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Received 10 July 2003
Published online 15 October 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We investigate the short-distance statistics of the local density of states ν in long one-dimensional
disordered systems, which display Anderson localization. It is shown that the probability distribution
function P (ν) can be recovered from the long-distance wavefunction statistics, if one also uses parameters
that are irrelevant from the perspective of two-parameter scaling theory.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 42.25.Dd Wave propagation in random media –

73.20.Fz Weak or Anderson localization

1 Introduction

Wave localization in a disordered potential is the most
striking hallmark of systematic interference by multiple
coherent scattering [1–8]. Systematic constructive inter-
ference in a spatially localized region results in a con-
finement of the wavefunction, which decays exponentially
away from the localization center (with a decay length lloc,
the localization length), in contrast to the extended waves
in constant or spatially periodic potentials. Localization
comes along with large fluctuations of the wavefunction,
which can be induced by changing the disorder config-
uration. The wavefunction statistics can be probed, e.g.,
globally across a system of finite length Lsys by the dimen-
sionless conductance (transmission probability) g, and in-
side a semi-infinite system (Lsys = ∞) by the local density
of states ν at a distance Lopen to the opening.

Theories of localization often focus on the long-
distance wavefunction statistics, where a high degree of
universality prevails. For instance, distribution functions
are restricted to log-normal forms as a consequence of
the central-limit theorem, which leads to two-parameter
scaling (TPS) [9]. Consequentially, for the local density
of states, the probability distribution function P (ν) is
characterized by the mean logarithm C

(ν)
1 ≡ −〈ln ν〉 and

its variance C
(ν)
2 ≡ var ln ν. The TPS observation has

found many applications [10–16]. An even enhanced de-
gree of universality arises in the random-phase approxi-
mation (RPA), where single-parameter scaling (SPS) ap-
plies [17–20], and both parameters further are connected,
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e.g. by C(ν)
2 ∼ 2C(ν)

1 for one-dimensional systems [21–23].
(It was recognized very early that SPS breaks down for
strong disorder, see, e.g., Ref. [24].)

In this paper we point out a connection of the long-
distance statistics to the short-distance statistics in the
one-dimensional Anderson model of localization, probed
by the local density of states ν. Namely, we find that the
distribution function P (ν) for short distances reliably can
be approximated with the help of parameters that are ex-
tracted from the long-distance limit, including parameters
(besides C(ν)

1 and C(ν)
2 ) that are irrelevant, from the per-

spective TPS, for the long-distance wavefunction statistics
themselves.

We start this paper by an analysis of P (ν) and P (g)
within the concepts of large-deviation statistics [25], which
goes beyond the central-limit theorem, and identify quan-
tities Cn, n ≥ 3, which are irrelevant for the long-
distance wavefunction statistics, but will turn out to be
useful for the short-distance wavefunction statistics. Each
quantity defines its own length scale by its asymptotic
slope cn = limL→∞ dCn/dL (where L ≡ Lsys for g and
L ≡ Lopen for ν), in analogy to the relation between
C1 ∼ 2L/lloc and the localization length lloc. The length
scales obtained from ν and g coincide. The constant offsets
dn = limL→∞Cn −Lcn are shown to contain information
on the reflection phase, which allows to test the RPA.

Then we discuss that P (ν) for short distances Lopen �
lloc can be reconstructed from the parameters cn and dn.
This is in striking contrast to P (g), for which the pa-
rameters show a transient behavior for small Lsys (where
wavefunctions are not yet localized), as was pointed out
very recently in reference [13] (see also Ref. [26]). Our
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observations for the short-distance statistics lead us to
conclude that the cumulants Cn are useful characteristics
of localized wavefunctions, even though they are not rele-
vant in the long-distance limit because of TPS.

Finally, we analytically and numerically investigate
the parameters cn and dn in various regimes of the one-
dimensional Anderson model.

