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The inexorable development of ever more powerful laser systems has re-ignited interest in electro-
magnetic radiation reaction and its significance for the collective behavior of charged matter interact-
ing with intense electromagnetic fields. The classical radiation reaction force on a point electron is
non-conservative, and this has led some authors to question the validity of methods used to model
ultra-intense laser–matter interactions including radiation reaction. We explain why such concern is un-
warranted.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Contemporary advances in ultra-intense laser facilities have
driven the recent surge of interest in the collective behavior of
charged matter in extreme conditions, and a particularly fascinat-
ing topic in that context concerns the coupling of an electron to
its own radiation field [1]. An accelerating electron emits electro-
magnetic radiation, and the energy and momentum carried away
by the electromagnetic field must be properly accommodated. In
most practical cases, the Lorentz force on an electron due to an
applied electromagnetic field is considerably larger than the force
due to the electron’s emission, and the effect of the recoil due
to the emitted radiation is negligible or can be adequately repre-
sented using simple physical reasoning. Although such arguments
avoid the difficulties that plague more comprehensive analyses, the
parameter regimes promised by forthcoming ultra-intense laser fa-
cilities ensure that more fundamental considerations are now of
practical necessity. For example, ELI [2] is expected to operate with
intensities 1023 W/cm2 and electron energies in the GeV range, at
which level the radiation reaction force becomes comparable to,
and can even exceed, the applied force due to the laser field.

Several experiments have been proposed in recent years to test
the effects of radiation reaction in ultra-intense laser–matter in-
teractions (see Ref. [3] for a recent review). Particular attention
has been paid to the behavior of a bunch of classical electrons
driven by an ultra-intense laser pulse where the forces between
the electrons are negligible compared to the forces exerted by
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the laser pulse. Fortunately, the Landau–Lifshitz equation [4] for
a single classical electron is integrable when the pulse is modeled
as a plane wave [5,6] and the computational advantages afforded
by neglecting interactions between the electrons are considerable.
Theoretical investigation of the collision between an electron and a
laser pulse has shown that the electron can reverse its direction of
motion if radiation reaction is taken into account [7,8] and it may
be possible to detect this effect in the radiation spectrum. In ad-
dition, it has been shown [9,10] that the volume of the region of
phase space occupied by a bunch of non-interacting electrons re-
duces with time (the bunch cools) due to radiation reaction in the
ambient laser field.

However, the use of kinetic theory to describe a bunch of non-
interacting classical point electrons in this context has recently
been criticized [11] because of the non-Hamiltonian nature of
the Landau–Lifshitz equation (or its progenitor, the Lorentz–Dirac
equation [12]). As a consequence, the entropy 4-current is not di-
vergenceless in kinetic theories induced from the Landau–Lifshitz
equation [13,9,10] or from the Lorentz–Dirac equation [14].

Furthermore, inter-particle interactions should not be ignored
in all situations where radiation reaction plays a role. If the heat-
ing due to the stochasticity of photon emission [15] and the dis-
creteness of charge [10] within the bunch can be neglected, one
might anticipate that the recoil due to emission of radiation would
cool the bunch of electrons in all situations. However, we recently
showed [14] that inter-particle interactions may heat the bunch.
This Letter explores the significance of this observation, and the
pathway that we tread leads directly to an explanation of why the
recent criticisms given in Ref. [11] are unjustified.

http://dx.doi.org/10.1016/j.physleta.2014.02.006
http://www.ScienceDirect.com/
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2. Non-relativistic considerations

The simplest way to quickly obtain a flavor of the effects of
inter-particle interactions is to consider the behavior of a bunch of
non-relativistic electrons, and assume that the inter-particle forces
due to the magnetic fields they generate may be neglected. The
force on an electron in the bunch is a superposition of the Lorentz
forces exerted by the other electrons in the bunch and the force
on the electron due to its own radiation field. For simplicity, we
neglect collisions between the electrons and represent the inter-
particle forces using a mean field approximation E to their electric
field.

The Abraham–Lorentz equation (see, for example, Ref. [1])

m
d2x

dt2
= qE(x, t) + mτ

d3x

dt3
(1)

determines the position x(t) of a non-relativistic electron in an
ambient smooth electric field E , where m is the mass of the elec-
tron, q = −e is the charge on the electron and the time constant
τ = q2/6πε0mc3 = 2re/3c where re is the classical radius of the
electron. The total force on the electron is the sum of the mean
field approximation qE to the total force exerted by other electrons
in the bunch and the reaction mτ d3x/dt3 due to the electron’s
own emission. From now on, we will reserve the term bunch for
the smooth continuum specified by the charge density ε0∇ · E .

