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Abstract 
 
Ground-based imaging and broad beam riometers are used in conjunction with 

ionospheric radars and satellite instruments to investigate high-energy precipitation in 

the auroral zone.  There are two dominant precipitation regimes in the auroral zone 

which lead to enhanced high frequency radio absorption; high energy electrons (> 

keV) from closed field lines, and protons (> MeV) penetrating from the solar wind 

following solar flares. Much of the work in this thesis uses data from riometers in 

Fennoscandia to measure the extent and movement of energetic precipitation from 

both sources.  A case study of dayside absorption combines data from the imaging 

riometer with radar and satellite observations leading to an estimation of the energy of 

precipitation based on the riometer data. Two separate precipitation mechanisms were 

identified in the case study through the use of satellite particle measurements and 

ground-based observations of geomagnetic pulsations.  The riometer showed varying 

movements of the absorption patches through the case study and a determination of 

different dominating particle drift regimes was possible through comparison with 

coherent HF radar.  A statistical analysis of absorption in the imaging riometer field of 

view is carried out.  The absorption is linked to both KP and solar wind velocity using 

linear and quadratic fits of the data. The daily variation and distribution of absorption 

is investigated along with seasonal effects which are shown to be reliant on 

geomagnetic activity. A study of the large number of solar proton events from 1995 to 

2001 inclusive is carried out with particular reference to those that produce significant 

absorption in the northern hemisphere polar cap (polar cap absorption –PCA).  The 

occurrence of the absorption events is investigated and a simple empirical relationship 

between the integral proton flux and the absorption observed during geomagnetically 

undisturbed PCA conditions is developed.   
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Chapter 1 

The Solar Terrestrial Environment 

 

1.1 Introduction 

The Sun and Earth environments are coupled through radiative, dynamic and 

magnetic processes. The aim of this chapter is to summarise the regions of the solar-

terrestrial environment, dwelling particularly on the high latitude, lower altitude 

ionosphere and the magnetosphere. This chapter also includes a brief summary of the 

techniques used to probe regions of the solar terrestrial environment.  There then 

follows an outline of the research presented in this thesis.  

 

1.2 The Sun 

The sun emits radiation across a broad spectrum. X-rays and ultraviolet (UV) 

radiation are of particular importance in the interaction of the sun with the Earth’s 

atmosphere. The radiation at these wavelengths follows an average eleven-year 

periodicity (the solar cycle) producing variations in the flux of orders of magnitude 

(Figure 1.1). Variability is largest at the shorter wavelengths (e.g. X-rays) and is 

related to the occurrence of solar flares (Rees, 1989). 

 

1.3 Interplanetary Space 

Between the Sun and the Earth is the region defined as interplanetary space.  Contrary 

to popular belief this space is not a vacuum, but is instead populated by a low density, 
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variable medium.  This medium and the manner through which the sun controls it are 

described in the following section. 

 

1.3.1 The Solar Wind 

Interplanetary space is filled by flowing plasma that has been identified as the 

outer solar atmosphere expanding, radially through the solar system. This plasma (the 

solar wind) is predominantly comprised of protons and electrons that are energetic 

enough to escape the solar gravity. At one astronomical unit (AU) the particles have 

velocities in the range of 300 to 700 km/s, though during periods of high solar 

activity, the solar wind can reach as high as 1000 km/s (e.g. Kivelson and Russell, 

1995).  Typical particle densities as measured at the Sun-Earth distance show protons 

at 6.6 cm-3 and electrons at 7.1 cm-3, although the solar wind is extremely dynamic 

with large variations in both flow speed and density. Phenomena occurring at the Sun 

can dramatically affect the solar wind parameters. For example coronal holes are 

regions where solar plasma flows out into interplanetary space at high velocities 

creating regions in the solar wind known as high speed streams. Measurements 

downstream often show a sharp increase in solar wind speed as the stream rotates with 

the Sun. Another manifestation of the sun’s influence on interplanetary space are solar 

flares.  These are ‘explosions’ from the sun that occur when magnetic energy is 

suddenly released resulting in large amounts of electromagnetic radiation (across the 

entire spectrum) and the expulsion of very energetic charged particles (Figure 1.2). 

These will be described in more detail in later chapters.  Flares occasionally occur 

with Coronal Mass Ejections (CME).  These are huge clouds of plasma (~1013 kg) that 
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Figure 1.1.  Ratio of solar UV intensities on 19 February 1979 to observations 

obtained during periods of zero sunspots (Roble and Emery, 1983). 

 

 

 

Figure 1.2.  A model of a solar flare showing possible sources for different 

radiation types (After Piddington, 1969). 



Chapter 1 

 4

 break away from the sun and expand at speeds as high as 2000 km/s. When CME 

collide with the Earth, they often excite geomagnetic storms. 

 

1.3.2 The Interplanetary Magnetic Field 

The Interplanetary Magnetic Field (IMF) is an extension of the solar magnetic 

field that is carried ‘frozen in’ to the solar wind.  When the electrical conductivity of a 

plasma is large relative motion between the plasma and magnetic field becomes 

impossible (Alfvén and Falthammar, 1963).  In the solar wind the energy density of 

the plasma is larger than that of the magnetic field and so the plasma determines the 

overall motion.  Since the IMF is embedded in the solar wind plasma, a parcel of 

plasma will drag the field line radially away from the sun. The source region of the 

field line will be rotating with the Sun resulting in a spiral effect in the IMF known as 

the Parker Spiral.  The Parker Spiral is an idealized case and in reality the magnetic 

field of the sun is extremely complex, although it does serve as a good approximation 

(Figure 1.3).  The magnetic field of the sun, and hence the IMF, vary greatly over the 

course of a solar cycle. At sunspot minimum the field is ordered with a disc like 

current sheet separating the inward and outward orientated magnetic field lines 

(Figure 1.4). Towards solar maximum the current sheet becomes wavy with a 

disordered magnetic field, leading to a gusty solar wind. On average this occurs every 

11 years, however a true solar cycle lasts for 22 years due to the changing orientation 

of the solar magnetic field over each 11 year cycle.  
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Figure 1.3  Parker Spiral configuration of the interplanetary magnetic field.  The 

IMF is pulled away from the Sun by the solar wind (Kivelson and Russell, 1995) 

current sheet

B

 

Figure 1.4  Ordered IMF with current sheet separating the oppositely orientated 

magnetic field (Ballerina Skirt model). 
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1.4  The Earth’s Magnetosphere 

The term magnetosphere describes near-Earth space that is confined within the 

magnetic field of the Earth. This section describes the general topology of the field 

including descriptions of some of the distinct regions that make up the magnetosphere. 

The populations of energetic particles are also discussed, particularly those that map 

along magnetic field lines into the auroral zones in the ionosphere.  

 

1.4.1 Magnetic Topology 

The Earth’s magnetic field forms a barrier to the solar wind resulting in a magnetic 

cavity in the IMF known as the magnetosphere.  The solar wind flows along the 

boundary of the magnetosphere forming a current sheet known as the magnetopause. 

The separation between solar wind and magnetosphere occurs at ~10 Re, at the sub-

solar point.  Since the solar wind is supersonic and super Alfvénic in nature a 

bowshock forms upstream (~12 RE) of the magnetosphere where the solar wind flow 

is slowed, compressed and heated. The region containing this hot plasma is called the 

magnetosheath. The dayside magnetosphere is compressed due to the pressure balance 

between the solar wind dynamic pressure and the magnetic pressure of the 

geomagnetic field.  On the nightside the geomagnetic field is extended downstream 

into a long tail configuration that has been observed out to distances of ~1000 RE 

(Villante, 1975). It has the form of a cylinder 40 Re in diameter with two distinct lobes 

of oppositely directed magnetic fields that map to the polar caps.  The two lobes are 

separated by the plasma sheet which extends around the Earth to the dayside 

magnetopause.  The magnetosphere also contains regions of trapped energetic 

particles known as the Van Allen or Radiation belts. The belts extend from a few 
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hundred km above the Earth to about 7 RE.  Figure 1.5 shows a two dimensional 

schematic representation of the magnetosphere with the positions of each of the 

aforementioned regions clearly marked. 

Although the magnetosphere and solar wind have been described as two distinct 

systems so far, this is not actually the case. Dungey (1961) proposed that the IMF and 

magnetosphere could merge under certain conditions (typically with a strong 

southward IMF component) leading to an ‘open’ magnetosphere. Dungey’s theory of 

magnetic reconnection describes the process by which magnetic field lines diffuse 

across a current sheet and merge with an oppositely aligned field. This coupled system 

involves transfer of particles and energy between the solar wind and the 

magnetosphere.  Reconnection on the dayside leads to increased magnetic flux in the 

polar cap with the resulting field lines trailing back into space and ultimately 

connecting to the IMF. Nightside reconnection removes open flux from the polar cap. 

In reality the magnetosphere is thought to be open most (if not all) of the time.  

Observations suggest that reconnection can occur in a steady-state form as predicted 

by Dungey, but also in a pulsed manner. Newly opened field lines convect across the 

polar cap adding to the flux of open field lines. Eventually these open field lines once 

again merge with the closed field in the tail.  Figure 1.6 displays the two examples of 

the magnetosphere: open (a) and closed (b). Both have been produced using the 

Tsyganenko 2001 field model calculated for near equinox to give little tilt of the 

Earths magnetic axis. Quiet conditions were used as inputs (dynamic pressure of 2 

nPa, Dst = -10 nT, By = 0, and Bz = ± 2) for each of the figures. 

Magnetic field lines contained within the magnetosphere are described using the 

McIlwain (1961) parameter of L shell.  For a closed field line, the form of the field is  
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Figure 1.5.  Schematic representation of the Earth’s magnetosphere in two 

dimensions. The locations of some of the principle magnetospheric regions are 

indicated together with the solar wind and bow shock (After Vasyliunas, 1983).  
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Figure 1.6. Examples of the closed (a) and open (b) magnetosphere.  These have 

been derived using the Tsyganenko 2001 field model based on a period close to 

equinox giving little axial tilt  (Pdyn = 2nPa, Dst = -10 nT, By = 0, Bz = ±2 nT) 

(Courtesy of A. Senior, private communication). 
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roughly dipolar and connects the northern and southern hemispheres.  The point of 

greatest distance from the Earth occurs in the equatorial plane and is used to 

characterise the field line. Thus a field line at 6 Earth radii from the centre of the Earth 

will be at L=6.  L is connected to the invariant magnetic latitude by the relationship:  

2

1

1 1
cos 





= −

L
λ     (1.1) 

Since the magnetosphere is not truly dipolar the L shell becomes nonsensical 

for higher latitudes where the field lines extend into the tail, however it is still a useful 

indicator of field line position. 

 

1.4.2 Particles in the Magnetosphere 

Within the magnetosphere there are several distinct populations of charged particles. 

The cusps and polar caps are regions of direct entry of solar wind plasma to the open 

magnetosphere.  Particles are accelerated in the cusps leading to energies of 10s of 

keV. High energies are observed at the equatorward cusp with progressively lower 

energies at higher latitudes as particles are accelerated due to the higher magnetic 

tension in the cusp which decreases towards the pole.   

As described above the tail lobes of the magnetosphere connect to the polar 

caps and these contain low-density plasma (<0.1 cm-3) of low energy (~eV). The open 

field lines in the tail are dominated by plasma of solar wind origin plus a few cold ions 

that have escaped from the Earth’s atmosphere.  Plasma sheet particles that separate 

the tail lobes tend to be hotter (keV) and the plasma is denser (~1 cm-3).  At the edges  
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of the plasma sheet is a boundary layer where the cold tail lobe plasma meets the hot 

plasma sheet. The particles in this plasma sheet boundary are of similar energies to the 

plasma sheet but of lower density (~ 0.1 cm-3).  Most of the particle energy in the 

boundary layer is field aligned rather than thermal and beams of particles are 

accelerated along the magnetic field lines as a result of reconnection in the tail.   

The inner magnetosphere is fairly described as dipolar and consists of two 

important regions, the plasmasphere and the radiation belts. These are sometimes co-

located and describe two different energy regimes; the plasmasphere is cold whereas 

the radiation (or Van Allen) belts are composed of the most energetic particles found 

in the magnetosphere.   

The plasmasphere is a very dense, cold region (~103 cm-3, ~ 1 keV) that is 

bounded by a sharp change in density known as the plasmapause.  This is typically 

located at L=4, but is dependent on the level of geomagnetic activity, occasionally 

extending to L=6 for very quiet periods.   Plasmasphere particles are generally 

ionospheric in origin.  In 1958 Van Allen discovered very intense radiation deep in the 

magnetosphere using a Geiger counter on board the Explorer 1 satellite.  Eventually 

two zones (inner and outer) of high-energy particles were identified as being trapped 

within the magnetosphere.  It is the inner zone that is usually located with the 

plasmasphere.  The total picture of the radiation belts is more complicated than this 

but some spatial distributions of trapped protons and electrons are presented in Figure 

1.7  As can be seen the higher the particle energy the closer to the Earth the particles 

are trapped. Thus protons with energies > 30 MeV are confined to the belts within 

L=2 and dense electrons of energy > 40 keV extend from L=2 to L=8.5.  These outer  
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Figure 1.7.  The Van Allen radiation belts  Spatial distributions of trapped 

protons and electrons (After Hess, Radiation Belt and Magnetosphere, Blaisdell, 

1968).  
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zone field lines map to the auroral zone and during disturbed conditions some 

particles are caused to precipitate and be lost to the dense atmosphere, helping to form 

the auroral ionosphere.  The basic principles of particle trapping and motion within the 

radiation belts will be discussed in Chapter 2.  Amongst others, Hargreaves (1995) 

gives a comprehensive introduction to the solar terrestrial environment and Kivelson 

and Russell (1995) provides a good overview of magnetospheric processes. 

 

1.5    The Ionosphere 

The ionosphere is that part of the atmosphere that stretches upwards from about 60 

km to 1000 km altitude. It is comprised of weakly ionised plasma that co-exists with 

the neutral atmosphere.  Most of the ionisation is produced by sunlight at very short 

wavelengths (UV and X-rays). This section details the vertical structure of the 

ionosphere and also highlights the auroral ionosphere as being very different from the 

low to mid latitude ionosphere. 

 

1.5.1 Structure of the ionosphere 

The structure and density of the ionosphere varies with both time and location, 

maximising during the day and at sunspot maximum, and minimising at night and 

solar minimum as shown in Figure 1.8.  Due to the changing composition as height 

increases in the atmosphere, the production of ions changes also.  Balancing the 

ionisation rate with the recombination rate leads to the formation of layers in the 

ionosphere and in practical terms these are local maxima defined by peaks in the 

electron density.  These layers or regions are called the D, E and F layers (with 

ascending altitude) with the topside occurring above the F layer.  The variation of 
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electron density in a given ionospheric layer is governed by the balance of production, 

loss and transport processes which satisfies the continuity equation: 

).( ν
e

e nLQ
t

n ∇−−=
∂
∂

   (1.2) 

where ne is the electron density, Q is the production rate, L is the loss rate and v is a 

plasma velocity.  The loss and transport terms gain different levels of importance in 

the different layers of the ionosphere.  The loss term is highly dependent on the 

altitude and is determined by whether an ionospheric layer is described in terms of 

attachment or recombination.  First we assume that electrons recombine directly with 

positive ions: 

AeA →++
    (1.3) 

Then the loss rate of electrons is: 

[ ] 2NNAL αα == +
   (1.4) 

Where N is the electron density (equal to the ion density, [A+]�� DQG� � LV� WKH�

recombination coefficient.  This process describes a Chapman alpha layer.  

 At higher altitudes the attachment of electrons to neutrals to form negative ions 

becomes the dominant loss mechanism: 

−→+ AeA     (1.5) 

Since the neutral species is considered to be considerably more numerous the loss 

relationship becomes linear, depending only on the electron concentration. 

NL β=      (1.6) 

This is a Chapman Beta layer.   
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Figure 1.8.  Ionospheric layers during the day and night for Sunspot maximum 

and minimum (After Hargreaves, 1995) 
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  The D layer of the ionosphere is of particular relevance to the present thesis. 

This layer covers altitudes between about 60 and 90 km.  Hard X–rays produce most 

of the ionisation below 70 km and EUV (extreme ultra-violet) becomes increasingly 

important above this altitude.  Free electrons exist for a short period in the upper D 

layer before being captured by positive ions. Descending in altitude and the 

attachment of electrons to neutral species to form negative ions becomes more 

dominant over recombination.  Balance is now between electrons, negative ions and 

positive ions and so at equilibrium: 

+−+ +== NNNNLQ
iee

αα    (1.7) 

e� DQG� i are the recombination coefficients for electrons and negative ions with 

positive ions respectively.  To simplify this a ratio of negative ions to electron density 

� ��LV�LQWURGXFHG��1RZ�1-� � 1e and N+� ���� �1�DQG�VR� 

2))(1(
eie

NQ λααλ ++=    (1.8) 

The coefficient of Ne
2 is called the effective recombination coefficient.  This process 

is much reduced in the presence of ultraviolet radiation so during the night it is an 

important factor when considering electron loss mechanisms. The D layer disappears 

in the un-illuminated ionosphere.  

Above the D layer are the E and F layers.  Stretching to160 km altitude is the E 

layer, formed mainly by EUV radiation with some contribution from soft X-rays.  The 

F layer can be split into two separate height regimes during the day. The F1 layer 

maximises at 180 km and a second peak, the F2 layer, occurs at ~300 km. During the 
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night the F1 layer disappears as solar illumination wanes.  The loss of electrons in the 

F region occurs through a two-step process known as dissociative recombination: 

MMAMA +→+ ++
2

    (1.9) 

AMeMA +→++
    (1.10) 

M2 is a common molecular species. The rate of equation 1.9 is >$
+] and the rate of 

�����LV� >0$
+
@1�� �LV�ODUJH�DW�ORZ�DOWLWXGHV�OHDGLQJ�WR�D�UDSLG�UDWH�DQG�FDXVLQJ�WKH� �

WHUP� WR� GRPLQDWH�� $W� KLJK� DOWLWXGHV� � LV� VPDOO� DQG� VR� GRPLQDWHV� WKH� UHDFWLRQ�� 7KH�

change of alpha to beta Chapman layers occurs at a height ht, where 

Nh
t

αβ =)(     (1.11) 

Figure 1.9 illustrates some typical values for height profiles of ions in the 

ionosphere. This includes the principal ionisation species for each layer. Direct photo-

ionisation produce the ion species N2+, N+, O2+, O+, He+ and H+, but the chemical 

composition of the ionosphere is dictated by a variety of subsequent chemical 

reactions along with transport mechanisms such as diffusion.  The chemical and 

physical processes that control ionospheric ion composition are discussed by Rees 

(1989). Observations and theory behind the dynamics of the Earth’s ionosphere are 

presented in some detail by authors such as Hargreaves (1992). The geomagnetic 

orientation at low and high latitudes is responsible for deviations from the normal 

ionospheric behaviour.  At equatorial latitudes, the geomagnetic field lines are 

virtually horizontal leading to depletion in electron density.  West to east electric 

fields generated in the E region result in a vertical drift of the F region plasma 

(electrodynamic lifting).  The plasma diffuses under gravity down field lines to higher 

latitudes in a process described as the Fountain effect (Hanson and Moffett, 1966).   
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Figure 1.9.  The typical chemical composition of the ionosphere (After A.D. 

Richmond, in Solar-Terrestrial Physics, Reidel, 1983). 
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This produces two maxima around ±10° magnetic latitude where the plasma diffusion 

and gravity balance. At high latitudes there are some distinct differences in the 

structure and dynamics of the ionosphere. Its behaviour is described in the following 

section.   

 

1.5.2 The High latitude Ionosphere 

Due to the solar wind interaction with the geomagnetic cavity, the magnetic field 

lines at high latitudes extend deep into the magnetosphere or open into interplanetary 

space in the polar cap.  Magnetospheric processes therefore have an important effect 

on the high latitude ionosphere. Figure 1.10 illustrates some of the regions of the high 

latitude ionosphere that are related to magnetospheric regions.   

Since field lines open to the IMF thread the polar cap, direct entry of solar wind 

particles is possible as mentioned in section 1.4.2. This produces a drizzle of low 

energy particles termed the polar rain. Conversely light ions of ionospheric origin  

(mostly H+ and He+) are also lost from the high altitude polar cap. The energies of 

these ions is sufficient to escape the gravitational potential well and so they travel 

along the open flux tubes in the polar cap. This is referred to as the polar wind. 

High-energy particles (> keV) precipitate from the magnetospheric plasma sheet at 

high latitudes. The mechanisms for describing how these particles are accelerated to 

these high energies are not yet fully understood, but upon entering the atmosphere 

they excite neutral species, emitting photons and producing the optical aurora. This 

auroral precipitation is confined to a zone (the auroral oval) centred on the magnetic 

pole.  The boundary of the oval extends to lower latitudes on the nightside than on the 

dayside. Optical aurora broadly fits into two categories, diffuse and discrete.  The  
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Figure 1.10.  The mapping of magnetospheric regions into the ionosphere.  NP 

indicates the position of the north magnetic pole. (Kivelson and Russell, 1995). 
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discrete aurora is structured and intense whereas the diffuse aurora appears as a glow 

in the sky. Both have similar overall intensities but the discrete form is easier to 

observe due to the low intensity per unit area of the diffuse form. The discrete aurora 

maps to the plasma sheet boundary layer and appears poleward of the diffuse aurora, 

which is linked to the central plasma sheet.  Particle precipitation plays an important 

role in the coupling between the ionosphere and the magnetosphere.  

Associated with the aurora is auroral radio absorption. This is produced by the 

more energetic particles (usually electrons) that penetrate to the lower layers of the 

ionosphere. The precipitation of these energetic particles enhances the electron density 

allowing the formation of a D layer at night when photo-ionisation has ceased. The 

enhanced electron concentration leads to absorption of high frequency radio waves in 

the ionosphere. This band of precipitation tends to maximise equatorward of the 

auroral oval and is more circular in nature. It is mostly associated with the diffuse 

aurora but often occurs colocated or close to auroral arcs.  The particular dynamics 

and occurrence of auroral absorption are discussed in Chapter 4 and the physical 

mechanisms that lead to HF radio wave absorption are detailed in Chapter 2. 

 

1.6   Observations of the Ionosphere  

There are two basic techniques used to investigate the ionosphere. The first makes 

use of in-situ observations with equipment such as magnetometers or particle 

detectors, flown on balloons, rockets or satellites.  The second technique consists of 

remote sensing of the ionosphere mostly with ground-based instrumentation, for 

example using radars and optical equipment. Optical and radiation sensors are an 

increasing component of satellite payloads. These instruments are capable of 
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producing large-scale images of the auroral region that complement the observations 

of ground based imagers and radars.   

When studying the ionosphere on small scales, ground based auroral imagers are 

important tools.  Instruments such as imaging riometers measure the extent and 

variation of energetic particle precipitation in the auroral regions. The large coverage 

combined with high spatial resolution allows detailed observations of the structure of 

HF radio absorption, which acts as a proxy for detecting particle precipitation. There 

are currently 20 imaging riometers operating in the world, 8 of these are based in the 

northern hemisphere with a further 4 planned for the next few years.   The principal 

experimental facility utilised in the present investigation is the Imaging Riometer for 

Ionospheric Studies (IRIS) based at Kilpisjärvi in northern Finland (Browne et al., 

1995).  This facility has a 240 × 240 km field of view in the D region (90 km altitude) 

and provides maps of energetic particle precipitation well within the auroral zone.  

The theory of ionospheric HF radio absorption and the operational characteristics of 

IRIS are discussed in detail in Chapters 2 and 3. 

A bonus to the observations of IRIS is the wealth of instrumentation available in 

northern Fennoscandia.  The field of view of IRIS intersects with those from all-sky 

cameras and coherent radars, and covers several magnetometer sites.  Most 

importantly beams from IRIS intersect the beam from the EISCAT (European 

Incoherent Scatter) radar.  Incoherent scatter is a powerful tool for probing the 

ionosphere over a large range of altitudes. When used in conjunction with IRIS a 

four-dimensional picture of ionospheric processes can be developed (Collis and 

Hargreaves, 1996).  
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1.7  Aims of the Present Study 

This thesis documents an investigation into various aspects of energetic particle 

precipitation in the auroral zone.  This can be broadly split into two categories: 

precipitation from closed field lines and from open field lines.  These are controlled 

by geomagnetic and solar activity respectively. 

Chapter 5 presents a case study of morning sector precipitation that is linked to 

night side substorm activity.  The changes in precipitation spectrum are investigated 

using EISCAT measurements and DMSP satellite data. Observations of the movement 

of absorption patches are compared with ionospheric flows obtained from coherent 

scatter radars.    

Chapter 6 expands this case study by investigating the statistical daily variation in 

absorption and its dependence on geomagnetic activity.  The general structure and 

occurrence is described and quantified and empirical relationships between absorption 

and solar wind speed are estimated. Chapter 7 documents a study of the variation of 

absorption events with solar activity, specifically, the dependence of polar cap 

absorption on solar proton events that originate from X-ray solar flares.   

The conclusions of Chapter 5 to 7 are summarised in Chapter 8 together with some 

suggestions for further study that expands the work presented here.   
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Chapter 2 

Charged Particle Motion and Radio Absorption in the ionosphere and 

magnetosphere 

 

2.1 Introduction 

 Particle precipitation is a major contributor to the energy input of the 

ionosphere.  In this chapter the motion of particles in the geomagnetic field is 

reviewed and also the manner in which energetic charged particles are deposited into 

the ionosphere from the magnetosphere is discussed.  Following this discussion is a 

section detailing the propagation of high frequency (HF) radio waves in the 

ionosphere.  This includes a description of the absorption of these radio waves and 

how this is dependent on the electron density in the lower ionosphere and is thus 

affected by the precipitation of high-energy particles.  

 

2.2 Charged Particle Motion in the Magnetosphere 

Chapter 1 described the various particle populations that are contained within 

magnetosphere.  So far no mention has been made of the movement of the particles 

within these regions and particularly the deposition of particles into the ionosphere. 

This section addresses the motion of the particles by briefly describing two main 

components that are relevant to this thesis; bounce motion and gradient curvature 

drift.  Parks (1991) provides an introduction to the motion of charged particles in the 
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magnetosphere; in-depth treatments are available by Roederer (1970) and Schulz and 

Lanzerotti (1974).  

 

2.2.1 Bounce Motion and the Loss cone 

 In a magnetic field a charged particle will follow a curved path due to the 

Lorentz force.  Associated with this motion is a frequency that is dependent on the 

particle charge, mass and the magnetic field. The radius of motion is also dependent 

on the tangential velocity of the particle.  Thus charged particles can be ‘trapped’ onto 

magnetic field lines.  If a particle (electron or proton) in the magnetosphere has a 

velocity ⊥v normal to the magnetic field and 
||

v  along it, the trajectory is a spiral 

(Figure 2.1).  With no work done on the particle, the magnetic flux through the orbit is 

constant (i.e. no electric field can be present): 

   constant
2

2

2 ==⋅= ⊥

Be

mE
rB G   (2.1) 

where m and rG are the particle mass and gyroradius respectively, e is the charge of an 

electron, B  is the magnetic field strength and ⊥E  is the kinetic energy associated 

with the field-normal velocity component.  Hence BE⊥  is constant and represents 

the magnetic moment of the current loop represented by the gyrating particle. This 

leads to the first adiabatic invariant of charged particle motion in a magnetic field: The 

magnetic moment is constant. This condition holds so long as the magnetic field does 

not change significantly during one gyration period.  



Chapter 2 

 26

 The perpendicular velocity of the particle can then be expressed as a function 

of the angle between the velocity vector and the magnetic field direction: the pitch 

DQJOH�� � 

αsinvv =⊥     (2.2) 

Which can be converted into terms of energy: 

constant
sin

2

22

=== ⊥⊥

BBB
αEEmv

   (2.3) 

Which shows that: 

    B∝α2sin      (2.4) 

 If a charged particle moves from the equator to higher latitudes in a dipole 

field it will encounter an increasing B and therefore the pitch angle will increase. 

:KHQ� � ���Û�DOO� IRUZDUG�PRWLRQ�VWRSV�DQG�WKH�SDUWLFOH�ZLOO�EH�UHIOHFWHG�EDck along 

the field line towards the equator. This point of reflection is called the mirror point 

and occurs when B = BM. In this simple case, no acceleration of the particle occurs 

and so the total energy remains constant (
||

EEE += ⊥ ). The parallel energy falls to 

zero at the mirror point and the parallel velocity can be represented as: 

   α22222

||
cosvvvv =−= ⊥    (2.5) 

For a given particle the position of the mirror point is determined by the pitch angle as 

the particle crosses the equator (i.e. where the field is weakest, Beq): 

    
eq

M

eq

B

B
α2sin=     (2.6) 

 This is the principle of particle bounce in the magnetosphere.  The position of 

the mirror point determines the length of field line traversed in a single bounce and 
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since the magnetic field can be derived as a function of latitude for a dipole field, 

equation 2.5 can be represented in terms of the latitude of the mirror point ( M): 

    

[ ] eq

M

M α
λ

λ 2

2

1
2

6

sin
cos34

cos =
−

  (2.7) 

Thus for a given pitch angle, the mirror point latitude is independent of the field line. 

$OO�SDUWLFOHV�RI�JLYHQ�HTXDWRULDO�SLWFK�DQJOH�� eq, mirror at the same latitude in a dipole 

field, irrespective of their L shell.   

 It is immediately apparent that for the case of the Earth’s dipole field there 

must be an upper limit for the mirror latitude for a given field line: the mirror point 

must always lie above the surface of the Earth and in fact, above the denser 

atmosphere. If the mirror point is situated within the dense atmosphere (e.g. <100 km 

altitude) then a particle is more likely to collide and be lost to the magnetosphere. The 

proportion of particles that are no longer ‘trapped’ on closed field lines can be 

described as being within a ‘Loss cone’ (Figure 2.1). By considering equations 1.1 and 

�����WKH�KDOI�DSHUWXUH�RI�WKH�HTXDWRULDO�ORVV�FRQH�� L) can be defined as: 

    
2

1

3

2

3
4

1
sin





 −

=

L
L

L
α    (2.8). 

where L is measured in Earth radii.  The equatorial pitch angle must satisfy the 

following inequality in order for a particle to mirror successfully: 

    
Leq

αα 22 sinsin >     (2.9). 
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Figure 2.1.  Typical motions of particles trapped on closed field lines including 

the equatorial loss cone and the mirror points of bouncing particles (After J. 

Lemaire, 1982) 
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As the pitch angle increases when a particle approaches the mirror point, so too the 

loss cone widens.  The manner in which pitch angle scattering of particles into the loss 

cone occurs is discussed in section 2.2.3. 

 

2.2.2 Gradient Curvature Drift 

So far particle motion in the presence of a magnetic field has been discussed.  

If an electric field (E) exists perpendicular to B then the particles will also drift in an 

orthogonal direction (E×B drift). In the particle frame of reference E=0, and so the 

particle motion is circular. The general motion is a sum of the gyration and a drift in 

the E×B direction at a speed E/B. This is independent of energy, charge or mass.  

Particles gyrating about a field line will also drift transverse to B but their guiding 

centres will all remain on the same field line. The particles drift and drag the magnetic 

field with them, similar to the flow of solar wind plasma with the IMF ‘frozen’ into it. 

This is Alfvén’s theorem of frozen in flow (see Chapter 1).  If other drifts occur, this 

frozen in approximation breaks down. One such example is due to the variation of the 

magnetic field strength across the field.  

A gradient in the magnetic field strength alters the gyroradius of a particle. The 

gyroradius varies inversely with B, leading to the drift shown in Figure 2.2.   The 

velocity of this drift can be derived by considering the continuous gyro motion in two 

differing field strengths and using the limiting case of small variations of B. The final 

velocity is termed the Gradient drift velocity and has the form: 

B.B
2

V
3B ∇×= ⊥

∇ qB

mv
   (2.10) 
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 Similarly, the curvature of the geomagnetic field lines produces a second drift 

of particles (Figure 2.3). A bouncing particle experiences a centrifugal force that 

combines with the motion of gyration to produce a lateral movement.  The motion is 

in the same direction as the gradient drift but relies instead on the parallel velocity of 

the particle rather than the velocity perpendicular to the magnetic field: 












 ∇×= B.

B
B.V

3

||

BqB

mv
C    (2.11). 

The two equations can be combined into a single expression for gradient curvature 

drift by simplifying and considering a local field line radius (rc): 

).(. 22
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eBr

mv
V   (2.13) 

Gradient-curvature drift causes electrons to drift to the east and protons to the 

west due to the opposite gyromotions.  Since the drift is energy dependent particles 

are dispersed in energy as they travel through the field. In a dipole field this serves to 

distribute particles to all longitudes. In the non-dipolar field of the inner 

magnetosphere the drift path is more complicated but can be derived from the second 

adiabatic invariant (the integral invariant): the integral of the parallel momentum over 

one bounce between mirror points is constant. Just as the first invariant, this holds 

provided the field does not change appreciably in a short time scale (e.g. one bounce 

period).  At this point it is worth mentioning the third adiabatic invariant involved in 

the motion of trapped particles. The flux invariant: the total geomagnetic flux enclosed  
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Figure 2.2.  Longitude drift caused by a gradient in the geomagnetic field 

intensity. Note that the magnetic field gradient is perpendicular to the effective 

direction of drift motion. (After Hess, Radiation Belt and Magnetosphere, 1968).    

 

 

Figure 2.3.  Curvature drift caused by the combination of centrifugal force with 

the gyromotion.  n is the unit normal vector to the magnetic field line. 



Chapter 2 

 32

by the drift orbit is constant.  This invariant is violated if changes occur in a time scale 

less than the drift period around the Earth. Changes on this time scale are relatively 

common, especially during geomagnetic storms. 

A particle drifting in the asymmetrical field of the magnetosphere will attempt 

to remain at constant field intensity.  At the equator the geomagnetic field is squashed 

E\�WKH�VRODU�ZLQG�LQFUHDVLQJ�WKH�ILHOG�VWUHQJWK���3DUWLFOHV�RI�IODW�SLWFK�DQJOH�� eq = 90º) 

will move outwards on the day side with some leaving the magnetosphere. Thus the 

pitch angle distribution at midnight may include a drift loss cone  (Figure 2.4).  Some 

small pitch angle particles at noon will be subsequently lost in the night sector as they 

drift, so including a drift loss cone surrounding the bounce loss cone.  The movement 

of particles to different L values in order to remain at the same field intensity is known 

as shell splitting and together with the drift loss cone this gives rise to parts of the 

magnetosphere known as the pseudo-trapping regions (Hargreaves, 1995; Roederer, 

1970).  A particle in a pseudo trapping region will not be able to complete a circuit of 

the Earth being lost either in the magnetotail or at the magnetopause. 

 

2.2.3 Particle Precipitation 

The principles of how and why particles precipitate into the atmosphere is a 

wide and still highly debated topic that is beyond the scope of this work.   Generally 

speaking for a particle to precipitate its pitch angle must change enough to place the 

particle within the loss cone such that on the next bounce, the particle will not mirror 

but instead will be lost to the atmosphere.  For the pitch angle to change the ratio of 

the parallel and perpendicular velocities of the particle must alter since 

( )=⊥
−= vv1tanα    (2.14) 
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A generally accepted mechanism for altering pitch angles is through the 

doppler shifted cyclotron resonance with very low frequency (VLF) waves.  A 

gyrating electron may feed energy into a VLF wave by transverse resonance so 

reducing its velocity perpendicular to the magnetic field line; the electron and wave 

must be anti-parallel (Figure 2.5).   A spectrum of VLF signatures alters the pitch 

angle distribution of trapped particles causing some to be lost at the next bounce.  A 

non-isotropic pitch angle distribution is unstable; the particles produce waves which 

then alter the pitch angles such that the distribution becomes more isotropic.  The 

point of interaction is usually taken to be in the equatorial region (Figure 2.6)  

Similarly to the electron-whistler interaction, ion cyclotron waves (ULF) couple to 

gyrating ions and lead to precipitation.  A number of authors have dealt with the loss 

of charged particles to the atmosphere due to pitch angle diffusion driven by 

VLF/ULF waves (e.g.  Brice, 1964; Kennel and Petschek, 1966; Cornwall, 1966; 

Kennel, 1969). 
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Figure 2.4.  Drift loss cones for the midnight and noon meridians.  Note that the 

bounce loss cone is always present (after Roederer, 1970). 

 

Figure 2.5.  Spiral motions of electrons and whistler waves about the geomagnetic 

field. For cyclotron interaction the electric field vector of the wave must be 

parallel to the velocity of the electron (Hargreaves, 1995). 
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Figure 2.6.. A possible explanation of VLF-electron interaction that leads to 

precipitation. Lightning can produce whistlers that resonate with the electrons  

in the equatorial region (After M.J. Rycroft, 1973) 
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2.3    High Frequency Radio Propagation and Absorption 

The precipitation of charged particles into the atmosphere results in large 

effects on the propagation of radio waves.  An increase in ionospheric density will 

lead to changes in the refractive index causing the deviation of waves from their 

original paths. It can also lead to significant drops in signal strength due to attenuation 

in the lower ionosphere. The work presented in this thesis is dependent on 

observations that rely on the measurement of this radio wave absorption. Thus it is 

necessary to describe how the waves interact with the ionospheric plasma. 

