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Translation-invariant linear operators

BY H. G. DALES AND A. MTLLIXGTON

School of Mathematics, University of Leeds, Leeds LS2 9JT

(Received 14 April 1992)

The theory of translation-invariant operators on various spaces of functions (or
measures or distributions) is a well-trodden field. The problem is to decide, first,
whether or not a linear operator between two function spaces on, say, IR or R+ which
commutes with one or many translations on the two spaces is necessarily continuous,
and, second, to give a canonical form for all such continuous operators. In some cases
each such operator is zero. The second problem is essentially the 'multiplier
problem', and it has been extensively discussed; see [7], for example.

In this paper, we shall give some further results about these two problems. In
Section 1, we shall introduce the subject and recall some of the known results. In
Section 2, we shall show that, HE = C0(U) or C(U), and if T-.E-^L^U) is a linear
operator which commutes with a single non-trivial shift Sa, then necessarily T = 0,
but that, on the other hand, there is a closed linear subspace E of C(U) and a
non-zero continuous linear operator T:E^-Ll(W) such that T commutes with each
shift Sa.

It is well-known that there is a discontinuous linear operator T:L1(M+)-+Ll(U+)
such that T commutes with a single left shift La. In Section 3, we shall show that
there are discontinuous linear operators which commute with all left shift operators.

1. Introduction

Let E and F be linear spaces. Then SC(E,F) is the space of all linear maps from E
into F. We write £?(E) for <£{E,E)\ the identity in S£(E) is IE, and the set of
invertible operators in the algebra <£{E) is Invj£?(jf?). In the case where E and JF are
Banach spaces, 38(E,F) denotes the Banach space of all bounded maps in £P(E,F),
and we write 0S(E) for @(E,E). The spectrum of Te0S(E) is a[T).

Let E and F be linear spaces, and let Re£C(E) and SeJ£(F). A linear map
T.E-+F intertwines the pair (R, S) if TR = ST. HE and F are Banach spaces and if
Re38{E) and Se@l(F), then we ask whether or not a map TeJ£(E,F) which inter-
twines (R,S) is automatically continuous. More generally, we consider the automatic
continuity of a linear map T which intertwines a family of pairs of operators on
E and F. We also consider the canonical form of continuous operators which
intertwine such a family.

To describe the general known results, we require some terminology. Let E be a
linear space. Then ReJi?(E) is algebraic if p(R) = 0 for some non-zero polynomial p.
A linear subspace F of E is C[-ft]-divisible if

(zIE-B)(F)=F (zeC).
0 P K P 113



162 H . G. D A L E S AND A. MILLINGTON

It is easy to see that there is a maximum C[i?]-divisible subspace of E: this space is
the algebraic spectral space of R, often denoted by ER(0). We shall be concerned
with the condition that ER(0) = {0}. that is, the case where E has no non-zero, C[R]-
divisible subspaces.

Let E and F be Banach spaces, and let Re@){E) and S e 08 (F). Then z e C is a critical
eigenvalue of (R,S) if z is an eigenvalue of S and if (zIE—R)(E) has infinite co-
dimension in E.

An operator Te&(E) is super-decomposable ([8]) if, for each open cover {U, V}
of C, there exist R,Ss0§{E) such that RT = TR, R + S = IE, a{T\R~(EJ) c U, and
<r(T\S(E)) c F. For example, suppose that Te08(E) is invertible and that

is bounded. Then it is shown in [8] that T is super-decomposable and that T has no
non-zero divisible subspace.

The following result is given in [9], extending earlier results of Johnson and
Sinclair ([5], [6]).

THEOREM 1-1. Let E and F be Banach spaces, let Re0ft (E) and Se08(F). Consider the
following two conditions:

(a) each linear map which intertwines (R, S) is automatically continuous;
(b) (R,S) has no critical eigenvalues, and either R is algebraic or S has no non-zero

divisible subspaces.
Then always (a) implies (b), and (b) implies (a) in the case where bothR and S are super-
decomposable. I

(We remark that it would be of interest to establish that (b) implies (a) in the above
theorem under weaker hypotheses than that R and S are super-decomposable. Some
partial extensions to the theorem are given in [9].)