Following the iterative procedure introduced by Landau and Lif-
shitz [4], the introduction of the requirement m d3x/dt3 = q Ė +
O(τ ) removes runaway solutions and (1) can be written as

m
d2x

dt2
= qE(x, t) + qτ

[
∂t E(x, t) +

(
dx

dt
· ∇

)
E(x, t)

]
(2)

where O(τ 2) terms have been dropped and an overdot indicates
d/dt .

Suppose that the initial position and velocity of the electron are
sampled from a statistical ensemble of initial conditions, and let
〈x(t)〉 be the ensemble average of the electron’s position at time t .
Introducing x = 〈x〉 + ξ into the expansion of (2) to leading order
in the random variable ξ leads to

m
d2〈x〉
dt2

= qE
(〈x〉, t

)

+ qτ

[
∂t E

(〈x〉, t
) +

(
d〈x〉
dt

· ∇
)

E
(〈x〉, t

)]
(3)

and

d

dt

(
1

2
m〈ξ̇ · ξ̇〉

)
= {

q
〈
ξ̇μξν

〉
∂ν Eμ + qτ

[〈
ξ̇μξν

〉
∂ν∂t Eμ

+ 〈
ξ̇μξ̇ ν

〉
∂ν Eμ + 〈

ẋν
〉
∂ω∂ν Eμ

〈
ξ̇μξω

〉]}∣∣
x=〈x〉

(4)

where Greek indices range over 1,2,3 and the explicit time de-
pendence of the electric field E in (4) has been suppressed for
notational convenience.

Simple choices for 〈ξ̇μξν〉|t=0 and 〈ξ̇μξ̇ ν〉|t=0 reveal the signif-
icance of (4). Suppose that the initial velocity and initial position
of the electron are uncorrelated, and there is no preferred direc-
tion for its initial velocity. Hence 〈ξ̇μξν〉|t=0 = 0 and 〈ξ̇μξ̇ ν〉|t=0 =
δμν〈ξ̇ · ξ̇〉/3, where δμν is the Kronecker delta, and using (4) it
follows

d

dt

(
1

2
m〈ξ̇ · ξ̇〉

)∣∣∣∣
t=0

=
[

qτ
1

3
〈ξ̇ · ξ̇〉∇ · E

]∣∣∣∣
x=〈x〉, t=0

. (5)

Let N electrons be represented by a small (finite) element of
the bunch, where the element has volume V and the element’s
centroid is located at x = 〈x〉. Hence, the charge density ρ of the
bunch and electric field E satisfy ∇ · E = ρ/ε0 with ρ(〈x〉, t) =
qN/V .

If the initial velocities of the N electrons are described by a
Maxwell–Boltzmann distribution (with temperature T ), using (5)
the thermal kinetic energy U = N 1

2 m〈ξ̇ · ξ̇〉 of the N electrons sat-
isfies

dU

dt

∣∣∣∣
t=0

=
[
τ

kB T

mε0
ρ2 V

]∣∣∣∣
x=〈x〉, t=0

(6)

where 〈ξ̇ · ξ̇〉 = 3kB T /m has been used, with T the local temper-
ature of the element. It follows from (6) that dT /dt|t=0 > 0 and
the initial tendency of the element is to heat up, rather than cool
down, due to radiation reaction. This result is surprising because
we expect the bunch to cool in response to the emission of radia-
tion.

Although the bunch is not in thermodynamic equilibrium, it is
tempting to formally use the first law of thermodynamics dU =
T dS − p dV to introduce the entropy S of the element. The volume
V of the element satisfies dV /dt|t=0 = 0 because V ∝ 〈ξ ·ξ〉3/2 and
the initial position and velocity of each electron are uncorrelated.
Hence, S satisfies

dS

dt

∣∣∣∣
t=0

=
[
τ

kB

mε0
ρ2 V

]∣∣∣∣
x=〈x〉, t=0

. (7)

The right-hand side of (7) is strictly positive, which is precisely
how one expects the entropy of an isolated bunch of electrons to
behave. However, more general considerations show that all is not
as it seems.