 

2.3.1 The Altar-Appleton-Hartree Equation 

Usually a wave in the ionosphere is considered to have a complex wave 

propagation number, k, implying that the medium is dissipative. The relationship 

between the wave propagation number and the refractive index for an exponentially 

decaying plane wave of the form e
��� �

-kx) is defined as 

    
ω

χµ ck
in =−= )(    (2.15) 

The refractive index of a magnetoplasma is determined by the Altar-Appleton-Hartree 

equation and is also complex in nature.  Davies (1969) gives a full derivation of the 

equation.  Altar-Appleton-Hartree dispersion relation: 
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Where, 
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H is the electron angular gyrofrequency, p is the plasma angular frequency,  is the 

wave angular frequency, e is the electric charge on an electron, me is the mass of an 

electron, 0 is the permittivity of free space, Ne is the plasma electron density, B is the 

external magnetic field magnitude,  is the collision frequency between electrons and 

DOO�RWKHU�SDUWLFOHV�� �LV�WKH�DQJOH�EHWZHHQ�WKH�GLUHFWLRQ�RI�ZDYH�SKDVH�SURSDJDWLRQ�DQG�

the external magnetic field.  

The dispersion relationship is complicated but can be simplified by making a 

number of assumptions. When the magnetic field and collision frequency are 

neglected the equation simplifies to  

2

2

2 11
ω
ω

PXn −=−=    (2.20) 

In this case the imaginary part of the refractive index is zero.  A wave with an angular 

frequency that equals the plasma frequency will reflect. Thus a wave with a frequency 

that exceeds the plasma frequency will pass straight through the ionosphere. 

There are two distinct cases of ionospheric absorption of HF radio waves: 

Deviative and non-deviative absorption. 
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2.3.2 Deviative Absorption 

Deviative absorption applies in the F region of the ionosphere where the 

collision frequency is small. In this case equation (2.15) becomes relevant with n2 
 �

2 

= 1-X. This leads to  

    





−= µ

µ
νκ 1

2c
    (2.21) 

ZKHUH�F�LV�WKH�VSHHG�RI�OLJKW�LQ�YDFFXR�DQG� �LV�WKH�HIIHFWive collision frequency.  From 

this equation it is clear that the absorption will be enhanced as the ray approaches the 

UHIOHFWLRQ�OHYHO�ZKHUH� ��DQG�WKH�ZDYH�JURXS�YHORFLW\�DSSURDFKHV�]HUR��7KLV�FDVH�LV�

less relevant to the work presented in this study than the case of non-deviative 

absorption. 

 

2.3.3 Non-Deviative Absorption 

 Radio waves passing through an ionised medium cause the electrons to 

vibrate. If the electrons collide with heavy particles energy is transferred from the 

wave to the medium in the form of plasma thermal energy.  The number of collisions 

per oscillation determines the rate of wave attenuation.  When considering the case of 

ionospheric radio wave absorption it is important to include the effects of collisions.  

If a radio wave propagates close to the direction of the magnetic field the dispersion 
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Returning to the wave solution suggested earlier (e
��� �

-kx)) and considering that 

the wave number is complex, the wave can be defined in terms of the refractive index 

� -i ��IURP�HTXDWLRQ�������� 
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c
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k
ωχµω

)( −==      (2.23) 

so by substitution we get the wave solution: 
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real and imaginary parts: 
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Hence by substituting the values of X, Y and Z (Equations 2.17 to 2.19) a value for 
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Absorption is usually defined in terms of a logarithmic unit, commonly the 

Neper or the decibel. Two signals amplitudes S1 and S2 are said to differ by n Nepers 

when n=ln(S1/S2).  Rather than signal voltages, the bel is based on ratios of signal 

power. The powers P1 and P2 differ by A bels when A = log10(P1/P2) = 2log10(S1/S2). 
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Thus 1 Neper = 8.68 decibels.  Therefore the total absorption over a path can be 

described as  

( )∫ ±+
×= −

22
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cos

.
106.4

θωων
ν

H

e dlN
A   dB.   (2.27) 

The absorption is greater for the X wave than for the O wave, the negative and 

positive signs in the AAH equation (2.14) applying respectively. In the D and lower E 

UHJLRQ��+)� UDGLR�ZDYHV�XQGHUJR�YHU\� OLWWOH� UHIUDFWLRQ�DQG� �§����7KH�YHORFLW\�RI� WKH�

wave is not altered and so there is no bending. This case is known as non-deviative 

absorption.   

:LWK� D� VPDOO� FROOLVLRQ� IUHTXHQF\� � �� UHODWLYH� WR� WKH� DQJXODU� ZDYH� IUHTXHQF\�

� ��� WKH� DEVRUSWLRQ� FRHIILFLHQW� LV� SURSRUWLRQDO� WR� WKH� SURGXFW� RI� WKH� HOHFWURQ� GHQVLW\�

and the collision frequency and is inversely related to the square of the wave 

frequency (Figure 2.7). 

 

2.3.4 Collision Frequencies in the Ionosphere 

A relationship between ionospheric electron density and radio absorption has 

been defined and this can be seen to depend on the effective collision frequency 

between electrons and all other species.  The velocity dependent monoenergetic 

collision frequency of electrons is defined as 

)(vnvQ
mm

=ν     (2.28) 

where n is the gas number density, v is the relative speed of the colliding momentum 

and Qm(v) is the velocity dependent momentum transfer cross section (Aggarwal et al , 

1979).  It has been shown that the distribution of electron velocities is best represented 

as a Maxwellian. 
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Figure 2.7.  An example of the height variation of the electron collision 

IUHTXHQF\��HOHFWURQ�GHQVLW\�DQG�WKH�SURGXFW� �1 ��WKDW� LV�D�PHDVXUH�RI�WKH�UDGLR�

absorption. Note that although the electron density is higher at >100 km altitude, 

the absorption peaks close to 90 km due to the dominance of the collision 

frequency (After Davies, 1990). 
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7KXV� DQ� DYHUDJH� RI� m is taken over the entire distribution to obtain the 

effective collision frequency. The total effective electron collision frequency is given 

by the sum of the electron-ion and electron neutral collision rates.  

eieneff ννν +=     (2.29) 

For the case of elastic scattering of electrons in a pure coulomb field of ions, 

the electron-ion collision frequency is given by 
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me, Ne and Te are the mass, number density and temperature of the electrons; Z, Ni and 

Ti are the atomic charge number, number density and temperature of ions; k is the 

Boltzmann constant.  The electron-neutral collision frequency is derived from the sum 

of the collisional rates between electrons and the neutral species that constitute the 

upper atmosphere.  The Maxwellian-averaged electron-neutral collision frequencies 

have been determined from laboratory data and theoretical derivations by Schunk and 

Nagy (1987). 
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149 1035.11)(105.4 eeeH TTHN −− ×−×=ν   (2.35) 

It is clear that radio absorption in the ionosphere does not simply rely on electron 

density or the density of the neutral species. The inclusion of the effective collision 

frequency introduces a dependence on the ionospheric temperature parameters. When 

studying the effects of HF radio absorption it is important to determine the role played 

by these changing parameters during active periods.  In the D and lower E layers it is 

the electron-neutral collision frequency that dominates leading to electron temperature 

as an important factor in determining the amount of radio absorption; increases in 

electron temperature result in increased absorption at lower altitudes. At higher 

altitudes the electron-ion collision frequency increases resulting in a more prominent 

role for ion temperature, though the temperature of the electrons is still most 

significant.  In the F layer an increase in temperature will produce a decrease in 

absorption. 

 

2.4 Summary 

This chapter has introduced basic concepts of how particles move in the 

magnetosphere and the process by which they deposit their energy into the 

ionosphere.  The drift and bounce motions of charged magnetospheric particles are 

important topics that relate significantly to the research presented in this thesis.  

Bounce motion due to the changing magnetic field and particle pitch angle along a 

field line leads to the formation of mirror points and the trapping of charged particles 

in the magnetosphere. Precipitation of charged particles is dependent on the pitch 

angle of the particle and the position of the mirror point in the atmosphere. This leads 



Chapter 2 

 44

to the concept of the Loss cone; particles with pitch angles within the loss cone will 

fail to mirror at their next bounce and will instead collide in the atmosphere producing 

ionisation.  The orientation and morphology of the geomagnetic field leads the trapped 

particles to drift around the Earth; electrons eastward and protons westward. 

HF radio wave propagation has been discussed and the Altar-Appleton-Hartree 

equation presented. This describes the dispersion relationship of radio waves in 

plasma and in this case the ionosphere.  From the AAH equation the coefficient of 

attenuation of a radio wave is calculated and it has been shown that changes in 

ionospheric parameters (significantly electron density but also temperature) can lead 

to an increase in the non-deviative absorption of radio waves.  The majority of this 

absorption occurs in the lower portion of the ionosphere (D layer). 
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Chapter 3 

Instrumentation 

 

3.1 Introduction 

The drive of this thesis is the study of high-energy particle precipitation and its 

effects in the auroral ionosphere.  The principle instrument used to monitor the 

precipitation in this study has been the Imaging Riometer for Ionospheric Studies 

(IRIS), which is located at Kilpisjärvi, Finland. Section 3.2 describes how this 

riometry works and also describes the chain of broad beam riometers located in 

Fennoscandia.   Complementing the riometer observations are measurements from the 

EISCAT (European Incoherent Scatter) radar located at Tromsø, Norway.  Various 

other instruments such as magnetometers and coherent radars have been used in 

support; most notably satellite data has been exploited to place the ground-based 

observations in a magnetospheric context. Particle detectors on board the DMSP 

(Defence Meteorological Satellite Program) and SAMPEX (Solar, Anomalous, 

Magnetospheric, Particle Explorer) spacecraft provide in-situ measurements of 

energetic particles that produce the absorption signature in the ionosphere.  

 

3.2  Imaging Riometer for Ionospheric Studies (IRIS) 

3.2.1 Riometry  

The RIOMETER (Relative Ionospheric Opacity Meter using Extra Terrestrial 

Electromagnetic Radiation) is a simple instrument developed in the 1950s (e.g. Little 
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and Leinbach, 1959).  It operates passively by constantly monitoring the background 

cosmic radio noise from the sky.  These measurements are usually made in the range 

of 20 to 50 MHz, which by necessity are comfortably above f0F2.  By comparing the 

received signal with that for an undisturbed day it is possible to determine the 

variation of ionospheric absorption. The riometer is based on developments in radio 

astronomical techniques (Machin et al., 1952) and achieves high gain stability by 

switching rapidly between the antenna and a local noise source. The local noise source 

is continuously adjusted so that its power output equals that received by the antenna. 

Thus gain variations are unimportant as the receiver acts as a sensitive null indicator. 

The current through the noise source is recorded and this is monotonically related to 

the power output.   By using the received power from an inactive period the general 

background absorption can be removed and only the variation above this level will be 

considered. In the auroral zone this variation is predominantly due to the precipitation 

of high-energy charged particles that produce enhanced electron density in the D and 

E layers of the ionosphere.   The principle of ionospheric radio absorption has been 

explained in Chapter 2 and the following section (3.3.2) examines the principal 

instrument used in this study that uses the riometry technique. 

 

3.3.2 The IRIS at Kilpisjärvi 

The most common form of riometer uses a broad or wide beam antenna with 

beamwidths of the order of 60 degrees.  Small spatial scale details of the absorption 

variation are lost since this method integrates over a large portion of the sky (~8500 

km2 at 90 km altitude). Narrow beams (10 to 20 degrees) can probe these small-scale 

features, however the area of the ionosphere that is monitored is much reduced. A 
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recent development is the imaging riometer (Detrick and Rosenberg, 1990), first 

deployed at the South Pole by the University of Maryland, USA.  This system 

operates as a fast-scan multiple beam instrument to examine the entire ionospheric sky 

to 45 degrees from the zenith.  Several of these systems have now been deployed 

including one operated by Lancaster University as a UK National Facility. 

The Imaging Riometer for Ionospheric Studies (IRIS) (Browne et al., 1995) is 

located at Kilpisjärvi in northern Finland, (69.05° N, 20.79° E). It began operations in 

September 1994 and is run by the Ionosphere and Radio Propagation Group of 

Lancaster University in collaboration with the Sodankylä Geophysical Observatory, 

Finland. IRIS samples the cosmic radio noise at 38.2 MHz (a protected frequency for 

Astronomy) and consists of an imaging array and a single, wide beam riometer. The 

system uses 64 circularly polarised cross dipole antennas grouped in a square array 

and separated by half a wavelength (Figure 3.1).  The signals from each row of eight 

antennas are phased by Butler matrices and produce 49 narrow beams of width 

between 13° and 16° (Figure 3.2).  The outputs are fed into 7 riometers through the 

use of time division switching. The whole array is sampled every second and 

switching is arranged so that each second is divided into 8 time slots. The eighth time 

slot is used to record the output from the co-located wide beam antenna.  

Once the raw power has been sampled it is necessary to compare it with a base 

line that will provide an indication of how the absorption varies in time. This base line 

is known as a Quiet Day Curve (QDC) since it represents the received cosmic radio 

noise on a day when there are no absorption contributions from particle precipitation 

or from enhanced X-ray fluxes (Figure 3.3).  There are a number of methods for 

determining a QDC and all make use of observations of the radio sky.  In particular  
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Figure 3.1  The top photograph shows the IRIS phased array during summer 

and the bottom panel displays a typical winter scene when snow increases the 

height of the ground plane (Photographs courtesy of S.Browne). 

 



Chapter 3 

 49

 

 

 

Figure 3.3.  A typical quiet day.  The blue line shows the received power and the 

red line is the QDC for the 14 day period during which the day occurs. 

Figure 3.2  

 Beam projection of IRIS at 

90 km altitude.  The contours 

define the –3 dB points and 

the black square shows the 

calculated field of view used in 

the IRIS images. 
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there are two principle techniques; the first makes use of a sky map of the comic radio 

noise temperature at the receiving frequency to determine the expected signal at every 

local time (e.g. Cane, 1978; Milogradov-Turin and Smith, 1973).  This method leads 

to a base line above which absorption from both solar ionisation and particle 

precipitation could be measured and uses long term observations to determine the sky 

map.  Empirical processes such as the Inflection Point method, which places the QDC 

above the mean of the cosmic radio noise power (e.g. Krishnaswamy et al, 1985), use 

the measured power to generate a base line on much shorter time scales and so the 

solar component of the absorption is lost. 

For IRIS, each of the 49 beams requires a quiet day curve and the method for 

generating them is numerical.  Rather than adopt the inflection point method, a 

percentile method is used; described by Browne et al. (1995) this process has since 

been refined (S.R. Marple, private communication) to compute the QDC at the same 

resolution as the data are recorded.  Due to possible seasonal variations (e.g. snow 

melt in spring) the QDC are computed for a relatively short period but not so short 

that no quiet days occur.  For IRIS a minimum of 14 days is used, more during active 

periods, and the data are filtered for solar radio emission and other interference; this 

process is described in Marple and Honary (in preparation, 2002).   The data is 

smoothed and outlying points removed using a sliding median with a window size of 

599 seconds after which the data are binned according to sidereal time resulting in 14 

or 15 samples in each bin. Sidereal time is used since the region of the sky at which 

the riometer beam is directed determines the received power; thus the power varies 

with the apparent rotation of the stars.  The mean of the second and third highest 

values for each time interval is calculated and this gives a good estimate of the quiet 
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time value; the largest value is discarded since it may be corrupted by interference 

(solar radiation) or scintillation. A sliding mean filter (299 seconds) is then applied to 

smooth the data.    The absorption is calculated using the following formula: 

factorObliquity 

Power ReceivedQDC
Abs

−=   (3.1) 

The obliquity factor is introduced due to the tilted nature of the beams. To 

produce an image of the absorption variations the beams must be mapped to an 

assumed height (usually 90 km). This means that any beam off zenith will travel 

through a greater portion of the ionosphere. The obliquity factor represents the 

additional path length (as a factor) through a thin ionospheric layer of an oblique ray, 

compared to a zenithal ray.  For the zenithal beam the obliquity factor = 1.   

 

3.2.3 The SGO chain 

Sodankylä Geophysical Observatory operates a chain of eight broad-beam 

riometers that stretch from the southernmost tip of Svalbard (Hornsund 77.0° N, 15.6° 

E) to the centre of Finland (Jyväskylä, 62.42° N, 25.28° E).  The locations and current 

operating frequencies of these instruments are presented in Table 3.1. This table also 

includes the coordinates of IRIS, together with the L value calculated for 90 km 

altitude. Rather than using an empirical method to derive the quiet day curves, SGO 

bases them on a theoretical model of the sky temperature at the appropriate frequency. 

Figure 3.4 presents a map of northern Europe with the positions of the ground-

based instruments marked on them. This includes the IRIS and SGO riometer chain 

beam patterns and the locations of the radars that will be discussed in the next 

sections. 
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Station Geographic 

Latitude  

(AACGM) 

Geographic 

Longitude 

(AACGM) 

Operating 

Frequency 

(MHz) 

L-shell 

 

Hornsund 77.0° (74.13°) 15.60° (109.82°) 30.0 13.56 

Kilpisjarvi 69.05° (65.9°) 20.79° (104°) 38.2 6.08 

Absiko 68.40° (65.24°) 18.90° (102.64°) 30.0 5.78 

Ivalo 68.55° (65.07°) 27.28° (108.73°) 29.9 5.71 

Sodankyla* 67.42° (64.16°) 26.39° (107.27°) 30.0 (51.4) 5.26 

Rovaniemi  66.78° (63.33°) 25.94° (106.51°) 32.4 5.04 

Oulu 65.05° (61.58°) 25.54° (105.19°) 30.0 4.48 

Jyvaskyla 62.42° (58.87°) 25.28° (103.67°) 32.4 3.79 

 

Table 3.1 Positions and operating frequencies for the SGO riometer chain and 

IRIS. The CGM coordinates and L shells are calculated from the IGRF model 

for 2001. *There are two riometers operating at Sodankylä 
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Figure 3.4.  Map showing the locations of some of the instruments used in the 

course of this study.  The yellow circles display the 90 km altitude field of views 

of the wide beam riometers of the SGO chain and IRIS.  The two red squares 

pinpoint the locations of pulsation magnetometers operated by Sodankylä 

Geophysical Observatory.  Black triangles mark the positions of the CUTLASS 

radars and black hexagons mark the locations of the  ESR and EISCAT 

mainland radars including the remote sites.   The black box demonstrates the 

field of view of IRIS whereas the blue lines illustrate the individual beams of the 

CUTLASS radars. 
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3.3 The EISCAT Radars 

Six European research councils (UK, Germany, Norway, Sweden, France and 

Finland) founded the European Incoherent Scatter  (EISCAT) Scientific Association 

in December 1975. This number has since grown to seven when Japan joined in 1995.  

The aim of EISCAT is to provide the opportunity to conduct ionospheric research at 

high latitudes.   The following sections summarise the principles of incoherent scatter 

and discuss the operations of the EISCAT mainland radars and the experiments used 

in this thesis. 

 

3.3.1 Theory of Incoherent Scatter 

In 1906, J. J. Thomson demonstrated that a single free electron can scatter 

electromagnetic radiation with a cross section, σ, given by (Thomson, 1906): 

( )2sin4 γπσ er=     (3. 2) 

where re is the classical radius of an electron and γ is the polarisation angle (the angle 

between the direction of the electric field in the incident radiation and the direction of 

the observer).  For direct backscatter, this cross-section is of the order of 10-28m2. It 

was Fabry (1928) who first suggested that incoherent scatter might be used to probe 

the ionosphere since a monochromatic radar beam scattered from free electrons of the 

ionosphere would form a single peak, centred on the radar frequency, with Doppler 

broadening due to the thermal velocities of the scattering electrons. The electrostatic 

forces in ionospheric plasma lead to a ‘shielding’ layer around any single charge so 

scattering does not originate from free electrons. The radius of the shielding layer is 

termed the Debye length, D; 
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in which ε0 represents the permittivity of free space.   

 The dependence of the Debye length on electron temperature and density, 

results in a variation with altitude.  D is therefore greater in the upper F-layer than in 

the E layer.  Factors such as season, solar cycle and geographic location also affect D. 

For ionospheric conditions, Debye lengths vary between ~0.3 and 6.0 cm.   Organised 

motion cannot be sustained in the plasma on scales shorter than the Debye length so 

the electrons may be considered as free and the backscatter spectrum has the form 

predicted by Fabry.  At larger scales, random thermal motions of the electrons 

generate wave-like irregularities due to electrostatic coupling. These are known as 

ion-acoustic and electron-acoustic waves.  Acoustic modes in plasma propagate 

isotropically and over a wide and continuous range of frequencies, and have been 

studied theoretically by, amongst others, Fejer (1960), Dougherty and Farley (1960) 

and Hagfors (1961). 

 Transmitted wavelengths that greatly exceed the Debye length undergo strong 

quasi-coherent scatter from those ion- and electron-acoustic waves that satisfy the 

Bragg criterion for the radar wavelength.  The resulting frequency spectrum consists 

of four components corresponding to the ion- and electron-acoustic waves 

propagating towards and away from the radar.  The Doppler shifts arising from these 

wave modes are given by: 
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in which fp, the plasma frequency, is given by 
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 The transmitted radio wave will scatter from acoustic waves with phase fronts 

normal to the direction that is along the bisector of the angle between the transmitter 

and receiver beams. Thus for a monostatic system, a system in which the transmitter 

and receiver are co-located, the radar is sensitive to acoustic waves with phase fronts 

normal to the wave vector, i.e. along the direction of the beam.   

  A charged particle in plasma can be accelerated due to the transfer of energy 

from an electrostatic wave moving in the same direction but with a slightly higher 

speed.  This results in attenuation of the wave, termed Landau damping.  Conversely, 

particles moving slightly faster will result in an enhancement of the wave.  More ions 

travel slightly slower than the ion-acoustic wave than travel slightly faster leading to 

substantial broadening of the ion-acoustic lines of the backscattered spectrum.  The 

ion lines broaden to such an extent that they merge (Figure 3.5).  The total width of 

the backscattered ion line spectrum from the ionospheric plasma varies between 10 

kHz (E-region) and 50 kHz (F-region).  Electron acoustic waves travel at far greater 

velocities than the majority of thermal electrons, thus the electron-acoustic lines (or 

plasma) lines will remain sharp.   
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Figure 3.5.  A typical F region spectrum of the returned power.   
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  For transmission of a radio wave with a wavelength significantly longer than 

the Debye length, scatter is quasi-coherent rather than truly incoherent.  Nevertheless, 

in the absence of more appropriate nomenclature, this process is still universally 

referred to as incoherent scatter.   

 

3.3.2 Ionospheric parameters 

Incoherent Scatter is considered to be the most powerful ground based tools 

available for probing the ionosphere. A number of physical parameters can be derived 

from the returned spectrum of a transmitted radio wave: 

Electron Number Density. The ionospheric electron number density profile can be 

determined to a first order from the total power of the returned signal: 
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ie

se
e +

= σ
   (3.6) 

in which K is a system constant proportional to both the effective collecting area of 

the receiver and the transmitted power.  The system constant can be established by 

calibration of the measured density with an independent diagnostic. The correction for 

the effect of the ratio of the electron and ion temperatures is derived from the shape of 

the incoherent scatter spectrum.  The majority of power scattered by acoustic modes in 

a plasma is contained within the ion line spectrum.  For observations of the lower 

ionosphere (e.g. D and lower E layer) it can often be assumed that Te ≈ Ti and thus 

equation (3.6) is simplified.  This is the only ionospheric parameter that can be 

measured with a degree of certainty in the D layer of the ionosphere due to the single 
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peaked nature of the returned spectrum (Figure 3.6); a product of the inability of ion-

acoustic waves to propagate in a region of high collision frequency.   The electron 

number density is also known as the electron concentration, however it has become 

common to refer to this parameter as simply the electron density. Although this term 

is technically incorrect it is generally accepted and understood by the community and 

so for ease will be used throughout this thesis.  

Plasma temperature and Ion Mass.  Landau damping, the degree of which depends 

on the ratio of the electron and ion temperatures, broadens the ion lines of an 

incoherent scatter spectrum.  The ratio of the depth of the spectrum trough to the 

height of the ion line is a sensitive function of the temperature ratio. The temperature 

ratio is thus a controlling factor in determining the sharpness of the ion lines, and can 

be obtained from the ratio of the peak spectral power density of the ion line spectrum 

to that at its central minimum.  By measuring the separation of the two peaks of the 

ion line spectrum, the ratio of the ion temperature to the mass of the ions can be 

obtained. This is because the separation is approximately equivalent to twice the ion-

acoustic frequency. 
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 By assuming the mass of the ion species (and hence the composition) the 

absolute values of the ion and electron temperature can be calculated.    

Plasma velocities.    A Doppler shift in the frequency of the ion line spectrum is 

produced through the bulk motion of a plasma. This corresponds to the component of 

the velocity along the line-of-sight of the radar or the mirror direction of the radar. 
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Figure 3.6.  Effect on the ion line of increasing the ion-neutral collision 

IUHTXHQF\�� � 7KH� TXDQWLW\� i� LV� HTXDO� WR� �� Oi� ZKHUH� � LV� WKH� UDGDU�ZDYHOHQJWK�

and li the mean free path of the ions (Evans, 1969). 
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 The mirror direction is that along the radar beam for monostatic radar and along the 

bisector between the transmitter and receiver beams for a bistatic system.  The 

Doppler shift, ∆fd, due to an ion velocity vm along the mirror direction is given by: 






=∆

2
cos

2 γ
λ

m
df

v
    (3.8) 

 This shift is small compared to the spectral width, but can be gained from 

accurate measurement. As long as the electrons and the ions of the plasma move 

together the plasma drift does not affect the spectral shape.  

Other parameters.    All of the parameters that can either be measured directly or 

derived by incoherent scatter are listed in Table 3.2.  Parameters in Table 3.1 that are 

marked with an asterisk are only the line of sight values.  Radars with multiple 

receivers are able to fully resolve these values.  

 

3.3.3 The EISCAT system 

 EISCAT operate three incoherent scatter radar systems.  Two of the radars are 

located in northern Norway near to Tromsø (Rishbeth and Williams, 1985) and the 

third operates on the island of Spitzbergen, part of the Svalbard archipelago. This 

ESR (EISCAT Svalbard Radar) actually consists of two dishes that alternate 

transmission and data dumping. One dish is permanently field aligned; however the 

second dish is steerable. The mainland facility consists of a tristatic UHF (931 MHz) 

radar system and a single VHF transmitter/receiver (223 MHz) (Figure 3.7). 
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Directly Measured Derived indirectly 

Electron density, Ne Electric field 

Electron Temperature, Te Hall conductivity 

Ion Temperature, Ti* Pedersen conductivity, 

Ion velocity, vi* Exospheric heat flux, 

Electron velocity, ve* Neutral density 

Ion-neutral collision frequency, Qin Neutral temperature 

Ion composition, mi Neutral velocity/wind 

Photoelectron flux  

Electric current density, J*  

 

Table 3.2.  Parameters measured and derived from incoherent scatter, those 

marked with an asterisk are line of sight values only. The incoherent scatter 

technique relies on assuming at least one parameter out of the Te, Ti, Ne and mi 

since the number of unknowns and equations makes it an underdetermined 

system.  
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Figure 3.7.  The EISCAT mainland 

radars, located in Ramfjord, near 

Tromsø.  To the left is the UHF 

transmitter/receiver dish (32 

metres).  Below is the VHF radar 

which consist of four segments (128 

by 46 metres in total). Photographs 

courtesy of S.R. Marple. 
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Other receivers for the UHF system are located at Kiruna, Sweden and Sodankylä, 

Finland.  The three stations enable three components of the plasma velocity to be 

measured and thus a full vector to be determined.  Some system parameters for the 

radars are detailed in Table 3.3.  Most of the incoherent scatter results presented in 

this thesis come from the mainland UHF radar and so the following discussion is 

primarily concerned with this facility. More information on the ESR can be obtained 

from Wannberg et al. (1997). 

The mainland UHF antennae are circular paraboloids of 32 m diameter (570 

m2 collecting area). The antennae can be steered both in azimuth and elevation at a 

maximum rate of 80° per minute and have half-power beam widths of 0.6°.  The radar 

operates at frequencies around 931.5 MHz and is capable of probing the ionosphere at 

altitudes between about 70 km and 1500 km.  The EISCAT UHF radar is currently the 

only tristatic incoherent radar in operation. Comprehensive descriptions of the 

technical characteristics and capabilities of the EISCAT radars have been published in 

the past (e.g. Rishbeth and Williams, 1985; Folkestad et al., 1983). In 2000 the 

EISCAT mainland radars underwent a large technical overhaul; this included 

equipping the UHF with two high efficiency klystrons and extensive upgrading of the 

receiver systems with new digital signal processing equipment.  A set of channel 

boards have replaced much of the old analogue equipment and up to six different 

signals can be received and processed simultaneously.   These system changes have 

improved the signal to noise ratio by more than 50 % relative to the old system and 

led to the development of new coding schemes. 



Chapter 3 

 65

 

 

Site Location Dip 

Angle 

Antenna 

F
re

qu
en

cy
 

(M
H

z)
 

Power (MW) 

Peak   Mean 

Tromsø 69.6°N 

19.2°E 

77.6° 32 m Parabola 

(UHF). 

120m × 46m 

Parabolic 

cylinder (VHF). 

931 

 

223 

2.0 0.25 

 

5.0      0.67 

Kiruna 67.9°N 

20.4°E 

76.8° 32 m Parabola   

Sodankylä 67.4°N 

26.7°E 

76.7° 32 m Parabola   

Longyearbyen 78.15°N 

16.05°E 

82.02° 32 m Parabola 

42 m Parabola 

500 0.5      0.125  

 

Table 3.3 Operational details of the EISCAT radars, both mainland and at 

Svalbard. 
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3.3.4 EISCAT experiments 

Experiment time on the radar is split into two categories: Special time and 

Common time. Special time is divided amongst the member nations of the EISCAT 

association to allow tailored experiments to be run. This time is applied for in the 

home nation and the data collected by the Special experiments are for the exclusive 

use of the applicants for one year after which the data becomes available to the rest of 

the EISCAT community.  As the name suggests, common time provide data to the 

whole EISCAT community and these experiments are run for at least 50% of the 

operating time.  A range of experiment geometries and coding are used to provide the 

common programmes. The range of available mainland programmes from before the 

2000 upgrade are listed in Table 3.4 with a brief description of their operational 

characteristics. 

As stated earlier, the observations used in this thesis come mostly from the 

UHF radar and those that occur before the upgrade of 2000 use the cp1 experiment.  

This uses a fixed transmitting antenna pointing along the geomagnetic field direction. 

The basic time resolution is 5 seconds and the scheme uses alternating codes and long 

pulses as well as short pulses to produce power profiles. These power profiles provide 

a measure of the electron density to lower altitudes than the alternating code can 

reach. Whereas the alternating code starts from around 80 km altitude, EISCAT can 

observe scatter from around 65 km if there is sufficient electron density to produce a 

reasonable signal to noise ratio. This raw electron density can be calibrated at heights 

where there are common range gates with the alternating code, thus providing more 

accurate estimates.   
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Experiment Radar Geometry Altitude  Latitude  

cp1 UHF Field aligned 80 - 600 km - 

cp2 UHF Four position scan: field 

aligned, vertical, east and 

north 

80 - 600 km - 

cp3 UHF Wide scan in N-S 

geomagnetic plane. 

140 - 950 km 62° - 76° 

cp4 VHF Northward pointing 

(occasional split beam to 

the north west) 

283 - 1000 km 73° - 80.5° 

cp6 VHF Vertical 73 - 113 km - 

cp7 VHF Vertical 80 - 2500 km - 

 

Table 3.4.  Experiments that operate on the two mainland radars pre- 2000 AD. 
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Following the refurbishment in 2000 a new suite of radar experiments have 

been introduced on the mainland.  The reliance on long pulse transmissions has 

diminished with a greater emphasis on the alternating code. At time of writing there 

are currently 8 experiments available to run on the UHF and VHF. A brief summary 

of these experiments is presented in Table 3.5 together with a listing of the 

experiments currently run on the ESR.  There are a further two experiments being 

tested to replace cp7h and to act as a general purpose VHF experiment.  The mainland 

data presented in this thesis post-2000 are from the cp1l.   

 

Experiment Radar Range Comment 

tau1 VHF 100 - 1900 km Replacement for cp4 

tau2 UHF 90 – 750 km General purpose to replace cp1l 

tau3 UHF 90 – 1400 km Modified Tau2 used for scanning 

arc  UHF/VHF 90 –250 km High time resolution for auroral studies 

D-layer VHF 60 – 130 km High spatial resolution for D-layer 

cp1l UHF 90 – 700 km Old cp1k converted for new system 

cp4b VHF 400 – 1800 km Old cp4b converted for new system 

cp7h VHF 280 –2000 km Old cp7g converted for new system 

tau0 ESR 90 – 1200 km  General purpose ESR experiment 

 

Table 3.5 Summary of experiments operating on the mainland and ESR radars 

at time of writing (2002). 
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3.4 Satellites 

An important part of the research conducted in this thesis relates observations 

from satellites to their ionospheric signatures. This section details several satellites 

used in this study, including polar orbiting satellites (SAMPEX and DMSP) and 

geostationary spacecraft (GOES).  Satellites located outside of the magnetosphere also 

play an important role in relating the observed phenomena to solar wind coupling 

processes. The data from three satellites were used in the course of this thesis to 

provide solar wind and particle flux parameters in interplanetary space: Geotail, 

WIND and ACE. Brief descriptions of the locations and instruments of these solar 

wind satellites are provided in section 3.4.4.  Satellite orbit information is presented in 

the format: perigee × apogee. 

 

3.4.1 SAMPEX (Solar, Anomalous, Magnetospheric Particle Explorer) 

SAMPEX is one of the NASA small explorer satellites (SMEX).  It was 

launched in July 1992 with a mission duration goal of three years and is still flying in 

2002.  It is located in a polar orbit with an inclination of 82° and flies at an altitude of 

550 (perigee) × 675 km (apogee).  SAMPEX was designed to study the energy, 

composition and charge states of four classes of charged particles: galactic cosmic 

rays, anomalous cosmic rays, magnetospheric electrons, and solar energetic particles.  

The timing of the launch meant that the latter investigation would carry from shortly 

after solar maximum into the declining phase of the solar cycle. In fact since the 

satellite has far outlived its expected lifetime it has monitored nearly a complete solar 

cycle.  A more detailed overview of the SAMPEX satellite is given in Baker et al. 

(1993).  
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In total there are four instruments that make up the scientific payload of the 

SAMPEX satellite.  The characteristics of the 4 instruments are described in Table 

3.6.  Comprehensive descriptions of the four instruments are available in Cook et al. 

(1993a and 1993b), Klecker et al. (1993) and Mason et al. (1993). 

 

 

Instrument Details 

LEICA 

Low-Energy Ion Analyser 

Measures the elemental and isotopic 

composition of nuclei from He to Ni (Z = 2 to 

28) over the energy range from ~0.5 to ~5 

MeV/nuc. 

HILT 

Heavy Ion Large Telescope 

Measures the elemental composition of nuclei 

from He to Ni (Z = 2 to 28) in the energy range 

from ~4 to 250 MeV/nuc.  

MAST 

Mass Spectrometer Telescope 

Measures the elemental and isotopic 

composition of nuclei from He to Ni (Z = 2 to 

28) over the energy range from ~15 to 200 

MeV/nuc.  

PET 

Proton-Electron Telescope 

Measures the energy spectra of electrons from 

~0.5 to 30 MeV, and of H and He from ~ 20 to 

200 MeV/nuc.  

 

Table 3.5 Typical operating values for the four instruments on the SAMPEX 

satellite. 



Chapter 3 

 71

 

3.4.2 GOES (Geosynchronous Operational Environmental Satellites) 

NOAA (National Oceanic and Atmospheric Administration) operates a series 

of satellites known as Geosynchronous Operational Environmental Satellites (GOES).  

These satellites carry a package of instruments designed to monitor space weather 

variations. There are three main components that are measured by the Space 

Environment Monitor (SEM) system: X-rays, energetic particles and magnetic fields.  

The majority of observations presented in this thesis are from the GOES-8 satellite 

that was launched in 1995. This is the first of the GOES satellites that is “3-axis 

stabilized” rather than spin stabilized. This section concentrates on brief descriptions 

of the X-ray and energetic particle sensors carried on board GOES-8. 

The X-ray sensor (XRS) measures the solar X-ray flux for the 0.5-4.0 and 1.0-

8.0 Angstroms wavelength bands. The two bands allow the hardness of the spectrum 

to be estimated. Observations from XRS provide a means for detecting the start of 

solar X-ray flares, though occasionally there is a low channel response to either 

energetic particles or X-ray production from precipitation of energetic particles.  The 

EPS instrument measures energetic particles. This is a series of solid-state detectors 

with pulse-height discrimination that measures proton, alpha particle and electron 

fluxes.  There are seven proton channels, the lowest energy (P1) responds to primarily 

trapped outer-zone particles; the energies are given in Table 3.6. P2 occasionally 

responds to trapped particles during magnetically disturbed periods however the 

higher channels are sensitive only to fluxes originating outside the magnetosphere.  

