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Translation-invariant linear operators

By H. G. DALES axp A. MILLINGTON
School of Mathematics, University of Leeds, Leeds LS2 9JT

(Received 14 April 1992)

The theory of translation-invariant operators on various spaces of functions (or
measures or distributions) is a well-trodden field. The problem is to decide, first,
whether or not a linear operator between two function spaces on, say, R or R* which
commutes with one or many translations on the two spaces is necessarily continuous,
and, second, to give a canonical form for all such continuous operators. In some cases
each such operator is zero. The second problem is essentially the ‘multiplier
problem’; and it has been extensively discussed; see [7], for example.

In this paper, we shall give some further results about these two problems. In
Section 1, we shall introduce the subject and recall some of the known results. In
Section 2, we shall show that, if £ = C((R) or C°(R), and if 7:E — L*(R) is a linear
operator which commutes with a single non-trivial shift §,, then necessarily 7' = 0,
but that, on the other hand, there is a closed linear subspace £ of C°(R) and a
non-zero continuous linear operator 7: K — LY(R) such that 7' commutes with each
shift S,.

It is well-known that there is a discontinuous linear operator 7': L*(R*)— L(R*)
such that 7' commutes with a single left shift L,. In Section 3, we shall show that
there are discontinuous linear operators which commute with all left shift operators.

1. Introduction

Let £ and F be linear spaces. Then £ (£, F) is the space of all linear maps from £
into F. We write L (E) for L(E,E); the identity in Z(£) is I, and the set of
invertible operators in the algebra Z(£) is Inv #(£). In the case where £ and ¥ are
Banach spaces, 4(E, F) denotes the Banach space of all bounded maps in Z(E, F),
and we write Z(K) for B(E, E). The spectrum of Te B(E) is o(T).

Let E and F be linear spaces, and let Re #(E) and Se Z(F). A linear map
T':E - F intertwines the pair (B, S) if TR = ST. If £ and F' are Banach spaces and if
ReB(E) and Se B(F), then we ask whether or not a map Te £ (£, F) which inter-
twines (R, S) is automatically continuous. More generally, we consider the automatic
continuity of a linear map 7 which intertwines a family of pairs of operators on
E and F. We also consider the canonical form of continuous operators which
intertwine such a family.

To describe the general known results, we require some terminology. Let £ be a
linear space. Then Re £ (F) is algebraic if p(R) = 0 for some non-zero polynomial p.
A linear subspace F' of E is C[R]-divisible if

(zlp—RY(F)=F (z€Q).
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162 H. G. DarLes aAND A. MILLINGTON

It is easy to see that there is a maximum C[R]-divisible subspace of £ : this space is
the algebraic spectral space of R, often denoted by E (). We shall be concerned
with the condition that E () = {0}, that is, the case where £ has no non-zero, C[R]-
divisible subspaces.

Let £ and F be Banach spaces, and let Re Z(E) and Se #(F). Then ze C is a critical
eigenvalue of (R,S) if z is an eigenvalue of S and if (zI;—R)(F) has infinite co-
dimension in E.

An operator T'e Z(F) is super-decomposable ([8]) if, for each open cover {U, V}
of C, there exist R,Se%B(E) such that RT = TR, R+8 = I, o(T|R(E)) = U, and

a(T|S(E)) < V. For example, suppose that T'e #(F) is invertible and that
AT+ 01T

is bounded. Then it is shown in [8] that 7 is super-decomposable and that 7" has no
non-zero divisible subspace.

The following result is given in [9], extending earlier results of Johnson and
Sinclair ([5], [6]).

THEOREM 1°1. Let E and F be Banach spaces, let Re B(E) and S€ B(F). Constider the
Jollowing two conditions:

(@) each linear map which intertwines (R, S) ts automatically continuous;
(b) (R,S) has no critical eigenvalues, and either R is algebraic or S has no non-zero
divisible subspaces.
Then always (a) implies (b), and (b) implies (a) in the case where both R and S are super-
decomposable.

(We remark that it would be of interest to establish that (b) implies () in the above
theorem under weaker hypotheses than that B and S are super-decomposable. Some
partial extensions to the theorem are given in [9].)

We apply the general theory to various translation-invariant spaces on R and R*.