3. Relativistic considerations

The Lorentz–Dirac equation is a fully relativistic description of a
structureless point particle in an applied electromagnetic field Fab
and has the form

d2xa

dλ2
= − q

m
F a

b
dxb

dλ
+ τ�a

b
d3xb

dλ3
(8)

with q the particle’s charge, m the particle’s rest mass, τ =
q2/6πm in Heaviside–Lorentz units with c = ε0 = μ0 = 1, and the
tensor �a

b is

�a
b = δa

b + dxa

dλ

dxb

dλ
. (9)

For an electron, q = −e < 0 as before. The Einstein summation con-
vention is used throughout the following, indices are raised and
lowered using the metric tensor ηab = diag(−1,1,1,1) and low-
ercase Latin indices range over 0,1,2,3. The particle’s 4-velocity
dxa/dλ is normalized as follows:

dxa

dλ

dxa

dλ
= −1 (10)

where λ is the particle’s proper time.
Dirac [12] derived (8) for a classical point electron by appeal-

ing to the conservation condition on the stress-energy–momentum
tensor (see Ref. [16] for a recent discussion of the derivation).
Dirac’s approach required a regularization of the electron’s singu-
lar contribution to the stress-energy–momentum tensor followed
by a renormalization of the electron’s rest mass. His procedure led
to the third-order term in (8), which is the source of the famous
pathological behavior exhibited by solutions to the Lorentz–Dirac
equation (see Ref. [1], and also Ref. [17] for a recent discussion).

The standard approach to ameliorating the problems with the
Lorentz–Dirac equation is to replace the third-order terms in (8)
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(radiation reaction force) with the derivative of the first term on
the right-hand side of (8) (the applied Lorentz force). This pro-
cedure is justifiable if the radiation reaction force is a small per-
turbation to the Lorentz force, and it yields the Landau–Lifshitz
equation [4]:

d2xa

dλ2
= − q

m
F a

b
dxb

dλ
− τ

q

m
∂c F a

b
dxb

dλ

dxc

dλ

+ τ
q2

m2
�a

b F b
c F c

d
dxd

dλ
. (11)

Unlike the Lorentz–Dirac equation, the Landau–Lifshitz equation is
second order in derivatives in λ and its solutions are free from
pathologies.

Alternatively, one can derive (11) from a consideration of the
stress-energy–momentum balance of an extended charged parti-
cle [18]. We will return to this point shortly.

A range of different approaches to modeling the behavior of a
bunch of charged point particles that includes radiation reaction
exists in the literature. The most common approach employs the
Landau–Lifshitz equation from the outset [9], but it is possible to
develop a kinetic theory based on the Lorentz–Dirac equation [14]
that is equivalent to the Landau–Lifshitz kinetic theory to first or-
der in τ . In particular, we showed [14] that the entropy 4-current
sa defined as

sa = −kB

∫
ẋa g ln(g)

d3 v√
1 + v2

, (12)

where kB is Boltzmann’s constant, satisfies

∂asa = −τ
kB

m

(
Ja Ja + 4

q2

m2
Tab Sab

)
(13)

to first order in τ with

J a = q

∫
ẋa g

d3 v√
1 + v2

, (14)

Sab = m

∫
ẋa ẋb g

d3 v√
1 + v2

, (15)

T ab = F ac F b
c − 1

4
ηab Fcd F cd (16)

and g is the 1-particle distribution of electrons on event-velocity
“phase” space (x, v) with ẋμ = vμ , ẋ0 = √

1 + v2. The vector field
J a is the electric 4-current of the electron bunch, Sab is the stress-
energy–momentum tensor of the electron bunch and T ab is the
stress-energy–momentum tensor of the electromagnetic field Fab
where

∂a F ab = J b, (17)

∂a Fbc + ∂b Fca + ∂c Fab = 0. (18)

Unfortunately, on closer inspection, (13) is an unsettling result. The
entropy of any comoving element of an isolated system should not
decrease, and this is equivalent to the condition

d

dx0

∫
Ω

s0 d3x +
∫

∂Ω

s · n d3x � 0 (19)

for all choices of the fixed volume Ω , where n is the outward
pointing unit normal to the boundary ∂Ω of Ω . An application
of Gauss’ divergence theorem to (19) immediately yields the local
form of the so-called entropy principle

∂asa � 0 (20)

and, hence, we require
Ja Ja + 4
q2

m2
Tab Sab � 0. (21)

However, although the right-hand side of the non-relativistic ex-
pression (7) is positive, there is no guarantee that (21) is satisfied
for an isolated bunch. The Maxwell stress-energy–momentum ten-
sor T ab satisfies the energy condition Tab ẋaẋb � 0 at any point
(x, v) and Tab Sab � 0 immediately follows from (15). Although
J a Ja � 0, there is no reason why Ja J a cannot be overcome by
Tab Sab in (13). In general, it seems that (13) cannot describe the
evolution of the entropy of an isolated charged bunch.