We apply the general theory to various translation-invariant spaces on U and IR+.
First we consider spaces on U. For p > 0, LP(U) denotes the usual space of

functions / such that \f\p is integrable with respect to Lebesgue measure on U.; if
p ^ 1, then LP(R) is a Banach space. We denote by C*(IR) the space of all bounded,
continuous functions on U, and by C0(U) the space of all continuous functions which
vanish at infinity. Throughout the uniform norm over a set S is denoted by |-|s, so
that C(U) and C0(IR) are Banach spaces with respect to |-|B. Let E be any of these
spaces, and, for aeU, define the shift operator Sa on E by

(SJ){t)=f{t-a) (teUJeE).

Then 8aelnv&(E) and Sa+b = SaSb (a,beU). Clearly Sa is not algebraic. In each
case, ||(S"|| = 1 (neZ). and so £„ is a super-decomposable operator on E with no non-
zero divisible subspaces. B3' Theorem 1-1, an operator T between two of these spaces
E and F which intertwines (iSa,*So) for some aelR\{0} is automatically continuous if
and only if the pair (Sa,Sa) has no critical eigenvalue. If <?e[l, 00), then Sa has no
eigenvalue as an operator onLQ(R), and so each intertwining operator mapping into
Lg(M) is automatically continuous. In Section 2, we shall show that, for E = C^R)
or E = C(U), each linear operator T-.E^-L1^) such that TSa = SaT for a single
aeR\{0} is necessarily 0. However, there is a closed linear subspace E of Cb(U)



Translation-invariant linear operators 163
which is translation-invariant (i.e. Sa(E) c E (aeU)), and Te@{E,Lx{U)) such that
TSa = SaT for all aeU and T is non-zero.

Second we consider function spaces on W. Here the situation differs according to
whether we are working with left or right shifts.

Let E be a function space on IR+, and take a > 0. The right shift operator Ra on E
is defined by

[fit-a) (t^a)

for feE. Operators Tsuch that TRa = RaTfor some a > 0 have been much studied.
See [1,2, 10, 12], for example. Specifically, let p, qe(0, oo], and let T:LP(U+) ->L9{U+)
be a linear map such that TRa = RaT for a single a > 0. Then T is automatically
continuous ([2]).

The left shift operator La is defined for a > 0 by

(LJ)(t)=f(t + a) (teU+)

for feE. It is also defined on M(U+), the Banach space of complex-valued, regular
Borel measures on IR+, by

(Lafi)(A)=fi(A

for a Borel set A c: U+ and ju,eM(U+).
It is now the case that discontinuous linear operators arise. Let L$0(U

+) be the
subspace of LV(U+) consisting of the functions of compact support. I t is clear that
L$0(U

+) is a C[Lo]-divisible subspace of LP(U+), and soELa(0) contains L£0([R
+). Since

La is not algebraic, it follows from Theorem 1-1 that, for each fixed a > 0, there is a
discontinuous linear map T:Lv(U+)->L9(M+) such that TLa = LaT. For the sake of
later comparison we briefly recall the direct argument for this ([6, 14]).

Set E = LV(U+), F = L"{U+), Eoo = L$0(U
+), and Foo = L«0(R+). Then E and F are

C[X]-modules for the map (p,f)^p(La)(f). Set 0 = E00 + C[X].f0, where/„(<) =
exp( — t2) (teU+), and let h0 be an arbitrary non-zero element of FQ0. Then the map

T0:g+p.f0*-+p.h0, G-+Fm,

is a well-defined C[X]-module homomorphism. The space Foo is a C[X]-divisible
module, and so is an injective module because C[X] is a principal ideal domain. Thus
there is a C[X]-module homomorphism T:E^F00 extending To. Clearly TLa =LaT,
and 7'is discontinuous because T\Eoo = 0, but T(f0) =t= 0. Thus Tis the required map.