First we consider spaces on R. For p> 0, LP(R) denotes the usual space of
functions f such that [f|? is integrable with respect to Lebesgue measure on R; if
p = 1, then LP(R) is a Banach space. We denote by C°(R) the space of all bounded,
continuous functions on R, and by Cy(R) the space of all continuous functions which
vanish at infinity. Throughout the uniform norm over a set S is denoted by ||, so
that C°(R) and C,(R) are Banach spaces with respect to ||g. Let £ be any of these
spaces, and, for ae R, define the shift operator S, on £ by

(Sof) (8) = fit—a) (teR, fe k).

Then S,eInv Z(F) and S,,, = 5,9, (¢.beR). Clearly 8, is not algebraic. In each
case, |S"|| = 1 (neZ), and so S, is a super-decomposable operator on £ with no non-
zero divisible subspaces. By Theorem 1-1, an operator 7' between two of these spaces
E and F which intertwines (S,,S,) for some aeR\{0} is automatically continuous if
and only if the pair (S,,S,) has no critical eigenvalue. If ge[1, c0), then S, has no
eigenvalue as an operator on L(R), and so each intertwining operator mapping into
L4(R) is automatically continuous. In Section 2, we shall show that, for £ = C,(R)
or £ = C°(R), each linear operator T:E — L'(R) such that 7'S, = S, T for a single
a€R\{0} is necessarily 0. However, there is a closed linear subspace £ of C’(R)
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which is translation-invariant (i.e. S,(E) < E (e€R)), and Te B(E,L'(R)) such that
TS, =S8,T for all aeR and T is non-zero.

Second we consider function spaces on R*. Here the situation differs according to
whether we are working with left or right shifts.
Let E be a function space on R*, and take a > 0. The right shift operator B, on £
is defined by
fi—a) (t>a)
<

[
R =
®HO=1

t<a)
for fe E. Operators T such that TR, = R, T for some a > 0 have been much studied.
See [1, 2, 10, 12], for example. Specifically, let p, g€ (0, 0], and let 7': L?(R*) - LY(R*)
be a linear map such that TR, = R, T for a single @ > 0. Then 7' is automatically
continuous ([2]).

The left shift operator L, is defined for a > 0 by

(Lof) () = flt+a) (teRY)

for feE. Tt is also defined on M(R"), the Banach space of complex-valued, regular
Borel measures on R*, by
(Lop) (A) = p(d +a)

for a Borel set A < R* and ue M(R").

It is now the case that discontinuous linear operators arise. Let L% (R*) be the
subspace of LP(R*) consisting of the functions of compact support. It is clear that
L3, (R*) is a C[L,]-divisible subspace of LP(R*), and so £}, () contains Lf,(R"). Since
L, is not algebraic, it follows from Theorem 1-1 that, for each fixed a > 0, there is a
discontinuous linear map 7": L?(R*) - L%(R*) such that 7L, = L, T'. For the sake of
later comparison we briefly recall the direct argument for this ([6, 14]).

Set B = L?(R*), F = LYR*), E,, = LE(R*), and F,, = L,(R*). Then £ and F are
C{X]-modules for the map (p,f)—p(L,)(f). Set G = E,+C[X].f,, where fy(t) =
exp(—t?) (teR*), and let 2, be an arbitrary non-zero element of ¥,. Then the map

To:g+p.forop.hy, G—>Fy,

is a well-defined C[X]-module homomorphism. The space F,, is a C[X]-divisible

module, and so is an injective module because C[{X] is a principal ideal domain. Thus

there is a C[X]-module homomorphism 7": £ — F, extending 7. Clearly TL, = L, T,

and 7'is discontinuous because T'| £, = 0, but T'( f,) & 0. Thus 7"is the required map.
However, it is less easy to produce a discontinuous linear operator

T:LP(R*)— LYRY)

such that TL, = L, T for all « > 0. We shall exhibit such an operator 7" in Section 3.