It is intriguing to note that violations of (21) may already be
within reach in the laboratory. It has been demonstrated that high-
quality femtosecond electron bunches with GeV energies can be
created within only a few centimeters or millimeters of laser-
plasma, and the opportunities that laser-plasma acceleration of-
fer for the generation of femtosecond X-rays or gamma rays re-
main a source of intense interest [19]. At electron beam energies
∼0.1 GeV, the achievable upper limit on the bunch charge is ex-
pected to be ∼1 nC and immediately after exiting the plasma, the
bunch in vacuo could have a width ∼1 μm and length ∼1 μm
in the laboratory frame [20]. The electrostatic repulsion within
the bunch is very strong and space-charge effects are consider-
able [20].

Due to relativistic effects, the length of the bunch in its instan-
taneous rest frame will be much greater than its width. Let L be
the length of a homogeneous cylindrical bunch of electrons, let R
be its radius, with R � L, and let V a = J a/qn be the 4-velocity
of the bunch with qn = −√− J a Ja the proper charge density of
the bunch. Neglecting effects due to the finite length of the bunch,
the electric field inside the bunch satisfies |E| ≈ −qnr/2 at radial
distance r from the bunch’s axis of symmetry. Neglecting the ther-
mal spread of the 1-particle distribution g gives Sab ≈ mnV a V b ,
and neglecting the magnetic fields generated by the bunch yields
Tab Sab ≈ mnE where E = Tab V a V b ≈ E2/2 is the energy density
of the electromagnetic field in the instantaneous rest frame of the
bunch. Thus, (21) leads to

E � mn/4 (22)

which evaluated at r = R gives

Q 2

2π M
� L (23)

where Q is the charge of the bunch and M is its mass. It follows
from (23) that the number N of electrons comprising the bunch is
bounded from above:

N � L

2re
(24)

where re is the classical radius of the electron.
Using the value L = 0.26 mm given in Ref. [20] for the length

of the bunch in its instantaneous rest frame, Eq. (24) yields

N � 4.6 × 1010 (25)

which corresponds to the bound Q � 7.4 nC and is within an or-
der of magnitude of the achievable values specified in Ref. [20].
Hence, it is possible that the bunch will violate (22) outside the
plasma in regions where externally applied fields are negligible. Of
course, any violation of (20) can only last for a very short time;
the bunch will undergo a “transverse Coulomb explosion” [20] and
its radius will increase by about 2 orders of magnitude over a time
interval of 1 ps.

A particularly intriguing conclusion is obtained when (21) is ap-
plied to a spherically symmetric and homogeneous bunch of cold
electrons. In this case, the spherical symmetry ensures that the
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magnetic field vanishes and the electromagnetic energy density
E = Tab V a V a of the bunch satisfies E = E2/2 exactly. The elec-
tric field E is purely radial and has magnitude |E| = −qnr/3 inside
the bunch, where r is the distance from the centre of the bunch
in its rest frame. Eq. (21) leads to E � mn/4, which evaluated at
r = R yields

Q 2

6π M
� R (26)

where Q is the charge of the bunch, M is its mass and R is
its radius. Recalling that we have used units in which c = ε0 =
μ0 = 1, it is interesting to note that the factor 4 in (21) ensures
that the bound (26) is saturated by an expression identical to
τ = q2/6πε0mc3 under the replacement (q,m) 
→ (Q , M).

4. Stress-energy–momentum conservation

The failure of sa to satisfy the entropy principle may be re-
solved by appealing to the dynamics of a system of classical ex-
tended charged particles. The equation of motion of an extended
particle must be compatible with stress-energy–momentum con-
servation

∂a
(
sab + tab) = 0 (27)

where tab is the stress-energy–momentum of the electromagnetic
field fab ,

tab = f ac f b
c − 1

4
ηab fcd f cd, (28)

and sab the stress-energy–momentum tensor of the particle. The
electromagnetic field fab satisfies Maxwell’s equations

∂a f ab = jb, (29)

∂a fbc + ∂b fca + ∂c fab = 0 (30)

with jb the electric 4-current of the particle. The electromagnetic
field is decomposed as f ab = f ab

ext + f ab
self where the external field

f ab
ext is generated by sources other than the particle and satis-

fies the vacuum Maxwell equation ∂a f ab
ext = 0, and the particle’s

self-field f ab
self satisfies ∂a f ab

self = jb . The stress-energy–momentum
tensor tab is quadratic in fab and may be decomposed as tab =
tab

ext + tab
self + tab

cross where tab
ext (resp. tab

self) is (28) with f ab replaced
by f ab

ext (resp. f ab
self). The remaining term tab

cross arises because (28)
is quadratic in fab . It may be shown that ∂a(tab

ext + tab
cross) = f bc

ext jc

and hence

∂a
(
sab + tab

self

) = − f bc
ext jc. (31)