However, it is less easy to produce a discontinuous linear operator

T:Lp(U+)->L9(U+)

such that TLa = La T for all a > 0. We shall exhibit such an operator T in Section 3.
Finally we consider maps TiL^fR+J^L^IR). Suppose that TLa = SaTiov one fixed

a > 0. Then T is automatically continuous: this does not follow from Theorem 1-1
because La is not a super-decomposable operator on IJ(U+), but it does follow from
an extension of Theorem 1-1 given in [9]. On the other hand, it seems to be an
interesting open question whether or not each T such that TRa = SaT for some
a > 0 is automatically continuous.
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2. The form of continuous translation-invariant operators

We first consider the special case of translation-invariant operators T:2?->/^(IR),
where E is a closed, translation-invariant linear subspace of Cb(U). As we noted in
Section 1, if TSa = SaT for one aeR\{0}, then T is automatically continuous. We
consider when the only such T is the zero operator. The first result is an easy
calculation; it also follows by the argument in Theorem 23.

THEOREM 21 . Let T:C0{U)^L^(U) be a linear operator such that T8a = SaTfor a
single oelR\{0}. Then T = 0.

Proof. We suppose that a = 1. Since T is automatically continuous, we may
suppose that \\T\\ ̂  1.

Take/oeC'o(IR), and set g0 = Tf0. Then

3 - 1 j - \
(1)

for each meN, each alt ...,ameC, and each av ...,aneZ.
For each ?ieN: choose £neN so that:

(i) \9o\> llfl̂ olli; («) I / O ( O K |

J -xn \ n J n

Now choose a} = 1 and a} = 2jxn for j = 0,...,%— 1, and consider the function

K=
Set

j-0

n> xn

Then, for p = 0,..., n — 1, we have

\ \K\ > \
*} I n J I

_ f" , ,_ v f
IS'ol ZJ

J —x i ± v J1

Thus \\hn\\1 ^ (n — 2) ||gr0IfI because the intervals 70, ...,/„_! are disjoint.
On the other hand, by (ii),

2|/OIR,

and so, by (1),

Thus ^0 = 0, and so T = 0. I

;, (nelVI).

We now show that the same result holds in the cases where E = Cb(U) orE = LP(R),
where p > 1.
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Recall that a set A in a Banach space F is weakly sequentially compact if

every sequence in A has a subsequence which converges in the weak topology of F.
Let E and F be Banach spaces, and let U be the closed unit ball in E. An operator
Te&(E,F) is said to be weakly compact if the weak closure of T(U) is compact in
the weak topology of F.

LEMMA 22. Let goeL1(U) be such that {Sng0:neN} is iveakly sequentially compact.
Then g0 = 0.

Proof. There is a sequence (nr) in N such that (Snrg0) converges weakly in ^(U),
say Sn gQ^h weakly. Let K be a compact subset of IR, take e > 0, and take x0 > 0 so
that r,\go\>

Then jKSnrg0^- jKh as r-^oo. But [nr — x0, nr + x0]C\K = 0 for large r, and so

\SKSn,9o\ <e for l a r g e r- T h u s \fK
h\ < e- J t follows that h = 0.

We now show that g0 = 0. Again take e > 0 and x0 > 0 so that

i:
By passing to a subsequence of (nr), we may suppose that the intervals [nr — x0,
nr + x0] are disjoint, and so

^ S ' o ^ 0 asr-»oo.
k=lJ—xo+nk

It follows that

Iffol <
i _

and so g0 = 0, as required. I
THEOREM 2-3. Let E be Cb{U) or LP{U), where p> I, and let T-.E^L^U) bealinear

operator such that TSa = SaTfor a single aeU\{0}. Then T = 0.

Proof. We have noted that T is continuous. We again suppose that a = 1.
We first note that each Te^(E,L1(U)) is weakly compact. By [3], IV-8-6, the

Banach space L*{M) is weakly complete, and so, by [3], VT7-6, each continuous linear
operator from Cb(U) = C{fiU) is weakly compact. Certainly each Te^E,^^)) is
weakly compact when E is a reflexive Banach space (see [3], VT4-3), and this applies
to the spaces E = LP(U) where p > 1.