Finally we consider maps 7': L}(R*) - LY(R). Suppose that TL, = S, T for one fixed
a > 0. Then 7' is automatically continuous: this does not follow from Theorem 1-1
because L, is not a super-decomposable operator on L!(R*), but it does follow from
an extension of Theorem 1-1 given in [9]. On the other hand, it seems to be an
interesting open question whether or not each 7' such that TR, =8, T for some
a > 0 is automatically continuous.
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2. The form of continuous translation-invariant operators
We first consider the special case of translation-invariant operators 7:E — LY(R),
where E is a closed, translation-invariant linear subspace of C°(R). As we noted in
Section 1, if 7'S, = S, T for one aeR\{0}, then 7T is automatically continuous. We
consider when the only such 7' is the zero operator. The first result is an easy
calculation; it also follows by the argument in Theorem 2-3.

THEOREM 2:1. Let T': Cy(R) - LY (R) be a linear operator such that TS, =8, T for a
single ae R\{0}. Then T' = 0.

Proof. We suppose that a = 1. Since T is automatically continuous, we may
suppose that |7 < 1.

Take f,€ Co(R), and set g, = 7'f,. Then

m m
Z ajSa,go < Z ajSaij (1)
=1 1 =1 R

for each meN, each «,...,a,,€C, and each a,,...,a,eZ.

For each neN, choose z,, €N so that:

N —1 .. 1
0 [ > (S s 6 101 < 2 143 7).

Now choose a; = 1 and a; = 2jx, for j =0,...,n—1, and consider the function
n-1
hn = 2 SzjzngOELl(R)‘
j=0

Set
I, =[—z,+2px,,z,+2px,] (pel).

Then, for p=0,...,n—1, we have

jlmzf(mmm—zwmmg
1, I, %D

=f o= [ 1o

Zn j*p IP—f
n—1 1 n—2
=2 |— —= =[|—"F .
( " )llgolll i (1 B ( " )llgoﬂl

Thus ||A,|l, = (n—2) lg,ll, because the intervals I, ...,1,_, are disjoint.
On the other hand, by (ii),

< 2l folws
R

n—1
Z Sz;'x,,fo
=0
and so, by (1),

(n—=2)llgoll, < 2lfola (neEN).
Thus g, =0, and so T'= 0. |

We now show that the same result holds in the cases where £ = C*(R)or E = L?(R),
where p > 1.



Translation-invariant linear operators 165

Recall that a set 4 in a Banach space F is weakly sequentially compact if
every sequence in 4 has a subsequence which converges in the weak topology of F'.
Let £ and F be Banach spaces, and let U be the closed unit ball in £. An operator
TeBE,F) is said to be weakly compact if the weak closure of T(U) is compact in
the weak topology of F.

Lemya 22, Let g e LY(R) be such that {S, g,:n€ N} is weakly sequentially compact.
Then g, = 0.

Proof. There is a sequence (,) in N such that (S, g,) converges weakly in L'(R),
say S, g,—h weakly. Let K be a compact subset of R, take ¢ > 0, and take z, > 0 so
that

Zo
J ool > g0l —c.

To
Then | S, g, fxh as r—>oc0. But [n,—x, n,+2]NK=F for large 7, and so
I/, Sp, 9ol < € for large r. Thus |fK h| < e. It follows that & = 0.

We now show that g, = 0. Again take € > 0 and x, > 0 so that

o
J gl > lgalli—e

Ty

By passing to a subsequence of (n,), we may suppose that the intervals [n,—z,,
n,+x,] are disjoint, and so

©  [Tetn,
ZJ 8, go—>0 asr->oc0.

k=1J —zy4ny

Zg
f lgal < 26,

Lo
and so g, = 0, as required. |

THEOREM 2-3. Let E be C°(R) or LP(R), where p > 1, and let T': E — LY(R) be a linear
operator such that TS, = S, T for a single ae R\{0}. Then T' = 0.

Proof. We have noted that 7' is continuous. We again suppose that a = 1.

We first note that each T'e Z(E,L'(R)) is weakly compact. By [3], IV-86, the
Banach space L(R) is weakly complete, and so, by [3], VI:7-6, each continuous linear
operator from C%(R) = C(AR) is weakly compact. Certainly each 7'e B(E, L (R)) is
weakly compact when ¥ is a reflexive Banach space (see [3], VI-4-3), and this applies
to the spaces £ = LP(R) where p > 1.