The proton data provided by NOAA is in two forms: integral and differential fluxes.  
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Channel Differential 

(P) 

Integral (I) 

1 0.6-4.2 MeV > 1MeV 

2 4.2-8.7 MeV > 5 MeV 

3 8.7-14.5 MeV > 10 MeV 

4 15-44 MeV > 30 MeV 

5 39-82 MeV > 50 MeV 

6 84-200 MeV > 60 MeV 

7 110-500 MeV > 100 MeV 

 

Table 3.6.  Lists of the GOES data energy channels supplied by NOAA/SEC 

 

3.4.3 DMSP (Defence Meteorological Satellite Programme) 

The Defence Meteorological Satellite Program (DMSP) is operated by the US 

air force and the program began in the mid 1960s. Originally the operational program 

called for two satellites to be in polar orbit at all times: one in the dawn-dusk meridian 

and one in 1030 LT to 2230 LT meridian. Depending on the system lifetimes there can 

be as many as three satellites in operation at a given time.  In December 1999 the F15 

satellite was launched and during the time interval of IRIS operations (post September 

1994) there have been 6 operational spacecraft.  The satellites fly in sun-synchronous, 

101 minute orbits at ~830 km altitude.  Due to an error at the launch the F10 satellite 

processed to later local times at a rate of 15 minutes/year. Although primarily a 

meteorological satellite the DMSP spacecraft also carry an array of solar terrestrial 

orientated sensors that measure along-track plasma densities, velocities, composition, 
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ion drifts and local magnetic fields. Low energy electron analysers were first carried 

in 1974 with additional upgrades on the F2 satellite in 1977 that allowed electron 

energy to be measured in the range 50 eV to 20 keV in 16 channels.  Post DMSP F5 

each of the satellites have carried an improved electrostatic analyser; the SSJ/4 auroral 

particle sensor.  Curved plate detectors allow precipitating particles to enter through 

the instrument aperture and electrons and ions of the selected energy are deflected 

toward the target by an imposed electric field applied across the two plates.  The two 

low energy detectors consist of 10 channels centred at 34, 49, 71, 101, 150, 218, 320, 

460, 670, and 960 eV. The high energy detector measures particles in 10 channels 

centred at 1.0, 1.4, 2.1, 3.0, 4.4, 6.5, 9.5, 14.0, 20.5 and 29.5 keV.  The SSJ/4 

instruments on F13 and F15 have suffered degradation in the low energy ion detectors 

(below 1keV) making the data unreliable.  SSJ/4 data are supplied at 1 second 

resolution.  For a full description of the SSJ/4 sensor see Hardy et al.(1984).  

 

3.4.4 Solar wind measurements (Geotail, ACE and WIND) 

Geotail was designed to measure the flow of energy in the magnetotail in order 

to increase the understanding of fundamental magnetospheric processes. Since 1995 

the satellite has been in an 8×30 Re orbit at an inclination of 7.5º and a period of 4.9 

days, which places Geotail outside of the magnetopause for certain periods.  In this 

thesis data was obtained for a period when the spacecraft was traversing the 

magnetosheath.  Two instruments from the Geotail payload were used to provide 

magnetic field measurements and ion dynamic pressure within this turbulent plasma. 

The Magnetic Fields Measurement (MGF) consists of dual three-axis fluxgate 

magnetometers and a three-axis search coil magnetometer. Only fluxgate 
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magnetometer data is presented here. Plasma data comes from the Low Energy 

Particle (LEP) detector, which provides measurements of ion density and the three 

components of the plasma velocity. 

ACE  (Advanced Composition Explorer) is located at the first Lagrangian 

point (L1).  The satellite payload consists of four instruments to study energetic ions 

and electrons (EPAM), magnetic fields (MAG), high-energy particle fluxes (SIS) and 

solar wind ions (SWEPAM).  Data from the last three instruments have been included 

in this thesis.  The fixed position of ACE provides a consistent data set for monitoring 

the solar wind conditions during periods of geomagnetic activity. Some of the more 

energetic events presented in this work cause failure of the lower energy particle 

detectors, making solar wind observations unreliable at these times. 

WIND has provided measurements of the solar wind and IMF parameters 

since it was launched in November 1994.  The original orbit of WIND was designed 

as a sunward, multiple lunar swing-by with the spacecraft occasionally travelling up to 

250 Re into the solar wind at apogee whilst at other times reaching less than 100 Re. 

This allowed measurements to be taken in a large portion of the upstream solar wind. 

In 1998, WIND spent several months at the L1 point calibrating its instruments with 

ACE, before undertaking a series of petal orbits with dimensions of 10×80 Re, outside 

of the ecliptic plane. WIND carries a solar wind experiment (SWE) to provide bulk 

velocity and density data, as well as a magnetometer experiment (MFI). Also the 

EPACT instrument measures high-energy proton fluxes in several energy bands (4.6 

to 72.0 MeV overall). 
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3.5 Additional Instruments 

Two other instruments have been used to provide data that contributes to this 

thesis. These include a coherent scatter radar (CUTLASS) and pulsation 

magnetometers. The following two sections give brief descriptions of their operating 

characteristics. 

 

3.5.1 CUTLASS (Co-operative UK Twin Located Auroral Sounding System) 

CUTLASS is a twin station, high frequency, coherent scatter radar used to 

study the high latitude ionosphere (principally the F region).  The radars are located in 

Iceland and Finland (Figure 3.4) and look north into a common volume over northern 

Scandinavia.  Scatter is detected from field-aligned irregularities when the radar ray is 

orthogonal to the magnetic field line. This is achieved through the refraction of the HF 

ray in the ionosphere.  The Doppler shift of the returned signal provides a measure of 

the line of sight velocity of the plasma and the data from the two radars can be 

combined to produce horizontal velocity vectors throughout the common volume.  A 

single radar consists of sixteen beams each with seventy five 45 km range gates in 

standard common mode. Each beam has a dwell time of 7 seconds with the scan 

synchronised to start every 2 minutes. The University of Leicester operates CUTLASS 

as a UK National Facility, funded by the UK Particle Physics and Astronomy 

Research Council (PPARC). It also forms part of the Super Dual Auroral Radar 

Network (SuperDARN) (Greenwald et al., 1995). 
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3.5.2 Pulsation Magnetometers 

The Space Physics Group of Oulu and the Sodankylä Geophysical Observatory 

maintain a chain of search coil magnetometers.  Unlike traditional fluxgate 

magnetometers, these instruments are capable of measuring geomagnetic fluctuations 

covering a frequency range from several mHz to 4 Hz.  This includes the whole Pi/Pc  

(irregular and continuous pulsations) period range. Fluctuations in these ranges 

correspond to a number of ULF waves that occur in the magnetosphere that affect the 

precipitation of charged particles (Coroniti and Kennel, 1970). The pulsation 

magnetometers operate with a resolution of 1 nT/s.  Data from two stations, 

Kilpisjärvi and Sodankylä, have been used in this thesis (marked on Figure 3.4). 

 

3.6 Summary 

This chapter has highlighted the instruments used to investigate the 

precipitation of charged particles into the D layer.  The majority of observations come 

from the Imaging Riometer for Ionospheric Studies (IRIS) located at Kilpisjärvi, 

Finland, with the Sodänkylä Geophysical Observatory (SGO) chain of riometers used 

in support.  The EISCAT radar has provided useful details of the altitude changes in 

electron density and other parameters that can only be obtained regularly through 

incoherent scatter methods. Similarly satellites such as GOES, DMSP and SAMPEX 

place the ionospheric observations in a magnetospheric context by direct measurement 

of the precipitating flux of particles.  Solar wind based satellites provide 

measurements of the IMF and changing particle speeds that interact with the 

magnetosphere. Thus the history of events can be traced from the solar wind down to 

the ionosphere.  
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Chapter 4 

A Review of Auroral and Polar Cap Absorption observations 

 

4.1 Introduction 

This thesis presents an investigation into energetic particle precipitation and 

this is achieved through the use of wide beam and imaging riometers (e.g. IRIS) which 

monitor the absorption of cosmic radio noise, a parameter that is directly related to the 

electron density in the D layer. Although the riometry technique is limited (it only 

provides a measure of the height integrated product of the electron density and the 

collision frequency) it has made some significant contributions to ionospheric physics.   

Auroral radio absorption was discovered by Appleton, Naismisth and Builder 

(1933) during the International Polar Year of 1932-1933 when observing 

ionospherically reflected HF waves. They found that the intensity of the reflected 

signal was weakened, often considerably, during periods of magnetic and auroral 

activity and attributed the effect to increased ionisation at low altitudes.  During the 

International Geophysical Year (1958-1959) the RIOMETER (Relative Ionospheric 

Opacity Meter using Extra Terrestrial Electromagnetic Radiation) was developed as a 

means to regularly measure the ionospheric absorption (e.g. Little and Leinbach, 

1959).  This was based upon the principal of monitoring cosmic radio noise absorption 

as developed by previous workers (e.g. Shain, 1951; Mitra and Shain, 1953; and Blum 

et al., 1954).  This chapter provides an introduction to observations of ionospheric 

absorption and how it has been used to investigate the dynamics of the lower 
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ionosphere, in particular two types of absorption: auroral absorption and polar cap 

absorption (PCA).  PCA is due to the incidence of solar protons on the polar cap (first 

identified by Bailey, 1957) whereas auroral absorption is from the direct entry of 

magnetospheric electrons.   The two types were originally distinguished through 

characteristic time variations and the geographic distribution; auroral absorption is 

short lived, irregular and confined to an oval near to the auroral region, whereas PCA 

tend to last for several days and varies smoothly across the sunlit polar cap 

(Hargreaves, 1969).  Before reviewing auroral and polar cap absorption it is worth 

mentioning other types of cosmic radio noise absorption that are observed by 

riometers. 

 

4.2 Summary of Absorption Types 

Stauning (1996) summarised a number of types of absorption event including 

mechanisms for non-precipitation related absorption; e.g. F-region absorption due to 

low temperatures (Rosenberg et al., 1993; Wang et al., 1994; Nishino et al., 1997), 

and Electron Heating Absorption (EHA) from the E region during periods of high 

ionospheric convection (Stauning, 1984; Stauning and Olesen, 1989).  Both of the 

aforementioned event types result in much weaker absorption changes than a typical 

precipitation event (of the order of 0.5 dB for F region absorption).   Principally, there 

are two sources of precipitation that lead to enhanced cosmic radio noise absorption at 

high latitudes: the solar wind (and ultimately the sun) and the magnetosphere.  As 

described in Chapter 1, these regions are coupled such that a change in the solar wind 

can produce a change in the magnetosphere. This is particularly demonstrated during 

large changes in solar wind speed that lead to the sudden commencement of 
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geomagnetic storms (SSC or Sudden Storm Commencement).  The arrival of a shock 

front in the solar wind at the magnetopause may result in sudden compressions of the 

magnetosphere leading to impulse like precipitation of previously trapped high-energy 

particles. Events such as these tend to be short lived but are often widely extended in 

longitude and have been described as Sudden Commencement Absorption (SCA) 

(Brown et al, 1961; Brown, 1978; Brown and Driatsky, 1973).  It has been argued that 

since a shock in the solar wind can produce similar short-lived results in the 

ionosphere without producing a geomagnetic storm, the term sudden impulse (SI) 

should replace SSC (Joselyn and Tsurutani, 1990), and by extension Sudden Impulse 

Absorption (SIA) is substituted for Sudden Commencement Absorption as a generic 

term for shock events.  

 

4.3 Auroral Absorption 

4.3.1   Precipitation and ionisation 

 Chapter 3 explained that IRIS observes absorption related to the precipitation 

of energetic particles.  Calculations of the rate of ionization of air by beams of 

electrons have been made (e.g. Spencer, 1955 and Kamiyama, 1966), however most 

auroral applications come from semi-empirical approaches (Rees 1963; 1989).  Figure 

4.1 displays an example of ionisation rates for mono-energetic electrons and similar 

curves for protons.  It becomes clear that for similar energies it is the electrons that 

dominate the absorption in the D region (Bailey,1955); a 200 keV electron may 

penetrate to 75 km but a 200 keV proton will reach only to 130 km, where the 

collision frequency is smaller.  Eather and Burrows (1966) used H  emission 

observations from the ground to indicate the contribution of ionisation from protons to  
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Figure 4.1.  Production rates due to monoenergetic electrons (top panel) and 

protons (bottom panel) for various initial energies; keV for electrons and MeV 

for protons (After Rees, 1963 and Reid, 1974). 
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auroral absorption was negligible.  Satellite observations (e.g. Hargreaves and Sharp, 

1965) have found that the protons usually carry less than 10 % of the total 

precipitating energy.   

 

4.3.2 Statistics of the Absorption Oval 

The first question that faced workers in the riometry field was where do the 

particles that generate auroral absorption come from?  Several workers (Holt et al., 

1961; Hartz et al.,1963; Driatsky, 1966; Hargreaves and Cowley, 1967; Foppiano and 

Bradley, 1984 and references therein) have investigated the statistics of auroral 

absorption from many latitudes and longitudes (Figure 4.2).  Usually the diurnal 

occurrence shows two peaks, one close to magnetic midnight and the other before 

noon.  Discrepancies arise due to the differing methods of compiling the statistics 

(Hargreaves, 1969).   The absorption oval covers several degrees of latitude centred 

between 64° and 68° magnetic latitude, a few degrees equatorward of the auroral oval 

(Hartz et al, 1963; Basler, 1963; Driatsky, 1966; Hook, 1968).   A notable effect is the 

deep minimum in the afternoon (Hargreaves and Cowley, 1967).   Studies that employ 

direct particle precipitation measurements also demonstrate this pattern of dislocated 

ovals and local time variations (e.g. Hartz, 1971).  Enhanced geophysical activity 

shifts the absorption zone to lower latitudes, affecting the night sector more than the 

day (Basler, 1963; Driatsky, 1966; Hargreaves, 1966; Hook, 1968).   The diurnal 

pattern seen by a riometer is usually interpreted in terms of precipitation patterns fixed 

with respect to the sun, however there is possibly a longitudinal effect due to the 

displacement of the Earth’s dipole from the spin axis.  This effect has been looked for 

in the statistics (Hartz et al., 1963 and Driatsky, 1966) but the results are inconclusive.  
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Figure 4.2. Occurrence of auroral absorption in latitude and time measured at 

several longitudes.  (After  a) Holt et al.,1961; b) Hartz et al., 1963; c) Driatsky, 

1966; d) Hargreaves and Cowley, 1967.  (a) shows the percentage of time that 

absorption excedds 0.5 dB; (b) and (c) show the percentage of time that 

absorption equals or exceeds 1.0 dB and (d) gives the median intensity in dB. 
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Figure 4.3.  Average pattern of electron precipitation as a function of magnetic 

latitude and local time.  Note the two zones: auroral zone precipitation (medium 

energy) is represented by the triangles and high energy precipitation by the dots. 

The average flux is indicated approximately by the density of symbols (after 

Hartz, 1971). 
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Driatsky (1966) reported less intense absorption in the Russian sector than in the 

North American sector, but differences in the solar activity at the time of observations 

result in ambiguity.  Hargreaves et al. (1984) once again found little conclusive 

evidence of a longitudinal effect on the absorption statistics, suggesting that small 

changes in latitude could explain differences in the average absorption patterns.  

The seasons have also been observed to affect the intensity and pattern of 

absorption, being 1.5 to 2 times greater in winter than in summer (Basler, 1966).  It 

has been suggested that this is evidence of a dependency on the magnetospheric 

geometry (Hargreaves, 1969) but also possible changes in the ionospheric chemistry 

may affect the amount of electron density.   

  

4.3.3 Substorms and Daytime absorption  

The origin of the daytime maximum in absorption has been a point of study 

since it was first detected.  Absorption in the day and night sectors have been 

compared by a number of workers (Parthasarathy and Reid, 1967; Hargreaves, 1967; 

Coroniti et al., 1968) and it was found that day and night time activity tend to occur 

together with a delay of up to an hour before the morning absorption.  The link 

between substorms and auroral absorption has been investigated by a number of 

authors (e.g. Hargreaves, 1974; Ranta et al., 1981; Hargreaves et al., 1997; and 

Hargreaves et al., 2001) including phenomena such as spike events and pre-onset bays 

as well as the motion of absorption patches.  Visual aurora and absorption have 

occasionally been found to coincide with good correlation (Holt and Omholt, 1962; 

Gustafsson and Ortner, 1962) however some studies show little matching between 

intense absorption and discrete forms (Kavadas, 1961).  Ansari (1964) split absorption 
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observations into two main categories; the first consists of absorption that occurs 

between 20 and 02 MLT and that correlates well with luminous fluctuations in the 

557.7 nm wavelength.  Category two absorption is only observed post midnight, 

varies slowly with time and does not correlate with the luminous intensity (Figure 

4.4).  Later works have extended this second category to the absorption on the dayside 

(e.g. Stauning, 1996; Nishino et al., 1999); thus the dayside absorption is taken to be 

an extension of the precipitation that begins on the night side.  Absorption in the 

morning sector is a common occurrence (e.g. Hargreaves, 1969; Hargreaves and 

Berry, 1976) and has been linked to gradient curvature drifting electrons, injected on 

the night side during substorm activity (e.g. Stauning et al., 1995b and Stauning, 

1998), however some discrepancies between the theory and the observations still 

arise.  Hargreaves (1968) determined that the drift velocities of the particles often did 

not agree with those expected for the necessary energy,  and suggested that some form 

of propagating wave triggers precipitation of particles already present in the day sector 

(Figure 4.5).  Jelly and Brice (1967) lend credence to this theory by observing that 

substorms are less likely to trigger day-side precipitation when the preceding period 

has been geomagnetically quiet.  Hargreaves and Devlin (1990) used the EISCAT 

radar to investigate morning absorption and found that the energy dispersion predicted 

by curvature drift was not present (Figure 4.6).  The debate over whether gradient-

curvature drift is the primary mechanism responsible for the morning absorption is 

ongoing.  

Finally it is worth mentioning the occurrence of ULF (Ultra Low Frequency) 

pulsations in the morning sector. This is a wide topic that will not be reviewed here  
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Figure 4.4.  Variation of absorption measured by 12º S, N riometers and relative 

557.7 nm intensity observed by 12º S, N photometers on October 25-26, 1962.  

The correspondence between auroral intensity and absorption is good until 

break up (From Ansari, 1964). 
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Figure 4.5.  Global movement of a median absorption onset projected to the 

equatorial plane.  Wavefronts at ten minute intervals (From Hargreaves 1968). 
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Figure 4.6.  Computed spectra of precipitating electrons corresponding to 

EISCAT measurements from 23 March 1985.  Note that the hardest precipitation 

occurs some 15 minutes after onset. 
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but both Stauning (1998) and Kikuchi et al. (1988) have observed slowly varying 

absorption events related to strong Pc4-5 pulsations.  The links between the two are 

not clear but observations were first reported by Ziauddin (1960) and it has been 

suggested that the electron precipitation is being modulated by interaction with these 

longer period waves (e.g. Parthasarthy and Hessler, 1964; Barcus and Rosenberg, 

1965; Coroniti and Kennel, 1970).   

 

4.4 Polar Cap Absorption (PCA) 

Having described the processes by which absorption is caused by geomagnetic 

radiation it is pertinent to review the next important contribution: Polar Cap 

Absorption.  As described in Chapter 1, the open magnetosphere leads to direct access 

of solar wind particles to the geomagnetic cavity. These particles also display a pitch 

angle dependence that determines whether they precipitate into the ionosphere. Thus 

the low altitude polar cap and cusp regions will contain electron density that is due to 

the ionisation trails of solar wind electrons and ions (mostly protons).  Under certain 

conditions very energetic particles can cross closed field lines and precipitate to lower 

latitudes than might be expected. This section describes the processes that produce 

these energetic particles and the ionospheric effects. 

 

4.4.1 General features of polar cap absorption 

 Polar Cap Absorption (PCA) has come to refer to the range of ionospheric 

effects during the precipitation of energetic, solar originating particles; mostly protons 

with some heavy nuclei with energies in the MeV range (Reid, 1974). These effects 

were first identified following the major solar proton event of 23 February 1956, and 
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include the loss of signal on high-latitude VHF communication circuits (Bailey, 

1957), sudden disturbance of phase and amplitude of LF and VLF radio signals (Allen 

et al., 1957; Belrose et al., 1956; Ellison and Reid, 1956; Pierce, 1956), as well as 

strong cosmic radio noise absorption.  

 It was found that events similar to February 1956 were relatively frequent, of 

the order of one per month. However other events did not necessarily produce the 

ground level increase in cosmic ray flux that occurred in the first event.  These events 

were then determined to be due to bursts of particles from the sun with energies 

insufficient to reach ground level (Hultqvist and Ortner, 1959; Leinbach and Reid, 

1959; Reid and Collins, 1959).  Around the same time as these discoveries, Japanese 

workers (Hakura et al., 1958) described polar cap effects observed before major 

geomagnetic storms based on observations of blackouts recorded by ionospheric 

sounding equipment. Since then much work has been done to identify the main cause 

of the precipitating solar particles with arguments between those who support the 

propagation of solar protons following release through flares and those who favour 

shock acceleration of solar wind particles as the dominant mechanism (Krucker and 

Lin). Either way it is undisputed that energetic protons of >1 MeV are the principal 

cause of the polar cap absorption.   Reid (1974) provides a comprehensive review of 

the early theory and observations surrounding Polar Cap Absorption events, including 

a discussion of the ionisation processes involved.   As mentioned earlier one of the 

defining differences, as far as absorption observations are concerned, between auroral 

and polar cap absorption events is the spatial coverage.  The following section reviews 

observations of how and why the polar cap absorption boundary changes in time. 
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4.4.2 The Cut-off Boundary 

 The earliest observations of PCA described the absorption region to be 

relatively uniform across the polar cap, reaching as far south as 60° magnetic latitude.  

Solar protons gain access to the magnetosphere at the pole and cross closed field lines 

to precipitate at much lower latitudes; this was first proposed by Störmer.  Störmer 

theory is concerned with the motion of energetic charged particles in the 

magnetosphere.  It was originally developed for the study of auroral particles but has 

proved more useful with solar protons due to their high energies.  Because the solar 

protons are of such high energies, the magnetic field changes significantly over a 

single gyration, however particles travelling along the magnetic field are deviated 

least making the polar regions the most accessible.  To reach lower latitudes a proton 

must cross closed field lines down to the atmosphere.  Rigidity (momentum per unit 

charge * c/z), has been developed as a convenient measure for discussing the 

penetrative properties of a particle; all particles with the same value of rigidity will 

follow the same path in a given magnetic field.  Störmer’s analysis defined ‘allowed’ 

and ‘forbidden’ regions in the magnetosphere that could or could not be reached by a 

charged particle approaching the Earth from infinity.  Thus there is a lower limit in 

latitude that is reachable by a particle of a given rigidity (the cut-off rigidity).  Rigidity 

is usually measured in GV (109 Volts) and for a dipole field the relationship between 

the cut-off latitude and Rigidity is: 

ccR Λ= 4cos9.14     (4.1) 

At invariant latitude Λc particles with rigidities greater than Rc can be observed, thus 

Stormer theory predicts that particles of all energies will gain access at the  
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Figure 4.7.  Variation of the geomagnetic cut-off latitude with proton energy for 

both a dipole field and a model geomagnetic field.  Note that the model field 

reduces the latitude to which lower energy protons can reach (From Reid and 

Sauer, 1967). 
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geomagnetic pole and then the absorption will decrease steadily with decreasing 

latitude.  Leinbach et al. (1965) found that the ratio of PCA at two latitudinally 

separated stations was about 0.8 under quiet conditions. Using a third riometer 3º 

equatorward, the ratio dropped to 0.3.  These observations showed that PCA events 

display a broad polar cap plateau of roughly 50 degrees diameter with a steep edge of 

a few degrees in width –the cut-off boundary. 

 High altitude balloon experiments have been used as a means of determining 

particle cut-offs in the magnetosphere as far back as 1956. Waddington (1956) and 

Fowler et al (1957) used photographic emulsion experiments over Europe and North 

America to measure the cut-off rigidity of alpha particles. They found that the rigidity 

contours predicted by Störmer theory were significantly removed from the 

observations (±  3° latitude).  Biswas et al. (1962) was able to construct a solar proton 

spectrum during the 3 September 1960 event from balloon measurements near 

Minneapolis (~45° geographic latitude). The lowest detected energy was ~200 MeV, 

however simultaneous measurements at Fort Churchill (Winkler et al, 1961) indicated 

that the spectrum extended down to at least 100 MeV.  By comparing results it was 

clear that protons with energies >300 MeV were allowed at all latitudes from 45° 

upwards, however at 200 MeV only partial intensities were recorded.  Further work at 

both sea level (e.g. Kodama and Miyazaki, 1957; Rothwell and Quenby, 1958) and 

aircraft altitudes (e.g. Katz et al., 1958; Sandstrom,1958; Storey et al., 1958) together 

with measurements from neutron monitors (Pfotzer, 1958; Marsden and Wilson, 1958) 

indicated that the dipole field was inadequate to explain the observed cutoff rigidities 

and that the non-dipolar components of the field were important.   With the increased 

interest in solar proton events after 1957, Freier et al., (1959) were the first to measure 
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low rigidity solar protons at balloon altitudes following the event of 23 March 1958. 

These measurements and the observations from Anderson (1958) conclusively 

identified the particles as protons.   

 Polar orbiting satellites provided a boost for measuring the extent of the 

latitudinal cut off of both solar originating particles and galactic cosmic rays (e.g. Lin 

et al (1963); Quenby and Wenk (1962)). Stone (1964) found the quiet-time cut-off for 

1.5 MeV protons to be as low as 67° invariant latitude, in conflict with Störmer 

theory, which predicted only energies exceeding 120 MeV could reach this latitude.  

For higher energy solar protons (>30 MeV) Akasofu et al, (1963) and Lin and van 

Allen (1964) reported measurements with quiet time cut-offs around 65° on average.  

The position of the cut-off boundary for a given energy is dependent on the position of 

the outer-zone trapping region (Reid and Sauer, 1967; Hoffman and Sauer, 1968; 

Leske et al., 2001).  A particle in a trapped orbit must have rigidity below the cut-off 

applicable to the field line around which it gyrates. Since a particle above this rigidity 

could reach the line from infinity, a similar particle on the field line must be able to 

reach infinity and thus could not be trapped (Reid and Sauer, 1967).  More recently 

Leske et al. (2001) have used the polar orbiting satellite, SAMPEX, to investigate the 

variation of cut-off with both magnetic activity and also local time. Six separate solar 

proton events were used between November 1992 and November 1998.  Significant 

variations in the cutoff locations for several particle energies (protons and helium 

from 8 to 64 MeV) were observed, often by ~5°-10°. These variations were compared 

with Dst and KP indices as proxies for geomagnetic activity.  In general the shapes of 

the time variations in the cut-offs correlate remarkably well with changing Dst and KP 

(coefficients of 0.76 and –0.77 respectively). 
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Figure 4.8.  Orbit averaged cut-off invariant latitude for ~8-15 MeV/nucleon He 

plotted versus Dst to the same time as the cutoff measurement for the five time 

periods indicated (From Leske et al., 2001) 
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 A change in Dst by 200 nT or more will move the cut-off latitude by ~8°-10° for 

particles with rigidity of ~250-340 MV.  However at certain times the indices 

significantly lead or lag the changing cut-off and have large deviations from the cut-

offs, particularly at high values of Dst.  The reason for this behaviour is not clear 

however the coarser resolution of KP introduces an additional uncertainty.  By 

correcting for Dst values, the local time dependence of the cut-off was determined. In 

the northern hemisphere this resulted in a circle of ~25.85±0.04° offset by 0.75±0.06° 

towards 2211 MLT. The southern hemisphere has a circle of similar size but the offset 

was greater and pointed towards an earlier local time (0.85±0.06° at 2113 MLT). Both 

cases point to the expected diurnal variation with a maximum cut-off latitude 

occurring in the morning sector and a minimum pre midnight. The observations by 

Leske et al (2001) agree with those made by Faneslow and Stone (1972) where a 

variation of < 2° was found with local time.  

 The cut-off boundary may also play an important role in the signature of 

absorption from riometers close to those latitudes.  The following section investigates 

a phenomenon that has often been attributed to the diurnal variation in the cut-off: the 

midday recovery. 

 

4.4.3 The midday recovery 

 Leinbach (1961) was the first to discover and describe the so-called Midday 

Recovery.  This recovery is a decrease in polar cap absorption observed on the day 

side near the edge of the polar cap and the principal features of the recovery were 

defined by Leinbach (1967).  Midday recoveries occur within the local time range of 

0800 to 1500 with most between 1000 and 1200 LT and total duration at a single  
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Figure 4.9.  Riometer absorption on 20 March 1990 as seen at different stations 

of the northern hemisphere.  The Midday recovery is marked on each plot when 

identified (Uljev et al., 1995). 
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riometer station may be as long as 6-10 hours (Figure 4.8). . The magnitudes of the 

recoveries are latitude dependent, with a greater drop in absorption evident at the edge 

of the cut-off boundary. This remains true during magnetic storms when the cut-off 

boundary expands equatorward, the midday recovery also occurs at the lower 

latitudes.  These properties suggest that the recoveries are the result of an effective 

increase in the rigidity of the bombarding particles during the local morning hours 

near to the edge of the polar cap region. Two principle mechanisms have been 

suggested for the reduction in absorption: The development of an anisotropic pitch 

angle distribution of the protons leading to reduced precipitation around noon, and a 

general increase in the cut-off latitude at noon due to the configuration of the magnetic 

field.  

 Taylor (1967) calculated trajectories for low energy solar protons (1.2 MeV) 

using the Taylor and Homes (1965) model magnetosphere. He found that protons with 

this energy would reach magnetic latitudes of 65°-75° only if the pitch angles at 2000 

km altitude were very large.  This supports the theory of a depleted loss cone for the 

low energy protons on the day side of the polar cap (Leinbach, 1967).  Paulikas et al 

(1968) reported an anisotropic distribution of solar protons at invariant latitudes less 

than 75° around noon during the PCA of 2 September 1966.  The increase in cut-off 

latitude for a given rigidity is supported by Reid and Sauer (1967). As described in a 

preceding section, the existence of the geomagnetic tail leads to a day night 

asymmetry in the trapping boundary. If the region of solar bombardment is dependent 

on the position of the open-closed field line boundary then a similar day night 

asymmetry will be seen in the cut-off latitude (Hoffman and Sauer, 1968). The 

anisotropy theory was also contested by Burrows (1972) after making direct 
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measurements of the solar proton pitch angles during several PCA using the ISIS-1 

satellite.  No anisotropy was detected at latitudes less than 65°. 

 The contributions of both processes have been studied by Uljev et al (1995) 

using a case study of the event of 19-21 March 1990.  Morphological features of the 

event were described and in particular the area affected by the midday recovery was 

found to be 10° of invariant latitude with two separate regions below and above 65° 

latitude in which properties of the recovery are different. Above 65° a combination of 

anisotropic flux of protons and the diurnal variation in the cut-off latitude results in a 

shorter recovery and smaller amplitude.  Below 65° it is suggested that the diurnal 

variation is dominant. These conclusions support the previously conflicting 

observations of Burrows (1972) and Paulikas et al (1968).  The effect can be 

explained by considering the portions of the energy spectrum that result in the 

absorption at the different latitudes. At lower latitudes proton energies of 30-100 MeV 

control the absorption due to their cut-off rigidity, whereas the 1-30 MeV protons 

dominate above 65°.  Schöler (1975) found experimental evidence that pitch angle 

anisotropy is a typical feature of solar protons with energy less than 30 MeV but not 

of higher energy protons.  

However neither of the explanations can explain the occurrence of 

observations of the midday recovery. Leinbach (1967) identified midday recoveries in 

only 20% of the PCA events between 1957 and 1961.  Uljev (1978) and Uljev et al.  

(1995) determined that only solar proton fluxes with a relatively soft energy spectrum 

(characteristic rigidity of less than 100 MV) will produce a midday recovery. Thus if 

hard events occur, no midday recovery will be observed. Another important factor is 

the level of geomagnetic activity (Driatsky, 1974). An increased level will prevent 
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reliable identification of the midday recovery due to the enhanced auroral 

precipitation.  The 20% occurrence described by Leinbach has been challenged by 

Ranta et al (1995). Using observations from densely spaced riometer chains from 

1989-1991, the midday recovery was found to occur in at least one station during all 

days of each PCA event. This supports the diurnal variation of the cut-off boundary as 

the dominant cause of the midday recovery, a position supported by Hargreaves et al 

(1993). 

 

4.4.4 Chemical Effects:  The diurnal variation, twilight anomaly and 

recombination rates 

 The most striking effect of the mesospheric chemistry on PCA is the diurnal 

variation exhibited as decay in absorption during the hours of darkness.  Gillmor 

(1963) demonstrated that with similar proton fluxes, such as in geomagnetically 

conjugate stations, absorption levels were similar when both regions were sunlit.  

However the absorption dropped considerably at night.  The cause of this day-night 

variation is the variation of the electron-QHJDWLYH�LRQ�UDWLR�� ���L�H��FKHPLFDO�LQ�QDWXUH�

rather than geophysical as the diurnal change in the cut-off boundary.  In Chapter 1 it 

was explained that in the lower D layer the attachments of electrons to neutral species 

is the dominant loss mechanism and as seen in Chapter 2 ionospheric absorption is 

GHSHQGHQW� RQ� WKH� HOHFWURQ� GHQVLW\�� WKXV� DQ� LQFUHDVH� LQ� � OHDGV� WR� D� GHFUHDVH� LQ�

absorption.  From earliest observations the night time recovery was attributed to 

chemical changes involving O2 and ultimately water cluster ions (Fehsenfield and 

Ferguson, 1969) and particularly the process of photodetachment.   Much study has 

been made of the transition through twilight and the rate of decay of absorption with 
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the solar zenith angle. It was found that approximately half of the sunset decay takes 

place while the shadow of the Earth moves from ground level to 40 km identifying the 

detaching radiation as Ultra Violet rather than visible light; the ozone layer at ~35 km 

altitude heavily absorbs UV.  Originally O2
- was thought to be the dominant species 

involved in the transition, however if UV is the influential radiation then the 

photodetachment takes place from a more tightly bound negative ion.   

 Progress in studying the chemical changes in the lower ionosphere was 

advanced with the introduction of incoherent scatter radar observations.  In theory the 

excess ionisation in the D layer during solar proton events provides a good incoherent 

scatter signal at altitudes lower than during the more usual auroral electron 

precipitation events (Turunen, 1996). The EISCAT radars have been used to 

GHWHUPLQH� WKH� WHPSRUDO� EHKDYLRXU� RI� WKH� QHJDWLYH� LRQ� WR� HOHFWURQ� GHQVLW\� UDWLR�� �

(Rietveld and Collis, 1993). During the sunset on 23 October 1989 the incoherent 

scatter spectrum is seen to widen with increasing solar zenith angle for all altitudes 

below 70 km.  By modelling the spectral width values for different values of ion mass 

the authors illustrated a discrepancy between the measured and theoretical values. 

Similar observations were made by Hansen et al (1991) and Tepley et al (1981) with 

the measured spectra being noticeably narrower than the calculated ones.  Further 

work by Collis and Rietveld (1998) using the EISCAT VHF radar produced similar 

effects with narrowed spectral widths compared to model predictions. This rules out 

the possibility that the radar frequency is a factor in explaining the discrepancy. The 

reason for this discrepancy is still unclear, but it highlights the need for detailed theory 

and models of the D region for interpreting incoherent scatter signals. Progress has 

been made in this area using detailed ion chemistry models such as the six ion scheme 
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by Mitra and Rowe (1972) and more recently by a 35 ion model (e.g. Burns et al, 

1991; Turunen, 1993).  This approach uses the spectral width and the raw electron 

GHQVLW\�GDWD�VXSSOLHG�E\�(,6&$7�DV�LQSXWV� WR�GHWHUPLQH�SDUDPHWHUV�VXFK�DV� ��PHDQ�

ion mass, neutral temperature and ion concentrations.  Comparisons of the model 

temperature results for the 14 August 1989 PCA event with data collected by a 

LIDAR at Andoya (Hansen et al, 1991) show a close match, including a sharp 

gradient above the mesopause in the temperatures. Discrepancies in the heights of the 

mesopause may be due to the separation of 129 km between the LIDAR and EISCAT. 

 In 1989 13 separate experiments on the EISCAT UHF radar partly covered 

seven solar proton events between March and December (Collis and Rietveld, 1990). 

Electron density data could be analysed from as low as 54 km altitude on one 

occasion.  During four separate twilight periods the electron density variations were 

observed (23-25 October), allowing a detailed comparison of the sunset and sunrise 

periods.  A marked asymmetry was observed as a delay in the build up of the electron 

density at altitudes below 70 km during sunrise. During sunset a linear dependence on 

solar zenith angle was found for the initial time of the electron density decrease at 

each altitude. Corresponding behaviour was seen during sunrise above 70 km.  

Chemical information was deduced from consideration of the Earth’s shadow height 

and the delay in electron density build up.  The dominant negative ion was deduced to 

be a high affinity ion such as NO3
-, instead of the primary negative ion O2

-.  The 

thirty-minute delay in build up below 70 km was tentatively attributed to the build-up 

time of neutral O2.  It was concluded that either the loss of O2
- in collisional 

detachment with O2(
1
¨g)  would be the dominant loss process, or reactions of negative 

ions with atomic oxygen would produce O2
- which is easily photodetached.   
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 Reagan and Watt (1976) used the Chatanika incoherent scatter radar to 

estimate the effective recombination rate coefficient by combining electron density 

observations from the radar with proton flux data from a polar orbiting satellite during 

the intense solar proton event of August 1972.   Hargreaves et al (1987) used the 

EISCAT UHF radar to perform a similar investigation during an event in February 

1984.  The altitude profile of the recombination rate was consistent with a transition 

from simple molecular ions to hydrated ions in the lower ionosphere.  A gradual 

decrease of the recombination rate coefficients occurred at all altitudes during three 

hours around noon in both studies. This has been interpreted as a progressive change 

in D-region photochemistry but further interpretations were not attempted.   

Effective recombination rate coefficients were also estimated by Hargreaves et 

al (1993) for the PCA of 19-21 March 1990.  The calculation was performed in a 

similar manner as explained by Hargreaves et al (1987) however this time scatter from 

the EISCAT VHF radar was used between heights from 60 to 80 km.  The estimated 

effective recombination rates show a large variation with time of day, increasing 

rapidly with night at the lower altitudes, consistent with the formation of negative 

ions. Just as Collis and Rietveld (1990) the authors used the Earth’s shadow height to 

deduce that ultra violet light (UV) is responsible for the photodetachment process in 

the lower D region. In effect at high solar zenith angles the ozone layer at 35 km 

altitude acts as a filter, reducing the UV incident upon the D region at the horizon.  