The paper is organized as follows: In Section 2 we de-
scribe the general implications of large-deviation statis-
tics for the scaling of the distribution functions P (g) and
P (ν), and identify the parameters cn and dn in the cu-
mulants Cn, n ≥ 3. In Section 3 we specialize to the one-
dimensional Anderson model. In order to motivate subse-
quent considerations, we first illustrate in Section 3.1 the
length dependence of the cumulants Cn by numerical sim-
ulations. Then (Sect. 3.2) we briefly review the analytical
theory for the asymptotic slopes cn [26,27] and extent it
to the case of competition between onsite disorder and
offsite disorder close to the band center. We also present
the theory for the asymptotic offsets dn. In Section 3.3 we
investigate the dependence of the parameters in various
regimes of the Anderson model. Our conclusions are given
in Section 4.

In order to facilitate a parallel discussion of the statis-
tics of g and ν, we use the common notation L ≡
Lsys when considering g and L ≡ Lopen when consid-
ering ν. One has to bear in mind that in the latter
case, Lsys = ∞ and hence one always discusses localized
wavefunctions, while in the former case this is true only
for L ≡ Lsys � lloc.

2 Large-deviation statistics

Large-deviation statistics often is introduced as the third
and final step in a progressively refined analysis of the
asymptotic behavior of probability distribution functions,
where the first step is the law of large numbers and the
second is the central-limit theorem. In localization, the
law of large numbers certifies that the Lyapunov exponent
γ = C

(g)
1 /2L is self-averaging in the limit L → ∞ [28],

with asymptotic value limL→∞ γ = l−1
loc. The central-limit

theorem delivers a statement about the finite-length cor-
rections to this asymptotic value, which are characterized
by C

(g)
2 : The variance var γ = C

(g)
2 /L2 decreases asymp-

totically as L−1. Presently, we find it useful not address
the Lyapunov exponents, since these are defined with help
of the system length L, but to rely on quantities that only
involve g or ν, like C(g)

1 , C(g)
2 , C(ν)

1 , and C
(ν)
2 . The law

of large numbers and the central-limit theorem predict
a linear growth of these quantities with L. The full pic-
ture is unfolded in the framework of large-deviation statis-
tics [25]: All cumulants can increase linearly with length
or distance,

C(g)
n = 〈〈(− ln g)n〉〉 ∼ c(g)

n L+ d(g)
n (L� lloc), (1a)

C(ν)
n = 〈〈(− ln ν)n〉〉 ∼ c(ν)

n L+ d(ν)
n (L� lloc), (1b)

where the coefficients dn are the subleading corrections
that can be neglected in the asymptotic limit, but will be

seen to encode information on the reflection phase that
allows to test the validity of the RPA. For the conduc-
tance g, the linear scaling of the cumulants C(g)

n with L

and the connection of the d(g)
n to reflection phases also has

been found in a constructive theory by Roberts [29]. The
parameters cn can be extracted from the averages

c(g)(ξ) = − lim
L→∞

1
L

ln〈g−ξ〉 =
∑

n

ξn

n!
c(g)
n (2)

(or equivalently for ν) as function of the continuous
parameter ξ. Note the exponential dependence of the
moments on L due to localization, in contrast to the
power-law dependence in the critical regime around a
metal-insulator transition [7].

This paper is centered around our numerical observa-
tion in Section 3 that equation (1b) holds even for short
distances to the opening Lopen � lloc, and hence can be
used in regions where the central-limit theorem does not
apply. This makes the parameters cn and dn with n ≥ 3
observable in the distribution function P (ν), while in the
long-distance behavior only c1 and c2 are relevant param-
eters [9].

Presently, analytical results for the distribution func-
tion P (g) and P (ν) for short distances are only available
in the regime of single-parameter scaling. The local den-
sity of states obeys a strict log-normal distribution for all
distances [23,30], and hence complies with our central ob-
servation. Equation (1a) cannot be extended to short dis-
tances, even in the regime of single-parameter scaling [21];
for studies outside this regime see, e.g., references [13,26].

