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We introduce the notion of the strongly correlated band insulator (SCI), where the lowest energy

excitations are collective modes (excitons) rather than the single particles. We construct controllable 1=N

expansion for SCI to describe their observable properties. A remarkable example of the SCI is bilayer

graphene which is shown to be tunable between the SCI and usual weak coupling regime.
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Introduction.—Idealized models of band insulators [1]
are based upon determining the spectrum of the single
particle excitations (SPEs), Fig. 1(a) (I), which are char-
acterized by the fermionic statistics, momentum k, charge
�e, spin 1=2. All the other excitations, i.e., electron-hole
pairs are combined from the SPEs forming the particle-
hole continuum [shaded region on Fig. 1(a) (II)].

Weak electron-electron repulsion does not change the
gapped spectrum of the SPEs significantly; however, it
opens the decay channel of the SPE into a three-particle
continuum. This process is allowed only for the particles
with the energy � above the threshold, see Fig. 1(b) (I). The
qualitative difference appears in the two-particle spectrum:
electron-hole bound states (excitons) [2] are split down
from the particle-hole continuum Fig. 1(b) (II). Those
discrete branches XnðkÞ [number of branches is infinite
for the interaction potentials limr!1UðrÞr2 ¼ 1] can not
decay unless their energies exceed some threshold. Wewill
refer to this situation as a weak-coupling insulator. All the
thermodynamic and transport properties of such an insula-
tor are described by the SPE whereas excitons are respon-
sible for the fine structure of the optical spectra.

With the increase of the interaction the excitation
hierarchy in the band insulator changes qualitatively, see
Fig. 1(c). In this case, u > X0ð0Þ, and all the low tempera-
ture thermodynamics and the energy transport is contrib-
uted mostly by the excitons whereas the charge transport is
determined by the SPEs. This leads to the different tem-
perature dependence for the electric and thermal conduc-
tivities. Moreover, unlike in the case of the weak coupling
insulators, the SPEs have a very narrow stability range
[Fig. 1(c) (I)], above which the electron starts producing
excitons similarly to well-known Schwinger mechanism
[3] of vacuum polarization. For the same reason, only
a finite number of the exciton branches are stable—all
the others can decay into the two-exciton continuum
[Fig. 1(c) (II)]. We will call such a system a strongly
correlated insulator (SCI).

In this Letter, we present the case study of the SCI using
bilayer graphene (BLG) in a transverse electric field [4–6]
as an example. A strong motivation for studying BLG in

this context is the possibility to tune it from the weak
coupling to the SCI, as it is discussed below. Using the
number of electron species, N ¼ 4, (twofold valley and
spin degeneracies) as a large parameter we obtain analytic
results for observables determined by one- and two-
particle excitations. We predict that the SCI will be mani-
fest in (a) the characteristic angle-resolved photoemission
spectroscopy (ARPES) line shape with the intensity of the
quasiparticle peak scaling as a nonanalytic function

ðE=E1ÞE2=E of the transverse electric field E, where E1;2

are constants, and (b) the optical absorption spectrum
showing exciton lines corresponding to the logarithmic
attractive potential between the electron and the hole.
Model.—The band structure of BLG is described by the

effective single-particle Hamiltonian [7] (@ ¼ 1)
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FIG. 1 (color online). One- (I) and two-particle spectra (II) in
the insulator. (a) Noninteracting particles; (b) the weak coupling;
(c) SCI; Particle-hole symmetry is implied for simplicity.
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Ĥ0¼
u0 ðkxþ ikyÞ2=ð2mÞ

ðkx� ikyÞ2=ð2mÞ �u0

 !
; (1)

where u0 / E is the interlayer asymmetry tunable by
the transverse electric field E, m is the effective mass,
and p ¼ ðpx; pyÞ is the Bloch momentum counted from

the K point of the Brillouin zone. Excitations whose mo-
menta are near K0 are described by the parity conjugate of
the Hamiltonian (1) and form another particle species with
identical properties. The fourfold degenerate spectrum of
the SPEs corresponding to Eq. (1) is

�ðkÞ ¼ ½u20 þ k4=ð4m2Þ�1=2 � u0 þ k4=ð8u0m2Þ: (2)

