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Abstract

Exposure to ultraviolet (UV) light can cause significant damage to mammalian cells and, although the spectrum of damage
produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human
health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks
and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor
protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus
reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays
a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the
propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on
the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53
protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein
accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1
cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that
the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the
interrelationship between various endpoints is complex and not easily predictable. This has important implications not only
for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to
different wavelengths of UV in the context of human health protection.
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Introduction

Ultraviolet (UV) radiation constitutes only a fraction of the

radiation emitted by the sun but it has a large impact on biological

activity. UV has become the subject of increasing concern and

investigation due to depletion of the ozone layer and the

continuing increase in the incidence of skin cancer. The UV

component of sunlight incident on the Earth’s surface can be

broadly divided into UVA (320–400 nm, approximately 90%) and

UVB (290–320 nm, approximately 5%) wavebands. UVC (200–

290 nm) is largely prevented from reaching the surface of the

Earth by its efficient absorption by ozone in the atmosphere. It is

well documented that both the UVB and UVC wavelengths are

strongly absorbed by DNA leading mainly to the formation of

cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4

PP) [1]. In contrast, UVA is only weakly absorbed by DNA and

exerts its genotoxic effects presumably through sensitiser radicals

and reactive oxygen species (ROS) [2], [3]. Therefore the nature

and amount of damage induced by UV radiation is wavelength

dependent although it is increasingly evident that both UVB and

UVA can have significant deleterious effects on human health [4],

[5]. Recently, UV radiation (UVB and UVA) has been classified as

a Class I carcinogen by the International Agency for the Research

on Cancer [6].

The p53 tumour suppressor protein has long been recognised as

being a critical controller of the response of cells to a variety of

stresses, including various types of DNA damage [7], [8]. The p53

protein is constitutively expressed in almost all cell types and is

normally maintained at a low level. Cellular damage can trigger

post-translational modification and association of p53 with other

proteins leading to an increase in p53 protein levels and/or

transcriptional activities (reviewed in [9]). The genes affected by

this participate in critical cellular processes such as DNA repair

(reviewed in [10], cell cycle control [11], replicative senescence

[12] and programmed cell death [13] which places p53 centrally

in the response to DNA damage.

The influence of UV on the p53 response [14]–[][16] is

important because of the need to understand the action of such an

important carcinogen and because damage responses have been

proposed as important markers of UV exposure in the context of

approaches to protect skin from the harmful effects of the sun.

However, the inter-relationship between UV and p53 responses

are not clear because of variations in wavelength and dosimetry in

previous studies. The objective of this study was therefore to
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examine the induction of p53 in primary mouse fibroblasts

following exposure to different wavelengths of UV radiation and to

investigate the impact on downstream events including cell cycle

arrest and apoptosis.

Materials and Methods

Cell Lines
P53+/+ mouse embryonic fibroblasts (MEFs) were originally

obtained from Tyler Jacks (Massachusetts Institute of Technology,

Cambridge, MA; [17]). MEFs were grown as a monolayer in

Dulbecco’s Modified Eagle Medium (Gibco) supplemented with

10% calf serum, penicillin (100 U mL21), streptomycin

(5 U mL21) and glutamine (0.2 mM). Cells were maintained at

37uC using humidified air supplemented with 5% CO2. Cells were

periodically checked for mycoplasma infection and found to be

negative.

UV treatment
Cells were grown to confluency prior to seeding at a density of

26105 cells in 60 mm dishes. Cells were treated 6 hours after

plating at which point approximately 90% of cells were in G1

phase. Exponentially growing cells were treated 18 hours after

release when the majority of cells were in S phase. Prior to

irradiation medium was removed and cells were washed in

phosphate buffered saline (PBS). Cells were irradiated at 4uC in

1 mL of cold PBS using the following UV sources: UVC was

provided by a germicidal lamp (Gallenkamp) with peak output at

254 nm. UVB was supplied by four Philips TL40 tubes (Starna

Ltd, Romford, U.K.) and wavelengths below 292 nm were

eliminated by 100 mm thick cellulose diacetate sheets (Clarifoil,

Courtaulds Ltd, Derby, U.K.). The irradiance ranged from

approximately 290 to 370 nm and peak output was at 315 nm.

