Genome Signatures, Self-Organizing Maps and Higher Order Phylogenies: A Parametric Analysis

Derek Gatherer

MRC Virology Unit, Institute of Virology. Church Street, Glasgow G11 5JR, UK.

Abstract: *Genome signatures* are data vectors derived from the compositional statistics of DNA. The *self-organizing map* (SOM) is a neural network method for the conceptualisation of relationships within complex data, such as genome signatures. The various parameters of the SOM training phase are investigated for their effect on the accuracy of the resulting output map. It is concluded that larger SOMs, as well as taking longer to train, are less sensitive in phylogenetic classification of unknown DNA sequences. However, where a classification can be made, a larger SOM is more accurate. Increasing the number of iterations in the training phase of the SOM only slightly increases accuracy, without improving sensitivity. The optimal length of the DNA sequence *k*-mer from which the genome signature should be derived is 4 or 5, but shorter values are almost as effective. In general, these results indicate that small, rapidly trained SOMs are generally as good as larger, longer trained ones for the analysis of genome signatures. These results may also be more generally applicable to the use of SOMs for other complex data sets, such as microarray data.

Keywords: Genome Signature; Self-Organizing Map; Viruses; Phylogeny; Jack-Knife Method; Microarray; Metagenomics; Herpesvirus

Introduction

Molecular evolutionary methodology revolves around the production of sequence alignments and trees. However, as evolutionary distance increases between two homologous molecules, their similarity may decay to the point where they are no longer alignable. Construction of a phylogenetic tree under such circumstances becomes impossible. One method that has been suggested for the study of distant evolutionary relationships is that of *genomic signatures* or *genome signatures*[†] (Karlin and Ladunga, 1994; Karlin and Burge, 1995; Karlin and Mrazek, 1996). At least one reviewer has come to the conclusion that it is the preferred method in cases where evolutionary distance, recombination, horizontal transmission or variable mutation rates may confound traditional alignment-based techniques (Brocchieri, 2001).

The first derivation of genome signatures predates the invention of DNA sequencing. Biochemical studies revealed that the frequencies of nearest-neighbour dinucleotide pairs in DNA were generally consistent within genomes, and often different between genomes. These characteristic nearest neighbour patterns were termed *general schemes* (Russell et al. 1976; Russell and Subak-Sharpe, 1977), and constitute, in modern terminology, a subset of genome signatures, those of length k = 2.

As long DNA sequences began to be isolated and computers entered the biological laboratory, it became a simple matter to produce nearest-neighbour frequency tables. Indeed, for any DNA sequence of length N, it is theoretically possible to derive frequency tables for all k-mers ranging from 1 to N, within that sequence. The frequency table at k = 1 corresponds to the raw nucleotide content on one strand. On the assumption that DNA is double stranded under most circumstances in most species, the complementary bases are also scored. This reduces the raw count of the four bases to a single value, between zero and one, representing the GC content of that DNA sequence. Correspondingly, at k = 2, the raw count of 16 dinucleotide frequencies, can be reduced to a vector containing 10 values if the count for each dimer on the top strand is added to the count for its complementary. This process

Please note that this article may not be used for commercial purposes. For further information please refer to the copyright statement at http://www.la-press.com/copyright.htm

[†] Both *genome signature* and *genomic signature* are used interchangeably in the field, including by their originators. However, the term *genome* signature is to be preferred, since *genomic* signature is used in the field of molecular diagnostics to refer to a genotype correlated with medical symptoms or prognosis (e.g. Russo *et al.* 2005)

Correspondence: Derek Gatherer, MRC Virology Unit, Institute of Virology, Church Stret, Glasgow G11 5JR, UK.

is called *symmetrization* (Karlin and Ladunga, 1994). The symmetrized values in the vector are then usually corrected for the frequencies of their component monomers, as follows:

$$\rho_{XY} = \frac{f_{XY}}{f_X f_Y}$$

where f_{XY} is the symmetrized frequency of dinucleotide XY, and f_X and f_Y are the symmetrized frequencies of bases X and Y, respectively. The whole vector is referred to as the genome signature at k = 2 or, particularly in the extensive literature of the Karlin group, simply as ρ^*_{XY} . For all values of k, the nomenclature GS-k is here adopted.