The EISCAT UHF electron density data has been used to derive proton energy 

spectra at the top of the atmosphere (Hall et al., 1992). During the August 1989 solar 

proton event the overall time behaviour of the integrated spectra was similar to the 

spectra observed by the GOES-7 satellite at geostationary orbit.  The authors note that 
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their treatment did not include the correction for other possible ionisation sources and 

the choice of the effective recombination rate coefficient might have led to the 

observed differences in detail.   Other workers have used proton measurements from 

polar orbiting satellites to determine an empirical relationship between the 

precipitation flux and the absorption observed by riometers in the polar cap Davies 

(1990) states that polar cap absorption events are related to integral proton fluxes of 

energies greater than 20 MeV.   Potemra (1972) determined that the absorption is 

proportional to the square root of the flux and is most affected by protons with energy 

> 15 MeV, which produce their greatest ionisation at a 65 km altitude in the D layer.  

 

4.5 Summary 

In this chapter, results relevant to the precipitation of energetic particles in the 

auroral zones and particularly riometer measurements have been reviewed.  The 

observations and causes of auroral absorption have been discussed along with the 

phenomenon of Polar Cap Absorption.  It has been shown that much work in the 

riometry field has been done since its inception in 1958, however with more refined 

technology and with the support of complementary observations from satellites, radars 

and other instruments much more can be done.  Chapters Five, Six and Seven of this 

thesis present observations of auroral and polar cap absorption. 
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Chapter 5 

Absorption in the dayside ionosphere – case study 

 

5.1  Introduction 

In this chapter an investigation of a case of dayside auroral absorption is 

presented.  This event occurred on the 11 February 1997 and consisted of significant 

but slowly varying absorption in the morning sector (post 06:00 UT) continuing past 

12:00 MLT into the afternoon. The EISCAT mainland UHF radar monitored the 

whole event providing estimates of the electron density for altitudes upward of ~65 

km, supporting the observations from  the imaging riometer for ionospheric studies 

(IRIS) at Kilpisjärvi.  Due to a number of passes of DMSP spacecraft, providing 

spectral information, the precipitation of particles is directly observed at the same time 

as wave structure is remotely monitored by ground based pulsation magnetometer. By 

considering the chain of riometers operated by Sodankylä Geophysical Observatory 

the gross latitudinal movement and development of the absorbing region is 

investigated. Comparisons are made between the movement of the absorption patch 

with F layer convection derived from the CUTLASS HF radar. Finally the event is 

placed in a global context by considering the simultaneous night side observations of 

substorm activity, monitored by the CANOPUS array of instruments. 

Four main topics are addressed: the solar control of precipitation; substorm 

related particle drifts; ionospheric flow changes; changes from electron to 

predominantly ion precipitation. 
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5.2 Observations 

 The following sections describe the observations taken during the event on the 

11 February 2002.  This includes observations of the solar wind and IMF close to 

Earth from the GEOTAIL satellite, ground based observations from Fennoscandia, 

satellite measurements of precipitating particles and night side observations from the 

Canadian sector. 

 

5.2.1 Solar Wind Measurements –GEOTAIL 

The interval preceding 11 February 1997 was particularly active.  A large 

magnetic cloud had passed the Earth on the 10 February and the interplanetary 

magnetic field (IMF) had been highly variable throughout the preceding week with 

high solar wind speeds up to ~650 kms-1 at the L1 point. By the time of the event 

presented here  (06:00 to 12:30 UT, 11/2/1997) the solar wind speed had slowed to 

around 450 kms-1 and continued to slow throughout the day reaching a low of 400 

kms-1 by 11:40 UT.   

Figure 5.1 shows the northward (Bz) and eastward (By) components of the IMF 

together with the dynamic ion pressure during the event. The data come from the 

GEOTAIL satellite (Kokobun et al., 1994; Mukai et al., 1994) that was moving 

duskward in the solar wind from (10.1, -0.8, 0.6) to (9.2, 8.7, 1.32) Earth Radii in 

geocentric solar magnetospheric (GSM) coordinates. This suggests that the satellite 

was in the magnetosheath, between the bowshock and the magnetopause. The timing  
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GEOTAIL - 11 February 1997
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Figure 5.1: Solar Wind data taken from the GEOTAIL spacecraft. The satellite 

was crossing the front of the magnetopause at 10 Re for the duration of this 

event. The panels illustrate (top to bottom): predominantly negative IMF BZ, 

positive IMF BY, and the low solar wind dynamic pressure 
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from the magnetopause to the foot of the ionosphere is estimated to be approximately 

2 minutes (Stauning et al., 1995a).  Data from the satellite is available from 06:00 UT 

to 12:00 UT. 

The dynamic pressure is relatively low throughout the event, reaching a 

maximum of 5.8 nPa at 11:40 UT, but remaining mostly below 3 nPa.  A rise of 2.4 

nPa occurs over 15 minutes around 06:10 UT. A peak of 3.1 nPa occurs at 07:00 UT. 

A number of small steps (positive and negative) in pressure follow this first rise with a 

general decline to ~0.5 nPa.  Pressure again increases after 10:00 UT and remains 

variable over short time scales, never exceeding 6 nPa by 12:00 UT. BY shows an 

eastward tendency at the start of the event with a gradual westward turning; BY drops 

from +15 to –1 nT by 07:40 UT.   An abrupt eastward swing begins at 07:50 UT 

reaching a maximum of +23 nT at 08:00 UT.  Values fluctuate between +10 and +23 

nT for the next hour  before once again swinging westward to –2 nT at 09:05 UT.  The 

eastward component then varies about zero until 10:45 UT when a gradual eastward 

turning occurs, reaching a maximum of +25 nT at 11:45 UT. 

The northward component of the IMF was strongly negative at the start of the 

time series. A short drop from –40 to –70 nT accompanied a drop from +12 to +1 nT 

in BY at 06:10 UT. This quickly recovered to –22 nT in the BZ component and 

remained relatively steady around –20 nT until 07:20 UT.  A short drop in BZ to –35 

nT preceded variations of ± 8 nT about –31 nT until shortly before 09:00 UT when BZ 

decreased again.  Following this more southward turn (-40 nT) there was a slow 

northward motion of the IMF, increasing after 11:30 UT to make a northward 

excursion that lasted a couple of minutes at 11:40 UT. 
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5.2.2 Ground based Observations  -EISCAT, IRIS and pulsation magnetometer 

Figure 5.2 shows the time series from three ground-based instruments starting 

from 06:00 UT (08:10 MLT at EISCAT) on 11 February 1997.  The top panel shows 

raw electron density values between 65 and 180 km measured by the EISCAT radar, 

uncorrected for the electron to ion temperature ratio. This correction is not expected to 

be important at E region heights and below where Te ~ Ti, unless significant joule or 

ion frictional heating occurs. In this event the ion and electron temperatures remained 

at background levels for most of the duration apart from a slight increase between 

11:00 and 12:00 UT which will not be discussed here.  The centre panel contains the 

cosmic radio noise absorption from beam 16 of IRIS, measured in decibels (dB). 

Beam 16 intersects with the field aligned UHF radar beam in the D region.  A 

spectrogram from the search coil magnetometer co-located with IRIS at Kilpisjärvi is 

presented in the bottom panel.  The intensity (arbitrary units) of pulsation activity is 

illustrated for frequencies from 0 to 1 Hz. 

A substantial enhancement in electron density occurs from 06:20 UT. This is 

located in a height band of ~83 to 116 km. The density enhancement maximises at 

~2.2 × 1011 m-3 and lasts until 06:40 UT.  Cosmic radio noise absorption is 

approximately proportional to the height-integrated product of the effective collision 

frequency and the electron density in the D region (chapter 2, section 2.3.3),  thus 

there is a sharp 1 dB rise at 06:20 UT. The northernmost beam of IRIS observes an 

increase of 1 dB at 06:15 UT, which then expands equatorward, covering the whole 

field of view by 06:50 UT;  apparent from an inspection of the multi-beam data.  A 

second peak in the ionospheric electron density (~1.7 × 1011 m-3) occurs around 07:00  
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Figure 5.2:   The top panel shows the EISCAT raw electron density, scaled from 

the returned power.  The middle panel shows the absorption time series from 

beam 16 of IRIS. The bottom panel is a spectrogram from the pulsation 

magnetometer at Kilpisjärvi with arbitrary units of intensity. 
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UT.  There appear to be 4 distinct bursts of structured density between 06:00 and 

08:00 UT (06:30, 07:00, 07:15 and 07:30 UT) with successively decreasing maxima 

and narrowing height ranges.  The peaks of the enhancements last for 10-15 minutes.  

IRIS recordsmatching peaks between 0.6 and 1.3 dB.   After 08:00 UT another 

increase occurs (1.3 × 1011 m-3) lasting for ~10 minutes. This precedes a large, long 

duration, increase in electron density at 08:15 UT.  At 08:35 UT the density reaches to 

a lower altitude of ~77 km, before gradually rising to the previous altitude limits, 

corresponding with high absorption (3 dB). Electron densities remain greater than 1011 

m-3 until 09:50 UT with an increasing lower altitude limit. This is reflected in the 

riometer time series as a gradual decrease in absorption.   From 10:00 UT a change in 

the altitude spread of the electron density occurs (Figure 5.2, top panel). 

Enhancements range from ~80 km to 130 km altitude, with lower density values. The 

absorption peaks at about 1.4 dB due to the extended height range of electron density.  

Around 11:00 UT the ionosphere starts to lift so that by 11:12 UT most of the D 

region density has disappeared. Instead there are strong concentrations (>1.5×1011 m-

3) in the E region with ‘tails’ extending into the lower F layer.  These appear to occur 

in 4 short and narrowly separated bursts, each lasting 10 to 15 minutes.  The 

absorption over EISCAT is relatively low, with the exception of a short duration 1 dB 

spike at 11:30 UT.  A sharp cut-off in electron density occurs shortly after 12:10 UT 

and densities then remain low until late evening.  The large spike in the absorption 

data at 12:15 UT is due to a drifting, narrow arc that is partly covered by beam 16 but 

does not pass through the much narrower beam of EISCAT. At 11:12 UT the 

magnetometer observes structured pulsations covering the range of 0.2 to 0.5 Hz with 

the upper limit gradually rising to 1 Hz and the lower limit increasing to 0.4 Hz over 
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the next 30 minutes. This structure is repeated at 11:50 UT and coincides with 

northward turnings of the IMF. The first of these is clear in the data from GEOTAIL 

(Figure 5.1). 

Throughout the precipitation event the Finnish search-coil magnetometer at 

Kilpisjärvi observes intense pulsations particularly in the < 0.2 Hz range (Figure 5.2, 

bottom panel).  From 06:00-10:00 UT there are low intensity pulsations of <1 Hz, 

with a maximum below 0.4 Hz. There is some time coincidence with the bursts of 

electron density with the pulsations lasting for 10 to 15 minutes and separated by ~10 

minute intervals. The weakest burst of pulsations coincides with the large increase in 

absorption at 08:40 UT.  After 09:45 UT there are much more intense, continuous 

pulsations occurring in the frequency range of 0.2 to 0.6 Hz.  This frequency band 

narrows over the next 90 minutes.   

The spatial development of the absorption over EISCAT can be ascertained 

from the keogram in Figure 5.3. The keogram is a slice across the field of view at 

constant geographic longitude (19.2°). The equatorward expansion at 06:15 UT is 

clear and the large increase at 08:40 UT seems to occur simultaneously in all beams.  

A northward drift of the absorbing region is visible in the keogram after 09:40 UT 

with the most intense absorption being confined to the south end of the field of view, 

away from EISCAT. A patch of absorption at 11:10 UT drifts poleward and westward 

with levels exceeding 3 dB. A second patch follows at 11:30 UT, this one extending 

further north (66.4° Mlat).  The arc of absorption at 12:15 UT meanders poleward as 

well, but as discussed earlier, it does not enter the EISCAT radar beam.  
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Figure 5.3: Keogram taken at constant geographic longitude. The image is a 

composite from the IRIS beam data and includes beam 16 that overlaps the field 

aligned EISCAT radar beam in the D region. The dashed white line indicates the 

latitude of EISCAT. 
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5.2.3 Ground Based Observations –The SGO riometer chain and CUTLASS 

The motion of absorption observed in the riometer (Figure 5.3) indicates that 

the precipitation region is moving in the ionosphere.  The F region irregularity 

velocities provides a window to view the convection of the magnetospheric field lines.  

Figure 5.4 displays the line of sight velocities from beam 5 of the CUTLASS Finland 

radar that passes over EISCAT. Negative values represent velocities away from the 

radar site and the dashed horizontal line indicates the latitude of EISCAT. The lack of 

data from Iceland East means that velocity vectors are not available for 06:00 to 12:30 

UT, but beam 5 points approximately meridionally. The scatter is patchy for much of 

the event, however the velocities after 11:00 UT are high (sometimes reaching >800 

ms-1) and increase in the westernmost beams. The eastern beams show lower 

velocities at this latitude, even turning equatorward in the easternmost beam. This 

indicates that EISCAT is in a region of strong ionospheric return flow as the field 

lines convect poleward towards the cusp and across the polar cap.  Velocities previous 

to this tend to be low (± 200 ms-1) as the direction of dominant flow is most likely 

perpendicular to the radar line of sight.   

Larger scale observations of the development of the precipitation region can be 

obtained from the SGO chain of riometers. Figure 5.5 is a stack plot of the riometer 

data, incorporating the IRIS wide beam. The top panel is from the Hornsund 

instrument located at the southern tip of the largest island of the Svalbard archipelago. 

The remaining instruments are on the mainland and are ordered in descending 

magnetic latitude;  the Y-axis divisions are 0.5 dB.  For the purpose of direct 

comparison, the data have been scaled according to frequency to match the level of a 

38.2 MHz riometer.  
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Figure 5.4:  Line of sight velocities from beam 5 of the CUTLASS Finland HF 

radar. Negative velocities are away from the radar site (approximately 

poleward).  The radar was operating under normal scanning mode for this 

period. The horizontal dashed line indicates the latitude of EISCAT.  
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Figure 5.5:  A stack plot of riometer data comprised of IRIS and the SGO 

chain.  The instruments are ordered by descending magnetic latitude.  Hornsund 

and Jyvaskyla see little activity throughout the event. The spatial development of 

the precipitation in the ionosphere can be seen as changes in the absorption 

signatures at each latitude and the time delays between notable features. 
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Neither Hornsund (73.8° Mlat) nor Jyväskylä (58.8° Mlat) witness absorption 

above 0.5 dB from 06:00 to 12:30 UT, placing a definite latitudinal limit to the 

precipitation.  The time lag in the event onset can be seen in the riometer chain. Oulu 

(61.5° Mlat) does not see increased absorption until 08:00 UT.  At this time the 

riometers from Abisko to Oulu see a rise of at least 2 dB maximising after 08:40 UT. 

The absorption reaches background levels again at Oulu by 10:00 UT.   Post 10:00 UT 

the activity is more variable. Before 11:30 UT most activity is recorded in the mid to 

northernmost riometers; there follows two large spikes in Sodankylä and Rovaniemi 

(~4.5 dB) at the same time as a gradual rise begins in Oulu (1 dB by 12:30 UT). 

 

5.2.4 Space Based Observations of Precipitation –DMSP. 

Three passes of DMSP satellites occurred with 12° longitude of EISCAT 

between 06:30 and11:30 UT on 11 February 1997. Figure 5.6 shows particle flux-

energy spectrograms from two of the DMSP. The top panel displays data from the F13 

satellite split into electron and ion fluxes. The satellite crossed the magnetic latitude 

(Mlat) of EISCAT at 06:33 UT, 10° longitude west of the radar beam, indicated by the 

solid, vertical black line.  The dispersed ion signatures from 06:30 to 06:32 UT 

indicate that the satellite is on newly opened field lines, moving south to closed field 

lines. By the time of crossing EISCAT (06:33 UT) there are no ion signatures, 

however there are relatively high fluxes of low energy electrons and low to medium 

fluxes of high-energy electrons (> 2.5 keV). The maximum energy deposition height 

of a 2.5 keV electron is ~130 km suggesting good agreement with the EISCAT data at 

this time. The high-energy electrons are still detected to ~65° Mlat.  A pass by the F12  
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Figure 5.6:  Two passes from DMSP satellites are shown.  The black 

vertical lines illustrate the times of crossing the magnetic latitude of EISCAT. 

The top panel is from the F13 spacecraft around 06:30 UT.  The bottom panel is 

a pass by the F10 satellite close to 11:00 UT 
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satellite at 09:58 UT (5° longitude from EISCAT) coincided with decay in the electron 

density (data not shown). Low fluxes of energetic electrons were observed together 

with softer electron precipitation that deposits in the lower F region, once again in 

agreement with the EISCAT data.   

The final DMSP pass (Figure 5.6, bottom panel) is by the F10 satellite at 10:59 

UT (7° longitude away).  Once again there is the dispersed ion signature as the 

satellite travels equatorward through the cusp.  There is a distinct lack of energetic 

electrons at this time, however there are fluxes of 10s of keV ions over a short latitude 

range.  This coincides with the E region densities observed by EISCAT and the 

structured Pc1 pulsations recorded by the magnetometer. Although there is evidence 

of softer electrons, there are also high fluxes of energetic ions (10-30 keV) that could 

account for the E-region densities. 

 

5.2.5 Night Side Observations of Substorm activity – CANOPUS. 

Finally, night side observations are provided by the CANOPUS (Canadian 

Auroral Network for the OPEN Program Unified Study) array of instruments.  Figure 

5.7 shows the response of several instruments to the varying geomagnetic activity. 

The top panel displays the magnetic signature at Gillam, filtered for Pi2 pulsations.  

The scale has been limited to ±20 nT to allow easy viewing of the low intensity 

pulsations. The central panel shows the latitude integrated (red) and peak (black) 

intensity observed by the Gillam Meridian Scanning Photometer (MSP) at 557.7 nm. 

The bottom panel is a stack of riometers from the Churchill line; Churchill, Gillam 

and Island Lake from top to bottom. Due to a lack of reliable quiet day curves the 

signal amplitude is illustrated rather than absorption.  
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Figure 5.7:  CANOPUS night side observations illustrating elevated geomagnetic 

and auroral activity. The Pi2 filtered magnetic signature at Gillam is shown (top) 

with latitude-integrated (red) and peak (black) optical intensity at 557.7 nm from 

a co-located MSP (middle). The bottom panel is a stack plot of riometers from 

the Churchill line; Churchill, Gillam and Island Lake from top to bottom. 
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Low activity occurs locally up until 06:10 UT when a large burst of Pi2 occurs, 

reaching a maximum at 06:20 UT. This corresponds with increased optical activity 

and a sharp spike in the riometer data indicating energetic precipitation. Magnetic 

midnight occurs at 06:30 UT at the Gillam site. Activity remains high from 06:00 UT 

to 10:00 UT with Pi2 fluctuations of  >±20 nT and variable optical signatures in the 

MSP related to drifting auroral arcs. A second strong burst of activity occurs shortly 

before 08:00 UT (01:30 MLT) and then again around 09:00 UT (02:30 MLT) and 

beyond.  

 

5.3 Discussion of Observations 

Here we discuss different possibilities for explaining the origin of the 

absorption observed by IRIS related to the enhanced electron densities. Three main 

areas are addressed: the effect of the solar wind pressure, drifting electrons from 

substorm injection and changes in precipitation spectrum. From these topics, the 

precipitation on the morning of 11 February 1997 may be characterised as arising 

from a combination of two distinct geophysical phenomenon; the recovery phase of a 

small storm and drifting electrons from enhanced nightside activity coupled with solar 

wind pressure changes.  Finally the spatial development of the absorption is 

considered and compared with ionospheric flows measured by coherent radar.  This 

enables the differentiation of dominating flow regimes at different times during the 

event. 
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5.3.1 Solar Wind Pressure 

The timing of the first increase in absorption coincides with the first rise in 

solar wind pressure at around 06:20 UT (assuming a short delay from the 

magnetosheath to the ionosphere), and the time structure of the absorption broadly 

follows the changing pressure;  small changes in the pressure are reflected in changing 

absorption levels in IRIS.  The pressure-absorption relationship breaks down after 

08:15 UT (at EISCAT) when the pressure decays to <1 nPa within 30 minutes 

whereas the absorption continues to increase. This is due to a hardening of 

precipitation, as indicated by the increase in electron density at lower altitudes evident 

in the EISCAT data.  Pressure pulses in the solar wind are well known to produce 

increases in auroral precipitation (Brown et al, 1961; Brown and Driatsky, 1973) 

through wave particle interactions in the magnetosphere, leading to enhanced 

ionospheric absorption (Perona, 1972).   This sudden commencement absorption 

(SCA) is often associated with poleward moving absorption regions (Brown, 1978), 

however in this case the absorption spreads equatorward following onset (Figure 5.3 ).  

SCA are usually associated with pressure increases of at least an order of magnitude 

greater than the values observed during this event. From this it may be surmised that 

the solar wind pressure is not the sole cause of the electron density observed at 

EISCAT.   The coincidence in the temporal structure of the pressure and the 

absorption suggests that the solar wind plays a role in the precipitation of the electrons 

in this case, however similar observations are needed to confirm if this is more than a 

coincidence.  If high fluxes of trapped electrons are present fluctuations in the Earth’s 

magnetic field will encourage the growth of resonant waves. This will lead to pitch 

angle diffusion amongst the particle population, resulting in scattering into the loss 
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cone and hence precipitation (Schulz and Lanzerotti, 1974 and references therein). A 

mechanism by which elevated fluxes of electrons are injected onto the relevant field 

lines is suggested in the following section.   

 

5.3.2 Substorm Drifts 

The electron density enhancements from 06:15 UT correspond with bursts of  

<0.6 Hz pulsations (Figure 5.2).  On average these bursts last for 10 to 15 minutes 

with a ~10-minute separation suggesting a Pc5 like modulation.  Kikuchi et al. (1988) 

and Stauning (1998) observed some slowly varying absorption events to be related to 

strong pulsations in the Pc 4-5 range. Stauning (1995b) and Stauning (1998) describe 

the theory that absorption in the morning sector displaying this slowly varying nature 

was related to the drizzle of eastward drifting electrons from substorm activity on the 

nightside. Those observations were from the Sondre Stromfjord IRIS at 73.5° Mlat.   

The CANOPUS observations (Figure 5.7) confirm that substorm activity was 

occurring in the Canadian sector at this time. Activity at the Gillam site started shortly 

after 05:00 UT.  The magnetometer indicates low intensity Pi2 signatures at this time 

related to a small brightening in the 557.7 nm emission between 70° and 64° latitude.  

Major activity begins after 06:00 UT with a large Pi2 signature at 06:20 UT 

accompanied by a spike in the absorption from the co-located riometer at Gillam.  

Figure 5.8 shows the AE index (top panel) and Dst index for 11 February 1997. The 

period of observation at EISCAT is highlighted in red. A sharp increase in the AE 

index occurs around 05:00 UT before a much larger increase occurring after 06:00 

UT. This reinforces the CANOPUS observations of the geomagnetic activity. 
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Figure 5.8:  Hourly Dst and the 1 minute AE indices for 11 February 1997.  The 

periods in red denote the times of observation at EISCAT.  The whole period was 

relatively active but a minimum in the Dst index occurs around 9 to 11 UT.  AE 

shows an initial sharp increase close to 5 UT before a much larger step after 6 

UT. 
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The timing of the expansion of absorption at onset across the IRIS field of view gives 

an estimate of the energy of precipitating electrons if it is assumed that electrons are 

injected onto all relevant L shells simultaneously. The IRIS keogram (Figure 5.3) 

illustrates a distinct gradient in the precipitation at event onset. The IGRF-2000 model 

was used to identify two IRIS beams (beams 2 and 46) that have the same magnetic 

longitude, and to calculate their L-values.  During the initial period of activity a time 

difference of about 25 minutes was observed between the appearance of absorption 

features in these two beams.   

Assuming only small changes in the magnetic field the drift period of a 

particle can be expressed, following Hargreaves (1995), as: 

F

G
.

R

1
.

E

733
P =  hours      (5.1) 

E is the energy of the particle in keV, R is the equatorial distance, in earth radii, and 

G/F is a function that depends on the mirror point of a particle. Close to the equator 

G/F=1 and increases to 1.5 for particles mirroring at the poles. It is clear that a particle 

will take longer to complete an orbit on a lower L shell than a similar particle at 

higher L. Particles which mirror at the equator are ignored for the purpose of this 

calculation since they are less likely to precipitate than those that mirror at the poles. 

Thus G/F is taken to be 1.5 for the following estimation.  It should be noted that 

particles are injected on the nightside and precipitate after dawn, thus they complete 

only a fraction of an orbit.   For the purpose of this calculation we make the 

assumption that particle injection occurs around magnetic midnight. This follows the 

observations of Vagina et al. (1996) using LANL and GOES geosynchronous 

spacecraft to detect dispersed particle populations and magnetic field dipolarization.  
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These signatures of the injection region occurred between 21:00 and 01:00 MLT with 

most before but close to midnight.  Thus in this case the injection region is chosen to 

be 24:00 MLT.   Assuming this injection period, a particle that precipitates at 08:20 

MLT will have travelled just over 8 hours of magnetic local time.  Thus a particle 

precipitating at 06:15 UT will have travelled 35% of its predicted orbital period and a 

particle precipitating at 06:50 UT will have travelled 38%.  Hence, the time separation 

of precipitation from a single characteristic energy (E) on two field lines (R1 and R2) 

at similar magnetic longitude can be expressed as: 







−×=∆=−

12
12

35.038.05.1099

RRE
TTT    (6.2) 

Where ¨7�GHILQHV�WKH�WLPH�GLIIHUHQFH�RI�SUHFLSLWDWLRQ�RFFXUULQJ�RQ�ILHOG�OLQHV�52 and 

R1.  Thus for the two IRIS beams at L=6.65 and L=5.62, E §����NH9� 

This method assumes that electrons are injected, simultaneously, over the 

range of L = 5.62 to 6.65 and at a very confined range of longitudes.  EISCAT shows 

a maximum of electron density between 85 and 105 km altitude at 0620 UT, peaking 

close to 92 km. The maximum ionisation production of a 37 keV electron occurs at an 

altitude of  ~90 km (Rees, 1963).  Thus EISCAT appears to verify that the drift timing 

gives a reasonable estimate of the characteristic energy of the electrons responsible for 

the D region density enhancements.  

Equation (6.1) indicates that there is an inverse relationship between the period 

of a gradient-curvature drifting particle and its energy. Thus, as may be expected, for a 

given L shell a higher energy particle will drift around the Earth at a higher velocity 

than a particle of lower energy. This leads to an energy dispersion signature in the 

particle population that can be observed by satellites (e.g. Vagina et al., 1996).  If this 
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is the case then it is reasonable to assume that at event onset, the electron density 

enhancements observed at EISCAT will be due to virtually mono-energetic beams of 

precipitating electrons.   This can be tested in two ways; the first is by looking at data 

obtained from low orbit satellites (such as DMSP), the second method inverts the 

EISCAT electron density profiles to obtain an estimate of the energy spectrum of 

precipitation.  

 Hargreaves and Devlin (1990) used the second approach to study morning 

sector precipitation during two intervals.  In both cases the events were much earlier 

in local time, however, the principal of energy dispersion still holds. The conclusions 

of that study indicate that the maximum electron density occurs a short while after 

onset and the spectra tend to be relatively broad. This is not consistent with the theory 

of drifting electrons that suggests that the maximum occurs at the onset and that the 

energy spectrum will be narrow due to the energy dispersion of the particle 

population.   The method used in that previous paper has been applied to EISCAT 

profiles from the current study. A description of the procedure (ZABMOD) can be 

obtained from the appendix of Hargreaves and Devlin (1990), but in brief it is an 

iterative process that operates between 65 and 110 km altitude and with energies from 

5.9 to 380.5 keV.  For the altitudes examined in this case study it is unnecessary to 

assume a background electron density from solar radiation, especially during un-

illuminated periods.. 

Figure 5.9 shows the results for two electron density profiles close to the onset 

of the event on the 11 February 1997. There is an initial hardening of the spectrum 

that occurs over a short time range (~10 minutes). Pure Gradient Curvature drift 

predicts that the maximum should occur at a sharp onset.   It is reasonable to expect 
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that dispersion in the particle energies will result in a changing signature at 

IRIS/EISCAT as the lower energy electrons arrive at a later time. This appears to 

occur in the gradual rising of the lower edge in the EISCAT electron density (Figure 

5.2, top panel) between 0700 and 0800 UT and also after 0900 UT, though continuing 

substorm activity observed by CANOPUS suggests that fresh populations are injected 

at later times. The increased Pi2 signature after 0615 UT suggests that substorm 

activity is overhead at the Gillam site (local time = 2345 MLT). The activity continues 

throughout the early event with the most intense Pi2 pulsations displaying similar 

quasi periodicity to the dayside precipitation suggesting a link to the small fluctuations 

in the solar wind pressure. 

The pass of the DMSP F12 satellite at 06:33 UT shows that there were 

particles of ~30 keV present on field lines close to EISCAT (The top energy of the 

SSJ/4 sensor is ~32 keV). The flux at this energy is approximately 3×105 cm-2.s-1.sr-

1.keV-1 showing good agreement with the derived spectrum. This would also match 

the energy derived by drift timing if the longitudinal separation is considered. 

However the satellite also indicates that there is precipitation of electrons with 

energies lower than the estimated level. These particles must come from another 

source to the drifting electrons that produce the density enhancements at EISCAT.  
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Figure 5.9:  The first panel contains EISCAT measured electron density profiles 

for two times close to the onset of the event. The second panel shows the 

corresponding modelled energy flux spectra, calculated from the profiles using 

the ZABMOD method.  Note the hardening of the spectrum from 06:24 UT to 

06:32 UT and the flux increase at high energies is much greater than at low 

energies. 
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As stated earlier precipitation of drifting electrons has been reported at the Sondre 

Stromfjord IRIS (e.g. Stauning et al., 1995b; Stauning 1998) and also at the Japanese 

IRIS located at NyÅlesund on Svalbard (e.g. Nishino et al., 1999), both at higher 

magnetic latitudes and closer to the polar cap boundary than the present observations.  

The results presented in this paper support the notion that gradient-curvature drift 

cannot be the only explanation for the structure and occurrence of morning sector 

precipitation.  

 

5.3.3 IMF influences and Changes in Precipitation Spectrum 

Nishino et al. (1999) observed a rectified response, during a morning absorption 

event, to north-south excursions of the IMF. Their observations were from the IRIS at 

NyÅlesund (~76.1° Mlat) and they concluded that the rectified response was due to 

the movement of the convection boundary and intensification of field aligned currents.  

In the case presented here the interplanetary magnetic field configuration was 

predominantly southward and no such response is observed, although a change in 

precipitation does occur with changing IMF over longer time scales. The point of most 

intense precipitation (08:40 UT) occurs as the solar wind pressure dies away and 

during a decrease in clock angle, due mostly to a large positive step in BY (~08:00 

UT). This change in BY will result in a change in the convection pattern in the 

ionosphere and so alter the configuration of the geomagnetic field (Cowley et al., 

1991; Khan and Cowley, 2001).  A change in the latitudinal spread of absorption 

occurs whilst By is positive.  The rise in absorption at 08:20 UT, due to the increased 

lower altitude electron densities, occurs almost simultaneously from Kilpisjärvi to 

Oulu, though Oulu peaks later. The previous absorption had shown little effect at Oulu 
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(at L=4.3).  Precipitation continues for a longer duration at this time (~90 minutes) 

than for the previous bursts in which the electron density decayed within 25 minutes 

on average.  The distribution of absorption suggests two events occurring 

simultaneously; the first a continuation of the drizzle of precipitation confined to 

higher latitudes, the second a burst of precipitation extending from deeper in the 

magnetosphere and across a larger range of L shells. If the magnetosphere changes in 

a shorter time span than the drift period of a particle, radial diffusion of the particle 

could occur. Since the dayside magnetic field lines have been skewed due to the 

change in IMF BY, a drifting particle will encounter a local change of field. As the 

particle moves onto a lower L shell it will experience acceleration due to the stronger 

field and shorter field lines. Thus higher energy fluxes are produced at the lower L 

shells.  With continuing wave particle interaction leading to pitch angle scattering into 

the loss cone, precipitation of higher energy electrons across a broader range of 

latitudes will be observed.   

An alternative to this mechanism is that substorm injection is occurring across a 

larger range of L shells with higher energy particles being injected.  The CANOPUS 

data show that there is increased activity shortly before 08:00 UT. The precipitation is 

not as enhanced as the onset at 06:00 UT, however there is a spike in both the optical 

intensity and in the riometer data, suggesting energetic precipitation. By assuming that 

maximum activity is occurring around local midnight and that the hardening of the 

spectrum at EISCAT is due to drifting electrons, it is possible to estimate the 

characteristic energy. Thus if injection occurs at 07:50 UT (estimated from the Pi2 

burst at Gillam (CANOPUS)) and the electrons precipitate at 08:40 UT we would 

expect a characteristic energy of  ~80 keV.  This corresponds to a maximum 
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ionisation production height of ~86 km which is reasonably consistent with the 

altitude of peak electron density observed by EISCAT.  A combination of these higher 

energy electrons coupled with radial diffusion could result in the deeper penetration 

and enlarged latitudinal spread of absorption that occurs at 08:40 UT.  

After 10:00 UT (12:10 MLT) changing conditions are reflected both in the 

electron density profile, which shifts towards a maximum in the E-region, and in the 

drastic change in the geomagnetic pulsation spectrum (Figure 5.2).  This change 

occurs as the instrument location rotates equatorward of the cusp in a region of strong 

return flow in the ionospheric convection pattern as indicated by the CUTLASS HF 

radar at Hankasalmi (Figure 5.4).  This direction of flow also appears in the movement 

of the absorption region seen in both IRIS and the riometer chain where there is a 

poleward and westward flow. The DMSP pass at 10:59 UT (Figure 5.6, bottom panel) 

indicates the presence of higher energy ions on field lines close to EISCAT with low 

energy electrons suggesting that the change in density profile is due to increased ion 

precipitation rather than electrons.  Regions of both high poleward flow and high and 

variable spectral width in HF radars have been shown to indicate the location of the 

ionospheric footprint of the cusp (Baker et al.,1995). Both CUTLASS and DMSP 

observations place the equatorward edge of the low altitude cusp to be a few degrees 

north (~71º Mlat) of the EISCAT site. Ion precipitation is common in the cusp, and 

both the Boundary Plasma Sheet (BPS) and Low latitude boundary layer (LLBL) have 

been observed to contain ions with energies exceeding 30 keV (the upper limit of the 

DMSP spacecraft) (Lockwood, 1997). It is possible that the ion signatures observed at 

EISCAT could be related to precipitation from the LLBL or BPS and the energies 

seem reasonable. The magnetometer shows bands of Pc1 pulsations, which are taken 
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to be signatures of ion-cyclotron waves and lead to scattering of ions into the 

ionosphere. Narrowband waves in the Pc1 range have been detected close to the 

equatorward edge of the cusp near to the low-latitude boundary layer (e.g. Dyrud et 

al., 1997) giving credence to the speculation that the ions observed at EISCAT are 

related to the LLBL. It is expected that the Pc1 pulsations reach a maximum intensity 

when the equatorward edge of the cusp is located close to the station, however in 

comparing the signature from the magnetometer at Kilpisjärvi (65.8° Mlat) with 

observations from a similar instrument at Sodankylä (63.9° Mlat) (data not shown), 

the lower latitude station observes more intense, but similarly structured, pulsations at 

this time.  The distance from EISCAT to the equatorward edge of the cusp casts doubt 

on this being a reasonable assumption and the likelihood of the precipitation being 

related to the cusp/LLBL is diminished. The increase in intensification at lower 

latitudes coincides with increased absorption at those stations related to increased 

electron density. Figure 5.3 shows that the south end of the IRIS array observes higher 

absorption than the region around EISCAT. Thus the precipitation of energetic ions is 

maximising deep in the magnetosphere, at low L shells. The changes in the structure 

of the Pc1 signature occur at similar times to two northward excursions of the IMF.  

Ion precipitation was occurring before this, during the narrow band pulsations. The 

change in IMF may influence a change in the wave structure but appears to have little 

effect on the ion precipitation.  The Pc1 waves do indicate that there has been a 

growth in electromagnetic ion-cyclotron (EMIC) waves in the magnetosphere close to 

around L=4.5 (Mauk and Mc Pherron, 1980; Anderson et al., 1992a; Anderson et al., 

1992b). These result in pitch angle scattering of energetic ring current ions, which 

then precipitate (Gonzales et al., 1994). The EMIC wave growth can be attributed to 
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the interaction of cold plasma with hot ions, as the plasmasphere enlarges and mixes 

with the ring current (Cornwall et al., 1970, Cornwall, 1978). The ring current ions 

have been accelerated, either through injection from the tail during the ongoing 

substorm activity (Arnoldy and Chan, 1969) or via the transport of plasma sheet 

particles by enhanced convection electric field (Lyons and Schulz, 1989). Since this 

event occurs after a distinctly active period, it is reasonable to expect the radiation 

belts to be increased with high fluxes of energetic particles.  This theory is reinforced 

by the Dst index (Figure 5.8) which shows a minimum of –60 nT occurring between 9 

and 11 UT before increasing as in the recovery phase of a small to moderate 

geomagnetic storm.  

 

5.3.4  Ionospheric Flows 

Low velocities (< 200 ms-1) were observed by CUTLASS (Figure 5.4) after 

onset (06:15 UT), most likely due to a predominantly zonal drift with small 

meridional movement. These observations are contrary to the movement of absorption 

observed by IRIS, which displays a distinct equatorward motion after 06:00 UT.   