UVA was provided by four fluorescent ‘blacklight’ tubes (Philips

TLD 36/08, Starna Ltd, Romford, U.K.). Contaminating

wavelengths in the UVB and UVC were eliminated by covering

petri dishes with polyester (No. 130 clear, Lee Filters, Hampshire,

U.K., spectrally equivalent to Mylar). The irradiance ranged from

approximately 350 to 400 nm and peak output was at 365 nm.

Radiation measurements were made using a double monochro-

mator spectroradiometer (Model SR991-PC, Macam Photo-

metrics, Livingston, U.K.). Unless otherwise indicated, cells were

irradiated in dishes on a brass cooling plate, to maintain the

irradiation temperature below 8uC and prevent DNA repair taking

place during treatment. Following irradiation cells were further

cultured in the original medium (that had been taken off the cells

before treatment) for the indicated periods of time prior to being

subjected to analysis using the following protocols.

Clonogenic Assay
Clonogenic assays were performed by seeding a known number

of cells into 60-mm tissue culture dishes in 5 mL of complete

media. After a 6 hour incubation at 37uC, 5% CO2 the medium

was removed and replaced with PBS. The dishes were then drug

exposed or irradiated under the appropriate UV tubes. Following

treatment the medium was replaced and the dishes re-incubated

for 10 to 14 days. Colonies of at least 50 cells were scored visually

after fixation with 70% ethanol and staining with Giemsa (1:20

dilution in dH2O). Each experiment was performed a minimum of

three times using triplicate cultures for each dose. IC37 values were

determined using log-linear interpolation. The surviving fraction

(SF) was determined as the number of viable colonies divided by

the number of cells seeded and corrected by the observed plating

efficiency (PE) for the cell line.

Bivariate Cell Cycle Analysis by Flow Cytometry
Cells were pulse-labelled with 10 mM bromodeoxyuridine

(BrdU) (Sigma) for 50 minutes, prior to fixation as described

above. Nuclei were then extracted by protease treatment

(0.16 mg mL22 pepsin, 1.6 M HCl) for 30 minutes at 37uC.

The acid was neutralised with 1 M Tris and after several washes in

chilled PBS. BrdU was detected using a fluorescein isothiocyanate

(FITC)-conjugated anti BrdU antibody (10 mg mL21, Becton-

Dickinson) diluted in PBS with 0.5% Tween-20 and 1% bovine

serum albumin (BSA). Total DNA content was determined by

propidium iodide (PI) staining. Cells were incubated for 10 min-

utes at 37uC with RNase A (100 mg mL21) and PI (5 mg mL21).

Cell cycle analysis was carried out immediately with a fluores-

cence-activated cell sorter (FACScalibur; Becton-Dickinson).

Immunofluorescent Staining with Anti-p53 Antibody and
Detection by Flow Cytometry

All procedures were carried out at 4uC unless otherwise

indicated. Following UV treatment cells were detached in trypsin

and washed in PBS. Cells were centrifuged and fixed by the

dropwise addition of 1 mL of ice-cold methanol. Samples were

stored at 220uC for at least 12 hours. After fixation cells were

pelleted, washed once with PBS and once with PBS, 0.1% Tween-

20 and 0.1% BSA (PBS-T-B). Cells were incubated with a 1:50

dilution of mouse monoclonal anti-p53 antibody Ab-1 (Calbio-

chem) for 20 minutes at room temperature, washed three times in

PBS-T-B and resuspended in a 1:100 dilution of FITC conjugated

sheep anti-mouse IgG antibody (Calbiochem). After three further

washes in PBS-T-B cells were analysed using a fluorescence

activated cell sorter (FACScalibur; Becton-Dickinson).