Now let feE. Since {Snf:neN} is bounded in E and T is weakly compact,

is weakly sequentially compact in LX(IR). By Lemma 2-2, Tf = 0, and so T = 0. I

We note a related result ([7] theorem 5-2-5). Suppose that 1 < q < p < oo. Then
each Te@(Lp(M), L"(U)) such that TSa = ^ T 1 for every aeU is necessarily zero.

In the light of the above two results, the next theorem is perhaps rather surprising.

THEOREM 2-4. There is a closed, translation-invariant linear subspace E of C(U)
such that C0(U) c E, and a non-zero, continuous linear operator T:E-+L1($l) such that
TSa = SaTfor allaeU.
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It is convenient to proceed via some lemmas.

L E M M A 2-5. Let neN. For each set {a1; ...,an} c C\{0}, there is a subset {nv ...,nr} of

{1, ...,n} such that

Proof. This is elementary ([13], 63). I

LEMMA 2-6. There is a continuous function fo:U
+ -» [0,1] with the property that, for

each neN, for each LeM, for each set {a±, ...,«„} of distinct elements of R, and for each
set {<*!, ...,an} c {0,1}, there exists toeR+ with to> L such that

Proof. Let ((sk, tk) :ke N) be an enumeration of the set {(p, l/q) :p,qeN}.
For each keN, define a finite set ^ of continuous functions as follows. Each

fe 3Fk has domain [0, sk], and range [0, l],/(0) =/(sk) = 0, and/ takes the value 0 or
1 on intervals of the form [(r — \)tk, {r-\-\)tk~\, where r e ÎJ and (r + \)tk < sk.

From this collection {^k:ke N} we construct/0 as follows. On the interval [O.sJ,
we take f0 to be equal to one of the finitely many elements of J^, on the interval
[s1; 2sx],f0 is equal to a translate of one of the other elements of &\, and so on, until we
have all the functions of J^ 'end-to-end'. We repeat this process successively for J^,
J^,..., translating functions appropriately so that they are still 'end-to-end'. We
have defined a continuous function/0 on K+ with range [0,1].

Now let ne N,LeR, {a1; ..-,«„} c R, and {av ...,an} c {0,1} be as specified. Choose
an interval of length s e N so that s > max {\at — aj\:i,j=l,...,n} and a ' mesh size' t so
that 1/teN and

fla^ — a}\ :i,j = 1,...,»,

The ordered pair (s, t) has the form (sk , tk ) for some i o e N , and one of the functions
/* e &K will satisfy

f*(t*-a,) = *} (j=l,...,n)

for some t*e[O,sk ]. A suitable translate, say Srf*, coincides with/0 on an interval of
R+ of length sk , and so t0 = t* + r satisfies (2). I

The function f0 of the above lemma, extended to have domain IR by setting it
equal to 0 on IR~, is fixed for the remainder of the proof of Theorem 2-4. Clearly the
set {SafQ:aeR} is linearly independent in Cb(U).

LEMMA 2-7. For each heL1^) with Wh^^ 1, for each neN, for each a1;...,
a.n eC\{0}, and each ax,..., an e R, we have

ns
3-1

saj
h

\

n
2J Z-jbajfo

Proof. Let/i, n, oc1, ...,an, anda1; ...,an be as specified; we may suppose that thea;'s
are distinct. By Lemma 2-5, there is a subset S of {1, ...,n} such that

7T
(3)

3=1
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By Lemma 2-6, there exists toeU such that

/o(<o-a;) = 1 (JeS) a n d fo(to-(l}) = () (je{l,...,',

We have

\'£{aj:je8}\ =

167

3-1 3 - 1

and

(4)

(5)
11 3 - 1 111 j-l

The result follows from (3), (4), and (5). I

j-l

LEMMA 2-8. For each geC0(U), each neN, each alt . ..,<*„ e<C\{0}, and each distinct
set {a1,...,an}eR, we have