From 11:00 UT there is a definite poleward and westward flow of the intense 

absorption patches to the south end of the riometer field of view (Figure 5.3).  

Estimates of the poleward velocities have been made for these patches both through 

comparisons of time series from consecutive IRIS beams and through the movement 

of steep absorption gradients in the IRIS images/keogram. Previous studies have 

shown the drift velocity of absorption patches to be consistent with the E×B drift 

(Nielsen and Honary, 2000). The current estimates were compared with the flow 

observed by CUTLASS in the region of high return ionospheric flow.  The absorption 
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appears to drift with velocities of ~650 ms-1 from 11:00 to 11:20 UT after which there 

is then a general increase to ~900 ms-1.   The radar backscatter is patchy at this time 

but several of the radar beams (0 to 11) cut across IRIS providing a good indication of 

the flows. Only data from beam 5 has been displayed since this is the beam that 

encompasses the EISCAT beam, however data from neighbouring beams show that 

there are similar velocity fields across the IRIS field of view. The CUTLASS line of 

sight velocities pre-11:30 UT, at the latitudes of IRIS, are generally <600 ms-1 away 

from the radar. Post 11:30 UT there is a general increase with some scatter suggesting 

flows  >800 ms-1.  These rough calculations suggest good agreement between the 

movement of the F region irregularities and the absorption patches in the E and D 

regions.  It is therefore reasonable to suggest that the dominant drift mechanism for 

the precipitating particles at this time is the E×B drift, as opposed to gradient-

curvature drift apparently observed at event onset (06:15 UT).  If the absorption at the 

south end of the array is also due to ion precipitation into the E region then the 

tendency to drift as the E×B velocity seems reasonable. Past studies have established 

that the flow in the E region is often similar to that in the F region (Nielsen and 

Schlegel, 1985).  The possibility exists that the scatter observed by CUTLASS could 

come from the E region irregularities that compose the electron density enhancements 

(Milan et al., 2001). An investigation of the elevation angle of the returned HF beam 

suggests that this is not the case, with angles of  >21° for most of the scatter in the 

nearer range gates.  The E region densities have well defined ‘tails’ extending into the 

F region and so the radar scatter could originate from irregularities in these ‘tails’. 
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5.4  Summary  

 A case study of varying precipitation in the morning sector and across noon during 

an active period on the 11 February 1997 is presented. The observations were made 

using an imaging riometer (IRIS) and a nearby incoherent scatter radar (EISCAT) 

together with a chain of wide beam riometers and two pulsation magnetometers, in 

conjunction with satellite and HF radar measurements.  Through nightside 

observation, provided by the CANOPUS array of instruments (including a meridian 

scanning photometer, magnetometers and riometers) the precipitating electrons have 

been linked to substorm injection and subsequent gradient-curvature drift. The time 

separation of absorption increases across the IRIS field of view has been used to 

provide an estimate of the characteristic energy of precipitation assuming that gradient 

curvature drift is the dominant process involved.   Observations of electron density 

from EISCAT suggest that the energy estimate is reasonable,  although it is found that 

gradient-curvature drift alone cannot account for the spectrum of precipitation at 

EISCAT.  A controlling influence from the solar wind has been identified in the form 

of small-scale pressure changes at the magnetopause, leading to increases in pitch 

angle scattering in an already unstable energetic population of electrons.  

 A small increase in particle penetration into the ionosphere has been discussed in 

relation to increased radial diffusion producing higher energy electrons at lower L 

shells. This assumption is based on a dramatic change in the geomagnetic field 

orientation, transmitted from the IMF, and near simultaneous increase in precipitation. 

This precipitation leads to enhanced absorption in the nearby riometers, and is coupled 

with the more energetic particles being injected at the nightside.  The electron 
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precipitation then decreases, at the same time as an increase in ion fluxes, the latter 

being identified in data from the over flight of DMSP F10.  The possibility that the 

ions arise from the LLBL or BPS has been dismissed not only because of the 

relatively large distance to the cusp, but also because Pc1 waves are observed to 

increase in intensity at lower L-shells.   Instead it has been suggested that the ion 

precipitation is due to a growth in EMIC waves resulting in pitch angle scattering of 

ions into the loss cone.  This has been attributed to an interaction between an enlarged 

plasmasphere and energetic ring current during the recovery phase of a small to 

moderate geomagnetic storm.  At this later time (>13 MLT), IRIS was located under a 

region of strong poleward convection.  The flows observed by CUTLASS at this time 

were found to be comparable with the movement of strong absorption patches as 

derived from the IRIS keogram unlike at the start of the precipitation (~08:30 MLT).  

This suggests that ExB drift is governing the precipitating particles at this time rather 

than L-shell separation of the drifting electrons as at event onset (06:15 UT to 06:50 

UT).  
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 Chapter 6 

Statistics of the Variation of Absorption Observed using IRIS 

 

6.1 Introduction 

Understanding the variation of HF radio absorption in the auroral zone is of great 

use for predicting HF radio propagation conditions.  By relating the absorption to other 

geophysical parameters it may eventually become possible to predict the response of 

the ionosphere to a given set of circumstances.  This is especially true if the absorption 

can be linked to quantities that are measured in real time such as the solar wind. 

Constant monitoring is currently available from the ACE (Advanced Composition 

Explorer) spacecraft situated at the L1 point.  An upstream vantage point such as this 

results in early warnings of possible conditions at Earth from 10 minutes to over an 

hour depending on the solar wind speed.  

Cosmic Noise Absorption (CNA) at high latitudes acts as a proxy for energetic 

precipitation (see Chapter 4 for a review of absorption).  By examining the variations 

and distribution of absorption an insight into the limits of particle motion and wave-

particle interactions in the magnetosphere can be gained. Further to this the coupling 

between the ionosphere and magnetosphere in terms of energy deposition can be 

investigated.  Thus a thorough understanding of cosmic radio noise absorption can 
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lead to estimations of the energy transferred from the solar wind that is eventually 

deposited into the lower ionosphere (Hargreaves, 1966). 

Since September 1994 the Imaging Riometer for Ionospheric Studies  (IRIS) 

has been operating at high latitudes in Fennoscandia providing maps of small-scale 

precipitation into the D layer.  This chapter determines the statistics of the absorption 

observed by IRIS across a small range of latitudes based on magnetic local time 

(MLT) and investigates the dependence on parameters such as KP and the solar wind 

speed. 

 

6.2 Observations and data descriptions 

Figure 3.2 displays the beam pattern for the IRIS at Kilpisjärvi projected at 90 

km altitude.  In Figure 6.1 the centres of the beams are plotted on a grid of magnetic 

latitude and longitude.  Each centre has been calculated for the 1998 epoch in 

AACGM (Altitude Adjusted Corrected Geo-Magnetic) (Baker and Wing, 1989)  co-

ordinates using the IGRF-2000 model (International Geomagnetic Reference Field).  

IRIS is aligned with the geographical North Pole (accounting for the skew in the beam 

pattern) leading to each beam having a discrete magnetic latitude (Mlat).  Ideally this 

provides a range of latitudes from 64.21° N to 67.59° N and a spatial resolution of 

~0.07° latitude, however, the corner beams of the imaging riometer are inclined at a 

low elevation (Chapter 3), leading to large side lobes and an extended path through the 

ionosphere, making these unsuitable for general use. Similarly the beams adjacent to 
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Figure 6.1.  IRIS beam centre positions in Altitude Adjusted Corrected 

GeoMagnetic coordinates (AACGM) 
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the corners should be used with some caution (Hargreaves et al., 2002).  Instead of 

using all the beams to produce high spatial resolution, seven beams across the centre 

of the array are used to provide data for this statistical study. The beam numbers and 

their magnetic co-ordinates are presented in Table 6.1 

 

Beam Mlat Mlong MLT at midnight UT 

3 66.86 104.32 21:17 

10 66.43 104.11 21:17 

18 66.14 104.40 21:16 

25 65.91 104.23 21:17 

32 65.70 104.05 21:17 

40 65.40 104.35 21:16 

47 64.97 104.16 21:17 

 

Table 6.1.  The IRIS beams used to provide data for this statistical study.  

Magnetic co-ordinates are displayed as well as the MLT values for midnight UT 

at each beam centre.  

 



Chapter 6 

 142

The seven beams are roughly aligned along 104.2° magnetic longitude, with a 

maximum separation of 0.35° magnetic longitude.  Magnetic Local Time (MLT) 

variations are less than a minute in each case.  Data are taken from the epoch 1995 to 

2001 inclusive, at 10-minute resolution, providing a maximum of 144 data points for 

each of the 2557 days.  In practice data is lost due to maintenance time and hardware 

failures, but this accounts for less than 1% of the epoch.  The most significant loss of 

data is due to contamination from solar radio emission and this will be described in 

more detail further into this chapter (section 6.2.1).  

 The geomagnetic data used in this study are provided by the World Data 

Centres for Geomagnetism (Kyoto, Japan) and Solar Terrestrial Physics (RAL, UK).  

The KP index was available for the whole of 1995 to 2001 at 3-hour values. No 

finalised or even provisional values for AE were available for the interval; instead the 

quick look values are used for preliminary studies. Data are available from only 8 out 

of the 12 standard AE stations for only 4 years of the selected interval (1997 to 2000) 

and as such should be treated with caution. 

 Data from both the ACE (1998-2001) and WIND (1995-1998) spacecraft have 

been used to provide measurements of the solar wind and interplanetary magnetic 

field. As described in chapter 3, ACE is positioned at the first Lagrangian point (L1) 

whereas WIND is in a more complicated orbit. Knowing the positions of the 

spacecraft enable the data to be corrected for the delay time to the magnetosphere 

using the solar wind speed measurements. Periods when WIND passed close to the 

bow shock (within 10 Re) have been discarded, though these prove to be relatively 
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few.  Occasions when high speed streams overlap with slower solar wind have also 

been removed from the data set.  The separation between WIND and ACE translates to 

little differences in the magnitudes of the field; at the distance of the satellites from the 

magnetopause the IMF variation with distance is represented by the tail of an 

exponential function (Cahill and Amazeen, 1963).  At the time of writing ACE data 

did not cover the whole of 2001 and so the data set falls short of the absorption data by 

2 months.  

 

6.2.1 How can absorption be Negative? 

Before attempting any form of statistical analysis on the riometer data an 

important constraint must be addressed; negative absorption.  Unlike most imagers, 

which tend to be optical in nature, the imaging riometer operates independently of 

solar illumination. There is, however, a serious constraint on the use of riometer data 

under active solar conditions.  It has long been recognised that during intense solar X-

ray flares, the sun also emits radiation bursts, which can take the form of sweeps 

through frequencies or continuous emissions. During periods of high solar activity 

radio emission is virtually continuous. The processes that lead to this emission are not 

described here although the effects on the riometer are. 

 The manner in which the riometer operates has been described in Chapter 3 but 

an important point to highlight is that the riometer is basically a sensitive radio 

receiver. IRIS measures the cosmic radio noise at 38.2 MHz in the HF band and 

during periods of high solar activity the increased radio emission from the sun 
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incorporates this frequency.  This signal is significantly higher than the cosmic radio 

noise such that during periods of daylight the receiver can reach saturation.  During 

periods of minimal precipitation solar radio emission manifests as negative spikes (or 

extended negative bays) in the absorption trace. This is particularly apparent at the 

start of polar cap absorption events in the period between the solar flare and the arrival 

of the solar protons (see Chapter 7). Problems occur when precipitation is high, 

whether through geomagnetic processes or via solar proton entry to the 

magnetosphere. The solar emission boosts the radio signal received by the riometer 

causing a reduction in the measured absorption. So far this deviation from the true 

ionospheric absorption has not been quantified as no direct measure of the solar radio 

emission at 38.2 MHz is easily available.  A further complication because of the 

temporal structure of the emission, which can produce false structure in the absorption 

leading to false interpretation of the precipitation.  

Figure 6.2 shows time series of the average absorption in two rows of beams 

from IRIS. The top panel is from the second row of beams, judged from the north of 

the array, and the bottom panel displays the data from the most southerly beams (row 

7); no filtering has been applied to these data.  Decreases in absorption occur in both 

rows 2 and 7, although it is only in some of the beams of row 7 that the absorption 

moves below zero. These negative bays propagate eastward through the beams in both 

of the rows, following the track of the sun through the sky. Each of the beams has a 

large bay accompanied by a number of secondary spikes; the result of the strong solar 

signal in the weak side lobes of the beams.   Whereas under usual circumstances the  
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Figure 6.2.   Mean absorption in two rows of the IRIS beams.  These have been 

calculated from 2557 days of data and include all negative data points. 
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side lobes of most of the beams contribute very little to the measurements of 

absorption, they become increasingly important when considering solar radio 

emission.  The cosmic radio noise signal is relatively low and the solar emission may 

be very high in comparison. Thus the emission detected in a side lobe of a beam may 

form a large amount of the signal in a northward beam.  Modelled radiation patterns 

for beam 10 are displayed in Figure 6.3; the largest side lobe points south, in the same 

general direction as beam 45.  For this study, if a beam records negative absorption 

below –0.2 dB, data from all beams are removed for that period; it is expected that this 

will catch the vast majority of contaminated events.  The –0.2 dB limit is implemented 

to account for instrument sensitivity and possible errors in the quiet day curves.  Times 

when this approach will fail are when precipitation levels are high in all beams; this 

occurs mostly during solar proton events. SPE lead to high levels of absorption 

making it unlikely that data will reach negative values, however these events are rare. 

For the purposes of this study all periods of enhanced solar proton bombardment have 

been removed, and this subject will be covered in more detail in Chapter 7.  Since this 

chapter is concerned with the solar wind/magnetospheric effects on absorption the 

removal of polar cap absorption (from SPE) is actually desirable.  

 

6.2.2 Daily Variations and Seasonal changes. 

Since a range of latitudes have been selected it is possible to display the 

absorption data in the keogram format using averages of the absorption taken over the 

whole range of days.  Figure 6.4 consists of two panels; the top panel displays the   
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Figure 6.3.  Beam patterns (at 90 km altitude) of beam 10 including the positions 

of side lobes.  The colours indicate the strength of the beam with the red ring 

illustrating the traditional position of beam 10 (the 3 dB point).
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mean absorption versus magnetic latitude for all magnetic local times. A distinct 

diurnal variation is clear with a peak in the morning sector following a rise from 

evening (20 MLT). The absorption peaks at 0.3 dB close to 10 MLT before decaying 

rapidly, dropping from 0.25 dB at 15 MLT to less than 50% of the maximum at 19 

MLT.  Absorption appears to be relatively uniform across the range of latitudes (65º-

67º), though there appears to be a minimum in the central beam and at the edges, 

possibly due to problems with the obliquity factors.  Absorption levels averaged over 

such a large number of data points tend to be low such that apparent large steps are in 

fact less than 0.1 dB in magnitude.  Standard deviations for the absorption distribution 

are displayed in the bottom panel. In general these follow a similar trend to the mean 

absorption in the top panel, however the standard deviations are larger than the mean 

at some local times by up to 0.15 dB.   

Figure 6.5 displays the distributions of absorption in 0.1 dB bins (centred on 0, 

0.1, 0.2 etc) at selected local times for the zenithal beam.  In each case the amount of 

negative absorption is always less than 6% of the total number of instances.  By far the 

majority of absorption peaks around 0.1 dB with a rapid exponential-like decay to 

higher values. The data in Figure 6.4 still include some negative values, as explained 

above; the bottom panel of Figure 6.5 shows the local time variation in the zenithal 

beam when all negative values are discarded.  The blue curve is the mean absorption 

and the green curve displays the standard deviation; the standard deviation and mean 

are less widely separated when all negative values are removed (>0.08 dB separation 

at  maximum).  Around  midnight  (20  to  04  MLT)  the  standard  deviation  is  
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Figure 6.4.  Mean absorption (top panel) and standard deviations (bottom panel) in the ten IRIS statistical beams 
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Figure 6.5.  Distribution of Absorption in the zenithal beam of IRIS (epoch 1995-

2001) for 6 magnetic local times. The bottom panel  shows the mean and standard 

deviation in the zenithal beam  when all negative values have been removed from 

the data.
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approximately equal to the mean, and it is only at the extremes that this relationship 

deviates. The equality of the two parameters suggests that the distribution of 

absorption (excluding negative points) may be close to exponential in nature; the 

occasionally higher standard deviation in Figure 6.5 is a factor of a long tail in the 

distribution where there are some high absorption values. 

Figure 6.6 displays the distributions in the seven beams once again binned by 

0.1 dB, but this time limited to a maximum absorption of 3 dB (since this covers the 

largest range of values).  The data have been normalized to the total number of data 

points in all beams at the appropriate time (displayed on each plot) and the colour 

scale is logarithmic.  Again it is clear that there is a maximum around 0.1 dB with a 

sharp decay that occurs across all of the beams, although beam 10 (second from top) 

observes fractionally higher absorption in the daytime hours (06-18 MLT).   A 

temporal evolution in the distribution is apparent; the occurrence at higher values 

increases from evening (20 MLT) into the morning sector before rapidly dropping by 

16 MLT.  Lower latitudes (<66°) show an extended tail in the first local time plot, 

somewhat repeated at 20 MLT with a  lower mean absorption. In general each of the 

beams sees similar levels at each time.  

Solar cycle 23 began with the solar minimum in 1994 and the utilised riometer 

data extend from close to sunspot minimum to maximum (2001), thus the dependence 

of absorption variation on changing solar cycle conditions can be observed.  Figure 6.7 

consists of two panels displaying the daily variation of absorption in each of the years 

1995 to 2001; the top panel shows the mean absorption for 10-minute intervals  
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Figure 6.6  Distribution of absorption with latitude for 6 magnetic local times (as 

in Figure 6.5). The total number of points are indicated in each plot. 
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whereas the bottom panel shows the median absorption. The diurnal variation is obvious 

in the mean absorption data in 1995 reaching the highest level of 0.35 dB (at 10 MLT) 

whilst 2001 has the lowest maximum (0.2 dB).   The median absorption demonstrates 

more variability between local times but the year to year trend is the same with highest 

levels in 1995 followed by a lull and then recovery.   At 19 MLT the absorption in each 

year is separated by less than 0.04 dB.  A maximum in 1995 (10 MLT) is very clear 

followed by a gradual decline to approximately half this value by 1997.   The absorption 

then increases to a second peak of ~0.3 dB in 1999 before once again decreasing to a 

minimum in 2001 (~0.18 dB).  The keogram of median values shows a similar yearly 

trend though the morning maximum has shifted to slightly later local times.  A second 

peak is highlighted in 1995 close to midnight and the variation through the day is less 

smooth than for the mean values.  The comparison of mean and median values indicates 

that in 1995 for example there were several very high values of absorption between 06 

and 12 MLT, linked to discrete absorption events; this moves the mean to higher 

absorption levels. 

After investigating absorption on a year-by-year basis the data are binned by 

season. Each season consists of three months of data from each of the seven years 

(~640 by 7 data points).  Figure 6.8 contains four keograms; the panels from top to 

bottom represent winter (December to February), spring (March to May), summer 

(June to August) and autumn (September to November).  Spring and autumn (panels 

(b) and (d) respectively) both exhibit the diurnal variation in absorption across all 

latitudes. There is a significant morning maximum towards the north of the array 
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during spring and pre-midnight there is less absorption at the poleward side of the 

field of view than at the same local time in autumn.  The maximum in the autumnal 

data is smaller than that during spring and the increase of absorption in the evening is 

more evident in the north during autumn though the difference is only ~0.1 dB.  

Curiously the beam second from the top (beam 10 of IRIS) witnesses no drastic 

decrease in the late afternoon and evening, as is the case for spring; possible reasons 

for this are discussed in  section 6.3.3.  

Winter and summer (panels (a) and (c) respectively) present a very different 

picture of the changing absorption.  The diurnal variation is less dramatic in the winter 

months with a shift in the maximum to later local times. Once again it is beam 10 that 

shows a strong difference from the expected trend; strong absorption (0.3-0.4 dB) 

occurs between 09 and 16 MLT. This is later than the maximum in the beam 

immediately south of this (beam 18) which peaks between 06 and 11 MLT (0.2-0.3 

dB).  This suggests a general poleward drift in the absorption, which intensifies with 

increasing latitude.  The afternoon depression is later than previously observed and is 

displayed predominantly in the northern most beams (>66º Mlat). At lower latitudes 

the absorption is relatively steady, varying by less than 0.06 dB.  Pre-midnight 

absorption is reduced in the higher latitude beams reaching levels of 0.15 dB 

compared with the 0.2 dB measured by beam 32 in the equatorward half of the field of 

view.  The mean absorption during summer does not exceed 0.25 dB, though the 

afternoon/evening loss of absorption is still clear.  The pre-midnight absorption is 

most evident in the poleward beams (with the exception of beam 3) and the keogram  
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Figure 6.8.  Keograms for the mean absorption in each season calculated for the 

1995 to 2001 epoch. From top to bottom the panels display: Winter (December to 

February),  Spring (March to May), Summer (June to August), Autumn 

(September to November). 



Chapter 6 

 157

 gives the impression of an equatorward movement in the absorption region to later 

local times.  In comparison with autumn and spring there is little variation and with 

winter there is significantly less absorption during the day, though night time (18 to 06 

MLT) levels remain similar for all four seasons. 

 

6.2.3 The Geomagnetic Effect 

Since auroral absorption is primarily caused by energetic particle precipitation 

it is sensible to consider the effect that increased geomagnetic activity will have on the 

attenuation of radio waves in the auroral zone.  In Figure 6.9 the occurrence 

distribution of the Kp index for the 1995 to 2001 epoch is presented.  The distribution 

is skewed towards the lower values with the mode at  Kp=1 and the median at KP=2-.  

Over 59% of the time is during quiet to low activity (Kp < 2). For only ~8% of the time 

(approximately 206 days worth of data) is activity high (Kp > 4), thus most 

observations of absorption will take place during quiet to medium activity levels.   

This distribution can be split into seasonal variations just as the absorption. Figure 

6.10 shows four panels corresponding to winter, summer, autumn and spring 

(clockwise from top left).  The distributions in the two equinoctial seasons display 

very similar patterns; the spring Kp peaks at 2- (10.3 % rather than 8.6 % in autumn).  

There are small increases in the autumn percentages at higher Kp (e.g. 1 % higher at 

Kp = 4), offset by similar levels at the very low activity levels.  More marked 

differences are in the winter/summer distributions. The winter distribution appears to 

be broader than the summer. The low activity is much reduced in winter (3.5% lower 
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occurrence in both the 1+ and 2- Kp levels) whereas the number of examples of very 

low activity is much increased (4.2 % difference for Kp = 0).  For higher activity 

winter has a higher occurrence of the 3- to 4 Kp level, a total of 3.5 % difference in this 

medium to active conditions range.  In general the distributions are broadly similar in 

the equinoctial seasons and both are significantly broader than the solstitial seasons.  

Figure 6.11 displays the results of sorting the absorption into bins of Kp; the 

data are at 3-hour resolution to match the index and five levels of Kp have been chosen 

to provide a reasonable number of data points in each bin. The top panel displays the 

variation of the mean absorption from the zenithal beam (25) and the centre panel 

shows the median values. Both are spread across the range of magnetic local times.  

The bottom panel shows the number of data points in each local time bin. Each set of 

curves is colour coded to indicate the geomagnetic activity range they correspond to; 

this information is provided in the legend.  The lowest index values are for Kp<1 (blue 

curve) where the mean absorption reaches a maximum of 0.11 dB at 15 MLT with a 

minimum of 0.06 dB at midnight; an insignificant difference.  Median values tend to 

be consistently lower by a factor of ~0.02 dB.  The green curve (1�.S����LOOXVWUDWHV�

the absorption variation with quiet conditions, peaking at 12 MLT (0.18 dB for the 

mean absorption). Instead of midnight, the minimum has shifted to evening (18 MLT). 

Once again the median values are consistently lower. Unsettled conditions are 

represented by the red line (2�.p<3) and this displays broadly the same pattern as the 

previous activity level but here the absorption peaks around 09 MLT (mean=0.31 dB,  
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Figure 6.9.  Distribution of 3-hour KP  from the 1995 to 2001 epoch.  Occurrence 

is presented along the y-axis. The total number of data points are displayed on 

the plot. 
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Figure 6.10.  The occurrence of KP in the four individual seasons, defined in the 

same manner as for Figure 6.9.  The total number of points for each season is 

labelled on the graphs. 
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Figure 6.11.  Daily variation of absorption in the zenithal beam binned by KP.  

The top two panels represent the mean and median absorption respectively and 

the bottom panel demonstrates the variation of data points in each bin. 
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median=0.26 dB).  During moderate geomagnetic activity (3 �� .p < 4) the mean 

absorption reaches a maximum of 0.5 dB (at 09 MLT) but dips to 0.13 dB in the 

afternoon.  The mean and median values show little difference in the temporal 

structure.  The final Kp bin uses all values of the index equal to or above 4 (purple 

curve). In this case the mean absorption maximises at 0.67 dB at 09 MLT and drops to 

0.17 dB by 15 MLT.  The median absorption peaks earlier in this range (06 MLT) but 

otherwise follows a similar pattern to the mean absorption.  Only for the highest Kp 

range does the number of data points dip close to 100 and as would be expected it is 

the lowest activity bins that have the largest number of data points.  Morning 

absorption levels show an increase with successively higher magnetic activity and in 

each case the point of minimum absorption lies between 15 to 18 MLT (except for KP 

< 1 when it is at 00 MLT) and shows only small differences between the curves (~0.08 

dB); at 09 MLT the variation is markedly higher with the lowest level being ~30% of 

the highest value.    A diurnal variation is apparent in all but the lowest activity level, 

which changes by only 0.02 dB with the maximum occurring close to 15 MLT. This 

maximum point moves to earlier local times with each successively higher range of 

activity, until it reaches 09 MLT.    

By considering the distribution of absorption at each level of Kp more 

information on the dependence of absorption on geomagnetic activity can be 

discerned.  Figure 6.12 is composed of eight images displaying the absorption against 

Kp for each local time point. Occurrence is colour coded as a percentage with red 

being the highest (4.5%) and white indicating zero; percentages are plotted to 0.1%  
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Figure 6.12.  Distribution of absorption with KP in the zenithal beam, calculated 

for 8 magnetic local time ranges.
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accuracy.  Absorption has been sorted into 0.1 dB bins taken from –0.1 to 5 dB. The x-

axis of each of the plots has been limited to 2 dB since all absorption higher than this 

falls well below the 0.1% level.  In every case the highest percentage is at the low Kp 

values and around zero; those negative values that have been included make up less 

than 4% of the total number of points at each local time.  The 00 MLT plot (a) 

indicates a tilt in the data to higher absorption at higher Kp, but the absorption is 

restricted to lower than 0.7 dB.  By 03 MLT (b) the absorption has extended to 1 dB at 

the top end of the Kp range, though the majority of absorption is within 0.4 dB. At the 

next time step (c), absorption levels have exceeded 1 dB though the occurrence is still 

very low and by 09 MLT (d) a maximum of 1.7 dB at the 0.01% level is recorded. 

This occurs at Kp = 5- and the spread of Kp values at 0.5 dB has increased from the 

previous time step. The next image (e) represents the 12-15 MLT time range and in 

this case the absorption has shrunk to a maximum of 1 dB again, but at 0.5 dB there 

are a broad spread of Kp values represented (1- to 6-).  The shrinking absorption has 

continued into 15 MLT (image f) and again to 18 MLT (g) where the majority of 

absorption is safely within 0.5 dB.  In the final image (h) at 21 MLT the absorption 

has once again started to tilt to higher Kp levels.   So with each successive time step 

the distribution curves over to increasing absorption until 09 MLT. After this the 

absorption recedes such that by 18 MLT the absorption is restricted to 0.5 dB across 

the range of Kp.  The absorption displays most curvature at 09 MLT and is most linear 

at 18 MLT. 



Chapter 6 

 165

Due to the restricted resolution of the Kp index it is desirable to observe how 

the absorption is affected on smaller time scales using a different indicator of 

geomagnetic activity.  The obvious choice for examining absorption in the context of 

the auroral regions is to use the AE index.  However as discussed in Section 6.2, there 

are restrictions imposed due to the quality of the data at this time.  Three levels of 

activity have been used in Figure 6.13 to determine mean absorption keograms; these 

levels reflect large differences in the auroral activity. Once again absorption is plotted 

against magnetic latitude and magnetic local time; the activity is indicated on the plot 

by the AE values.  The top panel shows mean absorption for AE < 150; the diurnal 

variation is readily apparent reaching a maximum of 0.28 dB at ~09 MLT across most 

of the beams and the midnight sector absorption peaks at 0.18 dB.  In the middle panel 

the absorption is for 150 ��$(�������DQG�D�VLJQLILFDQW�ULVH�LQ�DEVRUSWLRQ�OHYHOV�RFFXUV�

during the morning sector; this effect is repeated for AE ��������,Q�HDFK�FDVH�WKHUH�LV�

no evidence of a latitudinal difference in the absorption data and no local time shift 

with increased activity. The pre-midnight values show little difference between the 

middle and bottom panels. Figure 6.14 uses the same AE bins but this time displays 

curves for the zenithal beam for the occurrence of absorption ≥ 1 dB; a parameter that 

has often been used in investigations of absorption statistics (e.g. Foppiano and 

Bradley, 1984).  For the data in the lowest activity range (blue curve) there are two 

peaks, the largest in the morning sector at 2.4 % and the second at midnight (0.4 %).  

At the next level of activity (green curve) the morning peak has increased to 6 % 

whereas the peak at midnight is still at 0.4 %.    By the highest level of activity (red  
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Figure 6.13.  Keograms of mean absorption for the epoch 1997 to 2000 (inclusive) for three ranges of the AE index. 
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Figure 6.14.  The occurrence of absorption exceeding 1 dB at the three ranges of 

AE from Figure 6.13.  This parameter is often referred to as Q(1)  
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curve) the morning peak has shifted to an earlier local time (09 MLT) and reached an 

8 % chance of occurring.  In all three instances the afternoon minimum is clearly 

present and reaches 0 % at 18 MLT. 

 

6.2.4 IMF induced variations in absorption 

So far the dependence of energetic precipitation (with auroral cosmic radio 

noise absorption as a proxy) on season and geomagnetic activity has been presented. 

In this section the focus will shift to the interplanetary magnetic field, which is known 

to produce changes in the geomagnetic activity and particle precipitation in the 

ionosphere.  Figure 6.15 consists of two distribution plots for the IMF BY and BZ 

components.  The data are at 5-minute resolution and have been sorted into 0.5 nT 

bins.  The top panel presents the occurrence of the BZ illustrating a normal distribution 

with BZ = 0 for 7.4% of the time from 1995 to 2001; thus for roughly 46% of the time 

the IMF was southward.  The By distribution is significantly different being broader 

and lower. Rather than perfectly normal, the distribution might be represented by the 

sum of two Guassian distributions; one centred at +2 nT, the second at –1 nT. The 

overall outcome is that there is a slight bias in the IMF data to eastward (+ive) values. 

 The absorption data for 1995 to 2001 is now sorted by IMF clock angle 

quadrant; Figure 6.16 displays four keograms of the results of this binning.  Each 

shows the variation of the mean absorption with magnetic local time at each of the 

latitudes provided by the spread of IRIS beams.  The top two panels present data for 

northward IMF, the first (a) is for eastward IMF whilst the second (b) is for westward 
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values.  Both show very similar distributions, with the now familiar diurnal variation 

across all latitudes.  For the western values there is a slight increase in the absorption 

around midnight over the eastern counterpart, this leads to a second minimum in the 

data at 04 MLT before an apparent earlier increase to the high morning values. The 

absorption peaks at 0.35 dB for the eastward IMF and at 0.3 dB for the westward.  The 

usual minimum is still in the evening sector (~20 MLT) where the absorption dips to 

almost zero.   

After considering the northward IMF, the next two panels use data from 

southward-directed field.  Panel (c) is for southeast conditions and panel (d) is for 

southwest. A large rise in absorption levels over the northward IMF is evident.  

Absorption greater than 0.25 dB begins before midnight and stretches around to the 

morning sector, increasing to a plateau of ~0.38 dB at 06:30 MLT in panel (d) and 

0.32 dB in panel (c). Following the usual rapid drop in the afternoon sector, the 

absorption reaches a minimum of ~0.1 dB in both cases, however this now occurs at 

about 19 MLT.  The general trend of absorption appears to be earlier increases for 

westward IMF over the eastward values and a shift of the minimum to earlier hours. 

Southward IMF also leads to mean absorption values at least two times higher than 

those during northward IMF conditions. 

Figure 6.17 uses the occurrence of absorption above 1 dB in the zenithal beam 

binned by IMF BZ in steps of 2 nT.  For the northward IMF (BZ > 0) the occurrence is 

always below 4.2 % and displays no trend with increasing/decreasing values of BZ.  

When the IMF turns southward there is a drastic change in the occurrence.  Each  
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Figure 6.15.  Distribution of the BZ and BY interplanetary magnetic field 

components.  The top panel shows the northward component (BZ) which follows 

a normal distribution. In the bottom panel the eastward (BY) component 

demonstrates a bias to the east over the west.  
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Figure 6.16.  Keograms of the mean absorption after the data has 

been binned into the 4 quadrants of the IMF clock angle. 
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Figure 6.17.  Occurrence of absorption exceeding 1 dB (Q(1)) for six ranges of 

IMF BZ. Data are presented as hourly averages. 
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successively lower value of BZ leads to a higher occurrence of the ����G%�DEVRUSWLRQ��

such that for BZ ��-4 the occurrence peaks above 9 %. 

 

6.2.5 Solar Wind effects 

The second extra-terrestrial effect most likely to ring changes in the 

magnetosphere is the solar wind. Shocks from high-speed interactions lead to 

geomagnetic storms and the pressure on the magnetosphere is thought to influence the 

wave particle interactions that produce precipitation. The dynamic pressure has been 

calculated using the formula: 

2..~ vmPdyn ρ     (6.1) 

Where m represents the average mass of the main constituents, usually taken to 

be protons, and ρ is the proton number density. Figure 6.18 presents the occurrence 

distribution of solar wind pressure.  Data have been sorted into 1 nPa wide bins and 

the percentage occurrence is plotted against the pressure.  Values can exceed 100 nPa 

during high-speed streams and CME interactions with the magnetosphere, however the 

majority of pressure remains lower than 20 nPa (99% of the total) with only 3 nPa 

being the mode value. The second panel shows the distribution zoomed into the 0-20 

nPa range, close to a Maxwellian distribution; very little pressure occurs above 5 nPa 

(<20%). 

Figure 6.19 shows three keograms of the same format as Figure 6.4, this time 

binned by solar wind pressure; each of the ranges is displayed in the panel.  All three  
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Figure 6.18.  Distribution of solar wind pressure values from 1995 to 2001 

inclusive. Dynamic pressure is less than 20 nPa for over 90% of the time as 

demonstrated by the bottom panel 
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Figure  6.19  Keograms of the mean absorption arranged by solar wind pressure in three ranges.  
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show a diurnal variation with maximum in the morning sector and minimum in the 

evening.  For the lowest pressure (top panel) the mean absorption peaks at 08:30 MLT 

(0.3 dB), remaining high until 12 MLT when it starts to decrease reaching 0.1 dB by 

18 MLT.  For 5 ��3dyn <10 nPa (middle panel) the maximum value occurs at 07:30 

MLT, levelling until midday and then decreasing.  Dynamic pressure over 10 nPa 

produces an absorption peak much earlier, pre-dawn at 04:45 MLT, before dropping 

just before midday.  The minimum once again occurs around 18 to 19 MLT.  With 

increasing pressure thresholds the absorption in the midnight sector also increases by 

1.5 dB across the three distributions. In the first two plots the absorption appear higher 

in the morning sector at the higher latitudes. By the final plot, absorption is relatively 

uniform across the array. 

Finally observations of mean absorption values are linked to the changing solar 

wind.  Figure 6.20 provides the solar wind velocity distribution.  This ranges from 250 

to 900 km/s in 10 km/s bins. A small bump appears in the tail of the velocities at ~550 

km/s, possibly due to the removal of high-speed data that overtake slower streams. By 

far the most commonly occurring velocities lie between 300 and 500 km/s.   Figure 

6.21 consists of five magnetic local time keograms that show the latitudinal variation 

of the mean absorption for successively high solar wind speeds. For velocities less 

than 300 km/s (top panel (a)) the absorption appears sporadic and low, never 

exceeding 0.2 dB. At the next level of velocity (b) a diurnal variation has reappeared 

though absorption is still low (>0.25 dB).  In the middle panel (c) the mean absorption 

is from values corresponding to solar wind velocities between 400 and 500 km/s. 
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Figure 6.20.  Distribution of solar wind velocity from 1994 to 2001 (10 minute 

resolution) in 10 km/s bins.  The bump in the tail of the distribution is likely due 

to the periods of missing data when high and low speed streams interact. 
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Figure 6.21.  Mean absorption keograms for 5 ranges of solar wind speed.  Note the 

different colour  bars between the first three and last two plots.  
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Absorption appears to be stronger at the higher latitudes during both the morning (0.3 

dB) and evening (0.2 dB) sectors.  It must be noted that for velocities greater than 500 

km/s the absorption colour scale extends twice the previous range. The fourth panel 

covers velocities between 500 and 600 km/s. Once again the mean absorption is higher 

at the north end of the array, reaching 0.6 dB in the morning.  This pattern is repeated 

for V ������NP�V��ERWWRP�SDQHO��ZLWK�DEVRUSWLRQ��UHDFKLQJ��FORVH��WR������G%���1R�VKLIW�

in local time occurs and the minimum value is consistently low (0.1 dB) in the 

afternoon/evening sector.   The difference between absorption levels for each velocity 

range is more apparent in Figure 6.22 where absorption curves are plotted for the 

zenithal beam. In each case the absorption is variable from one time point to the next, 

regardless of the number of points that are used to derive the mean value. For V < 300 

km/s  (blue curve) the absorption fluctuates around 0.1 dB with no structure whereas 

for those velocities between 300 and 400 km/s (green curve) a distinct diurnal 

variation can be seen. This is more pronounced with increasing velocity, however the 

absorption level always dips to between 0.08 and 0.14 dB from 17 to 20 MLT.  The 

general trend is that high velocity leads to high morning and medium pre-midnight 

absorption with a strong minimum around dusk.  