Now let feE. Since {S, f:ne N} is bounded in £ and 7" is weakly compact,

{TS,fneN} ={S, TfneN}
is weakly sequentially compact in L}(R). By Lemma 2:2, Tf = 0, and so T' = 0. |

It follows that

We note a related result ([7] theorem 5-2-5). Suppose that 1 < ¢ < p < co. Then
each T'e B(LP(R), LYR)) such that 7'S, = S, T for every a€R is necessarily zero.
In the light of the above two results, the next theorem is perhaps rather surprising.

THEOREM 2-4. There is a closed, translation-invariant linear subspace E of C°(R)
such that Co(R) < E, and a non-zero, continuous linear operator T': E — LY(R) such that
TS, =8,T for all aeR.
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It is convenient to proceed via some lemmas.

LeMMa 2°5. Let neN. For each set{a,, ..., a,} = C\{0}, there is a subset {n,, ..., n,} of
{1,...,n} such that

1
|anl+ +anr| = ;(lall +... +|an|)

Proof. This is elementary ([13], 6:3). |

LeMma 2:6. There is a continuous function fy:R* — [0, 1] with the property that, for
each neN, for each LeR, for each set{x,, ..., a,} of distinct elements of R, and for each
set {a,, ...,a,} = {0, 1}, there exists t,e R* with t, > L such that

flto—a)=a, (G=1,...,m). @)

Proof. Let ((s;,1,):£€N) be an enumeration of the set {(p,1/q):p,geN}.

For each ke N, define a finite set %, of continuous functions as follows. Each
f€ % has domain [0,s,], and range [0, 1], f(0) = f(s,) = 0, and f takes the value 0 or
1 on intervals of the form [(r—3)¢,, (r+3)¢.], where reN and (r+3)¢, < s,.

From this collection {%, : ke N} we construct f, as follows. On the interval [0, s, ],
we take f, to be equal to one of the finitely many elements of %, on the interval
[y, 28,1, fy is equal to a translate of one of the other elements of %, and so on, until we
have all the functions of % ‘end-to-end’. We repeat this process successively for %,
%, ..., translating functions appropriately so that they are still ‘end-to-end’. We
have defined a continuous function f; on R* with range [0, 1].

NowletneN, LeR, {a,,...,a,} € R, and {«,, ..., 2,} = {0, 1} be as specified. Choose
an interval of length se N so that s > max {|la;—a,|:¢,j = 1, ..., n} and a ‘mesh size’ ¢ so
that 1/teN and

t <min{la,—a:7,5=1,...,n, 1 F j}.
The ordered pair (s, t) has the form (s, , ¢ ) for some k,€ N, and one of the functions
freF, will satisfy
ff*—a)=a; (3=1,...,n)
for some t*€[0, s, ]. A suitable translate, say S, f*, coincides with f, on an interval of
R* of length s, , and so t, = t*+r satisfies (2).

The function f,; of the above lemma, extended to have domain R by setting it
equal to 0 on R7, is fixed for the remainder of the proof of Theorem 2:4. Clearly the
set {S,f,:a€R} is linearly independent in C°(R).

Lemma 27. For each heLY(R) with ||h||l, <1, for each neN, for each a,,...,
a,eC\{0}, and each a,,...,a, R, we have

n n
Z a; S b < 7|2 oS, fo
j=1 1 j=1 R
Proof. Let h,n,a,, ...,a,, and a,, ...,a, be as specified ; we may suppose that the a;’s

are distinct. By Lemma 2-5, there is a subset S of {1,...,n} such that

n

| (e s > = 3l 3)

Jj=1
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By Lemma 26, there exists {,€ R such that
folto—a) =1 (jeS) and filt,—a;) =0 (jell,...,n}\S).
We have

IS iay e = | S oyfilto—)| < | S 2,8, Jo @
i=1 s R
and % 05 Sg, bl < Xyl 194, hll, < 3oty )
i=1 1 Jj=1 j=1

The result follows from (3), (4), and (5). |
LemMma 2-8. For each ge Cy(R), each neN, each o, ..., o, e C\{0}, and each distinct

set {a,,...,a,}€R, we have

<2
R

n n
E%‘Sa,fo EajSaij-*-g‘ .
=1 i=1 R

Proof. For each f,, ..., f,,€ C\{0}, the supremum
supilBi g+ .-+ Bl 91 -, ¥ €[0, 1]}

is attained when each of the y,’s is equal to O or 1, and so, by the construction of f,
for each x, > 0, there exists ¢, = x, with