3 One-dimensional Anderson model

The previous Section 2 put forward some very general ar-
guments from large-deviation statistics. The relevance of
the asymptotically defined parameters cn (and dn), n ≥ 3
for finite-distance wavefunction statistics, and the ques-
tion whether these parameters indeed contain information
that is independent from what is encoded in the parame-
ters c1 and c2, only can be answered by a direct investiga-
tion. In the following we analyze the wavefunction statis-
tics in the one-dimensional Anderson model [3], given by
the Schrödinger equation discretized on a chain (lattice
constant a ≡ 1)

tl−1ψl−1 + tlψl+1 = (Vl − E)ψl, (3)

where the hopping matrix elements tl and the disorder
potential Vl are random. We assume box distributions
with 〈tl〉 = t, 〈Vl〉 = 0, 〈tltm〉 = t2 + 1

2Dtδlm, and
〈VlVm〉 = 2DV δlm. Without any restriction we can set
t = 1, which fixes the energy scale in the dispersion rela-
tion E(k) = −2 cosk of the clean system (Dt = DV = 0).
The disorder strength will be characterized by the pertur-
bative mean-free path [31]

lpert = (4 − E2)/(DV +Dt), (4)
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and the balance between onsite and offsite disorder will
be characterized by the parameter

δ = (DV −Dt)/(DV +Dt). (5)

First we present the results of numerical simulations to
illustrate the usefulness of the cumulants Cn. Next, in or-
der to give a flavor for the mechanism behind the asymp-
totic linear growth (1) of the cumulants for the specific
case of wavefunction localization, we extent the analyti-
cal theory of references [26,27] for the asymptotic slopes
cn to the case of competition of onsite- and offsite disor-
der close to the band center E = 0, and also present the
theory for the offsets dn. The extension equips us with a
means to violate SPS, which is finally compared to other
means in order to determine the mutual (in)dependence
of the parameters cn and dn.

3.1 Numerical illustration of the cumulants Cn

Here we illustrate the length dependence of the cumu-
lants Cn by the results of numerical computations in en-
sembles of 106−108 disorder realizations. The results for
different strengths of onsite disorder (δ = 1) are presented
in Figure 1 (lpert = 300), Figure 2 (lpert = 24), and Fig-
ure 3 (lpert = 1.5). Three representative values of energy
are chosen: (a) E = 0 at the band center, (b) E = −1
in the SPS region, (c) E = −1.95 close to the band edge.
[The constant perturbative mean free path lpert in any fig-
ure has been obtained by adjusting the disorder strength
according to equation (4); for values see the figure cap-
tions.] The significance of these three regions of energy
will be discussed in the following Section 3.2. Plotted
as a function of length are the cumulants Cn calculated
from g and ν, as well as from the ‘mesoscopic’ local den-
sity of states ν̃, which is obtained from ν by averaging
over a Fermi wavelength λF = 2π/ arccos(−E/2) (with
λF = 4 for E = 0, λF = 6 for E = −1, and λF ≈ 28 for
E = −1.95). The mesoscopic density of states accounts for
a limited resolution that may be encountered in an exper-
iment. It discards the nodes of the wavefunction (whose
impact strongly depends on the dimensionality of the sys-
tem) and only captures the smoothly varying envelope
(which is more robust).

The cumulants all increase linearly for L � lloc, and
one may associate a length scale limL→∞ 2L/Cn = 2/cn
to each of them. The slopes cn are identical for all three
underlying objects, and hence the sets of parameters
{c(g)

n } = {c(ν)
n } = {c(ν̃)

n } ≡ {cn} coincide.
As advertised above, the cumulants C

(ν)
n and C

(ν̃)
n

increase linearly already for small L � lloc (moreover,
the offsets for ν̃ are vanishingly small), while the cumu-
lants C(g)

n become linear only after some transient length,
see reference [13] (these cumulants also have a finite off-
set d(g)

n ). This means that the asymptotically defined pa-
rameters c(ν)

n and d(ν)
n can be used to estimate the short-

distance behavior of C(ν)
n and C

(ν̃)
n . In order to estimate

the distribution functions, parameters with n ≥ 3 have to
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Fig. 1. Cumulants Cn calculated from g as a function of L ≡
Lsys, and from ν, ν̃ as a function of L ≡ Lopen. The data points
are obtained by a numerical simulation of the one-dimensional
Anderson model with onsite disorder, for E = 0, DV = 1/75,
(left panels), E = −1 , DV = 1/100 (middle panels), and
E = −1.95, DV = 0.0006583 (right panels). This corresponds
to weak disorder, with a perturbative mean-free path of lpert =
300 in all cases (see Eq. (4)). The lines are analytical weak-
disorder predictions of the asymptotic linear behavior Cn ∼
cnL, taken from reference [26] for E = 0 and following the
RPA for E = −1 and E = −1.95.

