[Hai85] G. V. Haines. Spherical cap harmonic analysis. Journal of Geophysical Research,

90(B3):2583–2591, 1985.

[Hai88] G. V. Haines. Computer programs for spherical cap harmonic analysis of potential

and general fields. Computers and Geosciences, 4(4):413–417, 1988.

[Har69] J. K. Hargreaves. Auroral absorption of HF radio waves in the ionosphere: A

review of results from the first decade of riometry. Proceedings of the IEEE,

57(8):1348–1373, August 1969.

[Har95] J. K. Hargreaves. The Solar-Terrestrial Environment. Cambridge University

Press, 1995.

[HCG+05] F. Honary, P. Chapman, M. Grill, K. Barratt, S. Marple, E. Nielsen, and T. Hag-

fors. Advanced rio-imaging experiment in Scandinavia (ARIES): System speci-

fication and scientific goals. In URSI General Assembly, New Delhi, India, 2005.

[HCG+06] F. Honary, P. Chapman, M. Grill, K. Barratt, S. Marple, E. Nielsen, and T. Hag-

fors. Advanced Rio-Imaging Experiment in Scandinavia (ARIES): First observa-

tions. In 2nd International Riometer Workshop, page 5, Banff, Alberta, Canada,

25th March 2006.

[HD02] J. K. Hargreaves and D. L. Detrick. Application of polar cap absorption events to

the calibration of riometer systems. Radio Science, 37(3):7/1–7/11, 2002.

[HFM02] Steven Hutsell, Matthew Forsyth, and Charles B. McFarland. One-way GPS

time transfer: 2002 performance. In Proceedings of the 34th annual precise

time and time interval (PTTI) meeting, pages 69–76, 2002. Available from:

http://tycho.usno.navy.mil/ptti/ptti2002/paper6.pdf.

[HGBC07] Farideh Honary, Martin Grill, Keith Barratt, and Peter Chapman. The Advanced

Rio-Imaging Experiment in Scandinavia. submitted to Radio Science, July 2007.

[HGH03] T. Hagfors, M. Grill, and F. Honary. Performance comparison of cross correlation

and filled aperture imaging riometers. Radio Science, 38(6):17/1–17/5, 30th De-

cember 2003.

http://tycho.usno.navy.mil/ptti/ptti2002/paper6.pdf

BIBLIOGRAPHY 327

[HH68] P. A. Hamilton and R. F. Haynes. Observations of the southern sky at 10.02 MHz.

Australian Journal of Physics, 21:895, 1968.

[Hie95] Jarkko Hietaniemi. Comprehensive Perl archive network (CPAN), 1995. Avail-

able from: http://www.cpan.org/.

[HMK+04] F. Honary, S. R. Marple, M. Kosch, A. Senior, R. A. Makarevitch, and M. Grill.

The past, present and future of imaging riometry at Lancaster. In Kosch [Kos04],

page 22.

[Hob55] Ernest William Hobson. The theory of spherical and ellipsoidal harmonics.

Chelsea Pub. Co., New York, 1955.

[Hon01] Farideh Honary. High-Resolution Imaging Riometer, Case for support. Lancaster

University, 2001.

[HV99] Michi Henning and Steve Vinoski. Advanced CORBA programming with C++.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[IEE07] IEEE Computer Society. Guide to the Software Engineering Body of Knowledge

(SWEBOK), 2007. Available from: http://www.swebok.org/.

[IER] Homepage of the International Earth Rotation Service. Available from: http:

//hpiers.obspm.fr/eop-pc/.

[IRI] Imaging riometer for ionospheric studies. Available from: http://www.dcs.

lancs.ac.uk/iono/iris.

[Jen66] Roger Clifton Jennison. Introduction to Radio Astronomy. Newnes, London,

1966.

[Jon02] Tudor Jones. Lecture notes: MSc in satellite communications and space environ-

ment, module 5: Solar terrestrial (satellite) environment, February 2002. Lan-

caster University.

[JT98] Michael K. Johnson and Erik W. Troan. Linux application development. Addison-

Wesley, Reading, Mass., 1998.