We will see that SCI behavior of BLG is associated with
the long range part of the Coulomb interaction vðrÞ ¼ e2=r
so that the effective Hamiltonian is

H¼
Z
d2rc yĤ0c þ1

2

Z
d2rd2r0�ðrÞvðr�r0Þ�ðr0Þ: (3)

We omitted here the short range interaction with nontrivial
matrix structure. Those terms are related to the symmetry
breaking in BLG and get renormalized with increasing the
linear scale [8]. All those renormalizations, as well as the
renormalization of the electron mass and interlayer asym-
metry, stop at distances of the order of

‘ ¼ 1=
ffiffiffiffiffiffiffiffiffi
mu0

p
; (4)

and are incorporated into the SPE spectrum (1). In Eq. (3),

Ĥ0 given in Eq. (1) operates on a two-component vector
c ðrÞ ¼ ½c AðrÞ; c BðrÞ�T in the sublattice space (summa-
tion over the spin and valley indices is implied), � ¼:

c yc : is the normal-ordered particle density.
Dimensional analysis of the Hamiltonian (3) reveals

only one dimensionless coupling constant

�2 ¼ me4=u0; (5)

which diverges as u0 ! 0 signaling the SCI. In this limit
perturbation theory in e2 fails; however, the theory remains
amendable to the 1=N expansion which uses the dynami-
cally screened Coulomb interaction as the leading-order
approximation (see the Supplemental Material [9]for the
formal discussion).

Screened interaction in large N approximation is
obtained as a resummation of Fig. 2(a):

Vðq; i!Þ ¼ vðqÞ½1þ NvðqÞ�ðq; i!Þ��1; (6)

where vðqÞ ¼ 2�e2=q and �ðq; i!Þ is the polarization
function in the momentum-frequency domain with asymp-
totic expressions shown in Fig. 2(b). Taking N � 1 limit,
one finds � to drop out of the expression giving

Vðq; i!Þ ’ 1=½N�ðq; i!Þ�: (7)

Thus, the perturbation series becomes an expansion in
powers of 1=N. Such an expansion, however, contains

singular terms caused by �ðq ! 0; i!Þ ! 0. The expres-
sion for the screened static potential is most instructive:

VðrÞ�
Z d2qeiqr

ð2�Þ2 Vðq;0Þ¼
�3u0

N lnR�
r ; r�R�

e2

r ; r�R�
; (8)

where a new spatial scale appeared:

R� ¼ �N‘: (9)

Notice that Vð‘Þ> u0 at small enough u0, which makes the
SCI insulator regime possible. At larger u0, interaction is
weak and may be treated perturbatively.
SPE spectrum and particle residue.—We start with cal-

culating the leading order in 1=N self-energy correction,
Fig. 2(c). Finding the pole of the resulting Green function,
we obtain instead of Eq. (2)

�ðkÞ ¼ u� 0:680

N

k2

2m
þ k4

8m2u0
½1þOð1=NÞ�: (10)

The single particle gap is strongly enhanced:

u ¼ u0

�
1þ 3

2N
ln�N

�
: (11)

In the limit of � ! 1 this enhancement diverges which, as
we will see shortly, signals the transition to the SCI. The
physical meaning of gap renormalization is that the band
insulator can not completely readjust itself when a charged
particle is introduced. The interaction of the extra particle
with the dipoles from the distances between ‘ and R� leads
to the logarithmic divergence for R� ! 1. The second term
in Eq. (10) is the interaction-induced negative curvature
analytic in 1=N. It significantly exceeds contribution of
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FIG. 2 (color online). (a) Resummation of the leading N loops
leads to the RPA screening of the interaction potential.
(b) Asymptotic regions for the polarization operator. (c) The
leading-order self energy correction. (d) Resummation of the
leading logarithm using Ward-Takahashi identity (e).
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Ref. [7] to the resulting ‘‘mexican hat’’ spectrum shown on
Fig. 1(c) (I).

The single-particle residue found from the same diagram
of Fig. 2(c) is given by

Z � 1� ð8=�2NÞ lnð�NÞ lnð�=u0Þ; (12)

where � � 0:2 eV is the upper limit for the applicability
of the two-band model (1).