Detection of p53 by Western Blotting
Whole cell extracts were obtained by scraping cells in 26 lysis

buffer (62.5 mM Tris-HCl (pH 6.8 @ 25uC), 2% w/v SDS, 10%

gycerol, 0.1% w/v bromophenol blue and 50 mM DTT). Lysates

were boiled for 3 minutes, cooled on ice and centrifuged prior to

storage at 220uC. Protein concentration of lysates was determined

by the Bio-Rad protein assay, according to the manufacturers

guidelines (Bio-Rad). Lysates (8–12 mg of total cellular protein and

20 gg purified control p53 protein) were analysed by 12% sodium

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).

Proteins were transferred onto nitrocellulose membrane and

probed with rabbit polyclonal anti-p53 antibody, FL-393 (1:400

dilution, Santa Cruz), followed by peroxidase conjugated anti-

rabbit antibody (1:2000 dilution, Pierce). Proteins were detected

using enhanced chemiluminescence (Amersham) according to the

manufacturer’s recommendations. The membrane was exposed to

Kodak X-Omat film and the relative amounts of detected proteins

were determined by densitometry using image analysis software.

Blots were reprobed with anti-actin antibody (1:500 dilution,

Autogen Bioclear) to confirm equal protein loading.

Annexin V-FITC Detection of Apoptosis
The media from dishes of treated and untreated cells was

transferred to 15 mL conical tubes. The cells were washed in PBS

and incubated in trypsin until the cells just began to detach. The

appropriate medium was returned to each dish, the cells were

resuspended and then centrifuged to remove trypsin and prevent

cell damage during processing. Approximately 56105 cells were

washed once carefully with PBS and stained with 200 mg mL21

Annexin-V-FITC (Calbiochem) in staining solution (56: 10 mM

Hepes pH 7.4, 150 mM NaCl, 2.5 mM CaCl2, 1 mM MgCl2, 4%

BSA) for 15 minutes in the dark. PI (50 mg mL21) (Sigma) was
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added and cells were immediately analysed by flow cytometry.

Controls consisting of cells only to determine autofluorescence, PI

only and annexin only were essential in order to compensate for

any overlap between these two signals. Viable cells do not bind PI

or annexin V-FITC, early apoptotic cells bind annexin V-FITC

due to membrane phospholipidphosphatidylserine (PS) on their

surface but their membranes remain intact and they exclude PI.

Late apoptotic or necrotic cells are both annexin V-FITC and PI

positive.

P53 Electrophoretic Mobility Shift Assay (EMSA)
Following irradiation, approximately 56105 cells were scraped

into 1.5 mL of cold PBS in a siliconised microfuge tube and

nuclear extracts were prepared as described previously [18].

Double-stranded oligonucleotides representing the consensus p53

binding site in the p21waf1 gene promoter were purchased as part

of a murine p53 NUSHIFT kit (Geneka Biotechnology, Inc.).

Wild-type p53 oligonucleotide:

59 AGC T GG ACA TGC CCG GGC ATG TC C 39

[consensus binding sequence]

39 TCG A CC TGT ACG GGC CCG TAC AG G 59

Radiolabelling of oligonucleotide probe was performed using a

59 32P end-labelling kit (Amersham Pharmacia Biotech). Labelled

probe was purified on a MicroSpin G25 column. Binding reaction

mixtures contained 5 mg of nuclear extract, 4 mL of 26 binding

buffer (40 mM HEPES-KOH pH 7.9, 50 mM KCl, 0.2 mM

EDTA, 20% glycerol, 4 mM MgCl, 1 mM DTT, 0.05% NP-40,

4 mM spermidine (Sigma), 100 ng poly(dI-dC) (Amersham

Pharmacia Biotech) and if indicated 2 mL of monoclonal anti-

p53 antibody in a final volume of 20 mL. Binding reaction

mixtures were incubated at room temperature for 20 minutes,

0.2 gg of labelled oligonucleotide probe was added and incuba-

tion was continued for a further 20 minutes at room temperature.