be included, since the central-limit theorem does not yet
apply for short distances. This is displayed in Figure 4,
which compares P (ln ν) for L = lloc/2, E = −1, lpert = 24
with a normal distribution, which only accounts for C(ν)

1

and C(ν)
2 , and with a generalized normal distribution (the

so-called Pearson system [32]),

P (x) = C(a+ bx+ cx2)−1/2c

× exp

[
(b+ 2cm) arctan[(b + 2cx)/

√
4ac− b2]

c
√

4ac− b2

]
, (6)

which accounts for the first four cumulants by the four
constants a, b, c, and m. The cumulants have been re-
constructed from their asymptotics (1b) (hence, from the
asymptotically defined quantities c(ν)

n and d(ν)
n ), and differ

from the numerical values of the data by less than three
percent.
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Fig. 2. Same as Figure 1, but for stronger disorder with
lpert = 24: DV = 1/6 (left), DV = 1/8 (middle), DV = 0.00823
(right). The lines in the right panels (c) are the analytic pre-
dictions for the given disorder strength close to the band edge,
taken from reference [27].

3.2 Analytical theory for the slopes cn and offsets dn

3.2.1 Slopes cn

Recently [26,27], we have been able to extent Halperin’s
phase formalism [22,33], which allows to calculate lloc and
hence c1, to all slopes cn. This formalism can be applied
for arbitrary λF/lpert, i.e., also for relatively strong disor-
der, as long as lpert � 1 (the lattice constant, set to unity
in this paper). Other formalisms like the supersymmet-
ric σ model and the Berezinskǐı technique are rather more
restrictive and cannot directly address the logarithm of g
and ν. It turned out that three different regions of energy
have to be distinguished in the one-dimensional Ander-
son model. For energies 2 − |E| � D2/3 close to the band
edge, corresponding to relatively strong disorder, the RPA
fails and the distribution function deviates from the strict
log-normal form [27]. RPA fails also for energies |E| � D
close to the band-center [34], and the distribution func-
tion again deviates from the strict log-normal form [26],
in generalization of the Kappus-Wegner anomaly of lloc at
E = 0 [24,35,36]. For other energies inside the band, the
RPA is justified, and SPS holds, for weak disorder.
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Fig. 3. Same as Figures 1 and 2, but for stronger disorder
with lpert = 1.5: DV = 8/3 (left), DV = 2 (middle), DV =
0.1316 (right). The lines in the right panels (c) are the analytic
predictions for the given disorder strength close to the band
edge, taken from reference [27].
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Fig. 4. The probability distribution function P (ln ν) from a
numerical simulation (data points) in the Anderson model with
L = lloc/2, E = −1, lpert = 24 is compared to a normal distri-
bution (dashed line) with the same mean and variance as the
data, and a generalized normal distribution from the Pearson
system (solid line), equation (6), where the four free parame-
ters are determined from the asymptotic values of the first four
cumulants.
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Offsite disorder adds another means to depart from
SPS at the band center, since the balance parameter δ
interpolates between the Kappus-Wegner anomaly at δ =
1 (Dt = 0) and the Dyson singularity at δ = −1 (DV = 0),
which results in total delocalization [37–41]. In the vicinity
of the band center, we derive the following Fokker-Planck
equation for the joint distribution function P (u, α;L) of
u � − ln g � − ln ν, and the phase α for reflection from
the system:

(DV +Dt)−1 ∂P

∂L
=

[
∂α

(
δ

2
s2α − ε

)
+ ∂2

α(1 + δc2α)

−1
2
∂u(1 + δc2α) +

1
2
∂2

u(1 − δc2α) + ∂u∂αδs2α

]
P,

(7)

where sx = sinx, cx = cosx, ε = E/(DV +Dt), and ∂ de-
notes partial derivatives. For δ = 1, this equation has been
used to study the wavefunction statistics at the Kappus-
Wegner anomaly [27]. For δ = −1, E = 0, one recovers the
delocalization at the Dyson anomaly. At the balance point
of onsite and offsite disorder δ = 0, the variables u and
α decouple. For L → ∞ the reflection phase α becomes
completely random, while P (u) precisely takes the form
of SPS, with asymptotic slopes c2 = 2c1 and cn = 0 for
n ≥ 3. Hence, somewhat surprisingly, we find that RPA
and SPS hold true by a particularly simple mechanism
just in between the two abovementioned anomalies.