[Kas88] N. E. Kassim. The Clark Lake 30.9 MHz Galactic plane survey. Astro-

physical Journal Supplement Series, 68:715–733, December 1988. Available

http://www.cpan.org/
http://www.swebok.org/
http://hpiers.obspm.fr/eop-pc/
http://hpiers.obspm.fr/eop-pc/
http://www.dcs.lancs.ac.uk/iono/iris
http://www.dcs.lancs.ac.uk/iono/iris

BIBLIOGRAPHY 328

from: http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=

1988ApJS...68..715K&db_key=AST.

[Kav02] Andrew John Kavanagh. Energy deposition in the lower auroral ionosphere

through energetic particle precipitation. PhD thesis, University of Lancaster, UK,

November 2002.

[KDR85] S. Krishnaswamy, D. L. Detrick, and T. J. Rosenberg. The inflection point

method of determining riometer quiet day curves. Radio Science, 20(1):123–136,

January–February 1985.

[Kos04] Mike Kosch, editor. 31st Annual European Meeting on Atmospheric Studies

by Optical Methods and 1st International Riometer Workshop, Ambleside, UK,

22nd–28th August 2004.

[Kos05] M. J. Kosch, editor. Proceedings of the 31st Annual European Meeting on At-

mospheric Studies by Optical Methods and 1st International Riometer Workshop,

Ambleside, UK, December 2005. Lancaster University.

[KPW69] K. I. Kellermann, I. I. K. Pauliny-Toth, and P. J. S. Williams. The Spectra of Ra-

dio Sources in the Revised 3c Catalogue. Astrophysical Journal, 157:1, July

1969. Available from: http://adsabs.harvard.edu/cgi-bin/nph-bib_

query?bibcode=1969ApJ...157....1K&db_key=AST.

[Kra88] John D. Kraus. Antennas. McGraw-Hill, New York, 1988.

[La 74] La Jolla Sciences. Solid State Riometer Manual, April 1974. reprinted October

1980.

[LC01] Bo Leuf and Ward Cunningham. The Wiki way: quick collaboration on the Web.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[LL59] C. G. Little and H. Leinbach. The riometer - a device for the continuous measure-

ment of ionospheric absorption. Proceedings of the IRE, 47:315–320, February

1959.

[Mara] S. Marple. MIA function getdata(), type ‘help getdata’ in MIA to get the function

description.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1988ApJS...68..715K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1988ApJS...68..715K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1969ApJ...157....1K&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1969ApJ...157....1K&db_key=AST

BIBLIOGRAPHY 329

[Marb] S. Marple. MIA function setresolution(), type ‘help mia_base/setresolution.m’ in

MIA to get the function description.

[Marc] S. Marple. Multi-Instrument Analysis (MIA) toolkit. Available from: http:

//www.dcs.lancs.ac.uk/iono/mia.

[Mard] S. Marple. personal communication 13/01/2003.

[Mare] S. Marple. Riometer and imaging riometer database. Available from: http:

//www.dcs.lancs.ac.uk/iono/cgi-bin/riometers.

[Mata] The Mathworks, Inc. MATLAB Distributed Computing Toolbox. Available from:

http://www.mathworks.com/products/distribtb/index.html.

[Matb] The Mathworks, Inc. MATLAB Function Reference. Available from: http:

//www.mathworks.com/products/matlab/functionlist.html.

[Matc] The Mathworks, Inc. MATLAB Signal Processing Toolbox. Available from:

http://www.mathworks.com/products/signal/.

[Max07] Maxim/Dallas. 1-Wire Devices, 2007. Available from: http://www.maxim-ic.

com/products/1-wire/.

[MBC65] D. S. Mathewson, N. W. Broten, and D. J. Cole. A survey of the southern sky at

30 Mc/s. Australian Journal of Physics, 18:665, 1965.

[MH04] S. R. Marple and F. Honary. A multi-instrument data analysis toolbox. Advances

in Polar Upper Atmosphere Research, 18:120–130, September 2004.

[MH07] Steve Marple and Farideh Honary. Removal of solar radio emissions and deter-

mination of riometer quiet day curves. In preparation, 2007.

[MHMH04] R. A. Makarevitch, F. Honary, I. W. McCrea, and V. S. C. Howells. Imaging ri-

ometer observations of drifting absorption patches in the morning sector. Annales

Geophysicae — Atmospheres, Hydrospheres and Space Sciences, 22(10):3461–

3478, 3rd November 2004.