The entire contents of each reaction tube were loaded onto a 5%

non-denaturing polyacrylamide (19:1) gel containing 5% glycerol.

The gel was precooled to 4uC in 16Tris-Glycine electrophoresis

(TGE) buffer (56TGE: pH 8.5). The gel was run at 4uC in order

to avoid heating which may disturb protein-DNA complexes.

Migration of the gel was monitored by placing loading buffer

(bromophenol blue) into a blank well. The gel was dried on a

vacuum gel drier and exposed to Kodak X-Omat film with two X-

ray intensifying screens for approximately 2 to 4 hours at 280uC.

The data represented in this paper are available linked to the

manuscript at http://www.research.lancs.ac.uk/portal/.

Results

Cytotoxicity of UV Radiation
Survival of UV-irradiated MEFs was quantified by clonogenic

assay and Table 1 shows the dose of UV radiation required to

reduce survival by 37%. As expected UVA was much less toxic

than UVB and UVC but the dose range used is still within that

encountered environmentally [19].

Effect of UV Irradiation on P53 Protein Accumulation
Stabilisation of p53 protein in cells is considered to be a general

protective response elicited by DNA damage [20]. In agreement

with previous reports, exposure of MEFs to UVC resulted in a

dose- and time-dependent elevation in p53 protein levels.

Maximum accumulation of p53 (approximately 12-fold over mock

irradiated controls) was observed with UVC doses between 10 and

20 J m22 (Figure 1A) within 6 to 12 h of treatment. Accumulation

was sustained for 24 hours but declined thereafter (Figure 1A and

data not shown). Similar results were observed following UVB

exposure of cells (Figure 1B). Conversely, MEFs failed to exhibit

an accumulation of p53 protein following UVA exposure,

regardless of the UVA doses used or the post-exposure times

examined (Figure 1C).

A more sensitive method of p53 protein detection was

subsequently employed to confirm the lack of p53 accumulation

in response to UVA radiation. Agrawal et al. [21] demonstrated

the use of flow cytometry as a tool for the measurement of low

levels of p53 protein. Example flow cytograms are shown in

Figure 2A. Cells were irradiated with increasing doses of UVC,

UVB or UVA and incubated for 6 hours prior to flow cytometric

analysis. A FITC-conjugated antibody was used to detect p53 and

is represented on the x-axis. The mean channel value was taken as

the mean number of antibody binding sites and indirectly as the

mean number of p53 molecules contained in the cells. Mock-

irradiated and irradiated samples stained with secondary antibody

alone or no antibody at all served as controls for cellular

autofluorescence. Any autofluorescence detected was subtracted

from the corresponding values obtained for p53 stained cells to

give a corrected mean fluorescence intensity of p53 staining. The

relative p53 protein levels in control mock-irradiated samples were

subtracted from the corresponding UV-irradiated samples.

As revealed in Figure 2B, a gradual but significant, dose

dependent increase in p53 levels was observed in G1 UVB- and

UVC-irradiated fibroblasts, peaking at 12 hours and returning to

control levels by 24 hours. The extent of p53 accumulation was

very similar after exposure of cells to equitoxic doses of UVC and

UVB radiation. No increase in the cellular concentration of p53

was detected in response to UVA irradiation of murine fibroblasts.

These results obtained using flow cytometry were concordant with

those obtained using western blotting to evaluate p53 accumula-

tion.