<*j S f0

Proof. For each /?j, ...,/?meC\{0}, the supremum

is attained when each of the yt's is equal to 0 or 1, and so, by the construction of/0,
for each xQ > 0, there exists t0 ̂  x0 with

3 - 1 3=1

Since as <-»• oo and since |S"= 1 a.jSa fo\R > 0, we may also suppose that

\g(to)\ <

The result follows. I

Proof of Theorem 2-4. Set

j-l

= \m{SJo:aeU},
the linear span of the functions Saf. Clearly the sum X(f0) + C0(M.) is direct. Let E be
the closure of X(f0) © C0(U) in C'b(U), so that E is a closed, translation-invariant
linear subspace of Cb(U).

Choose an arbitrary element AoeL1(R) with ||fe01|j = 1, and define

S «^a,Ao. *(/o) © C0

Then T is a well-defined linear map such that TSa = Sa T for all aeU.
We have

n
by Lemma 2-7'•tajK

2n by Lemma 2-8,

and so T is continuous. Since T(/o) = h0, T #= 0.
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The continuous extension of T to E is the required map. I

I t is easy to see that a linear operator T:Cb(R)^>-Ll(R) is necessarily zero on the
almost periodic functions; we could arrange that the Banach space E of Theorem 24
also contains these functions, for example.

We now consider the form of a continuous linear operator Te^S(L1(R+)) such that
TLa = LaT for all a > 0. Let T be such an operator.

The duality between Ll{U+) andLm(IR+) is implemented by

f,g> =
Jo

<J,9>=\ f(t)g(t)dt
Jo

Clearly (LJ,g} = (f,Rag)> for/eL1(IR+) and geLco{U+). The duality between
and Lm(R) is implemented in a similar way.

The adjoint of T is the operator Te^(Lco(R+)) such that

<f,T'g} = (Tf,g) (feLl(U+), geL™(M+));

we have T'Ra = Ra T for all a > 0.
Now take geC00(U.), the linear space of all continuous functions on IR of compact

support. We define an element UgeLx(R) by the formula

where a is any real number such that a + oc(g) ^ 0, and a(g) is the infimum of the
support of g; we are regarding Sag as an element of i°°(IR+).

LEMMA 2-9. The map C/:C00([R)^-L0O(IR) is a ivell-defined, bounded linear operator
with a continuous extension ( :̂C0([R)->i>co(IR) such that USa = Sa Ufor all aeU.

Proof. Let </eC00([R), and take ava2eU with a1 + a(g) ^ 0 and a2 + a{g) ^ 0, say
«! ^ a2. Then

S-a2 rsat g = S_ai(T'Sa2_ai)Sai g = S_ai TSai g,

and so U is well-defined. The remainder is clear. I

The adjoint of U is the bounded linear operator

U':Lm(Uy =L1(R)"^C0(R)' =M(U),

and the restriction of U' to L^IR) is denoted by V.

The duality between C0(U
+) &ndM(R+) is implemented by

= f (feC0(U
+),fteM(U+)),

R+

and again the duality between C0([R) and M(U.) is implemented similarly. The
isometric embedding of L1(IR+) inil/(IR+) is/i—*fif, where

\9,P/\ = <J,9> (geC0(M
+),feL1(M+)).

LEMMA 2-10. The map F:L1(IR)->-JI/'(IR) is a bounded linear operator such that:

(i) VSa = SaVforallaeU:
(ii) for each heL^R*), (FA)|IR+ = Th.
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Proof. Certainly Ve@(Ll(U), M(U)), and it is easy to check that (i) holds.
To establish (ii), we shall show that

[g,Th] = \g,Vh] (flf6Coo(R
+),A6L1(0l+)), (6)

which is sufficient. Fix geC00{U+) and
First take a sequence (gn) in C00(IR) defined as follows:

( 0 (-co <t<l/n)

(l+nt)g(0) (-l/n<t<0)
g(t) (t^O).

For a > 1, we have
[gn,Vh] = <h,Ugn> = <h,S_aT'Sagn}

= <S_aTSah,gny = [gn,S_aTSah].