[Mic07] Microsoft. File Systems, 2007. Available from: http://www.microsoft.com/

technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_pxjh.

mspx.

http://www.dcs.lancs.ac.uk/iono/mia
http://www.dcs.lancs.ac.uk/iono/mia
http://www.dcs.lancs.ac.uk/iono/cgi-bin/riometers
http://www.dcs.lancs.ac.uk/iono/cgi-bin/riometers
http://www.mathworks.com/products/distribtb/index.html
http://www.mathworks.com/products/matlab/functionlist.html
http://www.mathworks.com/products/matlab/functionlist.html
http://www.mathworks.com/products/signal/
http://www.maxim-ic.com/products/1-wire/
http://www.maxim-ic.com/products/1-wire/
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_pxjh.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_pxjh.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_pxjh.mspx

BIBLIOGRAPHY 330

[Mil52] B. Y. Mills. The distribution of the discrete sources of cosmic radio radiation.

Australian Journal of Scientific Research, 5(2):266–287, 1952.

[ML53] B. Y. Mills and A. G. Little. A high-resolution aerial system of a new type.

Australian Journal of Physics, 6:272–278, 1953.

[MLSS58] B. Y. Mills, A. G. Little, K. V. Sheridan, and O. B. Slee. A high resolution radio

telescope for use at 3.5m. Proceedings of the Institution of Radio Engineers,

46:67, 1958.

[MMK+97] Yasuhiro Murayama, Hirotaka Mori, Shoji Kainuma, Mamoru Ishi, Ichizo

Nishimuta, Kiyoshi Igarashi, Hisao Yamagishi, and Masanori Nishino. Devel-

opment of a high-resolution imaging riometer for the middle and upper atmo-

sphere observation program at Poker Flat, Alaska. Journal of Atmospheric and

Solar-Terrestrial Physics, 59(8):925–937, 1997.

[Moo64] H. J. Moody. The systematic design of the Butler Matrix. IEEE Transactions on

Antennas and Propagation, 12(6):786–788, November 1964.

[MS53] A. P. Mitra and C. A. Shain. The measurement of ionospheric absorption us-

ing observations of 18.3 mc/s cosmic radio noise. Journal of Atmospheric and

Terrestrial Physics, 4:204, 1953.

[MTS73] Jelana Milogradov-Turin and F. G. Smith. A survey of the radio background at

38 MHz. Monthly Notices of the Royal Astronomical Society, 161:269–279, 1973.

[Mue72] Paul J. Muenzer. Properties of linear phased arrays using Butler Matrices. Natur-

wissenschaftliche Technische Zeitschrift, 9:419–422, 1972.

[Mur] Y. Murayama. High-resolution imaging riometer at Poker Flat. Available from:

http://www2.crl.go.jp/ck/ck421/riometer.html.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads pro-

gramming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[New05] Cameron Newham. Learning the Bash Shell. O’Reilly, Sebastopol, CA, 3rd

edition, 2005.

http://www2.crl.go.jp/ck/ck421/riometer.html

BIBLIOGRAPHY 331

[NH97] E. Nielsen and T. Hagfors. Plans for a new rio-imager experiment in Northern

Scandinavia. Journal of Atmospheric and Solar-Terrestrial Physics, 59(8):939–

949, 1997.

[NHG04] E. Nielsen, F. Honary, and M. Grill. Time resolution of cosmic noise obser-

vations with a correlation experiment. Annales Geophysicae — Atmospheres,

Hydrospheres and Space Sciences, 22(5):1687–1689, 8th April 2004.

[Nie91] Richard O. Nielsen. Sonar Signal Processing. Artech House, 1991.

[Nie01] E. Nielsen. Antenna system for a high resolution imaging riometer. Technical Re-

port MPAE-W-03-01-04, Max-Planck-Institut für Aeronomie, Lindau, Germany,

28th February 2001.

[Nie02a] Erling Nielsen. Email “ARIES first results” to Peter Chapman, November 2002.

[Nie02b] Erling Nielsen. Time resolution of observations with HRIR. Technical report,

Max Planck Institut für Aeronomie, 37191 Katlenburg–Lindau, Germany, April

2002.

[NTPa] NTP: The Network Time Protocol. Available from: http://www.ntp.org/.

[NTPb] NTP timescale and leap seconds. Available from: http://www.eecis.udel.

edu/~ntp/ntp_spool/html/leap.htm.