The Induction of Transcriptionally Active P53 Protein by
DNA Damage

The transcriptional activity of p53 has previously been

dissociated from its stabilisation following exposure to UV

radiation [22]. In light of the lack of p53 protein accumulation

in response to UVA irradiation of mouse fibroblasts, the capacity

of UV-damage induced p53 protein to bind sequence specific

motifs was investigated by EMSA. The mobility shift assays shown

in Figure 3 indicate that both UVC and UVB increased the DNA

binding capacity of p53 in nuclear extracts of irradiated

fibroblasts, demonstrated by the formation of a DNA-protein

complex (lanes 9 &11 and 13 &15, black arrow). The UVC and

UVB-induced DNA-binding capacity was shown to be specific for

p53, as the complex was supershifted with p53 antibody (lanes 12

and 16, asterisk), was outcompeted by excess unlabelled oligonu-

cleotide (lanes 10 and 14) and was unreactive to a p21

Table 1. Sensitivity of mouse embryonic fibroblasts to
ultraviolet radiation as determined by clonogenic assay.

Wavelength D37 (Jm22)

UVC 5.460.2

UVB 483.3646.0

UVA 8.87610469.66103

The D37 value shown is the dose of ultraviolet radiation yielding 37% cell
survival (mean of 3 or more independent experiments 6 standard deviations).
UVA = ultraviolet A; UVB = ultraviolet B; UVC = ultraviolet C.
doi:10.1371/journal.pone.0075800.t001
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Figure 1. Representative western blot analyses of irradiated fibroblasts treated in G1 phase of the cell cycle. The fold increase in p53
protein accumulation was determined by densitometry. The density of the protein band in untreated samples was considered to be 1.0. Each value is
the mean 6 S.E.M. of at least of three independent experiments. S.E.M. = standard error of the mean; UVA = ultraviolet A; UVC = ultraviolet C.
doi:10.1371/journal.pone.0075800.g001
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oligonucleotide containing a mutated p53-binding site (lanes 11

and 15).

As shown in Figure 3, a UVA-inducible DNA-protein complex

was observed following irradiation of fibroblasts at the 2 and

6 hour time points post insult but was undetectable by 12 hours.

This transient UVA-induced DNA binding activity was capable of

binding to the canonical DNA binding sequence but was not

specific for p53 as the complex was not supershifted by the

addition of a p53 antibody (lane 8), was outcompeted by an excess

of both wild-type and mutant unlabelled probe (lanes 7 and 8

respectively). Therefore no detectable increase in DNA binding

activity by p53 was observed after UVA at any of the time points

investigated, suggesting that in response to UVA, p53 was not

active as a transcription factor.

Figure 2. Kinetics and dose dependence of p53 accumulation as determined by fluorescence-activated cell sorting. Figure 2A.
Representative flow cytograms of fibroblasts, stained for p53 with a fluorescein isothiocyanate-conjugated antibody. Cells were exposed to ultraviolet
radiation in the exponential phase of growth and assayed 6 hours post insult. Figure 2B. P53 accumulation in G1 irradiated fibroblasts in response to
ultraviolet radiation. Each data point represents the mean 6 S.E.M. for at least 3 independent experiments. S.E.M = Standard error of the mean.
doi:10.1371/journal.pone.0075800.g002
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The Induction of Apoptosis by UV Radiation
We sought to determine whether apoptosis plays a role in the