Z a’j Sa,fo

Jj=1

Z o folbo—ay)
j=1

R

Since g(t) >0 as t— co and since | 2., So,folg > 0, we may also suppose that

J=1"j

1
|g(to)l < 5

n
E aj Sa]fo
J=1

R
The result follows. |

Proof of Theorem 2-4. Set
X(fy) =ln{S, f,:acR},

the linear span of the functions S, f. Clearly the sum X(f,) + C(R) is direct. Let £ be
the closure of X(f,) @ Co(R) in C°(R), so that £ is a closed, translation-invariant
linear subspace of C%(R).

Choose an arbitrary element %, L(R) with ||A,ll, = 1, and define

n n
T:% ajSa;fo'*'g'_’ py ajSajhO: X(fo) @® OO(R) "’Ll(R)~
Jj=1 j=1

Then 7" is a well-defined linear map such that 7'S, = S, T for all ceR.
We have

n n
2 S hol| < 7| X ay Sq,fo| byLemma27
Jj=1 1 j=1 ®
n
<27 Yooy Sajf0+g| by Lemma 2-8,
3= 2

and so T is continuous. Since T'(f,) = &y, T + 0.
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The continuous extension of 7" to E is the required map. |

It is easy to see that a linear operator 7': C°(R) - L*(R) is necessarily zero on the
almost periodic functions; we could arrange that the Banach space £ of Theorem 2-4
also contains these functions, for example.

We now consider the form of a continuous linear operator 17'e #(L}Y(R*)) such that
TL,=L,T for all @ > 0. Let T be such an operator.

The duality between L*(R*) and L*(R*) is implemented by

S =J feygtydt  (feL(R),ge L*(R™)).

Clearly (L,f.g> = {f.R,¢> for fe L"(R*) and ge L*(R*). The duality between L}(R)
and L*(R) is implemented in a similar way.
The adjoint of 7' is the operator 7" e Z(L*°(R*)) such that

T =LTf.g» (feLl'(RY), geL=(RY);

we have TR, = R, T" for all a > 0.
Now take geCy,(R), the linear space of all continuous functions on R of compact
support. We define an element UgeL®(R) by the formula

Ug=8_,T8,9,

where ¢ is any real number such that a+a(g) = 0, and «(g) is the infimum of the
support of g; we are regarding S, g as an element of L*(R*).

LeMMA 29. The map U:Cyo(R) > L*(R) is a well-defined, bounded linear operator
with a continuous extension U:Cy(R)-> L*(R) such that US, = S, U for all aeR.

Proof. Let geCy(R), and take a,,a,e R with @, +a(g) = 0 and a,+a(g) = 0, say
a, < a,. Then
S—a2 T/Sazg = S—a2(TISa2—a,)Sa,g = S—al T/Sal g,

and so U is well-defined. The remainder is clear. |
The adjoint of U is the bounded linear operator
U :L=(R) = LNR)" > Co(R)’ = M(R),
and the restriction of U’ to L}(R) is denoted by V.
The duality between C(R*) and M(R*) is implemented by

] = L+f(t)dﬂ(t) (fe CylRY), we M(R")),

and again the duality between C,(R) and M(R) is implemented similarly. The
isometric embedding of L!(R*) in M(R*) is fi— pu,, where

l9: 7] = <f. 9> (g€ Co(R7). fe LI(RY)).
Levma 2-10. The map VLY (R) - M(R) is a bounded linear operator such that:

(i) VS, =8,V for all acR;
(i1) for each he LM(R?*), (VA)|R* = Th.
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Proof. Certainly Ve B(LY(R), M(R)), and it is easy to check that (i) holds.
To establish (ii), we shall show that

[9.Th] = [, VA] (g€ Coo(R*), REL(RY)), (6)

which is sufficient. Fix ge Cy(R*) and ke L'(RY).
First take a sequence (g,,) in Cy,(R) defined as follows:

0 (—o0 <t < 1/n)
ga(t) =1 (1+nt)g(0) (—1/n<t<0)
g(t) (t = 0).