[Obj05] Object Management Group, Inc. The OMG’s CORBA Website, 2005. Available

from: http://www.corba.org/.

[Obsa] U.S. Naval Observatory. Historical list of leap seconds. Available from: ftp:

//maia.usno.navy.mil/ser7/tai-utc.dat.

[Obsb] U.S. Naval Observatory. Leap seconds. Available from: http://tycho.usno.

navy.mil/leapsec.990505.html.

[Owe] G. Scott Owen. 3D rotation. Available from: http://www.siggraph.org/

education/materials/HyperGraph/modeling/mod_tran/3drota.htm.

[Par07] Chris Park, editor. Submission of Theses. Lancaster University, 2007. Available

from: http://www.lancs.ac.uk/users/gradschool/theses.html.

http://www.ntp.org/
http://www.eecis.udel.edu/~ntp/ntp_spool/html/leap.htm
http://www.eecis.udel.edu/~ntp/ntp_spool/html/leap.htm
http://www.corba.org/
ftp://maia.usno.navy.mil/ser7/tai-utc.dat
ftp://maia.usno.navy.mil/ser7/tai-utc.dat
http://tycho.usno.navy.mil/leapsec.990505.html
http://tycho.usno.navy.mil/leapsec.990505.html
http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
http://www.lancs.ac.uk/users/gradschool/theses.html

BIBLIOGRAPHY 332

[Paw05] Rich Pawlowicz. M_Map Mapping Package for MATLAB. University of British

Columbia, Vancouver, Canada, 2005. Available from: http://www.ocgy.ubc.

ca/~rich/.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vettering.

Numerical Recipes in C. Cambridge University Press, 1st edition, 1988.

[PR00] Arno Puder and Kay Römer. MICO. Morgan Kaufmann Publishers and

dpunkt.verlag, 3rd edition, 2000.

[Qui03] Liam Quin. Extensible markup language (XML), August 2003. Available from:

http://www.w3.org/XML/.

[RDVvB91] T. J. Rosenberg, D. L. Detrick, D. Venkatesan, and G. van Bavel. A comparitive

study of imaging and broad-beam riometer measurements: The effect of spatial

strucure on the frequency dependence of auroral absorption. Journal of Geophys-

ical Research — Space Physics, 96(A10):17793–17803, October 1991.

[Rei85] D. Reidel. Maximum-Entropy and Bayesian Methods in Inverse Problems. Fun-

damental theories of physics. Kluwer Academic Publishers, 1985.

[Ric77] Barney J. Rickett. Interstellar scattering and scintillation of radio waves. Annual

Review of Astronomy and Astrophysics, 15:479–504, September 1977.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-

guage Reference Manual. Addison-Wesley, Reading, MA, USA, 1999.

[RTC] Javascript application for real-time display of several timescales. Available from:

http://www.leapsecond.com/java/gpsclock.htm.

[San92] A. De Santis. Conventional spherical harmonic analysis for regional modelling

of the geomagnetic field. Geophysical Research Letters, 19:1065–1067, 1992.

[SCT03] 7th International Symposium on Communication Theory and Applications, Am-

bleside, UK, 13th–18th July 2003.

[SCW] Eric Weisstein’s world of science. Available from: http://scienceworld.

wolfram.com.

[Sen] A. Senior, personal communication.

http://www.ocgy.ubc.ca/~rich/
http://www.ocgy.ubc.ca/~rich/
http://www.w3.org/XML/
http://www.leapsecond.com/java/gpsclock.htm
http://scienceworld.wolfram.com
http://scienceworld.wolfram.com

BIBLIOGRAPHY 333

[Sha58] C. A. Shain. The Sydney 19.7-mc radio telescope. Proceedings of the Institution

of Radio Engineers, 46:85+, 1958.

[SI] The international system of units (SI). Available from: http://www.bipm.fr/

enus/3_SI/si.html.

[Sin50] G. Sinclair. The transmission and reception of elliptically polarized waves. Pro-

ceedings of the IRE, 38:151, 1950.

[SK05] Joshua Semeter and Farzad Kamalabadi. Determination of primary electron spec-

tra from incoherent scatter radar measurements of the auroral E region. Radio

Science, 40(RS2006), 2005. doi:10.1029/2004RS003042.