The Landau–Lifshitz equation for a point particle may be obtained
from (31) by requiring that the fields of the extended particle be-
have in a prescribed manner under a particular one-parameter
family of transformations that shrinks the world tube of the ex-
tended particle down to the world line of the point particle [18].
This process requires a renormalization of the mass of the point
particle corresponding to a re-identification sab → s′ab of the ex-
tended particle’s stress-energy–momentum tensor. Hence

∂as′ ab = − f bc
ext jc − ∂at′ ab

self (32)

where t′ab
self = tab

self + sab − s′ ab and, unlike (28), t′ ab
self is generally not

traceless.
It is straightforward to generalize (32) to describe the stress-

energy–momentum balance of a collection of extended charged
particles with non-intersecting world tubes. It follows
∂a

(∑
N

s′ab
N

)
= −

∑
N

f bc
N ext jNc − ∂a

(∑
N

t′ab
N self

)
(33)

where f ab
N ext = ∑

M 
=N f ab
M self satisfies

∂a f ab
N ext =

∑
M 
=N

jb
M . (34)

Each value of the index N corresponds to a different extended par-
ticle and the supports of the 4-currents ja

N , ja
M (with N 
= M) do

not intersect.
The initial supports of the particles’ world tubes are specified as

the intersections of the world tubes with a fiducial spacelike hy-
persurface, and a system of field equations for a bunch of charged
extended particles is obtained using an ensemble average 〈· · ·〉
over the initial supports. The details of the probability distribution
are not required for present purposes.

The total 4-current may be expressed as
∑

N ja
N = J a + δ ja

where J a = ∑
N 〈 ja

N 〉 and the fluctuation δ ja satisfies 〈δ ja〉 = 0.
Hence

∂a
〈
f ab

N ext

〉 = J a − 〈
ja
N

〉
,

∂a
〈
f N ext
bc

〉 + ∂b
〈
f N ext
ca

〉 + ∂c
〈
f N ext
ab

〉 = 0.

Thus, the electromagnetic field f ab
N ext external to the Nth extended

particle may be decomposed as f ab
N ext = F ab + δ f ab

N ext where

∂a
〈
δ f ab

N ext

〉 = −〈
jb
N

〉
, (35)

∂a
〈
δ f N ext

bc

〉 + ∂b
〈
δ f N ext

ca

〉 + ∂c
〈
δ f N ext

ab

〉 = 0 (36)

and

∂a F ab = J b, (37)

∂a Fbc + ∂b Fca + ∂c Fab = 0. (38)

Using (33) it follows

∂a Sab = −F b
c J c − ∂aΠ

ab −
∑

N

〈
δ f bc

Next jNc
〉

(39)

where Sab = ∑
N 〈s′ ab

N 〉 is identified as the stress-energy–momen-
tum tensor of the bunch and Πab = ∑

N 〈t′ab
N self〉 is a remnant of

the total self-field stress-energy–momentum of the extended parti-
cles. Assuming that the correlation between the fluctuation δ f ab

Next
of the field external to each extended particle and that particle’s
4-current ja

N are negligible relative to the coarse-grained self-force
∂aΠ

ab of the bunch, we obtain

∂a Sab = −F bc Jc − ∂aΠ
ab. (40)

It is clear from the above that the entropy of the bunch must
include a contribution arising from the remnant Πab due to the
self-fields of the extended particles, and that contribution is miss-
ing from (12). We see that the entropy of the bunch should be
redefined as

sa = −kB

∫
ẋa g ln(g)

d3 v√
1 + v2

+ σ a (41)

where the divergence of the entropy 4-current σ a associated with
Πab compensates the divergence of the first term in (41) and
yields ∂asa � 0 overall for an isolated system.

The Landau–Lifshitz equation may be recovered from (31) in
the limit as the extended particle is shrunk to a point charge [18],
and this result motivates our assertion that (37, 38, 40) is a valid
description of a bunch of point electrons with J a , Sab specified
by (14, 15) and with Πab chosen appropriately. In this case, the
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“hidden” entropy current σ a is expected to capture a flavor of the
disorder in the near-zone fields of the electrons. Although a full
analysis of the properties of σ a and Πab is beyond the scope of the
present article, it is already clear that there is no need to jettison
the kinetic theories derived from the Landau–Lifshitz or Lorentz–
Dirac equations as suggested recently in Ref. [11]. The above shows
that the Vlasov equation presented in Ref. [14] is no less consistent
than the usual Vlasov equation derived from the Lorentz force in
which radiation reaction is neglected.
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