By the dominated convergence theorem,

[gn, S_a T8a h] -> [g, S_a TSa h] as n - oo

since gn-*g pointwise on U. Also, by the dominated convergence for complex
measures,

[£„> Vh]-+[g,Vh] as n-> co.
T h U S [0,FA] = [?)S_o7TSaA]. (7)

Now take a second sequence (gn) in C00([R) defined as follows:

!

0 (-oo<<<0)

ntg(l/n) (0^t< 1/n)

g(t) (t ̂  1/n).

Just as for gn, we have [gn, Vh] = [gn,S_aTSah]. Since the measure S_aTSah is
absolutely continuous with respect to Lebesgue measure,

[gn, S_a TSa h]^[g, S_a TSa h] as n -> co.
Since a(gn) ^ 0, we have [gn, Vh] = [gn, Th]-+\g,Th).

Equation (6) now follows from (7). I
We remark that the introduction of two sequences (gn) and (</„) in the above lemma

seems to be necessary to obviate the problem that Vh may a priori have a point mass
at 0.

We can now give the canonical form of T. The Banach space M(U+) is a Banach
algebra with respect to convolution multiplication *, and L1(U+) is a closed ideal in
M(U+): indeed

= I J{t-s)dfi{s)

THEOREM 2-11. Let T:L1(U+)^-L1(U+) be a bounded linear operator such that
TLa = LaT for each a > 0. Then there is a measure /ioeM(U) such that

Tf=(fiQ*f)\U+
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Proof. Let Fe^Z/^IR), ilf(IR)) be as specified in Lemma 2-10. By a slight extension
of [7, theorem Ol'l], there is a unique measure /ioeM(R) such that Vf=fio*f

(see also [4, theorems 35-5 and 35-9]). The result follows. I

3. A discontinuous operator commuting with all left shifts

The purpose of this section is to prove the following theorem.

T H E O R E M 3 1 . Let p and q be real numbers with p,q> 0. Then there is a discontinuous
linear operator T:Lv{U+)-+LQ(U+) such that TLa = LaTfor each aeU+.

We first obtain a more abstract result, and then apply it to the situation under
consideration.

Definition 3-2. Let fibea linear space, and let Sf be a subset of Z£(E). A linear
subspace F of E is ^-invariant if S(F) cr F for each Se Sf and is strongly divisible for
Sf if, further, S\FeInv^(F) for each

PROPOSITION 3-3. Let E be a linear space containing linear subspaces Ex and E2, and
let y be a unital integral domain contained in Jjf(E). Suppose that:

(i) Go is an Sf -invariant subspace of E1: and xoeE^\Go is such that

SxotG0 (8eSf\{0});

(ii) F is a linear subspace of E2 which is strongly divisible for Sf, and yoeF.
Then there is a linear map T:E1^E2 such that TS = ST for all S&Sf, such that

T\ Go = 0, and such that Tx0 = y0.

Proof. Let ^ be the family of pairs (G, T), where G is an ^-invariant subspace
of E1 and Te&(G,F) is such that TS = .STfor all SeS?. Set (Glt Tx) =< (G2, T2) in <§ if
G1 a G2 and T2\GX = 7\. Clearly (Go,0)e&.

Suppose that (G, T)e^ and that there exists uoeEx\G, and set

% ={Se5?:Su0eG}.

For each Se%\{0}, TSu0eF; setus = (SlF^TSugSF. Now ta,keS1,S2e<%\{0}. Then

S,S2 vs% = S, TS2 u0 = S2 TS, u0 = S2S, v,t = S1S2 vlt,
using the facts that TS1 = S1T and S1S2 = S2S1. Since Sf is an integral domain, we
have S1S2eSf\{0}, and so vs = vs . Denote this common value of vs by vo, so that
Sv0 = TSu0 for all S G * . In the case where % = {0}, choose v0 arbitrarily.

Set H = G + {Suo:SeSf}. Then H is an 5^-invariant subspace of E1 with G cz H.
Consider the map

Then V is well-defined, for if x1 + *§!«(, = x2 + S2u0 in H, then S2 — S1e'% and so

T(Xl-xt) = T ^ - S J K ) = (-Sj-S^K).