[SKVa] SkyView survey document. Available from: http://skys.gsfc.nasa.gov/

cgi-bin/survey.pl.

[SKVb] SkyView, the internet’s virtual telescope. Available from: http://skys.gsfc.

nasa.gov.

[SLM+90] G. Sironi, M. Limon, G. Marcellino, G. Bonelli, M. Bersanelli, G. Conti, and

K. Reif. The absolute temperature of the sky and the temperature of the cos-

mic background radiation at 600 MHz. The Astrophysical Journal, 357:301–

308, July 1990. Available from: http://adsabs.harvard.edu/cgi-bin/

nph-bib_query?bibcode=1990ApJ...357..301S&db_key=AST.

[Sma62] W. M. Smart. Spherical Astronomy. Cambridge University Press, 5th edition,

1962.

[Som04] Ian Sommerville. Software Engineering. Addison Wesley, 7th edition, 2004.

[ST97] A. De Santis and J.M. Torta. Spherical cap harmonic analysis: a comment on its

proper use for local gravity field representation. Journal of Geodesy, 71:526–532,

1997.

[Ste98] W. Richard Stevens. Unix Network Programming, volume 2. Prentice-Hall PTR,

1998.

http://www.bipm.fr/enus/3_SI/si.html
http://www.bipm.fr/enus/3_SI/si.html
http://skys.gsfc.nasa.gov/cgi-bin/survey.pl
http://skys.gsfc.nasa.gov/cgi-bin/survey.pl
http://skys.gsfc.nasa.gov
http://skys.gsfc.nasa.gov
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990ApJ...357..301S&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990ApJ...357..301S&db_key=AST

BIBLIOGRAPHY 334

[Sun05] Sun Microsystems, Inc. JavaTMWeb Start Overview, May 2005. Available from:

http://java.sun.com/developer/technicalArticles/WebServices/

JWS_2/JWS_White_Paper.pdf.

[Tao04] Huiyu Tao. Impact of ionospheric disturbance on HF radio communications.

MPhil thesis, University of Lancaster, UK, 2004.

[TCC+03] Angela C. Taylor, Pedro Carreira, Kieran Cleary, Rod D. Davies, et al. First

results from the Very Small Array II – observations of the CMB. Monthly Notices

of the Royal Astronomical Society, 341(4):1066–1075, June 2003.

[TMGWS86] A. Richard Thompson, James M. Moran, and Jr. George W. Swenson. Interferom-

etry and Synthesis in Radio Astronomy. John Wiley & Sons, New York, London,

Sydney, 1986.

[Tro] Erik W. Troan. UNIX MAN page for POPT. Available from: man_3_popt.

[TUP+87] N. A. Tsyganenko, A. V. Usmanov, V. O. Papitashvili, N. E. Papitashvili, and

V. A. Popov. Software for computations of the geomagnetic field and related

coordinate systems. Soviet Geophys. Comm., Moscow, 1987.

[Uni07] University of Chicago. The Globus Alliance Homepage, 2007. Available from:

http://www.globus.org/.

[vH06] Dimitri van Heesch. Doxygen, 2006. Available from: http://www.doxygen.

org.

[Vin98] Fiona Vincent. Lecture notes on Positional Astronomy, February 1998. Available

from: http://star-www.st-and.ac.uk/~fv/webnotes/index.html.

[Wala] Larry Wall. UNIX MAN page for the practical extraction and report language

(PERL). Available from: man_perl.

[Walb] P. T. Wallace. SLALIB — Positional Astronomy Library — Programmer’s Man-

ual. Available from: http://star-www.rl.ac.uk/star/docs/sun67.htx/

sun67.html.

[WCS96] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O’Reilly, Sebastopol, CA, 2nd edition, 1996.

http://java.sun.com/developer/technicalArticles/WebServices/JWS_2/JWS_White_Paper.pdf
http://java.sun.com/developer/technicalArticles/WebServices/JWS_2/JWS_White_Paper.pdf
man_3_popt
http://www.globus.org/
http://www.doxygen.org
http://www.doxygen.org
http://star-www.st-and.ac.uk/~fv/webnotes/index.html
man_perl
http://star-www.rl.ac.uk/star/docs/sun67.htx/sun67.html
http://star-www.rl.ac.uk/star/docs/sun67.htx/sun67.html

BIBLIOGRAPHY 335

[Wei02] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. Chapman &

Hall/CRC, 2nd edition, December 2002.