Away from the novel SPS point δ = 0, but for disor-
der still small, the asymptotic behavior of the distribution
function can be analyzed by introducing into equation (7)
the large-deviation ansatz

P (u, α;L) =
∫ +i∞

−i∞

dξ

2πi

∞∑
k=0

exp[c(ξ)L − ξu]f(α; ξ). (8)

Here c(ξ) =
∑

n ξ
ncn/n! is the generating function of

the slopes of the cumulants, see equations (1) and (2),
and f(α; ξ) has to be periodic and normalizable with re-
spect to α. We arrive at a differential equation

c(ξ)f(α; ξ)
DV +Dt

=
[
∂α

(
δ

2
s2α − ε

)
+ ∂2

α(1 + δc2α)

+
ξ

2
(1 + δc2α − 2∂αδs2α) +

ξ2

2
(1 − δc2α)

]
f(α; ξ),

(9)

in which the slope-generating function c(ξ) appears as an
eigenvalue, while f(α; ξ) appears as an eigenfunction. The
slopes cn now can be calculated iteratively by expand-
ing c(ξ) and f(α; ξ) order by order in ξ, following refer-
ences [26,27]. Away from the SPS point δ = 0 but for
|E| � DV + Dt, the slopes cn take finite values, in com-
pliance with equation (1). Our analytical results are con-
firmed by numerical computations in Figure 5.

3.2.2 Constant offsets dn

The offsets d(ν)
n ≈ C

(ν)
n (L = 0) can be calculated by ex-

pressing the local density of states ν(L) in terms of the re-
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Fig. 5. Cumulants Cn (in units of Cpert
1 = 2L/lpert) in the

asymptotic limit L � lloc, as a function of the balance param-
eter δ for energy E = 0 (left panels), and as a function of E
for δ = 0 and δ = 1 (right panels). Results of numerical simu-
lations with lpert = 300 are compared to the predictions of the
analytical theory.

flection coefficients rR (rL) from the segment of the wire to
the right (left) of the point L at which ν is calculated [30],

ν(L) = Re
(1 + rL)(1 + rR)

1 − rLrR
, (10)

where we normalized 〈ν(L)〉 = 1 (which amounts to mul-
tiplication by a constant factor π

√
4 − E2). For L = 0 and

the opening of the wire oriented to the left, rL = 0 because
there is no reflection from the opening, and rR = exp(iα),
where α is the phase of reflection from the semi-infinite
system. Hence, the numbers

d(ν)
n ≈ C(ν)

n (L = 0) = 〈〈[− ln(1 + cosα)]n〉〉 (11)

characterize the distribution of the reflection phase α of
the semi-infinite system [30], and allow to assess the va-
lidity of the RPA, which predicts d(ν)

1 = ln 2, d(ν)
2 = π2/3,

d
(ν)
3 = 12ζ(3) (with the Riemann ζ function), d(ν)

4 =
14π4/15.

The offsets d(ν̃)
n ≈ C

(ν̃)
n (L = 0) vanish independently

of the RPA since in terms of the reflection matrices intro-
duced above

ν̃(L) = Re
1 + rLrR
1 − rLrR

, (12)

and hence ν̃(0) = 1.
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The offsets d(g)
n are obtained by considering the com-

position law tR+L = tR(1 − rLrR)−1tL for the series
transmission through two long segments R and L. The
reflection coefficients now are equivalent phase factors
rR,L = exp(iαR,L). We equate the cumulants of both sides
and insert the asymptotics (1). The constant offsets follow
as d(g)

n = (−1)n〈〈{ln[2− 2 cos(αR +αL)]}n〉〉. In the RPA,
d
(g)
1 = 0 and d

(g)
n = (−1)nd

(ν)
n . This is clearly displayed

in Figure 1. Beyond the RPA, the d(g)
n and d

(ν)
n contain

equivalent information on the reflection-phase distribution
function P (α), but no longer are simply related.