Clearly V is linear and VS = SV for all Se^, and so (H, V)e& with (G, T) ̂  {H, V)
and uoeH.

The above argument shows, first, that there exists (G^T^e^ with
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with x0 e Glt and with 7\ x0 = y0. By Zorn's lemma, there is a maximal element in ^ ,
say (G, f), with (G1, Tx) =̂  (G, T). Again by the above argument, necessarily G = Ev

and so f is the required map. I

Proof of Theorem 31 . We apply the above proposition, taking Ex = LV{M.+), E2 =
L"(U+), E = Ex+E2, ¥ = lin{La:ae(R+}, Go = L$0(U

+), and x0 to be any element of
S1\G0. Clearry y is a unital integral domain contained in £f(E), and condition (i)
of Proposition 3-3 is satisfied; we shall define a space F satisfying condition (ii) of
Proposition 3-3.

The space of infinitely differentiable functions on (R+ is denoted by C(oo)(!R+). For
NeN and/eC(CD)([R+), set

j-o J •

and consider functions / with pNn(f) < oo. Clearly each such / extends to be an
analytic function on {z e C: d(z, [n, n +1]) < N}, where d denotes the Euclidean metric
on C and we are regarding [n, n+ 1] as a subset of C.

ForN,keN and/eC<00)(^+), set

and set

so that (FNik, || • \\NIC) is a Banach space, and esbch.feFNIC extends to be an analytic
function on {z e C: d(z, U+) < N}.

Now set F = r\{FNJC:N,keN},

so that F is & linear subspace of C<CO)(IR+) and each/ei*1 is the restriction to R+ of an
entire function, also denoted by / .

For each/ef , |/|[B>B+1] = 0(e""2) as n ^ o o , and so F <=E2.
Set/0(£) = e"'3 for (eK+, and take N, keN. By applying the Cauchy estimates to

the entire function z\-*e~z on {zeC:d(z, [n,n+ 1]) ^ 2N}, we see that there exists
{Mn:neZ+) c U+ such that Mn = 0(e-"3) as n^ oo and

Nj M

We havepN n(/0) = 0(e~n3) a s n ^ o o , and so ||/0|U,fc < oo. Thus/06i^, and soF =|= {0}.
Let aeU+, and set m = [a], the integral part of a. Take /e f , and set g = £ a / and

h = RJ. Fix N, ke M. Since

PN,n(9) ^PN,n+

and since feFN k, we have geFN k. Similarly, since f^FNk+m, we have heFn k. Thus
g, heF, and so La(F) = F. Now' take/e / 1 with LJ = 0. Then / | [a, oo) = 0, and so
/ = 0 because / i s the restriction to IR+ of an entire function. Thus i^ -P is injective,

The operator norm in 38(FN k) is also denoted by IHI^ k. Take 6 G K + \ { 0 } and
feFnk. For each j e N ,

PN,n(L}b(f)) ^P
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and so
\\L

Thus

An arbitrary element of £?\{0} has the form La(aIB +Lb T), where a ^ 0, aeC\{0},
b > 0, and TeSf. We know that LJF e lnv SC(F). As an operator on FNk,

^ 0 asj^oo,

and so (aIE+LbT)\FNikeInv^(FNIC) for eachN, ke N. Thus (aIE+LbT)\F belongs
to Inv i f (F). I t follows that F is strongly divisible for Sf.

We conclude from Proposition 3-3 that there is a linear map T:E1^E2 such that
TLa =LaT for all a e R+, T \ Go = 0, and Tx0 = f0 #= 0, say. Since Go is dense in Ex, the
map T is necessarily discontinuous.

This concludes the proof of Theorem 3-1. I

I t is clear that we may vary the spaces LV(U+) and LQ(U+) in Theorem 3-1. For
example, either of them can be replaced by C0(U

+).

This paper is based on a portion of the second author's thesis ([11]); he
acknowledges the support of SERC grant 88001381.
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