[Wel44] N. Wells. The quadrant aerial: An omni-directional wide-band horizontal aerial

for short waves. Journal of the Institution of Electrical Engineers, 91(III):182,

December 1944.

[Wil06] J. Wild. Open letter to Prof. Keith Mason, Chief Executive, PPARC. Lancaster

University, May 2006.

[Yam] H. Yamagishi, personal communication.

20070723160134

	Abstract
	Declaration
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Contributions
	1.2 Brief Description of All Chapters
	1.3 Typographical Conventions

	2 Antennas
	2.1 Radiation Properties of Antennas
	2.2 A Brief History of Crossed Dipole Antennas
	2.3 Phased Array Antennas
	2.3.1 Working Principle of an Additive Phased Array
	2.3.2 Reception
	2.3.3 Additive Beamforming
	2.3.4 Phase Angles for Butler Matrices
	2.3.5 Cosine Tapering
	2.3.6 Pairwise Addition
	2.3.7 Conclusion

	2.4 Mills Cross Antennas
	2.4.1 A Brief History of Mills Cross Type Antenna Arrays
	2.4.2 Working Principle of a Mills Cross Antenna Array
	2.4.2.1 Fan Beams
	2.4.2.2 Cross-correlation, Pencil Beams

	2.4.3 Disadvantages of a Mills Cross
	2.4.3.1 High Sidelobe Levels
	2.4.3.2 Noise Behaviour and Bandwidth

	2.5 Step-by-Step Guide to Reception from a Mills Cross
	2.6 Summary

	3 Riometers
	3.1 Working Principle
	3.2 Types of Riometers
	3.3 The ARIES Riometer
	3.4 Scientific Applications of Riometry
	3.4.1 Ionosphere
	3.4.2 Riometer Observations
	3.4.3 Ionospheric Processes

	3.5 Radio Stars
	3.5.1 Cassiopeia A
	3.5.2 Cygnus A
	3.5.3 Simulating Reception from Radio Stars

	3.6 Sky Maps
	3.6.1 Purpose
	3.6.2 Requirements
	3.6.3 Coverage
	3.6.4 Resolution
	3.6.5 Frequency
	3.6.6 Content
	3.6.7 Simulating Reception from a Sky Map
	3.6.8 The Sky Maps Used in this Thesis
	3.6.8.1 Cane's Sky Map
	3.6.8.2 GEETEE 34.5MHz Sky Map

	3.7 Summary

	4 Functional Simulation of ARIES
	4.1 Data Flow
	4.1.1 Reception
	4.1.2 Beamforming (Fan Beams)
	4.1.3 Cross-correlation and Integration

	4.2 Implementation Details
	4.2.1 Reception: model
	4.2.1.1 ModelMasterControl::init()
	4.2.1.2 ModelMasterControl::run()

	4.2.2 Fan Beamforming: beamform
	4.2.3 Cross-correlation and Integration: xcorr

	4.3 Results
	4.3.1 Three Sources
	4.3.2 Ten Sources
	4.3.3 Long/Short Integration Time
	4.3.4 Phase Centre Offset
	4.3.5 Ghost Images in the Sinusoidal Case
	4.3.6 `Negative Sidelobes'

	4.4 Summary and Conclusions

	5 Investigations into the Achievable Integration Time
	5.1 Basic Simulation Software Structure
	5.2 Yamagishi-Model
	5.2.1 Idea
	5.2.2 Aims
	5.2.3 The Number of Noise Sources
	5.2.4 Noise Sources of Different Intensities
	5.2.5 The Effects of Varying
	5.2.6 Different n%
	5.2.7 System Bandwidth
	5.2.8 Varying the Sampling Rate
	5.2.9 Conclusion

	5.3 Nielsen's Estimates
	5.4 Hagfors's Estimates
	5.5 Summary

	6 Radiation Pattern Simulations: RIOSIM
	6.1 Design Goals
	6.2 Implemented Object Structure
	6.3 Radiation Patterns: RRadPat and Descendants
	6.3.1 Gain Retrieval
	6.3.2 Plotting
	6.3.2.1 Basic Plots
	6.3.2.2 Three-dimensional Plots