cytotoxicity shown in Table 1. Cells were exposed to either

16105 J m22 UVA or 5 J m22 UVC. Apoptosis was quantified by

flow cytometry of annexin V/PI stained cells or by determination

of the sub G1 population. Figure 4 shows representative DNA

histograms of mouse fibroblasts as observed 12 hours after

irradiation with 100 k Jm22 UVA (Figure 4C) and 20 hours post

UVC exposure (Figure 4D). The time-course of events is presented

in Figures 4A and B. Flow cytometric analysis of UVC irradiated

MEFs revealed a statistically significant increase in the number of

apoptotic cells 4 hours after treatment. Peak values of annexin V-

FITC-positive cells were noted 20 hours after UVC exposure,

moving towards control levels by 34 hours. Overall the level of

UVC induced apoptosis was relatively low. In contrast to UVC,

UVA induced immediate apoptosis shown by a significant increase

in annexin binding cells, detected at the 0 hour time point in

MEFs. The percentage of annexin positive cells continued to

Figure 3. DNA binding by p53 protein after ultraviolet irradiation. Electrophoretic mobility shift assays were performed using a labelled
p21WAF1 oligonucleotide probe in mouse embryonic fibroblasts. The solid arrow indicates p53-DNA binding complexes; the asterisk indicates
supershift of p53-DNA binding complexes with anti-p53 antibody.
doi:10.1371/journal.pone.0075800.g003
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increase at a similar rate up to 4 hours after the initial insult. Peak

values of annexin V-FITC positive cells were detected 12 hours

after UVA exposure in cells, returning to control levels by

34 hours.

Cell cycle delay after UV irradiation
By inducing a pause in progression through the cell cycle, the

checkpoints are believed to provide additional time for repair of

DNA damage and for inducing the transcription of genes required

to facilitate repair or if damage is severe, for initiating an apoptotic

response. Using an analysis of DNA profiles it is evident that

unirradiated fibroblasts displayed a lag period of 6–12 hours

before progressing into S phase of the cell cycle. After this time a

synchronous wave of cells entered S from G1 and continued to

traverse the cell cycle, entering G2/M after 18 hours. UVC

irradiation of G1 synchronised cells induced a marked but

transient G1 arrest such that 91.560.9% of these cells were

arrested in G1 at 12 hours and 87.061.0% at 18 hours. UVA

irradiation also produced a delay in entry to G1 with 84.660.9%

of cells arrested in G1 at 12 hours although in this case recovery

was more rapid with 24.463.9% of cells in G1 at the 18 hour time

point.

Bivariate PI/BrdU analysis was performed to provide a more

dynamic picture of the cell cycle post irradiation. Figure 5 shows

that UVC exposure of cells resulted in a decreased BrdU uptake

by S phase cells, indicative of a cessation of DNA synthesis. This

was reflected by a decrease in the mean fluorescence intensity of

cells stained with anti-BrdU-FITC relative to control mock-

irradiated cells and persisted for 18 hours post exposure time.

Synthesis was resumed by 36 hours as indicated by an increase in

BrdU incorporation. An initial inhibition of BrdU uptake was

observed in response to UVA exposure. This returned to control

levels within 6 hours of UVA irradiation.

Discussion

The data presented here demonstrate that the time course,

extent and biological consequences of p53 induction are depen-

Figure 4. Induction of cell death in fibroblasts after exposure to ultraviolet radiation. Post-exposure time courses of induction of
apoptosis in mouse fibroblasts exposed to A 16105 Jm22 UVA and B 5 J m22 UVC as determined by fluorescein isothiocyanate -annexin V/
propidium iodide staining and fluorescence activated cell sorting flow cytometry. The percentages of annexin V-binding only cells are shown and
each data point represents the mean of three independent experiments 6 S.E.M. Representative density dot plots are shown for the respective peaks
of apoptosis induction C 12 hours after UVA exposure and D 20 hours after UVC exposure. The lower left quadrant shows the viable cells, which
exclude propidium iodide and are negative for fluorescein isothiocyanate -annexin V binding (Q1). The upper right quadrant (Q3) contains non-viable
cells, positive for annexin V- fluorescein isothiocyanate binding and the uptake of propidium iodide. The lower right quadrant (Q2) represents the
apoptotic cells, which are positive for annexin V- fluorescein isothiocyanate binding but exclude propidium iodide, demonstrating cytoplasmic
membrane integrity. S.E.M = Standard error of the mean; UVA = ultraviolet A; UVC = ultraviolet C.
doi:10.1371/journal.pone.0075800.g004
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dent on the wavelength of the UV to which mammalian cells are

exposed. UVB and UVC irradiation of primary mouse fibroblasts

triggered a persistent and dose dependent accumulation of p53

protein, in addition to increasing its capacity to bind to sequence

specific DNA. The dose dependence of p53 accumulation in

response to both UVB and UVC suggests that the degree of p53

induction may be directly related to the number of photoproducts

in DNA. In contrast, at the equitoxic UVA doses investigated, no

detectable increase in p53 protein levels or in the sequence-specific

DNA-binding activity of p53 was detected in primary mouse

fibroblasts.