In order to further study the dependence of absorption on solar wind speed, the 

distribution of absorption against solar wind speed is calculated for a number of time 

spans in the day.  Figure 6.23 repeats the format of Figure 6.6 with the absorption this 

time averaged over local time ranges (indicated on each plot with the number of data 

points) for solar wind speed steps of 25 km/s.   The occurrence ranges from 0.01 to 10  
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Figure 6.22.  Magnetic local time variation of absorption in the zenithal beam for 

the five ranges of solar wind speed used in Figure 6.21. 



Chapter 6 

 181

0 1 2 3

400

600

800
00−03 MLT
1838 points

0 1 2 3

400

600

800
03−06 MLT
1776 points

0 1 2 3

400

600

800
06−09 MLT
1875 points

Sp
ee

d 
km

/s
 

0 1 2 3

400

600

800
09−12 MLT
1697 points

0 1 2 3

400

600

800
12−15 MLT
1604 points

0 1 2 3

400

600

800
15−18 MLT
1648 points

0 1 2 3

400

600

800
18−21 MLT
1771 points

Absorption dB
0 1 2 3

400

600

800
21−24 MLT
1818 points

Absorption dB  

 

0.01 0.1 1 

Occurrence (%) 
10 

 

Figure 6.23.  Distribution of absorption in the zenithal beam with the solar wind 

speed, calculated for the 1995 to 2001 epoch. Note that the colour scale is 

logarithmic. 
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% and the colour scale is logarithmic.  From 00 to 03 MLT the strongest absorption 

occurrence is for low solar wind speeds and absorption below 0.5 dB (to the 1% 

threshold). Between 400 and 675 km/s the absorption extends to 1.3 dB at the ~0.03 % 

level.  At the next time range (03 to 06 MLT), the absorption within this range has 

extended to 1.6 dB, though at lower solar wind speeds it is confined to ~0.5 dB. 

Entering the post-dawn sector (06 to 09 MLT) the absorption at the 0.03% level has 

reached over 2 dB and there are accompanying increases at the lower and higher solar 

wind speeds.  By 09-12 MLT the absorption is peaking at 2.6 dB, though for the 

lowest occurrence plotted the 1 dB mark has been passed by values corresponding to 

300 km/s. After midday (12-15 MLT) the absorption recedes again (1.8 dB) 

continuing this trend into the late afternoon (16-18 MLT) where most of the 

absorption is confined within 1.1 dB at all solar wind speeds. Post dusk and the 

distribution has shrunk to the lowest level with the absorption at the lowest 

identifiable level never exceeding the 1 dB mark. This is followed by a recovery as 

midnight approaches with a broader distribution at ~600 km/s, peaking at 1.7 dB.  It 

should be noted that the diagrams do not display the total number of points available 

so that in each case a small number of absorption events will reach higher levels than 

suggested. 

 

6.3 Examining the variations in Absorption  - Discussion 

As mentioned in the introduction to this chapter auroral absorption often acts as a 

proxy for the varying precipitation of energetic electrons.  Chapter 4 pointed out that 
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this is not the only cause and that significant heating of the D and E layer can produce 

absorption (Stauning, 1984) although the occurrence of this type of absorption has not 

yet been quantified.  That said, the values of heating related absorption tend to be 

lower than those measured due to particle precipitation and it is expected that the latter 

will strongly dominate in the type of statistical analysis undertaken here.    By linking 

the auroral absorption to other parameters insights into both geophysical mechanisms 

and predictions of HF absorption can be obtained.  Observations from the IRIS 

instrument lead to a number of topics that are addressed in this section: 

i. Distribution of absorption, both in time and in space 

ii. Seasonal and solar cycle effects (if any) 

iii. The relationship to geophysical parameters (e.g. KP and AE indices) 

iv. The dependence on extra-terrestrial effects (e.g. solar wind speed and IMF) 

v. Errors and inconsistencies that may arise. 

To begin the latitude variation is investigated and the errors associated with the 

assumptions related to the imaging riometer are discussed. 

 

6.3.1 Quiet-day curves, Height and Obliquity 

Unlike previous statistical studies this investigation is unique in that it is the 

first to use an imaging riometer instead of a wide beam or chain of wide beam 

instruments.  The apparent immediate advantage is that changes on a small latitude 

scale can be examined. Above and beyond this, a measure of consistency is available; 
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the data all come from the same instrument and have been processed in the same 

manner (e.g. same quiet day curve determination). However there are also some 

potentially serious drawbacks to using the multi-beam capacity of IRIS due to 

necessary assumptions that are made in interpreting the data.  

At this stage the first point of error must be addressed.  Although the method 

of quiet day curve generation (see Chapter 3) is the same for all beams, it is still a 

source of possible error. Hargreaves et al. (1985) pointed out that the uncertainty in 

the quiet day curve has the greatest relative effect on the smallest absorption values.  

The largest percentage of absorption measured by IRIS occurs close to zero, thus the 

largest error will appear due to these low values.  The technology employed in 

riometers has advanced considerably since the instruments were first invented (Little 

and Leinbach, 1959) and currently the devices in IRIS are accurate to within 0.05 dB 

(S.R. Marple, private communication). Integrating over time and assuming that the 

quiet day curves are as accurate as possible improves this accuracy somewhat (Browne 

et al., 1995). 

Figure 6.6 showed little regular variation in the occurrence of absorption with 

latitude across the seven beams used in this study. The results from past investigations 

(e.g. Hargreaves, 1966; Hargreaves et al., 1985; Foppiano and Bradley, 1984) suggest 

that absorption should decrease to the south across the magnetic latitude of IRIS.  This 

effect is not apparent in the data presented in either Figure 6.4 or Figure 6.6 and this 

may be explained by the movement of the absorption oval across the field of view 

with changing geomagnetic activity (Hartz et al. 1963; Basler, 1963; Driatsky, 1966; 
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Schluka, 1965).  Instead of a steady change certain beams appear to see high 

absorption whilst adjacent beams to the north and south see a reduced level.    Figure 

6.13 uses the AE index to bin the absorption data and produce keograms. Here again 

there is little or no movement to lower latitudes with increasing activity, just simple 

increases in the mean absorption across all latitudes probably due to the restricted field 

of view offered by IRIS.   

Another important point to consider is the difference in the beam 

configurations. As described in Chapter 3 the beam pattern of IRIS is produced by a 

phased array of dipole antennas and the beams are all inclined at some angle to the 

zenith.  Table 6.2 shows the zenith and azimuth angles for the 10 beams used to 

produce the keograms in this study together with their respective beam widths and the 

obliquity factors that are routinely ascribed to correct for the angular differences.  The 

beam parameters are symmetrical about the centre beam (25) due to the square 

symmetry of the beam pattern.   Since the riometer gives no height information the 

latitude distribution of beams (Table 6.1) uses an assumed height for the absorption 

(90 km); a standard method in riometry that has been employed since the technique 

was first invented. Chapter 5 demonstrated that the absorbing layer in a single event 

can range from 75 to 120 km altitude, though with diminishing effectiveness at larger 

heights. Chapter 3 explained that Cosmic Noise Absorption (CNA) is proportional to 

the height-integrated product of the electron density and the effective collision 

frequency; this is likely to increase exponentially at lower altitudes making it the  
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Beam Number Zenith Azimuth Beam 

Width 

Obliquity 

Factor 

3 49.2º -18.6º 15.09º 1.502 

10 33.1º -26.6º 13.73º 1.187 

18 14.2º 0.0º 12.83º 1.031 

25 0.0º 0.0º 12.6º 1.00 

32 14.2º 180º 12.83º 1.031 

39 33.1º 153.4º 13.73º 1.187 

47 49.2º 161.4º 15.09º 1.502 

  

 

 

Table 6.2.  Statistical beams and the corresponding parameters that define them.  

The zenith angles display symmetry about the centre beam as do the beam widths 

and obliquity factors.   
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controlling factor in the relationship.  The low elevation (high zenith) angles of some 

of the beams combined with the often localized nature of auroral absorption leads to 

discrepancies between neighbouring beams.  The obliquity factor is introduced to 

attempt to correct for this problem however this does not account for  the different 

beam widths which mean some beams integrate over a larger volume along a given 

path.  Recently it has been highlighted that the obliquity factor for a wide beam in 

comparison with a narrow beam is actually dependent on the amount of absorption 

observed  due to the localised and small nature of absorption patches within the beams 

(Hargreaves and Detrick, 2002). Adding this extra level of complexity is unfeasible in 

this study, and instead the original IRIS obliquity factors are used.  Errors in the 

obliquity factors may arise since it is impossible to distinguish the height and extent of 

absorption through single beam riometry but these are likely to be small on an 

absorption event of up to a few dB.  If the height of absorption varies randomly from 

event to event then this error should cancel out just like random noise, however it may 

reinforce if there are particular conditions that reoccur producing very similar 

precipitation spectra.  Thus a beam with too small a factor will have a higher mean 

absorption than the zenithal beam (obliquity factor = 1) and too high a factor will lead 

to a lower mean absorption value.  The same should hold true for median values and 

the occurrence of absorption exceeding some threshold (Q); the two other parameters 

commonly used in describing absorption statistics (Hargreaves, 1969). 

Thanks to the symmetry about the centre of the IRIS beam pattern it should be 

possible to compare beams with the same obliquity factor to get a general idea of the 
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trend of absorption across the latitudes. Three different spacings are possible and the 

differences in latitude with each pair (based on 90 km altitude) are: 1.89º, 1.03º and 

0.44º for beams 3 and 47, 10 and 39, and 18 and 32 respectively. From the 

observations of Hargreaves et al. (1986), the variation of occurrence over such a small 

latitude range should amount to no more than a few percent. With increasing 

geomagnetic activity the north-south gradient should decrease as the centre of the 

absorption oval moves closer to the latitude of IRIS.  Figure 6.24 shows the results of 

this comparison for the occurrence of absorption ≥ 1 dB for the three different levels 

of AE used in Figure 6.16; the data have been corrected as if for a 30 MHz riometer to 

allow easy comparison with similar investigations and grouped into 3-hour periods. 

AE increases from left to right and the beam spacing decreases from top to bottom; the 

beams are identified by the colour of the curve, blue is for poleward and green is for 

equatorward. The lowest separation between the curves is for the most narrowly 

spaced beams (18 and 32) which vary by two percent at most, this is hardly surprising 

with such a low spacing between them (0.44º).  At the highest separation (1.89º) there 

is a transition from a south to north dominance in the post-dawn sector. This agrees 

with the observations of Hargreaves and Cowley (1967) and Hargreaves et al. (1986) 

who determined a region of higher occurrence at higher latitudes in the morning 

sector.  A suggestion was made by the authors that the enhancement in the middle of 

the day at lower latitudes was likely due to energetic electrons from the outer radiation 

belt rather than the usual drift of substorm injected particles.  At the higher activity 

level the difference between the equatorward and poleward values in the morning  
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Figure 6.24.  Comparisons of beams with equal zenith angles for three levels of 

AE index (as in Figure 6.13); hourly averages are presented. The spacing of the 

beams decreases from the top plot to the bottom and from left to right the AE 

increases. 
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sector is much reduced with the southern beam dominating at an earlier time, perhaps 

indicating an equatorward shift in the maximum of the absorption oval.  For beams 10 

and 39 there is a significant separation with the poleward beam having consistently 

higher occurrences.  Figure 6.8 shows that beam 10 has a higher mean absorption 

compared with the other beams in the same time intervals.  This suggests that data 

from this beam should be treated with caution as values may be over inflated. A 

preliminary investigation can find no drastic errors in the data on a case by case study, 

although if the data are marginally higher in each case this would noticeably effect the 

overall statistics.   

The error from the quiet day curve is expected to be minimal although the 

obliqueness of some of the beams and their associated errors need to be considered in 

statistical studies.  Methods to combat the obliquity factor problem are currently being 

implemented at Lancaster (S.R. Marple, private communication) based upon the recent 

findings by Hargreaves and Detrick (2002).  It should be noted that the obliquity factor 

error is small in individual events and depends on the level of absorption; it is the 

cumulative error that leads to problems in the statistical analysis and in the future this 

is likely to be resolved leading to better estimates of the average absorption.  That 

said, the imaging capability of the riometer gives an impression of the general trends 

in the spread and motion of the absorption region.  The remaining sections in this 

chapter will examine the diurnal variation and the relationship between absorption (in 

the central zenithal beam) and KP and solar wind speed.  
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6.3.2 Diurnal Variations and distributions 

The local time dependence of absorption is a well known phenomena (Holt et 

al., 1961; Hartz et al.,1963; Driatsky, 1966; Hargreaves and Cowley, 1967).  Previous 

studies found that the strongest absorption occurs in the morning sector extending 

back towards midnight and slightly beyond.  The studies by Driatsky (1966) and 

Hargreaves and Cowley (1967) showed that the absorption close to midnight showed a 

peak rather than the smooth decay into the evening sector indicated by other authors.   

The relative size and appearance of the maxima (pre-noon and pre-midnight) depends 

on the method by which the statistics are compiled (Hargreaves, 1969). By choosing a 

discrete event based approach the absorption peak close to midnight is enhanced over 

the morning counterpart.  Absorption in the pre-midnight sector is attributed to the 

precipitation of electrons directly associated with substorm activity (e.g. Ansari, 1965; 

Ranta et al., 1981; Hargreaves, 1974; Hargreaves et al, 2001) and the precipitation in 

the morning sector has often been associated with the eastward drift of electrons (see 

Chapter 5) following substorm injection.  Thus in the past it is the absorption around 

midnight that has been considered to be of premier geophysical importance 

(Hargreaves, 1969), however for practical purposes (e.g. HF communication circuits) 

the morning values are of much more interest. Auroral absorption directly associated 

with substorm activity often takes the form of short duration, spike events (Ansari, 

1964; Hargreaves et al., 2001).  In the morning sector absorption is higher and more 

slowly varying.  Since the current study uses 10-minute resolution data to determine 



Chapter 6 

 192

the mean values at each magnetic local time it is less sensitive to the short duration 

spikes so de-emphasizing the midnight peak.   

The data presented in this chapter have come from seven years of continuous 

monitoring in the auroral zone; past statistical studies have used a much reduced time 

span such as a single year (e.g. Hargreaves, 1966) although the study by Hargreaves et 

al. (1985) used 11 years of hourly data from the Finnish riometers (Ranta (1972-

1983).   Figure 6.4 clearly demonstrates the diurnal variation observed in all of the 

beams, with a strong morning peak following a smooth rise from the pre-midnight 

sector. Gross features in the distributions should correlate well between individual 

studies however any comparisons between the different statistical studies must take 

into account the method by which the data were collected.   

The keogram format is based upon the mean absorption at each local time in 

each bin.  Figure 6.5 (bottom panel) illustrated that when all negative values are 

removed the absorption and standard deviation converge for a large percentage of the 

day.  As mentioned in section 6.2.2 this is suggestive of an exponential distribution of 

the occurrence and Figure 6.5 uses 6 local time samples to show that this appears to be 

the case. It must be remembered that these data are from a 38.2 MHz riometer and so 

before comparing with results from other riometers operating at different frequencies 

the data must be scaled correctly. 

  Foppiano and Bradley (1984) found that the cumulative amplitude probability 

distributions of riometer absorption could be fitted by a log-normal distribution rather 

than an exponential as suggested by Hargreaves (1966).  Figure 6.25 presents the 
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cumulative amplitude distribution ,Q,  for the same samples as Figure 6.5.  Each of the 

curves displays some exponential-like behaviour but by fitting curves of the empirical 

expression: 

kAceQ −=     (6.2) 

where c and k are constants and A is the absorption. It is clear that the data does not 

strictly obey an exponential relationship at all times. Hargreaves et al. (1984)  found 

that the log-normal distribution was a good fit to both hourly and monthly 

distributions but that since it predicted zero probability of zero absorption suggested it 

should be used with caution and only at the ranges that it had been tested over. The 

data in Figure 6.5 clearly demonstrate that the occurrence of absorption (at least at 

38.2 MHz) favours values close to zero; unsurprisingly since the majority of 

absorption is substorm related.  Interestingly the best fits to the exponential expression 

occur within the afternoon/evening sector (12-20 MLT).  This is the time when the 

mean absorption approaches its minimum level, close to 0.1 dB (16 MLT).  Thus it 

may be surmised that for low ranges of absorption (> 0.5 dB) an exponential 

distribution more accurately describes the cumulative amplitude, whereas for high 

levels the log-normal distribution is more accurate.   These distributions have been 

chosen since they fit the data, however no theoretical explanation is clear.  Wave 

particle interactions in the magnetosphere that lead to precipitation are intrinsically 

linked to the distributions of auroral absorption and so some purely speculative ideas 

governing the particle motion at various local times are considered in section 6.3.6.  A  
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Figure 6.25.  Cumulative Amplitude Distributions for 6 magnetic local times (as 

in Figure 6.5).  The blue line represents the data and the green line is an 

exponential fit of the form:  
kAceQ
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clearer picture will be found when satellite observations at all local times are 

compared with the riometer results. 

 

6.3.3 Seasons and the Geomagnetic influence  

By binning the absorption data into the four seasons (Figure 6.8) some notable 

differences in the mean absorption appears. Winter shows a generally higher level of 

absorption than summer and the diurnal variation is less obvious. Spring and autumn 

display similar characteristics though there appears to be a poleward bias in the spring 

data.  Some of the differences may be ascribed to the unusually higher levels that 

appear in beam 10 during absorption events (see Section 6.3.1), indeed beam 10 shows 

distinctly strong absorption in both summer and spring.   To determine whether the 

differences in the mean absorption are significant a significance test is applied to the 

data.  The Kolmogorov-Smirnov (K-S) test is a significance test that in this case 

compares two continuous data sets to determine whether they might belong to the 

same distribution (von Mises, 1964).  Figure 6.26 displays the results of applying the 

test to the season-binned data, significance levels of <0.01 represent a strong 

significance suggesting that the data are not from the same distribution; i.e. the 

differences displayed in the distributions are of statistical significance.  The top panel 

compares the winter and summer keograms and suggests that the distributions are 

significantly different at virtually all local times. There are some periods of similarity 

in the morning sector in the lower latitude beams and also in the two northernmost 

beams; this does not mean the data are from the same distribution, but rather that no 
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significant conclusion can be drawn from this data.   The second panel compares the 

equinoctial months and in this case the majority of the day suggests little significant 

difference between the distributions, the largest exception being in beam 10 in the 

morning and evening sectors.  This is yet another example of how beam 10 stands out 

from the remaining imaging beams.  No problems with the IRIS hardware have been 

found to account for the high values in the beam but curiously the effect appears to 

move to different local times with season, in anti-phase with the time when 

scintillation is likely to affect the main beam. The possibility that scintillation from 

Cassiopeia is significantly affecting a side lobe of beam 10 can not be ruled out.  

Although the effect of Beam 10 is the clearest in the data it cannot explain the 

significant distribution differences in other beams at other local times suggesting a 

distinct seasonal difference.   

High absorption values observed in the mid-latitude ionosphere during winter 

are described as the winter anomaly (Hargreaves, 1995). At mid-latitudes ionospheric 

absorption is due to the ionisation by solar illumination and thus it is counter-intuitive 

to expect the absorption to increase during winter when the ionosphere is dark.  

Rocket measurements have pinpointed the immediate cause of the anomaly as electron 

density enhancements between 60 and 90 km (Geller and Sechrist, 1971).  Various 

suggestions have been put forward to explain the winter anomaly including changes in 

stratospheric temperature (Shapley and Beynon, 1965), transport of NO from higher 

latitudes and the precipitation of electrons from the radiation belts.  It is important not 

to confuse the data presented here as an example of the winter anomaly; the data are  
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Figure 6.26.  Kolmogorov-Smirnov significance tests on the Season data. Top panel compares 

summer and winter; middle panel compares spring and autumn; bottom panel compares 

winter and autumn.  Black indicates significance <0.01 and white indicates significance >0.01. 
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from higher latitudes than those usually associated with the anomaly and the mean 

absorption in winter very rarely exceeds the equinoctial values.   

The cause for the increase in winter over the summer values is most likely 

geophysical in nature.  Figure 6.10 compared the distributions of KP in each of the 

seasons and found that the winter had a slightly higher occurrence in the higher 

activity levels than summer (3.5 % difference). Spring and autumn KP occurrence 

values at higher activity are broadly similar and are above either of the solstitial 

seasons.   These differences should be enough to explain the variation in the mean 

absorption between the season keograms, pointing to the fact that any seasonal 

variation is actually geomagnetic in origin and thus the absorption is most likely still 

related to the precipitation of energetic electrons.  It has been demonstrated that there 

is a semi-annual variation in the occurrence of geomagnetic storms (Russell and 

McPheron, 1973) dependent on the geometry of the IMF with the Earth’s 

magnetosphere.  Spring and autumn form two peaks in the variation with a minimum 

over winter and another over summer; the summer minimum is the deeper of the two.  

Magnetospheric influence on auroral absorption was established long ago in 

the early days of riometry (e.g. Parthasarathy and Reid, 1967).  Figure 6.11 highlights 

the dependence of the absorption on activity as defined by the KP index.  Both the 

mean (top panel) and median (bottom panel) show significant increases in the morning 

and midnight sectors with higher activity.  The mean absorption is consistently higher 

than the median due to a few high occurrences of high absorption skewing the mean 

value. Interestingly the median absorption in the highest activity range peaks at an 
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earlier magnetic local time than the corresponding mean absorption.  For KP > 4 the 

morning absorption is ~6 times higher than for the lowest KP range yet around 15-18 

MLT the absorption is gathered within less than 0.1 dB for all activity levels. The 

afternoon minimum appears to be a strongly defined characteristic of the daily 

absorption and will be returned to later in this chapter (section 6.3.5).   

Meanwhile it is worth concentrating on the distribution of the absorption data; 

Figure 6.12 shows how with increasing MLT the distribution extends to higher 

absorption values at lower KP until the afternoon when a recovery occurs.  A 

relationship linking geomagnetic activity with absorption for a given local time and 

latitude is desirable for prediction purposes.  Past authors have attempted to predict 

auroral radio absorption based upon statistical measurements (e.g. Agy, 1972; Herman 

and Vargas-Villa, 1972; Foppiano, 1975; Vondrak et al., 1978; Masi, 1980 and 

Foppiano and Bradley, 1984) including terms based upon sunspot number, linking the 

absorption to the solar activity cycle.  Hargreaves (1966) determined relationships 

between the absorption and KP and AP indices and later works (e.g. Hargreaves et al., 

1984 and Hargreaves et al., 1986) confirmed this reliance on geomagnetic activity, 

suggesting that a geomagnetic term should replace the sunspot dependence in any 

prediction model. 

The investigation by Hargreaves found a linear relationship between the log of 

the median auroral absorption and KP that was heavily dependent on time of day: 

Pm
KSIA .log

10
+=    (6.3) 
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A relationship between the log of absorption and the KP value seems reasonable since 

the KP index is itself quasi-logarithmic.  Results from that investigation for two 

latitudes are presented in table 6.3. The time bands are presented in universal time and 

the data come from two riometers in the northern hemisphere: Great Whale River 

(55.03º, -77.83º geographic) and Baie St. Paul (47.37º, -70.55º geographic), operating 

at 29.85 MHz.  The two stations are separated by 38 minutes of magnetic local time 

(Baie St. Paul leads Great Whale River) The corrections to magnetic local times are 

presented in the second field calculated using the IGRF model for 1964. 

 

UT 00-06  06-12 12-18 18-24  

 

Latitude 

MLT (67.8º) 

MLT (60.0º) 

18:53-00:52 

19:31–01:30 

00:53–06:52 

01:31–07:30 

06:53-12:52 

07:31–13:30 

12:53–18:52 

13:31–19:30 

67.8º I  

S 

0.134 

0.113 

0.086 

0.216 

0.064 

0.284 

0.281 

0.080 

60.0º I 

S 

-1.068 

0.284 

-0.949 

0.338 

0.155 

0.061 

0.090 

0.096 

 

Table 6.3.  Intercept (I) and slope (S) in Log10(Am) = I + S.KP .  After Hargreaves 

(1966). 
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 Figure 6.12 demonstrated that there is a changing distribution in the 

absorption at different levels of KP at each magnetic local time, and the scatter of 

absorption appears to curve over at times. Figure 6.27 plots the logs of the median and 

mean absorption values for each KP level at the same magnetic local times as for the 

distributions in Figure 6.12.  The two colour coded lines display first order quadratic 

fits to the data for the mean (blue) and median (red) values.  For KP levels where less 

than 50 data points occur in each local time bin the mean and median values are 

excluded in the fit.  Either side of the mean values the two dashed black lines show the 

positions of one standard deviation from the mean value.  Table 6.4. shows the values 

of the intercepts and slopes for this set of fits, and for comparison the values in 

brackets represent corrections for radio absorption at 29.85 MHz.  The differences 

between the curves in each time bin suggest that the local time dependence is very 

significant and so using large separations (e.g. 6 hours) is inadvisable. 

A quantitative comparison between the two estimates of the absorption-KP 

relationship is difficult; the differing choices of magnetic local time ranges cause 

problems and since no direct observations were made at same latitudes such a 

comparison becomes increasingly unreliable.  Estimates of the values of the fits could 

be ascertained by interpolating between latitudes through assuming an appropriate 

spatial distribution; the most often selected distribution is the Guassian fit to the Q(1) 

parameter (e.g. Hartz et al.,(1963); Holt et al., (1961); Hargreaves, 1966 and Foppiano 

and Bradley, 1985) (Q(1) describes the probability of absorption exceeding 1 dB).  

However the factor of the longitudinal separation of the riometer stations in the  
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Figure 6.27.  Log of the mean (blue crosses) and median (red circles) values of 

absorption in each KP bin plotted against the corresponding KP.  The two 

straight lines are linear fits to the data and the dashed black curves represent the 

log of ±1 standard deviation about the mean. 
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MLT Mean Median 

 Gradient (S) Intercept (I) Gradient (S) Intercept (I) 

00-03 0.184 (0.184) -1.291 (-1.082) 0.215 (0.215) -1.441 (-1.231) 

03-06 0.213 (0.214) -1.327 (-1.117) 0.240 (0.240) -1.454 (-1.245) 

06-09 0.236 (0.236) -1.280 (-1.070) 0.270 (0.270) -1.436 (-1.226) 

09-12 0.217 (0.216) -1.148 (-0.938) 0.224 (0.238) -1.247 (-1.037) 

12-15 0.151 (0.151) -1.067 (-0.856) 0.172 (0.172) -1.231 (-1.021) 

15-18 0.062 (0.062) -1.047 (-0.837) 0.075 (0.075) -1.140 (-0.930) 

18-21 0.063 (0.063) -1.164 (-0.954) 0.088 (0.088) -1.284 (-1.074) 

21-24 0.142 (0.142) -1.247 (-1.037) 0.163 (0.163) -1.375 (-1.165) 

 

Table 6.4.  Gradient and Intercept values for fits to equation 6.3 for both mean 

and median absorption for data in Figure 6.30. Values in brackets display the fits 

for 29.85 MHz absorption; there is no difference in the slopes only in the 

intercept as the correction simply scales the data by the same value. 
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original and present investigation produces a large uncertainty.  Qualitatively, by 

comparing the values of the gradients of the fits (S) for similar magnetic local times 

the IRIS results fit within the limits imposed by the two latitudes of the wide beam 

riometers (except in the ~13-19 MLT range).  A bias in S towards the northward 

riometer values appears at each time range and since this is the smallest separation in 

latitude (65.91º to 67.8º) it appears promising for the current results.  

Interestingly the point where the comparison breaks down is in the 13-19 MLT 

time range, this spans the rapid decline to and slow rise following the 

afternoon/evening minimum (~18 MLT).  By weighting the latter half of the time 

period more than the former a better comparison of S is found, suggesting that the 

minimum is controlling the result in the 18-24 UT bracket (from Hargreaves, 1966).  

The dominance of the minimum is unsurprising considering the little effect that 

geomagnetic activity has on this recurring phenomenon and it is a clear example of 

how careful selection of temporal bins is essential to avoid smearing across very 

different characteristics.   Large differences in the intercept values (I) may be the result 

of the expected longitudinal effect. Current values of I are significantly lower than 

those from the past study. More investigations of this nature are needed at different 

sites spread in longitude to determine whether such an effect exists and if so how large 

the magnitude of the differences. 

In an attempt to test the relationship between absorption and KP the 

coefficients of the fit are applied to the KP data from 1995 to 2001.  Correlation 

coefficients are determined for the observed and estimated data sets for both the mean 
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and median absorption fits and the residuals for each are computed.  The results from 

the fit are presented in table 6.5.   

 

 

 Correlation 

Coefficient 

Mean of residuals Standard deviation of 

residuals 

Mean 0.391 (0.532) -0.129 dB (-0.093) 0.348 dB (0.167) 

Median 0.358 (0.528) -0.099 dB (-0.056) 0.396 dB (0.165) 

 

Table 6.5.  Correlation coefficients and residual information for absorption 

values derived from KP levels and compared with observed values in the epoch 

1995-2001.  Values in parenthesis are from fits to data over the range where 

reliable means and medians were calculated. 

 

In both cases (mean and median) the correlation coefficient over the whole 

data set is rather poor though better for the mean relationship. The mean ratio of the 

observed and estimated data sets is better for the median values (0.73) than the mean 

(0.6). and the residuals (observed – estimated) indicate that the relationship 

overestimates the absorption on average but that the values are quite reasonable. 

However the standard deviations of the residuals reflect the wide distribution of 

absorption and show that for some periods there is a marked difference.   At times the 
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estimated absorption is >1.7 times the observed value; for an observation of 0.5 dB 

this translates to an error of 0.3 dB at 38.2 MHz.  Translating this to 15 MHz (around 

the operating frequency of the CUTLASS radar for example) 0.5 dB becomes ~7.3 dB 

and the difference is 4.4 dB!  For the range of data represented by the well defined 

calculated mean and median values the correlation and accompanying parameters are 

much improved; the spread of the residuals is reduced to a much more reasonable 

level suggesting a better representation. Thus although this approach to determining 

absorption appears to be severely limited over the current range of activity levels, with 

more high activity observations to constrain the fitted curves a better measure of the 

relationship is likely attainable. 

 To address the current uncertainty associated with the log-linear relationship, a 

different empirical relationship is now suggested.   The occurrence plots in Figure 6.12 

suggested a measure of curvature that increased with magnetic local time until 12-15 

MLT, and Figure 6.27 showed a distinct curve to the mean and median values at some 

of the local times. A quadratic is fitted to the mean and median values in each KP bin.  

This fitted relationship takes the form: 

cbKaKA
PPm

++= 2    (6.4) 

where a, b and c are constants.  Figure 6.28 displays the local time results of this fit to 

the data with surprisingly good results over the range of available data. The black 

dashed lines show the ±1 standard deviation from the mean for each KP bin.  At 15-18 

MLT there is a significant failure to fit the quadratic curves in a meaningful fashion; 

this is at the minimum in the diurnal variation and the range of absorption values 
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hardly increases as the activity level rises, the distribution of points suggests a more 

linear fit with a steep gradient.  This will be improved when more data at the highest 

and lowest KP values become available.  Table 6.6 displays the coefficients for each 

local time for the mean and median absorption;  neither the linear nor the squared term 

dominate to any significant level in each of the time ranges except in the 00-03 MLT 

and 12-15 MLT sectors.  At these times it is clear that the relationship is mostly linear 

with a small non-linear contribution at high KP. 

Testing this relationship in the same manner as for the log-linear fit results in a 

notably higher correlation between the observed and the modeled data for the entire 

epoch. Restricting comparisons to the range of calculated medians leads to slightly 

better results but not as markedly improved as with the log-linear fit. Once again the 

absorption based on Kp is higher on average than the observed quantity though the 

mean residual is marginally closer to zero.   The standard deviation of the residuals is 

also smaller; all pointing to the quadratic providing a better estimate of the absorption.  

The values of the correlation coefficients are presented in Table 6.7 where they are 

shown to be approximately the same.  With that in mind, a better choice for 

determining the absorption would be to use the coefficients associated with the median 

value due to the improved spread of residuals.  Although by gaining higher activity 

observations the fits can be better restrained it is clear that at least for the current data 

set the quadratic fit provides better solutions than the log-linear. 
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MLT Mean Median 

 a b c a b c 

00-03 0.008 0.072 0.055 0.003 0.087 0.022 

03-06 0.040 -0.023 0.083 0.029 0.017 0.049 

06-09 0.058 -0.058 0.123 0.052 -0.036 0.077 

09-12 0.066 -0.046 0.141 0.057 -0423 0.115 

12-15 0.009 0.090 0.105 0.007 0.084 0.061 

15-18 -0.010 0.072 0.118 -0.005 0.057 0.090 

18-21 0.006 -0.008 0.130 0.007 -0.007 0.102 

21-24 0.012 0.032 0.080 0.014 0.020 0.061 

 

Table 6.6.  Coefficients for the quadratic fit to the mean and median absorption 

values at 8 magnetic local times. 
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Figure 6.28.  Local time plots of the median (red circles) and mean (blue crosses) 

absorption against the KP.  The curves represent quadratic fits to the data points 

and once again the black dashed lines are ± 1 standard deviations about the 

mean. 
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Figure 6.12 demonstrated that the absorption suffers from a wide distribution 

in each Kp bin but the occurrence is much higher towards the lower end of the 

absorption scale. This does not exclude high absorption events by any means, but even 

with high values of KP there will be many occasions when absorption is low. Similar 

geomagnetic conditions will not necessarily return similar absorption levels.  When 

the nature of auroral absorption is considered this becomes less surprising; radio 

absorption at high latitudes is principally due to the precipitation of energetic particles 

(electrons >15 keV) and so if no particle population is existent in the magnetosphere 

then no absorption will occur. Thus for periods of high geomagnetic activity in close 

succession the high-energy particle populations may be depleted leading to a 

significantly reduced absorption level. Many factors will control this including the 

type of pitch angle diffusion occurring in the pertinent region of the magnetosphere. 

Weak diffusion will lead to a slow, gradual movement of electrons into the loss cone 

whereas strong diffusion will dump large fluxes into the ionosphere, quickly depleting 

the population on the field line.  In order to make reliable absorption predictions some 

term dependent on the recent time history of the magnetic activity must be included in 

any empirical relationship.  

Another important point to note is the variability of absorption on small time 

scales, especially in the night side ionosphere; using KP (a three hour index) as an 

indicator of the absorption activity does not truly capture the dynamic nature of auroral 
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absorption.  Figure 6.13 displays keograms for three levels of geomagnetic activity 

based on the auroral electrojet index (AE), which is produced at a much higher  

 

 

 Correlation 

coefficient 

Mean of residuals Standard Deviation of 

residuals 

Mean 0.507 (0.538) -0.117 dB (-0.096) 0.230 dB (0.167) 

Median 0.508 (0.536) -0.080 dB (-0.060) 0.215 dB (0.163) 

 

Table 6.7.  Correlation coefficients and residual information for absorption 

values derived from KP levels and compared with observed values in the epoch 

1995-2001. 

 

 

temporal resolution and is specific to the auroral zone rather than a planetary index 

such as KP.   

The increasing AE values lead to notable increases in the mean midnight to 

morning absorption levels and once again the late minimum exhibits only small 

differences from one plot to the next.   The occurrence of absorption ≥1 dB (Q(1)) for 

each of the AE ranges shows a similar pattern (Figure 6.17).  The AE data covers a 
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smaller time span than the KP, extending from 1997 to 2000 inclusive and as 

mentioned in section 6.2 these are only quick look data, unconfirmed and derived from 

only 8 of the 12 stations. As such any results obtained should be treated with due 

caution.  Once the data have been confirmed and a longer period is available AE 

should prove a satisfactory indicator of geomagnetic activity, suitable for attempting a 

similar process described above for KP. 

 Having examined the statistical relationship between auroral absorption and 

geomagnetic activity it is worth considering the effect that the drivers of 

magnetospheric activity have on the variation of absorption: the IMF and the solar 

wind. 

 

6.3.4 Links to the Interplanetary Magnetic Field 

With the launch of the Wind spacecraft in 1994 and subsequently the ACE 

satellite in 1998 a valuable resource was made available to solar-terrestrial scientists; 

consistent and reliable solar wind and IMF data became available for a long period.  

At the time of writing both ACE and Wind are still operational and recording data.  

For previous statistical studies of the absorption oval solar wind data were available 

for short periods or could be estimated from the geomagnetic activity indices (e.g. 

Hargreaves, 1966).  The current work has access to the spacecraft data allowing direct 

comparisons of the absorption variation in response to these important driving 

parameters.   
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Figure 6.16 used the four quarters of the IMF clock angle to bin the absorption 

from each of the 7 IRIS beams.   There are large differences in the mean absorption 

between a northward IMF and a southward with smaller differences between east and 

west conditions.  The mean absorption doubles when the IMF is southward in the 

morning and midnight sectors whereas it once again remains very low in the evening 

sector.  A westward IMF appears to favour an earlier increase in absorption pre-dawn, 

perhaps due to the skewing of the field lines (Cowley et al., 1991; Khan and Cowley, 

2001) leading particles to precipitate at an earlier local time.   To determine whether 

this is significant the data are subjected to the Kolmogorov-Smirnov significance test. 