For a > 1, we have
(95, VRl = <k, Ug,> = <k, 8_,T'S, 9,
=80T8 P, gn) = [9:5-a TS, 1)
By the dominated convergence theorem,
(G S_a TS, R)>19,.85_, TS, h} asn-—> o0

since ¢,—>¢ pointwise on R. Also, by the dominated convergence for complex
measures,
(9., VR]=>1[g, Vh] as n—> 0.

hus [g. V4] = [9, 5_, TS, ] @)
Now take a second sequence (7,) in Cy,(R) defined as follows:
0 (—oo <t <0)
Jult) = { ntg(1/n) (0 <t<1/n)
g(t) (t = 1/n).

Just as for g,, we have [7,, Vh] = [§,.S_, TS, h]. Since the measure S_,T'S, h is
absolutely continuous with respect to Lebesgue measure,

[qn’S—u TSa h]_> [g,S_a TSah] as n— 00.

Since a(g,) = 0, we have [g,, Vi] = [7,, Thl—{g, Tk].
Equation (6) now follows from (7).

We remark that the introduction of two sequences (g,,) and (7,,) in the above lemma
seems to be necessary to obviate the problem that Vh may a priori have a point mass
at 0.

We can now give the canonical form of 7. The Banach space M(R") is a Banach
algebra with respect to convolution multiplication #, and L'(R*) is a closed ideal in
M(R*): indeed

(e ) = Lf(t—s) duls) (feLMR), peM(RY))

THEOREM 2-11. Let T:LYR*)— LYR*) be a bounded linear operator such that
TL, =L, T for each a > 0. Then there is a measure uye M(R) such that

Tf = (uo*f)IR*  (feLY(R")).
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Proof. Let Ve (L' (R),M(R)) be as specified in Lemma 2:10. By a slight extension
of [7, theorem 0-1-1], there is a unique measure p,eM(R) such that Vf=p,*f
(feLY(R)) (see also [4, theorems 355 and 359]). The result follows.

3. A discontinuous operator commuting with all left shifts
The purpose of this section is to prove the following theorem.

THEOREM 3-1. Let p and g be real numbers with p, ¢ > 0. Then there is a discontinuous
linear operator T': LP(R*) - LYR™*) such that TL, = L, T for each aeR"*.

We first obtain a more abstract result, and then apply it to the situation under
consideration.

Definition 3-2. Let £ be a linear space, and let & be a subset of #(E). A linear
subspace F of K is &-invariant if S(F)  F for each Se€ & and is strongly divisible for
& if, further, 8| FelInv Z(F) for each Se #\{0}.

ProPOSITION 3-3. Let B be a linear space containing linear subspaces K, and E,, and
let & be a unital integral domain contained in L (E). Suppose that:

(1) G, is an L -invariant subspace of E,, and x,€ E\G, is such that
Szy¢ G, (SeL\{0});

(ii) F is a linear subspace of E, which is strongly divisible for &, and y,eF.
Then there is a linear map T:E,~E, such that TS = ST for all Se€%, such that
T|0, =0, and such that Tx, = y,.

Proof. Let 4 be the family of pairs (G, T'), where G is an & -invariant subspace
of £, and T'e (G, F) is such that T'S = ST for all Se &. Set (G, 1)) X (G,, T,) in 4 if
G, < G, and T,|G, = T,. Clearly (¢,,0)e%.

Suppose that (G, T)e¥ and that there exists u,e £,\G, and set

U ={SeS Su,eG}.
For each Se\{0}, T'SuyeF; set v, = (S| F) ' T'Su,e F. Now take S,, S, %\{0}. Then
S8y, = 8, TSy uy =8, TS, uy = 8,8, v, = 8,8,

using the facts that 7'S; = 8, 7" and §, S, = 8, 8,. Since & is an integral domain, we
have S, 8,€\{0}, and so v, = v, . Denote this common value of v, by v,, so that
Sv, = T'Su, for all Se. In the case where % = {0}, choose v, arbitrarily.

Set H = G/+{Su,:Se & }. Then H is an &-invariant subspace of E, with G c H.
Consider the map

V:x+Sug—> Tx+Sv,, H-F.
Then V is well-defined, for if z, +8, 4, = 2, + S, %, in H, then S,—8,e% and so
T(wy —x,5) = T(S,—5,) () = (S, —5,) (v)-

Clearly V is linear and VS = SV for all Se &, and so (H,V)e¥ with (G, T)<X (H,V)
and u,e H.
The above argument shows, first, that there exists (¢,, T})€¥ with

(6G5.0) < (G1. 1Y),



Translation-invariant linear operators 171

with z,€G,, and with T} x, = y,. By Zorn’s lemma, there is a maximal element in &,
say (@, T), with (G, T\) < (G, . Again by the above argument, necessarily ¢ = E|,
and so 7 is the required map.