Equations (11) and (12) contain logarithmically diver-
gent factors, which makes it necessary to sum up all orders
of the perturbation theory in

� � ðln�NÞ=ð2�NÞ: (13)

The summation procedure outlined below shows that the
gap (11) does not acquire any higher order in � corrections
whereas Eq. (12) changes to

Z ¼ exp½�ð8=�2NÞ lnð�NÞ lnð�=u0Þ�: (14)

This result is consistent with the renormalization group
equations obtained earlier in Ref. [10], where the renor-
malization flow is stopped at the energy scale u0.

Let us sketch derivations of Eqs. (11) and (14). We
notice that the dominant logarithmic divergence is contrib-
uted by the momenta transfer q‘ & 1 through any interac-
tion propagator. This allows for following simplifications:
(i) to factorize the polarization operator as

�ðq; i!Þ ¼ q2=½u0gði!=u0Þ�; (15)

where gðzÞ is a function well defined in the limit � ! 1;
(ii) to neglect the change in the momentum k of any single
particle Green function (GF). The latter allows the integra-
tion over the momenta in each interaction line separately:
the screened interaction (6) is replaced withZ q‘&1

Vðq; i!Þd2q=ð2�Þ2 ¼ u0�gði!=u0Þ: (16)

A nontrivial aspect of Eq. (15) is the appearance on the
bare scale u0 rather than the renormalized gap u in the
right-hand-side of the equation. The reason for this is
that divergence / lnN� can not enter into �, because the
screening is determined by the neutral dipoles [11].

The single-particle line shape in angle-resolved photo-
emission spectroscopy.—The suppression of the single-
particle residue in Eq. (14) suggests that the ARPES
spectrum of the SCI in the vicinity of the band gap is
strongly affected by the electron-electron correlations. In
order to find the exact line shape we close the Dyson
equation for the strong coupling theory, Fig. 2(d), using
the Ward-Takahashi identity, Fig. 2(e). This results in an
exact time ordered GF

Gðk; �Þ ¼
Z 1

�1
dtei�tG0ðk; tÞe�ð�=2ÞFðtÞ;

FðtÞ ¼ igð0Þujtj þ
Z �=u0

2
dzð1� e�izjtjÞWðzÞ;

(17)

where G0ðk; tÞ is the bare GF in the momentum-time
domain, and WðzÞ � i½gðzþ i0Þ � gðz� i0Þ�=ð�z2Þ.
Expression (17) is valid for any function g. For the polar-
ization loop neglecting vertex corrections and renormal-
ization of the GF, N ! 1 [11], we find gð0Þ ¼ 6� and

WðzÞ ¼ 16�z

z2 þ 4

�
�2 þ

�
ln
zþ 2

z� 2
� 4z

z2 þ 4

�
2
��1

:

Then, FðtÞ ¼ 6�iujtj þ ð16=�Þ lnð�=u0Þ and Eq. (17)
leads to Eqs. (11) and (14).
Equations (17) enables one to calculate not only the

particle pole but also the incoherent contribution describing
the coupling of the extra electron introduced or extracted
from the system (as in the tunneling or photoemission
experiments) with a many particle continuum. To do so,
we evaluate Að�Þ ¼ ð1=�ÞjImTrGð0; �Þj by numerical in-
tegration of Eq. (17). [Due to the electron-hole symmetry,
Að�Þ ¼ Að��Þ, and the structure and finite k is similar].
The result plotted in Fig. 3 shows the single particle peak at
� ¼ u � u0 and the threshold at � ¼ uþ 2u0 due to the
coupling to the three-particle continuum [12].
Exciton spectra.—Next we discuss the collective spec-

trum of the system, revealed as the poles of two-particle
propagators of the system. To calculate those poles, X, in
leading 1=N approximation, it is sufficient to neglect the
retardation in the interaction potential (6) and consider
Schrödinger’s equation for an electron and a hole,�
p̂4
e þ p4

h

8m2u0
þ ½2u� VðrÞ�

�
�ðre; rhÞ ¼ X�ðre; rhÞ; (18)

with VðrÞ defined in Eq. (8), and r � re � rh. Unbound
states with X > 2u correspond to the particle-hole contin-
uum and the bound states are the exciton lines.
Due to the nonparabolicity of the one-particle spectrum,