Once again a returned value of less than 0.01 suggests a strong significance. In Figure 

6.29 the top panel compares a positive IMF BZ with the negative; BY is held constant. 

A strong significance (< 0.01) is shown from ~20 MLT to ~12 MLT suggesting that 

the data in this band are from very different distributions. Ranging across the by-now 

familiar diurnal minimum in all beams there is a band of apparently insignificant data, 

suggesting that whereas the midnight and morning absorption is highly dependent on 

the IMF, the low absorption values in the afternoon/evening are not.  The diurnal 

minimum does not depend on the orientation of the IMF.  The bottom panel compares 

the eastward (positive BY) and westward (negative BY) IMF with a constant BZ, in this 

case southward.  There are some small patches in the keogram that display a possible 

significance but these are isolated and non continuous as in the previous example.  

Some of these points cluster in the morning sector, pre 04 MLT, however it is clear 

that no significant conclusion can be drawn about the possibility of BY having an 

effect  on  the  absorption.   Discarding  the  BY  parameter  as  insignificant  for  these 
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Figure 6.29.  The results of a Kolmogorov-Smirnov significance test between IMF 

northward and southward conditions (top panel) and IMF eastward and 

westward conditions (bottom panel). The colour scale reflects values above 

(black) and below (white) the significance level (0.01). 
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purposes, the zenithal absorption can be binned by BZ in order to further investigate 

the dependence.  Figure 6.17 shows that when the Q(1) parameter is binned by BZ 

there is a definite effect for negative values both around midnight and in the morning 

sector. Northward IMF does not seem to radically affect Q(1) as southward does; the 

curves for positive BZ cluster below a 4 % maximum  and do not follow any trend.  

Those curves for BZ < 0 display a definite trend with increasingly higher values of 

Q(1) for successively negative values of BZ.  Thus the absorption distribution is 

obviously dependent on the Z component of the IMF just as should be expected since 

absorption is substorm dependent.  This approach does not account for transient 

effects in the absorption such as those reported by Nishino et al. (1999) for a rectified 

response to north/south movements in the IMF.  That example was related to increases 

in field aligned currents close to the open/closed field line boundary whereas the 

general increase here is likely related to the occurrence of substorm activity for 

negative IMF. 

 

6.3.5 The Solar Cycle and the Solar Wind 

Geomagnetic activity has long been identified with changing conditions in the solar 

wind, thus it is reasonable to suggest that the absorption will have a dependence on 

some defining parameter. Chapter 5 described how pressure pulses in the solar wind 

lead to enhancements in absorption due to the growth of wave particle interactions in 

the magnetosphere.  The two types of absorption associated with pressure pulses are 

briefly described in Chapter 3 as Sudden Commencement Absorption (SCA) and 
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Sudden Impulse Absorption (SIA). These follow drastic changes in the solar wind 

pressure and are typically large-scale events (Ranta and Ranta, 1990). Tsurutani et al. 

(2001) illustrated the effects that solar wind shock waves have on the magnetosphere 

leading to enhanced wave activity and loss cone instabilities (e.g. Anderson and 

Hamilton, 1993; Lauben et al.,1998), which result in diffuse precipitation and the 

intensification of field aligned currents (Araki, 1994; Lysak et al., 1995).  One of the 

conclusions from Chapter 5 was that small changes in the solar wind dynamic pressure 

could affect the precipitation that causes the absorption in the dayside auroral zone.     

Figure 6.18 showed that the distribution of the dynamic pressure in the 1995 to 2001 

epoch peaked at 3 nPa at 24 % and that the probability of high pressure events (>20 

nPa) occurring is very small.   Thus any dependence on solar wind pressure as 

displayed by Figure 6.21 is unlikely to be related to the large shocks associated with 

SCA and SIA.  An increase in the morning and midnight levels is evident in the 

keograms over just this small range of pressure events. 

Tsurutani et al. (2001), noted that long after the passage of interplanetary 

shocks in two separate events there was an appreciable aurora at dawn, dusk and 

midnight recorded by the Ultra Violet Imager carried by the POLAR spacecraft.  This 

was attributed to a viscous interaction between the solar wind and the flanks of the 

magnetosphere producing either a Kelvin Helmholtz instability (Rostoker et al., 1992) 

or cross-field diffusion of magnetosheath plasma via ELF/VLF boundary layer wave 

interactions (Lakhina et al., 2000; Tsurutani and Lakhina 1997).  Either way small 

changes in the dynamic pressure, brought about through slight variations in the solar 
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wind speed could result in increased precipitation; this is demonstrated in Figure 6.21 

where the increased level of solar wind velocity produces large changes in the mean 

absorption in the morning and midnight sector.  This is further emphasized in Figure 

6.22 which displays the mean absorption for the zenithal beam; for speeds greater than 

300 km/s there is a detectable effect on the absorption level.  When the data is binned 

into the eight magnetic local time sectors used to distinguish KP (Figure 6.23) the 

changing distributions become clear; although the majority of the absorption still 

clusters about 0.1 dB there is a broadening of the distribution with increasing solar 

wind speed.  At high velocities the distribution appears to shrink again but this is an 

artefact created by low numbers of data points at the greater speeds  (Figure 6.20).   

Since the solar wind is credited as being the driving force behind geomagnetic 

activity it seems reasonable to link the absorption to the energy input from the solar 

wind.  The study by Hargreaves (1966) attempted to estimate the total energy of 

precipitated particles. This relied on the empirical relationship derived by Hargreaves 

and Sharp (1965) linking the absorption to the square root of the total energy of the 

precipitated electrons combined with an expression for the solar wind velocity based 

on KP/AP: 

330.2.67 += Psw KV    (6.5) 

Measurements of the solar wind were made by the Mariner 2 space probe to derive 

this relationship (Snyder et al., 1963), though more sophisticated variations using the 

AE index and including terms for the IMF effects now exist (Hargreaves, 1995). With 

the data available from the ACE and WIND spacecraft it is now possible to attempt to 



Chapter 6 

 218

link directly auroral absorption with the solar wind velocity. By compiling mean and 

median absorption values from 50 km/s wide bins a similar method to earlier can be 

applied to the data. Figure 6.30 shows the results of the binning with a linear fit to the 

data of the form: 

bVaA
swm

+= .     (6.6) 

The data points in the pre-noon sector show some measure of curvature but this is not 

repeated to any notable effect in the other local time bins and does not compare with 

the bending recorded for the KP bins.  By applying the fit to the time series of the data 

again a measure of the correlation can be found.  Table 6.8 presents the correlation 

coefficients which prove a better result than with the KP log-linear fit and with a much 

reduced spread of the residuals. Whereas for the mean values the modelled absorption 

is again overestimated, the median values are generally smaller than the observed 

absorption.  When the relationship is computed for only those velocities where reliable 

mean and median values are available there is no discernable difference in the 

correlation.   

The current equation (6.6) will produce unrealistic values for low solar wind 

velocities(> 200 km/s) in most cases, however in the previous half solar cycle there 

have been no occurrences of the solar wind dropping below ~250 km/s.  Values of 

absorption calculated for a solar wind velocity less than 250 km/s should be 

discounted as extremely unreliable as should values in excess of 800 km/s.  It is highly  
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Figure 6.30.  Absorption versus solar wind velocity for 8 magnetic local time 

ranges. Mean and median values are calculated for each 50 km/s bin and straight 

line fits derived.  Dashed black lines represent ± 1 standard deviation about th e 

mean 
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 Correlation 

coefficient 

Mean of residuals Standard Deviation of residuals 

Mean 0.477  -0.017 dB 0.187 dB 

Median 0.479 0.034 dB 0.190 dB 

 

Table 6.8.  Correlation coefficients and related parameters for a linear fit of the 

mean and median absorption to the solar wind velocity over the 1995-2001 epoch. 

 

 

likely that at the large velocities other mechanisms of absorption such as the SCA and 

SIA will dominate due to the infrequency of these high speeds.   

 A final attempt is made to fit the data to see if the correlation can be improved 

over ~0.48.  Figure 6.31 shows the results of plotting the log of the absorption against 

the log of the solar wind and fitting an equation of the form: 

bVaA
swm 101010

loglog.log +=   (6.7a) 

a

swm
VbA .=     (6.7b) 

The correlation for this fit is only marginally higher (e.g. 0.485 for the mean values) 

and no difference is found when the data are limited to the range of velocities over 
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which the fit is calculated. Similar results are obtained when a quadratic is fitted 

instead of the linear equation. Thus the simple linear fit to the solar wind data is the 

best that can be achieved but results in a relatively weak correlation.   It is believed 

that the important factor that is necessary to improve upon these results is to combine 

the effects of the IMF with that of the solar wind and to include some term that takes 

account of the recent time history of the solar wind/IMF.  This ‘priming’ factor would 

be related to the storing of energy in the magnetotail prior to release during substorm 

onset.   Much further work is needed before a reliable prediction model for auroral 

absorption can be created based on a solar wind parameter though existing absorption 

models (e.g. Foppiano and Bradley, 1983; Greenberg and LaBelle, 2002) have 

changed from using a solar cycle related term (usually sunspot number) to a 

geomagnetic dependent value.  This is eminently sensible as a study of the diurnal 

variation of absorption in each year at IRIS (Figure 6.7) demonstrates no consistency 

with the trend of the solar cycle. Indeed absorption is highest in 1995, just following a 

solar minimum. 1995 also happened to contain a series of high speed solar wind 

streams (Mathie and Mann, 2000); a phenomenon usually occurring in the declining 

phase of the cycle. This is more evidence that the absorption is closely linked with 

variations in the velocity rather than any parameter determined by the temporal 

position in the solar cycle. 
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6.3.6 The recurrence of the afternoon/evening minimum 

It is worth considering the strongest, recurring feature in the diurnal variation 

of the absorption: the afternoon/evening minimum. Whether the absorption is sorted 

by coincident KP, AE or the solar wind velocity there is a large rapid decrease in 

absorption in the afternoon sector before the slow rise begins in the evening.  The 

empirical fits to the data at this time show a very steep gradient caused by a narrow 

distribution of absorption over small values. What are the defining mechanisms (or 

lack thereof) for this minimum?  There are two options; the first is that the wave 

particle interactions that lead to particle precipitation (Coroniti and Petschek,1966) are 

severely reduced between noon and dusk in the magnetosphere  the second is that 

there is a limit to how far substorm injected electrons can drift around the 

magnetosphere at auroral L shells.  Of course the answer could well be some 

combination of the two.  Past work has demonstrated that at auroral invariant latitudes 

the drifting particles are within the quasi-trapping region (Roederer, 1970) where the 

drift loss cone surrounds the bounce loss cone (close to noon).  As particles enter the 

noon sector any pitch angle diffusion leads to particles moving towards the loss cone 

and consequently they are lost through radial diffusion and precipitation. Without 

significant pitch angle diffusion particles will complete a full circuit of the Earth being 

stably trapped. Satellite observations of energetic precipitation produce an average 

pattern that also reflects a minimum close to dusk (e.g. Hartz and Brice, 1967).   

Kennel and Petshcek (1966) suggested that there is a limiting particle density on a 

field line that governs pitch angle diffusion and precipitation. Thus if enough particles 
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are lost by ~18 MLT there will be a stably trapped population with only small levels of 

precipitation.  So following substorm injections electrons drift eastward towards 

dawn, the pitch angle distribution is anisotropic following the injection of fresh 

particles leading to enhanced precipitation in the morning sector. As the particles 

approach midday those within the drift loss cone will be lost, further reducing the 

number density on a given field line and causing the population to tend towards 

stability. At higher activity levels more particles will be injected onto the field line and 

the rate of loss will also increase (Kennel and Petschek, 1966). Thus by dusk, very 

little precipitation will be occurring regardless of the geomagnetic activity. Space craft 

observations of the pitch angle distributions of energetic particles will play an 

important role in determining the real mechanics behind the dusk minimum. Hartz 

(1971) determined from satellite observations that precipitation decreased in the 

afternoon sector at the energies responsible for auroral absorption (e.g. > 20 keV 

electrons).  This effectively limits the cause to a magnetospheric origin rather than an 

ionospheric effect (e.g. the complex chemistry of the D-layer). 
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Figure 6.31.  Log of absorption versus the log of solar wind velocity for 8 

magnetic local time ranges (as in Figure 6.30). 
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6.4 Summary 

For the first time data have been combined from 7 years of continuous 

observations of the auroral absorption from a single instrument (IRIS) and the spatial 

extent of the distinct problem of solar radio contamination has been examined for all 

beams.  A definite diurnal variation becomes apparent when the data is averaged and 

this is characterised by a peak in the morning sector (~10 MLT) and a deep minimum 

around 18 MLT.  This minimum appears to be independent of any geophysical or solar 

wind controlling factor that effects the absorption in the morning and around midnight 

and is likely linked to limits of anisotropy in the pitch angle distribution of the 

electrons.  

It is agreed that a log-normal fit to the cumulative amplitude distribution of 

absorption (Q) is satisfactory for mid to high values, however at low absorption an 

exponential fit is better.  Statistically, low values occur most often and particularly in 

the afternoon/evening, thus the log-normal distribution reflects reasonably strong 

precipitation. 

 The apparent seasonal effect on the observed auroral absorption has been 

attributed to differences in the amount of geomagnetic activity in the four seasons. 

This does not discount the possible effect of a poleward extension of the winter 

anomaly, although it should be noted that consistently enhanced D-region electron 

density effects will be removed from the data during quiet-day curve generation. 

A non-linear empirical relationship between absorption and KP has been 

identified and coefficients computed.  This appears to fit the data reasonably well and 
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is superior to the log fit that had been previously proposed.  The local time 

dependence of absorption is so clear that the possibility that different types of fits to 

the data in each MLT bracket should not be discounted.  Any future investigation of 

this nature should take this into account. 

The variation of absorption relies heavily on the changing solar wind levels 

rather than any solar cycle indicator (e.g. sunspot number). A linear relationship 

between absorption and solar wind velocity has been derived for the first time and it 

appears to give the best results of any type of fit. A southward IMF plays a significant 

role in precipitation in the auroral zone but the eastward component has no statistical 

effect on the mean absorption.  

The limitations of the imaging riometer for a study such as this have been 

expounded upon and include errors that are introduced through the non-uniform nature 

of the beam sizes and the uncertainty of the distribution of absorption events in 

oblique beams.  Some of the beams (particularly beam 10) exhibit unusually high 

values possibly due to some small inconsistencies in the quiet day curves; the 

possibility of a hardware problem has been investigated and although no drastic 

problems were located it can not be ruled out. The motion of the enhanced absorption 

in the season binned data suggests that the ambiguity may be related to scintillation in 

a side lobe of the beam as it displays a sidereal variation that moves in anti phase with 

the position of Cassiopeia in the main beam.  Further investigation is necessary to 

determine the true cause of the problem in beam 10. 
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This study can be considered as a portion of a possible absorption prediction 

model based upon latitude, longitude, geophysical and/or solar wind parameters. 

Although apparently reasonable fits to the mean and median absorption can be found 

for both KP and the solar wind speed, the variability of the absorption still leads to 

problems.  Low absorption is still likely even when geophysical activity is high, 

because absorption is highly dependent on the population of energetic particles in the 

magnetosphere; without fluxes of electrons (>15 keV) no appreciable absorption is 

possible.   Thus current global models of absorption based on only KP values are 

unreliable.  Methods to improve such a model must take into account past levels of 

geomagnetic activity, absorption and some other measure of the energy stored in the 

magnetotail (e.g. BZ). A detailed study of how absorption responds during 

geomagnetic storms would be especially useful, linking the observations to past levels 

of activity as indicated not only by KP and  Dst but also the IMF and solar wind speed.  

If this is done then with the large array of riometers available in both hemispheres and 

the catalogue of data, a suitable global empirical model could be defined. 

 



Chapter 7 

 228

 

Chapter 7 

Polar Cap Absorption Events 

 

7.1 Introduction 

 Solar energetic particle events (SEP) are major space weather phenomena.  

Large clouds of energetic protons (with some heavier ions and electrons) are released 

from active regions on the sun and upon reaching Earth can have severe consequences 

for both satellites and other facilities on the ground.  In the following chapter the 

relationship of solar flares to solar proton events (SPE) is discussed with reference to 

25 years worth of GOES satellite data. Various parameters of both the solar proton 

flares and the SPE are compared and contrasted; these include the temporal and spatial 

occurrence of flares that produce measurable proton fluxes at Earth.    

 The bombardment of energetic protons on the atmosphere lead to significant 

increases in electron density in the lower ionosphere, which in turn produces 

attenuation of HF radio waves.  A simple empirical relationship between the proton 

flux measured at geostationary orbit and the absorption measured in the auroral region 

is derived.  The effects of enhanced geomagnetic activity are explored as well as the 

effects that high solar radio activity have on the absorption.  
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7.2 Solar Proton Events and Flares 

 Solar Proton Events (SPE) events are thought to originate from two sources: 

acceleration of particles during solar X-ray flares and shocked solar wind particles, 

driven by coronal mass ejections; arguments continue as to which is the dominant 

mechanism.  Protons in the MeV energy range remain the dominant species in both 

cases and most events can be reliably linked with X-ray flares; usually M class or 

above.  Whatever the generating mechanism, these energetic particles travel through 

interplanetary space and occasionally interact with the Earth’s magnetosphere and 

ionosphere. As described in Chapter 4, SPE lead to increased levels of ionisation in the 

sunlit lower ionosphere.  These events are monitored by the Space Environment Centre 

(SEC), a branch of NOAA (National Oceanographic and Atmospheric 

Administration), who assign a level to each event based upon the flux of protons above 

10 MeV.  Table 7.1 describes each of the five classifications of radiation storm (SPE) 

together with the threshold PFU (particle flux unit).  In addition, the fifth column of 

the table indicates the number of events that occurred between 1995 and 2001 (The 

time period for the PCA observations in this chapter).  

 

7.2.1 SPE and PCA identification 

 The proton data that comprise the observations in this chapter have been 

collected from the GOES range of satellites (Chapter 3).  SEC maintain a list of all 

solar proton events that have occurred since April 1976 together with associated flares 

and CME’s. The proton flux in geostationary orbit fluctuates regularly, although a 
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solar proton event is defined to occur only when the flux of protons with energies 

above 10 MeV  is greater than or equal to 10 (cm2.s.sr)-1 (i.e. PFU(>10 MeV) �������

Thus the criterion for identifying solar proton events is well established.  Since 1976 

there have been 197 separate cases of the proton flux exceeding the threshold level and 

165 of these have reliable coincident flare identifications.  Some of the events actually 

include multiple particle populations when fresh injections occur before an event has 

dropped back below the threshold.  

 It is the bombardment of solar protons on the ionosphere that lead to  Polar Cap 

Absorption (PCA) events.  Thus the occurrence of PCA are intrinsically linked to SPE, 

although not every solar proton event results in PCA due to a number of factors.  Ranta 

et al. (1993), found that only the medium to strong events (>100 PFU) lead to 

appreciable changes in the absorption in the polar cap and auroral zones. SPE with 

PFU<100 result in variations of daily absorption between 0 and 1.5 dB measured at 30 

MHz; this corresponds to absorption levels less than 0.93 dB at 38.2 MHz.  This is still 

significantly higher than the majority of auroral absorption as determined in Chapter 6. 

 PCA events have been identified in the IRIS data set from 1995 to 2001 by 

considering those periods of elevated solar proton flux. Events that display uniform 

rises in absorption across the IRIS field of view during a SPE have been selected, 

reinforced by high correlation with the  >10 MeV integral flux measured by GOES 8.  

With short time spans it becomes much harder to determine whether absorption is due 

to the flux of solar protons or whether it is precipitation from closed field lines, so 

most short duration events have been excluded.  Using a reliable riometer located in 
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the polar cap, away from the trapping regions, can alleviate this problem, although this 

is not always practical;  those riometers that are currently located within the northern 

 

 

Strength PFU 

(>10 MeV) 

Effects # Events 

(1995-2001) 

S1 Minor 10 No effect to satellites or biological, 
some effect on HF propagation in 
polar region. 

25 

S2 Moderate 102 No biological effect, infrequent 
single-upset events, small effect on 
HF propagation in polar region. 

11 

S3 Strong 103 High latitude aircraft receive low 
level radiation exposure, single 
upset events and slight reduction 
in solar panels on satellites, 
Degraded HF radio propagation. 

3 

S4 Severe 104 Elevated radiation exposure to 
aircraft at high latitude. Degraded 
solar panels, noise on imaging 
systems, HF radio blackout in the 
polar regions. 

3 

S5 Extreme 105 High radiation exposure to aircraft 
at high latitudes.  Satellites may be 
rendered useless, permanent 
damage to solar panels possible, 
complete blackout of HF 
communications in the polar 
regions. 

0 

 

Table 7.1  Radiation Storm levels as defined by the Space Environment Centre.  

5 levels of storm are described together with some of the physical effects upon 

satellites and HF radio in the polar regions.  The final column describes the 

number of events between 1995 and 2001 (inclusive). 
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hemisphere polar cap are often close to the cusp on the dayside (Stauning 1998) or are 

not always operating reliably (Nishino, private communication).  

 Table 7.2 lists the start and end times of observed SPE (1995 to 2001) together 

with the peak PFU. Maximum absorption values are included together with the 

corresponding PFU in parenthesis. Some of these values are due to auroral absorption 

during active periods.  The remaining two columns identify the originating X-ray flare 

class and its position in helio-latitude and longitude. Those solar proton events which 

lead to confidently identified PCA events are highlighted in bold.   It is worth noting 

that of the 27 PCA events 10 have maximum PFU of less than 100 though in general 

the corresponding absorption signatures for those SPE are low.  Thus Ranta et 

al.(1993) are correct in suggesting only low ionospheric impact for small PFU events 

but it is still possible to clearly identify increases in absorption for these values.  The 

lowest maximum absorption appeared during the solar proton event that started on 24 

April 1999; this reached a peak of 0.5 dB with a corresponding PFU of 23 

protons/(cm2.s.sr).  For a 20 MHz radio wave this would result in 1.82 dB attenuation. 

 

7.2.2 Heliodistribution of Solar Proton Flares  

 The two panels in Figure 7.1 illustrate the helio-distribution of solar proton 

flares in solar longitude and latitude (top) and the occurrence of flares by longitude 

(bottom).  Each of the flares is an X-ray flare of  C class or higher that produces a solar 

proton event at Earth’s geostationary orbit (~6.6 RE) as measured by the GOES 

satellites.  The data are provided by SEC and comprise 165 events measured from  
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SPE onset 

Date and time 

SPE  end 

Day/UT 

Max. 
PFU 

Max Abs. 
(with PFU) 

Flare Flare 
location 

1995-10-20 08:25 UT 20/23:40 UT 63 1.77(55) M1/0F S09W55 

1997-11-04 08:30 UT 05/13:40 UT 72 1.8 (34) X2/2B S14W33 

1997-11-06 13:05 UT 09/12:05 UT 490 3 (385) X9/2B S18W63 

1998-04-20 14:00 UT 24/15:50 UT 1700 5.9 (1540) M1/EPL S43W90 

1998-05-02 14:20 UT 04/03:35 UT 150 3.1 (11) X1/3B S15W15 

1998-05-06 08:45 UT 07/01:40 UT 210 1.6 (225) X2/1N S11W65 

1998-08-24 23:55 UT 29/12:10 UT 670 4.4 (55) X1/3B N30E07 

1998-09-25 00:10 UT 25/02:30 UT 44 3.7 (10) M7/3B N18E09 

1998-09-30 15:20 UT 02/08:30 UT 1200 3.1 (721) M7/3B N23W81 

1998-11-08 02:45 UT 08/02:45 UT 11 1.8 (10) M2/2N  

1998-11-14 08:10 UT 16/09:55 UT 310 3.2 (138) C1/BSL N28W90 

1999-01-23 11:05 UT 23/16:45 UT 14 0.7 (11) M5 N27E90 

1999-04-24 18:04 UT 25/14:50 UT 32 0.5 (23)  NW limb 

1999-05-05 18:20 UT 06/05:50 UT 14 0.7 (11) M4/2N N15E32 

1999-06-02 02:45 UT 03/14:10 UT 48 1.1 (33)  W limb 

1999-06-04 09:25 UT 05/05:15 UT 64 1.5 (47) M3/2B N17W69 

2000-02-18 11:30 UT 18/14:05 UT 13 0 (11) M1/2N S29E07 

2000-04-04 20:55 UT 06/01:55 UT 55 1.2 (29) C9/2F N16W66 

2000-06-07 13:35 UT 09/03:25 UT 84 2.1 (77) X2/3B N20E18 

2000-06-10 20:45 UT 11/11:30 UT 46 1.4 (16) M5/3B N22W38 

2000-07-14 10:45 UT 19/23:30 UT 24000 15.3 
(24000) 

X5/3B N22W07 

2000-07-22 13:20 UT 23/23:10 UT 17 0.5 (15) M3/2N N14W56 

2000-07-28 10:50 UT 28/13:10 UT 18 1.5 (14)   

2000-08-11 16:50 UT 11/17:40 UT 17 0.8 (13)   

2000-09-12 15:55 UT 15/21:40 UT 320 2.9 (241) M1/2N S17W09 

2000-10-16 11:25 UT 17/02:10 UT 15 1.4 (10) M2 N04W90 

2000-10-26 00:40 UT 26/10:00 UT 15 1.3 (10) C4 N00W90 
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2000-11-08 23:50 UT 13/07:45 UT 14800 9.6 (11400) M7 
multiple 

N00-
10W75-

80 

2000-11-24 15:20 UT 29/02:00 UT 942 3.6 (197) X2/3B N20W05 

2001-01-28 20:25 UT 30/00:35 UT 49 0.9 (36) M1/1N S04W59 

2001-02-29 16:35 UT 01/06:00 UT 35 1.3 (28) X1/1N N24W12 

2001-04-02 23:40 UT 06/13:40 UT 1100 4.1 (1020) X20 N14W82 

2001-04-10 08:50 UT 13/10:55 UT 355 2.4 (145) X2/3B S23W09 

2001-04-15 14:10 UT 17/17:00 UT 951 2.8 (625) X14/2B S20W85 

2001-04-18 03:15 UT 20/08:20 UT 321 4.7 (52) C2 S20-limb 

2001-04-28 04:30 UT 28/05:20 UT 57 0.7 (35) M7/2B N17W31 

2001-05-07 19:15 UT 08/17:30 UT 30 2.0 (11)  NW limb 

2001-06-15 17:50 UT 16/12:10 UT 26 0.6 (24)  W limb   

2001-08-10 10:20 UT 10/14:40 UT 17 0.4 (13) C3 Centre 
disk 

2001-08-16 01:35 UT 18/18:45 UT 493 2.6 (446)  Far back 

2001-09-15 14:35 UT 15/15:45 UT 11 1.0 (11) M1/N1 S21W49 

2001-09-24 12:15 UT 30/17:10 UT 12900 6.0 (2710) X2/2B S16E23 

2001-10-01 11:45 UT 05/03:30 UT 2360 5.7 (2040) M9 S22W91 

2001-10-19 22:25 UT 19/22:55 UT 11 0.3 (10) X1/2B N15W29 

2001-10-22 19:10 UT 23/01:15 UT 24 0.5 (18) X1/2B S18E16 

2001-11-04 17:05 UT 10/07:15 UT 31700 10.2 
(26300) 

X1/3B N06W18 

2001-11-19 12:30 UT 20/14:20 UT 34 2.3 (16) M2/1N S13E42 

2001-11-22 23:20 UT 27/21:00 UT 18900 11.9 (3580 M9/2N S15W34 

2001-12-26 06:05 UT 28/10:45 UT 779 0.6 (117) M7/1B N08W54 

2001-12-29 05:10 UT 29/22:50 UT 76 0.2 (16.7) X3 S26E90 

2001-12-30 02:45 UT 04/23:55 UT 108 1.2 (88) M9 West 
limb 

 

Table 7.2.  Solar Proton Events recorded by GOES (1995-2001).  Events 

highlighted in bold produced observable Polar Cap Absorption (PCA). 
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April 1976 to July 2002. The events marked in red are the 41 recorded SPE that 

occurred between 1995 and 2001 (inclusive), encompassed by the operating period of 

IRIS.  All of the proton flares occur within a band of ±50º latitude but are split into 

two latitudinally separated distributions both centred at ~20º. The northward 

distribution is spread more evenly in longitude whereas the southward distribution 

bunches towards a centre of 15º-20º solar longitude.   

 The bottom panel of Figure 7.1 presents the percentage occurrence of solar 

proton flares binned by 20º longitude. Flares that are classed as being beyond the limb 

are placed within the ±90º bins unless an estimation of the position has been made by 

SEC.  The majority of the events originate in the western hemisphere of the Sun; ~75% 

of solar proton flares occur westward of 20° east.  At this resolution two peaks appear 

in the data; the first at –10° and the second in the centre of the western half of the 

facing sun, at 50°.    

 The third peak in the most westward bin is an artefact of the binning of flares 

from the far side.  Those events displayed in red are for events between 1995 and 

2001. The data have been normalized to the total number of solar protons flares such 

that the ratios of the columns reflect the fraction of events within that data bin.  The 

westward bias is clear, with many of the recent events occurring near or beyond the 

western limb.  Two other peaks are still apparent although the central peak is slightly 

further westward. 
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Figure 7.1.  Heliodistribution of solar proton flares (1976-2002).  The top panel 

marks the positions of each flare in solar longitude and latitude (east is negative). 

The bottom panel shows the distribution in longitude in 20º bins. Red data are for 

events between 1995 and 2001.  
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 Figure 7.2 is split into 3 panels; the top panel (a) displays the delay time 

between the flare and the start of the SPE at Earth versus the longitudinal position. 

This is calculated from the point where the X-ray flux exceeds the lower limit for a C 

class flare.  For delays of less than 1500 minutes the values tend to lie between -50 and 

100 degrees with the majority in the western hemisphere. For longer delays the flare 

site exhibits a more eastward location.  The middle panel shows the variation in 

maximum SPE PFU with longitudinal position of the proton producing flare.  

Although there is the expected trend towards the west there is a generally even spread 

of points across the longitudes.  The bottom panel shows the maximum x-ray flux 

against the maximum PFU for each solar proton event.  No direct correlation is 

obvious but in general low X-ray fluxes are not linked to the higher range PFU.   

 

7.2.3 Solar Proton Events and PCA 

 Figure 7.3 shows the monthly distribution of solar proton events measured by GOES 

from 1976 to 2002. This includes events that are not well correlated with solar flares but 

may instead originate from solar wind shocks.  Two distributions are plotted; the blue bars 

indicate the distribution of all the GOES data from 1976 to 2002 whereas the red bars 

demonstrate the percentage observed in the years of IRIS operations (1995 to 2002). The 

data are normalized to the total number of events from 1976 to 2002, 
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Figure 7.2.   Panel (a) displays the delay time between the flare and the solar 

proton event observed at Earth as a function of solar longitude. Note the increase 

with eastern hemisphere flares.  Panel (b) compares the maximum PFU against 

the position and finds no correlation.  In Panel (c) the maximum PFU is plotted as 

a function of the maximum X-ray flux.  An upper limit to the PFU is indicated. 
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thus the ratio of observations in each monthly bin gives the percentage of events 

observed in a given month.  Two peaks appear in the principle distribution, the first in 

April (11.8%) with a broad rise and decay, and the second in November (11.3%) with 

a quick rise time and even quicker decay.  This leads to two minima centred about 

winter (5.8%) and late summer (5.9%). 17.2% of events occur during the winter 

months (December to February) and 25.2 % occur in the summer. The broader spring 

peak contains 31.7 % of the recorded events whereas the autumn months (September 

to November) recorded 25.9 % of the events with the maximum occurring in the latest 

month as oppose to the central month of spring.  The second panel displays the 

distribution of Polar Cap Absorption events observed by the IRIS at Kilpisjärvi (red 

bars) and the green bars are the ratio of PCA to SPE (1995 to 2001) observed in each 

month. These events have been identified on the basis of the uniform coverage of the 

array with similar signatures in other riometers of the SGO chain during an SPE.  The 

seasonal variation is clear in this plot with a severe winter minimum of zero.  

 

7.3 Discussion on the relationships between flare, SPE and PCA 

 Figure 7.1 demonstrated that solar flares which lead to solar proton events 

favour certain areas on the surface of the sun with respect to the Earth.  A bias in the 

data towards the west is not unexpected; many observations of SPE have concluded 

that western hemisphere flares are more likely to lead to increased protons levels at 

Earth (e.g. McCracken, 1962; 1969).  The explanation usually given for this is that 

protons emitted from a western hemisphere flare will propagate along the  
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Figure 7.3.  The top panel displays the percentage of SPE binned by month of the 

year from 1976 to 2002 (blue bars) and 1995 to 2001 (red bars).  Data from 1995 

to 2001 are normalized to the total amount since 1976.  The bottom panel displays 

the occurrence of PCA (red bars) from 1995 to 2001 whereas the green bars 

demonstrate the distribution when normalized to the number of SPE events. 
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interplanetary field lines towards Earth;  the Parker Spiral (Chapter 1) suggests that 

flare sites in the west are better connected with the position of the Earth and 

magnetosphere although diffusion of protons across field lines has also been observed 

(Warwick, 1963, King and Williams, 1970). Thus direct travel along field lines 

appears to be favoured by the protons and diffusion would explain some of the events 

that originate from eastern flares. The diffusion mechanism should take a longer time 

than simple propagation along the field line and  panel (a) of Figure 7.2 indicates that 

the average delay time of an SPE rises with increasing eastward longitude of the flare 

site;  however the distribution can be quite wide (between –60º and –80º the delay time 

varies from 2 to 7 days.  All of this assumes that the IMF behaves as a Parker spiral at 

all times, although close to solar maximum when SPE are more common (Shea and 

Smart, 2002) the IMF is disordered and good connection between the Earth and the 

Sun may be lost.  Figure 7.4 uses all the flare associated SPE from 1976 to 2002 and 

bins the delay times into years from solar maximum it is clear that in the falling 

portion of the solar cycle the delay time peaks; thus for a highly variable IMF solar 

protons are unable to propagate cleanly to the Earth. 

 The bottom panel of Figure 7.1 showed two primary peaks in the distribution 

of flares; one slightly east of the centre of the sun.  It has become clear in recent years 

that X-ray flares are not the only producers of solar particles and the transition through 

the IMF can alter the energy spectrum of the distribution.  Two main classes of solar 

energetic particle event can be defined (e.g. Reames, 1999); flare associated and CME  
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Figure 7.4.  Delay times for SPE from 1976 to 2002 plotted as a function of the 

solar cycle.  There is an increase at solar maximum and in the declining phase 

that is consistent with a disordered IMF. 
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 associated. Flares close to the centre of the disc will release protons that are 

subsequently driven through the solar wind by the shock of the associated CME 

(Krucker and Lin, 2000). This will also have the effect of accelerating the protons 

creating different particle populations, and thus a CME related SPE may involve two 

stages: protons arrive shortly after the flare, a second population is injected just before 

the impact of the CME with the magnetosphere leading to a sudden commencement.  

This is a pattern often observed in the PCA/SPE (Davies, 1990).  Smart and Shea 

(1996) used data from the IMP-8 spacecraft for solar proton events between 1973 and 

1996 to determine a longitudinal bias in the flare positions.  Some significant 

differences appear when comparing the data presented here with that of the previous 

study. The first is that Smart and Shea were able to allocate longitude values to flares 

which erupted from beyond the western limb of the Sun, thus smoothing the final peak 

into a successive drop in occurrence. Secondly the peaks in the data do not coincide 

with those obtained from SEC measurements. This may be explained partly by the 

different time periods that the data sets cover; 1973 to 1995 (170 events) for the 

previous investigation, and 1976 to 2002 (165 events) for the present study.  In general 

both distributions display similar characteristics with a westward bias to the data but 

with two main peaks; one near the centre of the disk and the other to the west.  Smart 

and Shea (1996) suggested that the distribution could be represented by the composite 

of two Guassian distributions. Due to the low numbers of events in each data bin, this 

is probably not a significant assumption, although due to the infrequent nature of solar 
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proton events it is hard to obtain sufficiently large, reliable, datasets to make good 

statistical analysis.  

 Figure 7.3 presented the monthly distribution of solar proton events (panel a).  

The double peaked nature of the occurrence shows a bias towards the equinoctial 

seasons when it is thought that the orientation of the IMF produces a favourable 

connection to the Earth (Chapter 6).  The distribution of PCA will obviously be 

determined by the occurrence of SPE, although other factors also play a role.  No PCA 

is observed during the winter months regardless of the few SPE that occur.  Without 

solar UV electrons and neutral species tend to form negative ions Similarly the ratio of 

PCA to SPE tends to even the distribution out slightly with some notable exceptions in 

April, June and November.  As mentioned earlier a study performed by Ranta et al., in 

1993 separated solar proton events into three categories: Strong (PFU >1000), Medium 

(100<PFU<1000) and Weak (PFU<100). The yearly distribution of these events were 

described from 1976 to 1989, indicating that the weak SPE have a much higher 

occurrence than their stronger brethren. The total number of events also broadly 

followed the sunspot number trend, which was reinforced in a study by Shea and 

Smart (2002).  Ranta et al. (1993) examined the ionospheric effects of SPE from 1981 

to 1989 using a chain of riometers located in Fennoscandia.  By considering the daily 

mean absorption values a threshold in the PFU value of SPE was determined at 100 

PFU; lower than this and no significant effect was had on the ionosphere.   The 

reliance of absorption in the lower D region (<80 km altitude) on UV radiation also 

acts as a factor for determining whether PCA are observed. A dark polar cap leads to 
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absorption from particles that deposit energy above ~75 km (<10 MeV) with some 

contribution from the weak ionisation tails of the harder particles. At lower altitudes 

the electrons combine with neutral molecules to form negative ions (see Chapter 4)  

which do not contribute to the absorption; this explains the absence of PCA during the 

winter months demonstrated in the bottom panel of Figure 7.3.  All observations used 

in this Chapter come from the northern hemisphere and so during the winter months 

the ionosphere is dark.  Readings from riometers in the Antarctic would provide a 

useful test on whether this is true as it is assumed that the occurrence of PCA would 

minimise in the northern summer months.  The identification of  polar cap absorption 

used in this study (spatial coverage during SPE) leads to observations of PCA with  

PFU < 100 but greater than about 50, in conflict with the findings of Ranta et al. 