The vector thus becomes an array of the ratios of observed frequencies of k-mers to their expected frequencies given an underlying zero-order Markov chain model of a DNA sequence. Even though symmetrization will reduce the size of the vector for large values of k, it is apparent that it will still grow in size at the order of 4^k for an alphabet of length 4. In practice, most investigators have confined themselves to the study of genome signatures of k = 2, in other words to ρ_{XY}^* , symmetrized dinucleotide frequencies corresponding to general schemes, although in recent years the availability of faster computers has undoubtedly contributed to the increasing use of genome signatures up to k = 10 (Deschavanne et al. 1999; Edwards et al. 2002; Abe et al. 2003a; Sandberg et al. 2003; Campanaro et al. 2005; Dufraigne et al. 2005; Wang et al. 2005; Paz et al. 2006).

The length of DNA required to generate a genome signature has conventionally been taken to be around 50 kb, and for this value it has been observed that the Hamming or Euclidean distances between signatures derived from contigs within species are generally considerably smaller than the corresponding average values between species (Karlin and Ladunga, 1994; Karlin and Burge, 1995; Karlin et al. 1997; Abe et al. 2002; Teeling et al. 2004), even when the same-species contigs are on different chromosomes (Gentles and Karlin, 2001). However, recent work has established that genome signatures within species may be stable over lengths as short as 10 kb (Deschavanne et al. 1999; Karlin, 2001; Abe et al. 2002) or less (Sandberg et al. 2001; Jernigan and Baran, 2002; Abe et al. 2003a; Sandberg et al. 2003; McHardy et al. 2007). This has led to their practical application in the detection of *pathenogenicity islands* (pls) in pathogenic bacteria. These are sequences originating in horizontal transmission from one bacterium to another, converting a previously innocuous strain into a pathogenic one. Their foreign origin is often reflected in a genome signature closer to their species of origin than their current host genome (Karlin, 1998; Karlin, 2001; Dufraigne et al. 2005).

Phylogenetic conclusions drawn from comparison of genome signatures have sometimes been controversial. For instance, Karlin et al. (1997) found that cyanobacteria do not form a coherent evolutionary group, and that *Methanococcus jannaschii* is closer to eukaryotes than to other proteobacteria, and Campbell et al. (1999) suggested that archaea do not form a coherent clade. Karlin (1998) posited a wide variety of further revisions of the prokaryotic phylogeny based on genome signature results, as well as a novel origin for mitochondria (Karlin et al. 1999). Edwards et al. (2002) used genome signatures as part of a revision of the phylogeny of birds. Nevertheless, few authors have felt confident enough to draw phylogenetic trees based on genome signature comparisons. Coenye and Vandamme (2004) have shown that dinucleotide content is only a reliable indicator of relatedness for closely related organisms. To visualize genome signature relationships between species, a variety of other representational schemes have been used including histograms (Karlin and Mrázek, 1997), partial ordering graphs (Karlin et al. 1997), chaos games (Deschavanne et al. 1999; Edwards et al. 2002; Wang et al. 2005), and self-organizing maps (Abe et al. 2003b).

This paper uses self-organizing maps (SOMs) as a tool to explore genome signature variability at phylogenetic levels from superkingdom down to genus. The SOM is a neural network method which spreads multi-dimensional data onto a twodimensional surface (Kohonen, 1997). Its endpoint is therefore similar to multi-dimensional scaling or principal components analysis, and like these other techniques has been extensively used in biology, principally for the analysis of microarray data but also to a lesser extent for sequence analysis (Arrigo et al. 1991; Giuliano et al. 1993; Andrade et al. 1997; Tamayo et al. 1999; Kanaya et al. 2001; Wang et al. 2001; Abe et al. 2002; Covell et al. 2003; Ressom et al. 2003; Xiao et al. 2003; Mahony et al. 2004; Oja et al. 2005; Abe et al. 2006; Samsonova et al. 2006). The resulting "flat"

representation may be a strong aid to intuitive understanding of the structure of complex multidimensional datasets. The SOM is not a clustering technique *per se*, but the surface may be divided up into zones that are then treated as clusters. Alternatively, cluster boundaries on the surface may be defined more objectively using additional algorithms (Ultsch, 1993). The SOM is also not hierarchical (unlike UPGMA but like K-means clustering, two other commonly used techniques for the analysis of microarrays). This absence of hierarchy means that it is particularly suited to situations where the natural hierarchy of species relationships, reflecting evolutionary descent, may have been violated, e.g. by horizontal gene transfer.