the motion of the exciton center of mass P ¼ pe þ ph can
not be separated from the relative motion, and we consider
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FIG. 3 (color online). The energy-dependent electron spectral
weight Að�Þ, representing the ARPES line shape near the K point
of the Brillouin zone of BLG at different values of the coupling
constant �. For clarity, the curves corresponding to ten equidis-
tant values of � ¼ 4; 8; 12; . . . ; 40 are vertically offset and the
quasiparticle peak is artificially broadened and scaled down by a
factor of 100.
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here the case of P ¼ 0 relevant for optics. In this case,
the levels are labeled by the normal angular momenta
jjj ¼ 0; 1; 2; . . . and by the radial quantum number
n ¼ 0; 1; . . . . Dimensional analysis gives the low lying
states with the size of the order of ‘ � R�; thus,
½2u� VðrÞ� ¼ u0½2þ ð3=2NÞ lnr=‘� does not depend on
� � 1, and, for nþ jjj & N�,

Xj
n ¼ u0

�
2þ 3

N

�
1

4
ln
12

N
þ �j

n

��
; (19a)

where �j
n are the eigenvalues of the differential operators

ĥj ¼ ð�d2=dz2 � z�1d=dzþ j2=z2Þ2 þ lnz: (19b)

Results of the numerical diagonalization of ĥj are plotted

on Fig. 4. Note that the levels with Xj
n > 2X0

0 decay into a

two exciton continuum as in Fig. 1(c) (II).
Since the spectrum of the excitons (19a) does not depend

on the coupling constant �, the system can be quite easily
tuned in the SCI regime, u � X0

0 .

The fact that energies of the lowest-lying excitons in
Eq. (19a) scale with the bare gap parameter u0 rather than
the renormalized single-particle gap u justifies the scaling
form of the polarization operator Eq. (15). Indeed, for the
strong coupling regime, the polarization of BLG occurs via
the appearance of virtual excitons with j ¼ �1, so that

�ðq � ‘�1; !Þ is generic for both the weak coupling
regime and SCI. Moreover, gð0Þ acquires only 1=N
corrections, so that Eq. (11) does not change. The fine
structure of gðzÞ shows the exciton resonances, it changes
the threshold in Að�Þ by the exciton binding energy
’ u0=N, and introduces an additional fine structure which
may be distinguished in higher derivatives of Að�Þ
Exciton lines in SCI optics.—The exciton lines (19a) are

degenerate (N2 for j ¼ 0, and 2N2 for jjj> 0) due to the
N-fold degeneracy of the electron spectrum. Such degen-
eracy is lifted due to the crystalline symmetry [13].
First, the fourfold spin degeneracy is split to the S ¼ 0

singlet and S ¼ 1 triplet states due to the exchange inter-
action. In the absence of spin-orbit interaction, triplet
excitons cannot be observed in optical experiments. Spin-
singlet states are further split due to the trigonal symmetry
of the bilayer crystal and should be classified according to
the irreducible representations of its planar group, only A1;2

and E representations are optically active. Such a classifi-
cation is presented in Fig. 4 together with the selection
rules (A1 is not active in Raman because of the electron-
hole symmetry). These rules for the bright E-exciton ab-
sorption (as well as luminescence), �� ! X1 ! �� are
determined by the form of the interband current operator
derived from the Hamiltonian Eq. (1), and a trigonal
warping term [7] due to skew interlayer hopping, for a
weak transition �� ! X0. The selection rules for Raman
processes are determined by the electron-two photon
interaction via a virtual intermediate state [14], with the
dominant transition A2: �

� ! �i�� þ X2 and a satellite
E: �� ! �	 þ X0.
Conclusion.—We presented a general and controllable

theory of a SCI: a band insulator where the spectrum of
excitons lies deep below the lowest branch of the single-
particle spectrum. Gapped bilayer graphene is not the only
example with such properties, the list of other potential
SCIs includes quantum wells of semimetal compounds,
such as Bi1-xSbx, or silicene [15] in a transverse electric
field [16]. However, BLG is unique in its tunability from
the weak coupling to the SCI. In the lab, this tuning can be
achieved by the application of the electric field normal to
the BLG plane.
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