(1993)  Thus if the ratios of the PCA to SPE are calculated for events of maximum 

PFU > 50 then the distribution might be expected to be level at close to 100% in every 

month (except winter).  This is indeed the case but is insignificant due to the small 

number of events that have occurred to date.   

 Finally the maximum X-ray flux was compared with the maximum PFU of 

each of the events (panel c, Figure 7.2).  No direct correlation appeared (correlation 

coefficient = 0.2), however an upper limit to the PFU is apparent;  the distribution of 

PFU broadens with  increasing  X-ray flux.  Thus low X-ray flux flares (e.g. 10-5 

watts/cm2) can produce up to a certain level of PFU (103 PFU).   Due to the low 

numbers of events no conclusions can be drawn about the data at particularly high and 

low  X-ray fluxes. 
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7.4 Relationship between integral proton flux and absorption 

 It has been established that solar proton events detected at Earth often lead to 

polar cap absorption. Figure 4.1 illustrates ionisation rates due to incident mono-

energetic protons. Thus solar protons from 1 to 100 MeV will deposit energy between 

35 and 100 km altitude. Traditionally, auroral absorption occurs at heights close to 90 

km; during PCA the majority of absorption happens at lower altitudes 

 Intuitively, one might expect a linear relationship between the precipitating 

flux of energetic particles and the resulting electron density, however this is not the 

case. The equation relating a flux of particles with an ionisation profile in the 

atmosphere has been calculated by M.H. Rees (1964).  In general terms the production 

(or ionisation) rate, q, is proportional to the incoming flux. 

qF ∝     (7.1) 

 Chapter 1 (section 1.5.1) described the principle of Chapman layers and it can 

be shown that an alpha-Chapman layer can represent the D layer: 

2

eeff
Nq =     (7.2)  

and so 

2

e
NF ∝     (7.3) 

Where eff is the effective recombination coefficient.  When considering a fixed 

observing frequency ionospheric absorption is approximately proportional to the 
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height-integrated product of the electron density and the effective collision frequency 

� eff). Thus: 

effeNA ∝     (7.4) 

FA ∝     (7.5) 

Where F is the integral flux and the collision frequency is assumed to be constant with 

time at all altitudes; hence the absorption is proportional to the square root of the flux.   

 

7.4.1 The role of the solar zenith angle and geomagnetic activity 

 During SPE the majority of absorption is from the extra ionisation caused by 

the incident energetic protons, however during geomagnetically active periods, 

significant electron precipitation is also thought to contribute to the absorption within 

the auroral zones.  As described in Chapter 4, the lower D region is sensitive to UV 

and during dark periods electron density is lost to form negative ions so reducing the 

attenuation of HF radio waves. This suggests that there are two main criteria for 

determining a relationship between the integral proton flux and the absorption: the 

events used must be ‘clean’ (little or no contributions from geomagnetic radiation), 

and the ionosphere must be sunlit in the absorbing region.  The second condition is the 

easiest to satisfy in practical terms.  If the solar zenith angle is considered as a direct 

proxy for solar illumination, the variation of absorption with this angle can be 

LQFOXGHG��7KXV�D�OLPLWLQJ�DQJOH�� ��FDQ be determined and only absorption that occurs 

IRU�VRODU�]HQLWK�DQJOH��� �VKRXOG�EH�XVHG�LQ�IRUPLQJ�D�UHODWLRQVKLS�� 
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 ‘Clean’ events do occur when geomagnetic activity is already low and if any 

CME associated with the solar flare is directed away from Earth.  These cases tend to 

be rare, however, so a method to filter the closed field line precipitation out of the data 

sets is needed.  Using high latitude observations is one method, however 

contamination is still possible. If one assumes that the ‘closed’ contributions are small 

in scale size then observations from different riometers can be averaged to give a better 

estimate. The PCA tends to be uniform over relatively large areas so the absorption 

signal will reinforce whilst the small features drop in magnitude.  This assumption 

holds for quiet to moderate activity, however too high activity will still affect the 

signal. For very intense PCA events the effect from ‘closed’ precipitation should be 

negligible above the background levels. 

 When the integral proton flux (for >10 MeV) is correlated with the measured 

absorption for all SPE in 1995 to 2001 the correlation is relatively variable with a 

mean correlation of 0.53.  This low correlation is likely due to diurnal variation of 

PCA that is unreflected in the proton flux data; night time recoveries in the absorption 

are ionospheric in nature, being the product of electron attachment to neutral species 

(see Chapter 4). Removing absorption values that occur when the lower ionosphere is 

dark should lead to a better correlation  

 Figure 7.5 displays the correlation coefficient between absorption and the 

integral proton flux for the seven channels of the GOES 8 satellite, based on a sliding 

scale of solar zenith angle limit. Underneath the correlation curves are the number of 

data points that contribute to each sample.  At 60º three of the energy thresholds are 
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Figure 7.5.  Variation of correlation coefficients with a sliding scale of solar 

zenith angle limit.  The bottom panel displays the number of data points used in 

each of the correlations, increasing as the zenith limit increases. 
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close to a correlation of 1; >10 MeV, >5 MeV and >30 MeV, in order of dominance.  

As the zenith angle limit increases, the correlation coefficients decrease; the four 

highest energy thresholds decorrelate rapidly and these show considerably less 

correlation than the three lowest energy channels.   Both >10 and >5 MeV decorrelate 

at a similar rate; slowly until 80 degrees and after 80º the decrease in correlation 

becomes steeper the correlation coefficient dropping below 0.9 at 88º.  The 

decorrelation then continues at a greater rate across a larger range of solar zenith angle 

limits with the levels dropping to 0.680 and 0.685 respectively by 130º zenith angle 

limit.   

 Figure 7.6 uses a fixed solar zenith angle limit of 80 degrees and varies the 

level of geomagnetic activity as described by the KP index, once again a sliding limit.  

This provides another series of correlation curves; in this case the >10 MeV flux still 

correlates with the absorption the best and the levels remain relatively high across the 

range of KP.  This suggests that the variation in absorption is not highly dependent on 

the geomagnetically originating radiation, however this only considers the temporal 

structure variation and higher KP may still lead to a general increase in absorption (as 

demonstrated in Chapter 6).   

 It has become obvious that when considering the effectiveness of high energy 

protons on the cosmic radio noise absorption it is those particles with energies in 

excess of 10 MeV that are most significant close to the polar cap.  It is harder to 

estimate an upper limit to the effectiveness by considering the integral channels, but  
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Figure 7.6.  Variation of correlation coefficients with a sliding scale of KP limit 

The bottom panel displays the number of data points used in each of the 

correlations, increasing as the limit increases. 
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since the dependence appears to be limited to some finite band of energies it is worth 

considering the differential fluxes from the GOES 8 satellite.   

 Figure 7.7 displays the zenith limit versus the correlation coefficient calculated 

for the differential fluxes with the absorption at Kilpisjärvi.  The energy ranges were 

presented in Table 3.6 and each curve is colour coded to the values presented in the 

legend.  At the lowest zenith limit both the 15-44 MeV and 39-82 MeV display a high 

FRUUHODWLRQ���������WKRXJK�E\� � ���º the higher energy has dropped to 0.911 and been 

surpassed by the 8.7-14.5 MeV range.  With increasing solar zenith angle limit the 

correlation decreases for each energy band but the rate is different in certain cases; the 

15-44 MeV band decorrelates at a higher rate than the 8.7-14.5 MeV channel. At a 

solar zenith limit of ~130º the two energies share a correlation coefficient of 0.71 and 

similarly the 39-82 MeV and 4.2-8.7 MeV channels converge.  This suggests that the 

absorption at higher zenith angle depends more on the low energy protons than the 

higher values (15-44 MeV); a reasonable conclusion when the formation of negative 

ions is considered.  If electrons are quickly lost in the lower D-layer (< 75 km altitude) 

the high-energy portion of the proton spectrum becomes less effective at producing 

absorption, rather the low energies (e.g. 5 to 10 MeV) will dominate the structure in 

the upper D layer.   
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Figure 7.7.  Variation of correlation coefficients with a sliding scale of solar 

zenith angle limit. This time the top panel display the differential flux channels 

from GOES 8.  The bottom panel displays the number of data points used in each 

of the correlations, increasing as the limit increases. 
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7.4.2 An empirical flux-absorption relationship 

  The hypothesis presented at the start of this section suggested that the 

relationship between absorption and flux is relatively simple and non linear; 

absorption going with the square root of the integral flux.  Coefficients have been 

computed before for differing energy thresholds (e.g. Davies, 1990 and Potemra, 1972) 

and absorption (usually at 30 MHz), often using limited data recordings. Potemra 

(1972) used data collected from 93 passes during three markedly different events, 

finding the best correlation between protons greater than 8.4 MeV and absorption at 30 

MHz.   The long duration observations of both IRIS and GOES have provided a larger 

database for determining the absorption-flux relationship.  By using a geosychronous 

satellite instead of a polar orbiter continuous observations during SPE are possible 

rather than being limited to the polar passes of an orbiting spacecraft. 

 Equation 7.5 can be tested by plotting the logarithms of the daytime IRIS data 

(zenith angle < 80°) and the corresponding >10 MeV proton flux. Figure 7.8 displays 

the result.   A line of the form : 

KFCA += 1010 loglog     (7.6) 

is fitted to the data where C represents the power to which the flux must be raised in 

order to be linearly proportional to the absorption.  In this case C = 0.53, thus the 

assumption that absorption is proportional to the square root seems eminently 

reasonable.  To test this the bottom panel of Figure 7.8 displays the residuals (observed 

– calculated absorption) as a function of the flux;  at high flux levels the fit breaks  
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Figure 7.8.  Scatter plot of the logarithm of absorption against the logarithm of 

the integral flux (>10 MeV).  The green line is the line of best fit to the data.  

Bottom panel shows the residuals of the fit displayed as absorption against the 

flux. 
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down with a definite negative trend in the data, however the data is reasonably fitted 

below ¥) ��� DOWKRXJK� WKHUH� LV� D� ODUJH� UHJLRQ� RI� VFDWWHU� DW� WKH� ORZHVW� YDOXHV� WKDW�

imposes quite a significant error (approximately ±1 dB).  Since the original 

hypothesis suggested that absorption should vary with the square root of flux an 

attempt is made to fit the data in the form: 

KFCA +=      (7.7) 

Figure 7.9 displays the scatter of absorption with the square root of the >10 MeV 

integral flux (top panel).  The line of best fit is displayed in green and the fitted 

function is displayed in the legend. The error associated with absorption due to 

inconsistencies in the quiet day curves can be as high as 0.2 dB; this would make the 

constant in the fitted equation insignificant. Thus as the flux of protons approaches 

zero, so too would the absorption, assuming no electron precipitation.  Once again the 

residuals are plotted in the lower panel and vary mostly between 1 and –1 dB for most 

of the flux levels except at the higher values where the relationship once again breaks 

down somewhat.   The absorption and the square root of the flux have a correlation 

coefficient of 0.957.   As a check for determining whether a different energy level 

might produce a better result lines have been fitted to both the >1 MeV and > 100 

MeV integral fluxes. In these cases the correlation coefficients are 0.753 and 0.511 

respectively with much wider variance in the residuals. The >100 MeV protons do not 

contain enough of the structure related to the absorption for a good correlation and the 

protons from 1 to 10 MeV contain  too much structure that is not exhibited by the 

slowly varying absorption.   
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Figure 7.9.  Scatter plot of the absorption versus the square root of the integral 

flux (>10 MeV).  The green line is the line of best fit to the data.  Bottom panel 

shows the residuals of the fit displayed as absorption against the square root of 

the flux. 
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7.5 Discussion on the Flux-absorption relationship 

 It has been shown that a good correlation exists between the integral flux of 

protons measured at geostationary orbit and the absorption observed in the auroral 

zone.   Previous workers (e.g. Potemra, 1972) have found this to be the case with 

riometers located in the polar cap and the flux of protons measured by polar orbiting 

satellites.  The best relationship is found for protons with energies greater than 10 

MeV which display a high correlation (> 0.9).  Although initially promising the fit 

does contain some problems;  a good correlation is found but there are some 

significant errors on the calculated absorption at low fluxes (±1 dB) as well as a 

systematic trend away from the fit at high values of flux.  At this point it is appropriate 

to consider the factors which may be affecting the fit.  One parameter that may upset 

the computation is the effective collision frequency which had been assumed to be 

constant in time. The dominant collision regime in determining absorption is between 

electrons and neutral species and this electron-neutral collision frequency depends on 

two factors: the concentrations of the various atmospheric constituents and the 

temperature of the electrons. As the altitude decreases in the ionosphere the neutral 

atmosphere thickens and the collision frequency increases exponentially.   A second 

product of the increase in density is the thermalization of the electrons. At lower 

altitudes the temperature of the electrons can be considered as equal to that of the 

neutral species; cases where this does not hold are in intervals of Joule heating, where 

electron temperatures are raised.   In general the collision frequency profile can be 
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considered to be constant for a given polar cap absorption event, unless significant 

Joule heating occurs.  

 Thus it is clear that for comparable electron densities the absorption will be 

greater at a lower altitude due to the effects of the electron-neutral collision frequency.  

This phenomenon may become important in the flux-absorption relation when there 

are drastic differences in the spectrum of proton precipitation throughout events and 

from one event to the next.  When considering solar protons it is important to 

remember that the energies are very high (>1 MeV) and extend well into the hundreds 

of MeV.  A ‘hard’ spectrum will result in energy deposition at lower altitudes (e.g. 50 

km) that, whilst possibly leading to smaller electron density values than at greater 

heights (e.g. 80 km), will still result in a higher integral absorption due to the 

increasing collision frequency, i.e. although the ‘softer’ protons occur in greater fluxes 

and produce more ionisation, the more energetic protons will still provide a 

considerable contribution to the absorption. 

To test the dependence on spectrum Figure 7.10 plots the difference between 

the residuals against the ratio of the >30 to >10 MeV proton fluxes.  As the ratio 

increases more of the protons are at the higher energy levels; there are few example of 

the flux being made up of predominantly > 30 MeV particles.  As the ratio approaches 

1 there is a wide spread of absorption (just over 1 dB) but there are few data points to 

draw meaningful conclusions.  Most significantly is that even when the ratio is low (< 

0.3) there is a wide distribution in the absorption suggesting that the errors in the fit are 

much less dependent on the precipitation spectrum than might have been expected. 
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Geomagnetic activity was shown to have little effect on the correlation of 

absorption and the flux but Chapter 6 demonstrated that the absorption is related to KP, 

although not in a clear linear fashion.  With high geomagnetic activity auroral 

electrons will contribute to the absorption although in general the levels are likely to be 

a small percentage of the total absorption from the solar protons; this may not be the 

case when there is a geomagnetic storm sudden commencement which will lead to 

high absorption.   Figure 7.11 presents the ratio of absorption versus the KP level; the 

calculated absorption has been computed for all data including high KP.  The two 

coloured lines represent the mean and median values for each KP bin and these both 

tend to be centred on a ratio of 1.1.    The distributions of the ratio in each KP bin are 

very large especially in the active range;  low occurrence in the high and low KP bins 

limits the range of data.   Thus the geomagnetic activity can play a major role in 

determining the level of absorption, but does little to effect the correlation; this is 

explained by the slowly varying  nature of auroral absorption on the dayside; few sharp 

discontinuities will appear to disrupt the correlation. 

 So far the hardness of the spectrum has been discounted as a cause for the 

problems in the fit to the absorption, but the geomagnetic activity could be a 

contributing factor.  Another parameter that will play a significant role is the level of 

solar radio emission. As described in Chapter 6 this is hard to quantify but PCA (and 

SPE) are more common close to the maximum of the sunspot cycle, however the sun 

also becomes more active in emitting radio frequency waves (Hargreaves , 1995; 

Davies, 1990).  Solar flares themselves are often accompanied by radio bursts or  
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Figure 7.10.  Residuals of the absorption-flux fit as a function of the ratio of 

integral fluxes (>10 to >30 MeV).  
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Figure 7.11.  Ratio of observed to calculated absorption as a function of KP 
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sweeps and these can reduce the amount of observed absorption on a specific 

frequency from the true level in the ionosphere.  A method to minimise this effect is to 

introduce a riometer at low latitudes, away from the auroral zone, which will monitor 

the solar emission and through modelling of the antenna patterns a correction can be 

applied to IRIS.   

 The problems with the fit are best demonstrated when comparing time series of 

the observed absorption with the calculated absorption.  Figure 7.12 displays all twenty 

seven PCA events from 1995 to 2001 combined together into a single time series with 

the night time values removed; on some occasions the computed absorption 

underestimates the observed values (e.g. 0 to 2000 minutes) whereas at other times it is 

overestimated (e.g. 14000 to 16000 minutes).  The first example was from the PCA 

event of April 1998 which was very slowly varying and occurred during a period of 

general solar inactivity, the second example was a PCA in September 2001.  There are 

distinct spike structures in those cases where the absorption is overestimated indicating 

solar radio emission was occurring, though it is hard to identify the total extent.  The 

flux relationship contains data from contaminated events which is why it fails to reach 

the levels of the quiet PCA event.  At other times (e.g. between 3000 and 4000 

minutes) there are increases in the observed absorption that are from auroral 

absorption and sudden impulse absorption. 
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Figure 7.12.  Time history of PCA events in observed (blue) and calculated (green) 

absorption.  All values of absorption for solar zenith angle > 80º have been removed. 
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7.6 Summary  

 This chapter highlights the relationship between solar protons and the 

absorption observed in the auroral zone.   The relationship between the flare, SPE and 

PCA have been examined and limits to the positions of Earth affecting proton flares 

have been determined.  Delay times between the flare and SPE at Earth have been 

shown to depend both on the solar cycle (and hence the structure of the IMF) and the 

position of the flare on the sun.  No dependence on the position of the maximum PFU 

is found suggesting that although some protons from eastern flares may bypass the 

Earth, there is sufficient diffusion across the IMF to produce high fluxes of protons 

regardless of the flare’s longitude.  There is no direct correlation between the 

maximum PFU and the maximum of the X-ray flux, although there appears to be 

defined upper limits to the number of protons >10 MeV that a flare of particular class 

can produce.  The occurrence of SPE shows two peaks, one in spring and the other in 

autumn, both at times when it is thought that the Earth is better connected to the Sun 

via the orientation with respect to the IMF.  Distributions of PCA show that events do 

not occur in the northern winter months; with the ionosphere in darkness there is a 

reduction in the electron density through chemical interactions.   

  Good correlation between the square root of the integral flux and absorption 

exists and it is determined that the absorption is mostly dependent on the flux of 

protons >10 MeV even though lower energy protons (e.g. energies >500 keV) will still 

deposit within the absorbing  D layer.  This is due to the exponential increase in 

collision frequency at the lower altitudes dominating the absorption process.  The 
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correlation between the square root of the flux and the absorption is unaffected by 

increased geomagnetic activity but the difference between the calculated and observed 

absorption can be as great as 4 dB, thus the electrons play little part in the changing 

the structure of the absorption but can raise the maximum values.  The hardness of the 

spectrum of proton precipitation is demonstrated to have little effect on the absorption.   

  A linear fit to the absorption and the square root of the integral flux provides a 

reasonable empirical relationship.  At very low flux values there is a significant error 

(±1 dB) and at high fluxes the relationship break down.  The reasons for these errors 

are likely due to geomagnetic activity and solar radio emission and less to do with the 

spectrum of precipitation.  The effect of solar radio emission and auroral absorption on 

the relationship is clear when comparing time series of the calculated absorption with 

the corresponding observed absorption. 
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Chapter 8 

Summary and Conclusions 

 
8.1 Introduction 

Auroral absorption is an important indicator of the presence of energetic fluxes of 

electrons that deposit energy into the atmosphere and Polar Cap Absorption demonstrates 

the massive effects that space weather can have on the ionosphere.  Both of these 

phenomena have been investigated in this thesis; auroral absorption was considered both 

in a statistical sense (Chapter 6) and by examining a case study of enhanced daytime 

absorption (Chapter 5).  These two approaches highlighted the benefits of using 

instruments both singly and as part of an array of diagnostics.  Polar Cap absorption was 

investigated in Chapter 7 where a number of riometers and satellites were able to shed 

light on the relationship between the ground measurements and the proton flux and the 

effects of the magnetosphere. 

 

8.2 Summary of Principal Results 

The following two sub-sections will summarise the main conclusions from the 

preceding data chapters.  Firstly the results from Chapters 5 and 6 on auroral absorption 

will be described followed by a summary of the conclusions from Chapter 7 on Polar Cap 

Absorption. 
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8.2.1 Auroral Absorption 

In Chapter 5 a case study was presented that linked observations of varying 

precipitation in the morning sector with measurements of substorm activity on the 

nightside.  The time separation of absorption enhancements across the IRIS field of view 

provide an estimate of the characteristic energy of precipitation if it is assumed that 

gradient curvature drift of electrons is the primary process involved in the electron 

transport. This is the first time that such a measurement has been made with just a single 

imaging riometer.  EISCAT measurement appear to support the energy estimation, 

however ambiguities in the precipitation spectrum suggest that gradient-curvature drift 

alone cannot account for the electron density enhancements at EISCAT.  Small-scale solar 

ZLQG� SUHVVXUH� FKDQJHV� � 3dyn < 10 nPa) at the magnetopause have been identified as 

being a possible controlling factor in the precipitation  although further observations are 

necessary to support this.  

  A simultaneous rise in absorption across a range of latitudes occurs at the same 

time as an increase in particle penetration into the ionosphere and shortly after a sharp 

change in the IMF direction.  It is suggested that radial diffusion of energetic particles to 

lower L shells plays a part together with an increase in the energy of injected particles in 

the nightside.   Following this a drastic change in the electron density profile occurs as the 

enhancements in concentration become confined to a higher altitude; this is attributed to a 

change in the dominant species of precipitation from electrons to ions.  The possibility 

that the ions are  from the LLBL (Low Latitude Boundary Layer) or BPS (Boundary 

Plasma Sheet) has been dismissed not only because of the relatively large distance to the 

cusp, but also because Pc1 waves are observed to increase in intensity at lower L-shells.  

This suggests that the ion precipitation is due to a growth in EMIC (Electromagnetic Ion 

Cyclotron) waves resulting in increased pitch angle scattering of ions into the loss cone.  
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This is attributed to an interaction between an enlarged plasmasphere and energetic ring 

current during the recovery phase of a small to moderate geomagnetic storm.  

 Finally the movement of patches of absorption are related to the flows observed 

by the CUTLASS HF radar. Early in the event there was little correlation between the 

motion of the absorption patches and the velocities derived from the radar, instead the F 

region irregularities moved azimuthally whereas the precipitation footprint was expanding 

equatorward  After 13 MLT IRIS was located under a region of strong return flow and the 

changing location of the ground signature of the precipitation region is comparable with 

the motion of the ionospheric irregularities.  This suggests that E×B drift is governing the 

precipitating particles at this time rather than L-shell separation of the drifting electrons as 

at event onset (0615 UT to 0650 UT).  

Although providing some useful information about how absorption can vary 

within a single event and how many instruments can fully define the processes involved, 

it is important to consider the gross characteristics of the absorption.  To this end a 

statistical analysis of the distribution of absorption in both time and space was presented 

in Chapter 6; data were combined from 7 years of continuous observations of auroral 

absorption from IRIS The expected diurnal variation was produced in the mean of the 

absorption characterised by a peak in the morning sector (~10 MLT) and a deep minimum 

around 18 MLT.  This minimum appeared to be independent of any geophysical or solar 

wind controlling factor that effects the absorption in the morning and around midnight 

and is likely linked to limits of anisotropy in the pitch angle distribution of the electrons.  

 An apparent seasonal effect on the observed auroral absorption has been attributed 

to differences in the amount of geomagnetic activity in the four seasons. This does not 

discount the possible effect of a poleward extension of the winter anomaly, however it 

should be noted that consistently enhanced D-region electron density effects will be 
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removed from the data during quiet-day curve generation.  The high levels in spring and 

autumn support the theory that geomagnetic activity is higher around the equinox; the 

deep minimum of activity in summer is reflected also in the absorption data.  

In order to improve the current state of knowledge regarding absorption models in 

the high latitude ionosphere a non-linear empirical relationship between absorption and 

KP was identified and coefficients computed.  This fits the data reasonably well and is 

superior to the logarithm fit that had previously been proposed. No good theoretical 

explanation is available for this relationship but it indicates that the link between KP and 

auroral absorption contains a measure of non-linearity.  The local time dependence of 

absorption is so clear that the possibility that different types of fits to the data in each 

MLT bracket should not be discounted.  Any future investigation of this nature should 

take this into account. 

Since the level of geomagnetic activity varies with the solar wind parameters the 

variation of absorption also relies heavily on the changing solar wind levels rather than 

any solar cycle indicator (e.g. sunspot number) and so a linear relationship between 

absorption and solar wind velocity is derived; for the first time based on direct satellite 

measurements.  A southward IMF plays a significant role in precipitation in the auroral 

zone but the eastward component has no statistical effect on the mean absorption.   

The limitations of the imaging riometer for a study such as this have been 

expounded upon and include errors that are introduced through the non-uniform nature of 

the beam sizes and the uncertainty of the distribution of absorption events in oblique 

beams. Some of the beams (particularly beam 10) exhibit unusually high values possibly 

due to inconsistencies in the quiet day curves or perhaps related to a hardware problem 

with the riometers. 
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 This study can be considered as the start point for deriving a possible absorption 

prediction model based upon latitude, longitude, geophysical and/or solar wind 

parameters. Low absorption is still likely even when geophysical activity is high since 

absorption is highly dependent on the population of energetic particles in the 

magnetosphere.  Methods to improve the current absorption prediction models must take 

into account past levels of geomagnetic activity, absorption and some other measure of 

the energy stored in the magnetotail (e.g. BZ).  

 

8.2.2 Polar Cap Absorption 

 The second type of absorption of significant importance in particle precipitation is 

PCA.  Chapter 7 concerned itself with two aspects of PCA; how are the solar proton 

events related to conditions in the Sun/IMF/solar wind and also what is the relationship 

between the proton flux and the absorption ground signature?   

 The distribution of the originating location of solar proton flares has been shown 

to lie between ±50º solar latitude with a narrow bay across the centre.  There is a definite 

westward bias in the occurrence but with the number of events so small (165 in 25+ years) 

its is unreasonable to draw too many conclusions about the distributions.  Suffice to say 

there appears to be a bias towards two peaks; one centred at 10º east and the second 

(higher and broader) close to 50 west.  These results agree with the findings of past 

investigations that western hemisphere flares are more likely to lead to proton events at 

the Earth, probably due to the magnetic field orientation.   

 An increase in delay time between flare and SPE onset is found for flares in the 

eastern solar hemisphere.  This may be related to the time it takes for protons to diffuse 

across the field lines as the bulk of the population is lost into space, whereas for better 

magnetically connected western flares, the majority of the proton population easily 
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reaches the magnetosphere. No dependence on the position of the maximum PFU is found 

suggesting that although protons from eastern flares may bypass the Earth, there is 

sufficient diffusion across the IMF to produce high fluxes of protons regardless of the 

flare’s longitude.  There is no direct correlation between the maximum PFU and the 

maximum of the X-ray flux, although there appear to be defined upper limits to the 

number of protons >10 MeV that a flare of particular class can produce. 

 The occurrence of SPE shows two peaks, one in spring and the other in autumn, 

both at times when it is thought that the Earth is better connected to the Sun via the 

orientation with respect to the IMF.  Winter appears to be a stronger minimum than the 

summer.  Distributions of PCA suggest that events rarely occur in the northern winter 

months; this is because with a dark ionosphere there is a reduction in the electron density 

through attachment processes.   

 A good correlation between the square root of the integral flux (> 10 MeV) and 

the absorption from the IRIS wide beam has been determined.  This led to an empirical 

relationship between the two parameters; at low fluxes a large error occurs and at high 

fluxes the relationship breaks down.  The reasons for these problems have been identified 

as solar radio emission and auroral absorption contaminating the relationship.  The 

hardness of the spectrum of precipitation is demonstrated to have little effect on the 

absorption.  

 

8.3 Future Work 

8.3.1 Morning Absorption and simultaneous night side observations 

Chapter 5 introduced some features of morning absorption that failed to fit the 

current theory of the curvature drift and precipitation.  Theory suggests that a clear energy 

dispersion signature should be observed on a single L shell as an event progresses, but this 
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does not always appear to be the case with a hardening of the precipitation shortly after 

onset. The reason for this is likely due to the ongoing night time activity, with fresh 

populations of particles being injected and subsequently drifting.  This should be observed 

as pulses of eastward travelling absorption. The water is further muddied by not knowing 

the longitudinal extent of the injection region so particles injected simultaneously will 

reach a point in the morning sector with a slight time separation although they may be of 

similar energy.  The mechanism of precipitation of the drifting particles is also in need of 

clarification with particular reference to the L shell dependence of the observed 

absorption.  It takes a longer period for particles on a lower L shell to drift around the 

earth and so statistically a particle of given energy on a lower L shell is more likely to 

precipitate due to the larger number of bounces it will perform along the field line.  So far, 

the limited observations of precipitation are inconclusive as to whether absorption at 

higher L values continues to later local times than that observed at lower L shells. 

There are now available several arrays of riometers in the northern hemisphere 

stretching from the Canadian sector (CANOPUS) through Greenland (Danish 

Meteorological Institute chain) and Iceland (Japanese and DMI imaging riometers) to 

Scandinavia (DMI, STELab and Lancaster’s IRIS’s and the SGO chain).  The progression 

of absorption from injection close to midnight through to the mid morning sector can be 

traced to an extent that was not previously possible.   The ability to place the absorption in 

a magnetospheric context is also available with the number of satellites now available 

such as DMSP, SAMPEX, LANL and Cluster giving direct measurements of the particle 

energy spectrums.  In particular the X-ray imager PIXIE, part of the payload of the Polar 

spacecraft, could be used in conjunction with the riometer data to monitor the movement 

and development of the precipitation region.    A number of events of high morning 

absorption levels have already been identified in the IRIS data set  (see Table 8.1) and by 
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using the CANOPUS riometers and magnetometers the time and possibly the location of 

substorm onset can be pinpointed. Thus a superposed epoch analysis of the development 

of absorption can be performed which would aid in identifying absorption mechanisms 

and in determining the role played by gradient-curvature drift if any. 

 

 

 

Start Time End Time Duration 
hh:mm:ss 

Mean 
Absorption 
(dB) 

Max. 
Absorption 
(dB) 

1995-01-30 06:39:00 1995-01-30 08:46:00 02:07:00 1.21 2.19 

1995-02-03 06:03:00 1995-02-03 10:35:00 04:32:00 1.47 3.68 

1995-02-08 06:34:00 1995-02-08 07:51:00 01:17:00 1.05 1.34 

1995-02-13 06:10:00 1995-02-13 09:41:00 03:31:00 2.39 5.45 

1995-02-27 09:52:00 1995-02-27 11:33:00 01:41:00 1.38 2.62 

1995-03-01 08:29:00 1995-03-01 10:36:00 02:07:00 1.29 2.42 

1995-03-13 09:59:00 1995-03-13 11:36:00 01:37:00 1.19 2.04 

1995-03-16 06:18:00 1995-03-16 08:30:00 02:12:00 1.47 2.04 

1995-03-29 07:47:00 1995-03-29 08:48:00 01:01:00 1.12 1.81 

1995-03-29 08:49:00 1995-03-29 09:55:00 01:06:00 1.71 2.69 

1995-04-08 09:11:00 1995-04-08 11:00:00 01:49:00 1.08 1.96 

1995-04-11 10:04:00 1995-04-11 11:08:00 01:04:00 1.26 2.78 

1995-04-27 07:22:00 1995-04-27 09:26:00 02:04:00 2.18 4.99 

 

Table 8.1.  A sample of morning absorption events identified in the IRIS data.   
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8.3.2 Large Scale statistics: latitude, longitude and altitude 

The PIXIE camera would also play an important role in further study of the 

absorption oval on a statistical basis.  The statistical study of absorption in Chapter 6 is 

incomplete since it only considers the absorption from a very confined range of latitudes.  

In order to more fully test absorption models such as that of Foppiano and Bradley (1983), 

a similar analysis could be performed on each of the stations mentioned above.  The 

separation of the Canadian riometers and in comparison with the SGO chain should cast 

light on the longitude effect that is expected (Chapter 4).   A detailed study of how 

absorption responds during geomagnetic storms would be especially useful, linking the 

observations to past levels of activity as indicated not only by KP and  Dst but also the IMF 

and solar wind speed.  If this is done then with the large array of riometers available in 

both hemispheres and the catalogue of data, a suitable global empirical model could be 

defined.  It is worth repeating here that the variation of absorption in magnetic local time 

is such that it is worth binning the data by much smaller time spans (less than 3 hours) and 

finding fits to the geomagnetic indices.  

A new approach to absorption statistics would concentrate on the observations of 

the EISCAT radars.   By considering the altitude gated electron density, statistics of the 

profiles of the concentration can be drawn based upon similar parameters to those used in 

Chapter 6 (e.g. KP and solar wind speed).  Two latitudes are now available by considering 

both the mainland radar and the ESR, and absorption profiles can be derived by using 

modelled collision frequencies calculated from the MSIS (Mass Spectrometer Incoherent 

Scatter) model.  This should aid in understanding how and if the height of the absorbing 

layer varies and possibly resolve some of the problems that arose from the oblique nature 

of the IRIS imaging beams. 
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8.3.3 Beyond Polar Cap Absorption. 

Although statistically rather small, 53 examples of Solar Proton Events (SPE) 

occurred from 1995 to 2001; a further 18 have occurred up to and including September 

2002.  Throughout this duration there has been constant monitoring by the GOES, POES 

and SAMPEX satellites providing measurements of both integral and differential fluxes of 

protons >10 MeV.  The relationship derived in Chapter 7 is a simple measure that is quick 

and useful for predicting absorption in the polar cap however further information about 

the deposition of energy can be derived by using the spectrum of precipitation (e.g. Figure 

8.1) to determine the ionisation profiles. For very energetic SPE the highest energy 

particles will penetrate deep into the atmosphere to altitudes below 50 km and sometimes 

to the ground (ground level events).  Due to the changing chemistry at these lower 

altitudes, processes that contribute to ionospheric absorption will no longer occur.  

EISCAT has been operating for several of the PCA during 2001 and can  measure 

electron density profiles from the ionising protons.   

 During the PCA of April 2001 incoherent scatter radar measurements were made 

by both EISCAT and ESR.  This is the first time that dual measurements have been made 

during a solar proton event from instruments both deep in the polar cap and also close to 

the cut-off boundary.  This was repeated in September 2001 and this time the radar 

observed the start of a geomagnetic storm part way through the event.   

Since electron density decreases with height, incoherent scatter radars are limited 

to a minimum height of operation due to signal-to-noise constraints as well as operational 

limitations. The measurements from EISCAT will provide a constraint on the satellite-

based computations in producing absorption estimates.  From comparisons between the 

modelled absorption and the observed absorption, the lower altitude boundary height of  
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Figure 8.1.  Precipitation spectra for the PCA event of September 2001.  Data are 

from the SAMPEX satellite and are averages of the values poleward of 70º magnetic 

latitude.  The white lines indicate where the satellite grazes the south polar cap.  
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the absorption processes can be estimated.  This will differentiate the energy deposition 

between two regions; the ionosphere and the lower neutral atmosphere. 

 Similarly with the latitudinal spread of riometers,  the absorption variation 

through the cut-off boundary can be examined and compared directly with satellite 

measurements of the particle cut-offs. Thus by correlating the cut-off with the absorption 

normalized to the peak in the polar cap it should be possible to define the cut-off 

boundary for a range of energies.  This method has advantages over the satellite data as 

the riometer will pass through all local times and so eventually it will be possible to 

differentiate any variations in the cut-off boundary that are dependent on geomagnetic 

activity and those that are simply dependent on the position relative to the magnetotail 

(Chapter 4).  The dependence on Dst, and to a lesser degree KP, is well documented (e.g. 

Leske et al., 2001) but there is also a reliance of the extent of absorption on BZ.  Figure 

8.2 shows a preliminary example of an event that compares the variation of BZ with the 

normalized absorption. Southward turnings show a reasonable correlation with 

equatorward expansions of absorption.  This is not totally unexpected as when the polar 

cap expands equatorward then the solar protons will have greater access to the 

magnetosphere, however no workers so far have attempted to use BZ as a proxy for the 

cut-off boundary. 
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Figure 8.2.  Example of a PCA showing contours of the normalized absorption (top 

panel) and the variation of three parameters, KP, Dst and BZ. 
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8.4 Concluding Remarks 

 There is now a wealth of data available not just from IRIS but also from the other 

imaging and chains of riometers in both hemispheres. Only a small part of this data set 

has been used in this investigation in which some of the processes of auroral and polar cap 

absorption and related precipitation have been examined.  These are topics that previous 

workers have addressed but with added contributions from other ground based 

instrumentation and satellites it has been possible to place the absorption in a 

magnetospheric context.  With the closer collaborations that are currently being formed 

throughout the riometry community its is possible to enhance considerably the current 

state of knowledge of geomagnetic processes that lead to energy deposition in the lower 

altitudes of the ionosphere. 
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