	6.3.3 Contouring
	6.3.4 The Radiation Pattern of a Simple Dipole: RLinDipPat
	6.3.5 The Simplified Radiation Pattern of a Crossed Dipole: RXDipNielsenPat
	6.3.6 Linear Additive Arrays: RAddPat and RPharrPat
	6.3.7 Additive Arrays of Individual Elements: RIndAddPat
	6.3.8 Multiplicative Arrays: RMulPat
	6.3.9 Rotated Patterns: RRotPat
	6.3.10 FEM Simulated Radiation Patterns: RNECPat
	6.3.11 MIA Antenna Directivity Adaptor: RMIAPat

	6.4 Sky Maps: CSkyMap and Descendants
	6.5 Radio Stars: CRadioStar
	6.6 Elementary RIOSIM Functions
	6.6.1 Projecting Rays onto the Spherical Ionosphere: `projection1'
	6.6.2 Projecting a Spherical Cap onto a Flat Plane: `FLATM Projection'
	6.6.3 Riometer Beam Factories: getbeampat() and getspecialbeampattern()

	6.7 Summary

	7 Applications of the RIOSIM Toolkit
	7.1 Plotting Beam Contours onto the Ionosphere
	7.2 Radio Star Tracker
	7.3 Simulated Reception: rxskymap() and Relatives
	7.4 Quiet-Day Curve Generator
	7.4.1 Introduction
	7.4.2 Mathematical Background
	7.4.3 RIOSIM Implementation: maketheoreticalqdc()
	7.4.4 Predicted ARIES QDCs for the 2002 Experiment

	7.5 Determining the Worst-Case ARIES Beam
	7.6 Radiation Pattern Explorer RP
	7.7 Scintillation Prediction: scint_calc_mia()
	7.8 Running the Scintillation Calculator Remotely and Asynchronously
	7.8.1 XML Wrapper for scint_calc_mia()
	7.8.2 Remote-Access Wrapper
	7.8.3 Asynchronous Remote Execution: run_scint_calc
	7.8.4 Summary: How to Asynchronously Invoke a MATLAB Function on a Remote Machine from a Webserver
	7.8.5 Conclusion (Remote Asynchronous Execution)

	7.9 Summary

	8 Advanced Riometer Components: ARCOM
	8.1 Design Goals
	8.2 Basic ARCOM Structure
	8.2.1 Component-based
	8.2.2 Pipeline Architecture
	8.2.3 High-speed Component Interconnect
	8.2.4 Recorders
	8.2.5 Processors
	8.2.6 Adaptors

	8.3 Shared Memory Interface
	8.3.1 Multi-client
	8.3.2 Multi-master
	8.3.3 Block-based
	8.3.4 Simultaneous Read
	8.3.5 Simultaneous Write
	8.3.6 Diagnosis

	8.4 Shared Memory Interface Internals
	8.5 Log File Handling
	8.5.1 Date/Time Awareness
	8.5.2 Automatic Intelligent Splitting
	8.5.3 Flexible Automatic Naming (Timestamping)
	8.5.4 Overwrite/Out-of-order Protection
	8.5.5 Fallback (Emergency) Mode
	8.5.6 Fuzzy Search
	8.5.7 Conclusion and Evaluation

	8.6 The ARCOM Streaming Data Format
	8.7 The CORBA Interfaces
	8.8 Selected ARCOM Components
	8.8.1 AADMXRCRecorder
	8.8.2 A9812Recorder
	8.8.3 ADemoRecorder
	8.8.4 ALogger
	8.8.5 ATCPTransmitter and ATCPReceiver
	8.8.6 AFromLogRecorder
	8.8.7 Future Components

	8.9 Low-level Support Tools (ARCOM Tools)
	8.9.1 ARCOM CORBA Message Dispatcher (sendcmd)
	8.9.2 Graphical User Interface (gui1.tcl)
	8.9.3 Automated Startup and Shutdown (executor.pl)
	8.9.4 Shared Memory Playground
	8.9.5 ARCOM Packet Tools
	8.9.5.1 Generic ARCOM Packet Tools
	8.9.5.2 More Specialised ARCOM Packet Tools
	8.9.5.3 Usage Examples