3.3 Independence of the parameters

Now we turn to the question of the mutual independence
of the parameters cn, as we violate the conditions for SPS.

A convenient set of parameters beyond the SPS quan-
tity C1 is formed by the ratiosXn = Cn/C1, which asymp-
totically acquire the constant values

lim
L→∞

Xn = X(∞)
n = cn/c1. (13)

In RPA and SPS, only one effective parameter C1 sur-
vives since c(g)

2 = c
(ν)
2 = 2c(g)

1 = 2c(ν)
1 , i.e., X(∞)

2 = 2, and
moreover c(g)

n = c
(ν)
n = 0 for n ≥ 3, which gives a picture

consistent with SPS. However, beyond this approximation
the cumulants Cn with n ≥ 3 generally may increase lin-
early with L, and hence can be of the same order as C1

and C2, such that all X(∞)
n are of order unity. Notice that

the asymptotic value X(∞)
n is well approximated by X(ν̃)

n

even for L � lloc, since the cumulants C(ν̃)
n are linear al-

ready for small L and the offsets d(ν̃)
n vanish.

In Figure 6 we plot the asymptotic ratios of cumulants
X

(∞)
3 and X(∞)

4 as function of X(∞)
2 , while we vary:

(a) the balance parameter δ at E = 0 (a i) from 0 to 1
and (a ii) from 0 to −1;

(b) energy for fixed onsite disorder (b i) around E = 0
and (b ii) around |E| = 2; and

(c) the disorder strength from lpert = 300 to lpert = 1.5
at δ = 1 for the three values of energy (c i) E = 0,
(c ii) E = −1, and (c iii) E = −1.95.

In the cases (a) and (b) we show the results of the an-
alytical procedure described above, while for (c) we show
the result of the numerical simulations. For illustration of
the predictive power of the theory presented in the pre-
vious Section 3.2, numerical results are also displayed for
case (a).

Of particular interest is the curve for case (b ii), for en-
ergies close to the band edge, which also applies to strong
disorder, D2/3 � 2−|E| [27]. (See also the data points for
case (c iii).) In this case the curves X(∞)

n (X(∞)
2 ) depart

from the seemingly unique functional behavior obtained
in the other cases. Hence, we are led to conclude that at
least for sufficiently strong disorder X(∞)

3 and X
(∞)
4 are

not uniquely determined by X
(∞)
2 . Since the SPS quan-

tity C1 is always an independent scaling parameter, alto-
gether more than two quantities are needed to characterize
the distribution function P (ν) for short distances L � lloc

(where the central-limit theorem, and hence TPS, not yet
applies).
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4 Conclusions

We observed that the short-distance statistics of localized
wavefunctions inside a long one-dimensional disordered
system can be recovered from the long-distance statis-
tics, but in general are characterized by more than the
two parameters (a mean C1 and a variance C2) that suf-
fice to describe the long-distance statistics themselves.
These additional parameters have been obtained from the
higher cumulants Cn of ln ν, where ν is the local den-
sity in a semi-infinite system. The additional parameters
in the Cn can be neglected when considering the case of
weak disorder and generic energies within the band: Then
C1 ∼ C2/2 ∝ L, and also Cn = O(L0) for n ≥ 3 take uni-
versal values, which results in a picture consistent with
single-parameter scaling even in the short-distance wave-
function statistics.

With three-dimensional systems in mind, it would be
desirable to investigate the relation of the parameters from
large deviation statistics to the scaling parameters at the
metal-insulator transition, which may be established by
multi-fractal analysis when this transition is approached
from the localized regime.

Another potential application of the higher cumulants
is to use them for detecting spatial correlations in the
disorder, since the higher cumulants are sensitive to more-
point wavefunction correlations. This offers a natural ex-
tension of a previous investigation [42], which demon-
strated that deviations from randomness due to spatial
three-point correlations (such as displayed by a folded
Fibonacci sequence) cannot be detected by the conven-
tional wavefunction statistics.
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