Our observations are consistent with a recent study that showed

that UVA was unable to induce Ser15 phosphorylation of p53 in

primary human fibroblasts at equimutagenic doses to those at

which UVB was able to induce a phosphorylation response [23].

Ser15 phosphorylation is one of a plethora of post-translational

modifications that are associated with stabilisation and activation

of p53. The data in the present study suggest that the inability of

UVA to induce Ser15 phosphorylation, as observed by Runger

and co-workers, results in an associated loss of p53 stabilisation

and activation. Similar effects have been seen in other cell types;

UV-irradiated melanocytes show an increase in overall p53 levels

following UVB irradiation but not UVA [24].

Erythemal doses of UVA1 were unable to induce detectable

Ser15 phosphorylation in skin biopsies taken from irradiated

human subjects, and while levels of p53 itself did increase

following irradiation this increase was far less than that induced by

equivalent erythemal doses of UVB and solar-simulated radiation

[25]. Other reports have also shown reduced p53 immunostaining

in skin biopsies following in vivo erythemal doses of UVA compared

to that seen with UVB [26], [27].

We have also examined the kinetics of p53 accumulation and

find that it peaks between 12 and 18 hours post-irradiation with

UVC. An increase in p53 protein levels is associated with the

induction of cell cycle arrest and/or apoptosis. Indeed, following

UVC exposure of G1 synchronised primary murine fibroblasts the

results presented provide evidence of a pronounced delay in the

onset of replication (Figure 5). The induction of both apoptosis and

cell cycle arrest by UVC are associated with p53 perhaps by ATR

kinase [28], [29] reviewed in [30]. Our data also show that

induction of apoptosis shows similar kinetics to accumulation of

p53 (Figure 4), supporting the importance of p53 in mediating

UVC-induced apoptosis.

In marked contrast, we found that equitoxic doses of UVA that

were unable to induce p53 phosphorylation caused only a

transient delay in entry into S phase (Figure 5) and an earlier

peak of apoptosis (Figure 4). We also find an increased number of

cells in the upper right quadrant of the flow cytometric PI/FITC-

Annexin V dot plot, which could correspond to late apoptotic or

may be indicative of necrotic cells. Our data therefore show that

following UVA-irradiation significant levels of cell death occur in a

p53-independent fashion. Thus studies that use p53 status as a

marker of damage in studies of photoprotection for example [31]

may underestimate the damage done by UVA.

In conclusion, our findings demonstrate that an increase in p53

protein stability and sequence specific DNA binding is not a

prerequisite for the induction of cell cycle checkpoints or apoptosis

in cells following exposure to UV radiation in murine fibroblasts.

In addition, the cellular response has been shown to be UV

wavelength dependent. While it will be important to assess this in

human epithelial cells, these findings have important implications

regarding experimental photobiology; there is the need to exercise

much greater caution when making assumptions about the

contribution being made by different wavelengths of UV to

specific cellular endpoints. We have shown that the extensively

used ‘‘nonsolar’’ model mutagen (UVC; 254 nm) does not

accurately replicate the effects of environmentally relevant UVA.

Thus, great care needs to be taken when using molecular

endpoints, such as p53, as biomarkers of UV exposure and the

accumulation of p53 in response to mixed wavelengths of UV

cannot be reliably used as an indicator of exposure or likely

damage. This has both theoretical and practical implications for

human protection against the harmful effects of cytotoxic agents,

in particular when developing appropriate experimental methods

and models for the investigation of skin cancer.
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