	8.10 Component Implementation Details
	8.11 Summary

	9 First Experiment Results
	9.1 Experiment Setup
	9.2 Note on Different Ways of Post-integrating Data
	9.2.1 Conclusion

	9.3 Note on the Terms `Resolution' and `Integration Time'
	9.4 Relative Noise Intensity ARIES--IRIS
	9.4.1 Expected Result
	9.4.2 Analysis
	9.4.2.1 Note on How to Interpret the Term `1s Data' for an IRIS Type Riometer
	9.4.2.2 Note on Post-integration Techniques for Complex Samples

	9.4.3 Conclusion

	9.5 Relative Noise Intensity for Different ARIES Beams
	9.6 The Dynamic Range of the Receivers
	9.6.1 Conclusion (Dynamic Range)

	9.7 Influence of the Radio Stars Alone
	9.7.1 The Radio Stars
	9.7.2 Phase Considerations
	9.7.3 Conclusion (Influence of Radio Stars)

	9.8 A Comparison of IRIS Pencil Beams to ARIES Pencil Beams for Several Days
	9.8.1 Conclusion

	9.9 Effect of Height Variation on Beam Intersection with IRIS (80--100km)
	9.9.1 Conclusion

	9.10 Summary

	10 A New Approach to Image Interpolation in Riometry
	10.1 Motivation
	10.2 Prerequisites
	10.2.1 The Need for Image Interpolation
	10.2.2 Traditional IRIS Interpolation Algorithm
	10.2.3 Role of Obliquity Factors
	10.2.4 Metric

	10.3 The Parametrised Model Interpolation Method (GLEAM)
	10.3.1 Implementation Notes

	10.4 Suitable Orthogonal Basis Functions
	10.4.1 `Polar Blocks'
	10.4.2 Spherical Harmonics
	10.4.3 Adjusted Spherical Harmonics

	10.5 MATLAB Implementation
	10.6 Performance with Simulated ARIES Data
	10.6.1 Comparison with Sky Map
	10.6.2 Comparison with Traditional Image Interpolation
	10.6.3 Behaviour in the Presence of Absorption
	10.6.4 Additional Theoretical Knowledge

	10.7 Performance with Real ARIES Data
	10.7.1 Comparison of Real ARIES Data to Simulation
	10.7.2 Real Data Image Plots / Movies

	10.8 Summary and Conclusions

	11 Summary, Conclusions and Outlook
	11.1 Riometer Simulation Toolkit
	11.2 Advanced Riometer Operating Software
	11.3 A Novel Approach to Riometer Image Interpolation

	A Glossary
	B Astronomical Coordinate Systems
	B.1 Astronomical Coordinate Systems
	B.1.1 Common Basics
	B.1.2 The `Mathematical' Spherical Coordinate System
	B.1.3 The `Electromagnetic' Spherical Coordinate System
	B.1.4 The Geographic Coordinate System
	B.1.5 The Horizontal Coordinate System
	B.1.6 The First Equatorial = Local Equatorial Coordinate System
	B.1.7 The (Second) Equatorial Coordinate System
	B.1.8 The Galactic Coordinate System
	B.1.9 The Geomagnetic Coordinate System

	B.2 Converting Between Coordinate Systems
	B.2.1 Relation Between Horizontal and Geographic Coordinates
	B.2.2 First to Second Equatorial Coordinate System
	B.2.3 First Equatorial to Horizontal Coordinate System
	B.2.4 Catalogued Star Coordinates to Current, Observable Coordinates
	B.2.5 Horizontal Coordinates to Galactic Coordinates

	C Timescales
	C.1 International Atomic Time TAI
	C.2 Coordinated Universal Time UTC
	C.3 Universal Time UT=UT1
	C.4 Greenwich Mean Sidereal Time GMST
	C.5 Local Apparent Sidereal Time LAST
	C.6 Network Time Protocol (NTP) Timescale
	C.7 GPS Timescale

	D ARIES System Diagrams
	E File Excerpts for ARIES Model
	E.1 run Shell Script for ARIES Model
	E.2 Sample Source Definition File
	E.3 Example Output of a Simulation Run

	F Specialbeams.txt
	G ARIES `Earlobe' Plots
	H MIA's Asynchronous Processing System
	H.1 Request-specific Structure
	H.2 Centralised Organisation
	H.3 Some Suggestions for Future Implementations

	I DUNES Overview
	Bibliography