Proof of Theorem 3-1. We apply the above proposition, taking E, = L?(R*), K, =
LYRY, E=E,+E,, & =lin{L,:aeR*}, G, = LE(R*), and x, to be any element of
E\G,. Clearly & is a unital integral domain contained in £ (&), and condition (i)
of Proposition 3-3 is satisfied; we shall define a space F satisfying condition (ii) of
Proposition 3-3.

The space of infinitely differentiable functions on R* is denoted by C*(R™*). For
NeN and fe C‘*(R*), set
pN n f Z _||f(])|[n,n+1] (neZ*),

and consider functions f with py ,(f) < 0. Clearly each such f extends to be an
analytic function on {ze C:d(z, [n,n+ 1]) < N}, where d denotes the Euclidean metric
on C and we are regarding [n,n+ 1] as a subset of C.

For N, keN and fe C‘(R*), set

I £l = sup{e™™ py (f):neZ*},

= {feCOR): [ flly,x < o0},

so that (Fy , ||*lly ;) is a Banach space, and each feFy , extends to be an analytic
function on {zeC:d(z, R") < N}.

Now set F =({Fy N keN},

so that F is a linear subspace of C(R*) and each feF is the restriction to R* of an
entire function, also denoted by f.

For each feF, |f, i1y = O(¢™) as n—> 00, and so F c E,.

Set f,(t) = ¢ for teR*, and take N, keN. By applying the Cauchy estimates to
the entire function z+>e on {zeC:d(z, [n,n+1]) < 2N}, we see that there exists
(M, :neZ*) < R* such that M, = O(¢™™') as n—> o0 and

and set

N M,
j_!lfg)l[n,n+1] < ? (n,geZ*).

We have py ,(fy) = O(e™) asn— o0, and so || fll y , < 0. Thus f,€ ¥, and so F =% {0}.
Let aeR*, and set m = [a], the integral part of a. Take feF, and set g = L, f and
h=R,f Fix N, keN. Since

pN,n(g) S pN,n+m(f)+pN,n+m+l(f) (%EN)

and since fe Fy ,, we have ge Fy, . Similarly, since fe Fy ,,,,, we have heF, .. Thus
g, heF, and so L,(F) = F. Now take feF with L,f = 0. Then f|[a, ©0) = 0, and so
f = 0 because f is the restriction to R* of an entire function. Thus L, | F is injective,
and so L,|FeInv Z(F).

The operator norm in #(Fy ,) is also denoted by |||y ,. Take beR*\{0} and
f€F, .. For each jeN,

pN,n(ij(f)) < pN,n+[jb](f)+pN, n+[jb]+1(f) (neN),



172 H. G. DAaLEs AND A. MILLINGTON

and so

WLy (W, < 21 fll v, €xp (= [5B]%).
Thus
”ij“}\/'{k -0 asj—>o0.

An arbitrary element of #\{0} has the form L (ol + L, T), where a = 0, a € C\{0},
b>0, and Te&. We know that L,|FeInv #(F). As an operator on Fy ,,

MLy TYIR k< Wl ¥ il Ty, x>0 as j— o,

and so (al g+ L, T)| Fy €Inv L(Fy ;) for each N, ke N. Thus (el + L, T) | F belongs
to Inv Z(F). It follows that I is strongly divisible for .

We conclude from Proposition 3-3 that there is a linear map 7":E, - E, such that
TL,=L,TforallaeR*, T|G, =0, and Tz, = f, + 0, say. Since G, is dense in £, the
map 7' is necessarily discontinuous.

This concludes the proof of Theorem 3-1. I

It is clear that we may vary the spaces L?(R*) and L?(R*) in Theorem 3-1. For
example, either of them can be replaced by C,(R").

This paper is based on a portion of the second author’s thesis ([11}); he
acknowledges the support of SERC grant 88001381.
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