In this paper, the main parameters of the SOM: its size and the number of iterations used in its construction, are investigated for their effects on its classificatory accuracy. These parameters must be chosen at the beginning of each run of SOM building, and there is little guidance in the SOM literature as to their optimal values. As well as the parameters of the SOM, the value of k used in the genome signature is similarly examined. High kgenome signatures are extremely long vectors that may present considerable memory problems even on modern computers. Likewise, lengthy iterations in training the SOM, especially if it is a large one, may consume considerable time.

Methods

1. Genome sequences

Complete genome sequences were downloaded from NCBI Taxonomy Browser (http://www.ncbi. nlm.nih.gov/Taxonomy/taxonomyhome.html/). A Perl script was written to divide complete genome sequences into consecutive strings of 10 or 100 kb, as required. Trailing ends, and genomes shorter than the required string length, were discarded. The resulting FASTA-formatted datasets were then processed to calculate their genome signatures.

Table 1 lists the genomes used as the main data set for the paper, that of viruses of the family *Herpesviridae*. The analyses shown in Figures 3 to 7 use this set. A larger set of genomes with the widest possible phylogenetic range, including all three superkingdoms of cellular life as well as viruses, is given in Table 2. These are used for the "all-life" and superkingdom-level SOMs in Figure 1. Table 3 lists those viral genomes used for the SOM across a wide set of viral genomes, displayed in Figure 2.

2. Calculation of genome signatures

A Perl script was written to derive raw *k*-mer counts on FASTA-formatted databases of input sequences, using the SeqWords.pm module from BioPerl (http://www.bioperl.org/Pdoc-mirror/bioperl-live/ Bio/Tools/SeqWords.html). The raw *k*-mer frequencies were then symmetrized, as follows:

$$f_v^s = f_v + f_{v-comp}$$

where f_v and f_{v-comp} are the raw frequencies of a *k*-mer v and its complement v-comp.

Symmetrization means that a sequence and its complement will generate the same answer. The symmetrized frequencies are then corrected for the 1-mer content. For instance for a 2-mer XY, where X and Y can each represent any nucleotide base $\{A, C, T, G\}$:

$$\rho_{XY} = \frac{f_{XY}^s}{f_X^s f_Y^s}$$

where f_{sXY} is the symmetrized frequency for dimer XY and f_{sX} and f_{sY} are the symmetrized frequencies of its component 1-mers. For a 3-mer XYZ, the correction would be for the 1-mers, X, Y and Z and so on.

The genome signature vector for length k, is thus composed of a series of ratios of observed to expected values of its component k-mers, where the expected values are determined by a zeroorder Markov chain (Bernouilli series) model. Genome signatures are therefore not distorted by gross base compositional differences between genomes, which would otherwise be the dominant factor.

3. Self-organizing map

Self-organizing maps (SOMs) were run following Tamayo et al. (1999), using a Perl script. Input consisted of an array of the genome signatures generated as described above. The dimensions of the SOM and the number of iterations in training were variables entered by the user. Euclidean distances were used when comparing vectors.

Table	1. F	Herpesviru	s genome	sequences	used for	or the	analyses	shown ir	n Figures	3 to 7.	The no	menclature
follows	s the	e Internatio	nal Comm	nittee on Tax	konomy	of Viru	uses (Fau	quet et al	. 2005).			

Name	Accession	Sub-family	Genus
Psittacid herpesvirus 1	NC_005264	Alpha	Iltovirus
Gallid herpesvirus 2	NC_002229	Alpha	Mardivirus
Gallid herpesvirus 3	NC_002577	Alpha	Mardivirus
Meleagrid herpesvirus 1	NC_002641	Alpha	Mardivirus
Cercopithecine herpesvirus 1	NC_004812	Alpha	Simplexvirus
Human herpesvirus 1	NC_001806	Alpha	Simplexvirus
Human herpesvirus 2	NC_001798	Alpha	Simplexvirus
Bovine herpesvirus 1	NC_001847	Alpha	Varicellovirus
Bovine herpesvirus 5	NC_005261	Alpha	Varicellovirus
Cercopithecine herpesvirus 7	NC_002686	Alpha	Varicellovirus
Equid herpesvirus 1	NC_001491	Alpha	Varicellovirus
Equid herpesvirus 4	NC_001844	Alpha	Varicellovirus
Human herpesvirus 3	NC_001348	Alpha	Varicellovirus
Suid herpesvirus 1	NC_006151	Alpha	Varicellovirus
Cercopithecine herpesvirus 8	NC_006150	Beta	Cytomegalovirus
Chimpanzee cytomegalovirus	NC_003521	Beta	Cytomegalovirus
Human herpesvirus 5 (AD169)	NC_001347	Beta	Cytomegalovirus
Human herpesvirus 5 (Merlin)	NC_006273	Beta	Cytomegalovirus
Murid herpesvirus 1	NC_004065	Beta	Muromegalovirus
Murid herpesvirus 2	NC_002512	Beta	Muromegalovirus
Human herpesvirus 6	NC_001664	Beta	Roseolovirus
Human herpesvirus 6B	NC_000898	Beta	Roseolovirus
Human herpesvirus 7	NC_001716	Beta	Roseolovirus
Tupaia herpesvirus	NC_002794	Beta	Tupaiavirus
Callitrichine herpesvirus 3	NC_004367	Gamma	Lymphocryptovirus
Cercopithecine herpesvirus 15	NC_006146	Gamma	Lymphocryptovirus
Human herpesvirus 4	NC_001345	Gamma	Lymphocryptovirus
Alcelaphine herpesvirus 1	NC_002531	Gamma	Rhadinovirus
Ateline herpesvirus 3	NC_001987	Gamma	Rhadinovirus
Bovine herpesvirus 4	NC_002665	Gamma	Rhadinovirus
Cercopithecine herpesvirus 17	NC_003401	Gamma	Rhadinovirus
Equid herpesvirus 2	NC_001650	Gamma	Rhadinovirus
Human herpesvirus 8	NC_003409	Gamma	Rhadinovirus
Murid herpesvirus 4	NC_001826	Gamma	Rhadinovirus
Saimiriine herpesvirus 2	NC_001350	Gamma	Rhadinovirus
Ictalurid herpesvirus 1	NC_001493	unassigned	Ictalurivirus
Ostreid herpesvirus 1	NC_005881	unassigned	unassigned

Once the dimensions of the SOM were set, x columns by y rows, weight vectors initializing each of the xy cells of the SOM were selected at random from the entire set of genome signature data vectors. The SOM is thus initially simply filled with a random subset of the data. Training then commences, for nominated t iterations. At each iteration m, each data vector in turn was compared to each weight vector, and the closest weight vector for each data vector designated the winning weight vector of that data vector is identified, the winning weight vector, and the weight vectors of cells within a spatial range \Re on the SOM, were then trained by the data vector as follows.

Each value *c* in the winning weight vector *w* is altered, so that its value at iteration, *m*, becomes at the next iteration m+1:

$$w_{m+1}^c = w_m^c + \tau_m \left(w_m^c - v^c \right)$$

where $w^c_m - v^c$ represents the difference between the winning weight vector and the data vector for each value *c* along the vectors. In other words, one simply aligns the data vector and the winning weight vector and subtracts them. Each value of the winning weight vector is then altered to bring it closer to the data vector by a factor of τ , the training effect, which is derived as follows: **Table 2.** Genomes used for the analysis shown in Figure 1. In total there are 79 eukaryotic, 156 eubacterial, 30archaeal and 122 viral genomes with more than 100kb of sequence.

Name	Superkingdom	Accession
Aeropyrum pernix K1	archaea	NC_000854
Archaeoglobus fulgidus DSM 4304	archaea	NC_000917
cf. Archaea SAR-1	archaea	NS_000019
Ferroplasma acidarmanus Type I	archaea	NS_000030
Ferroplasma sp. Type II	archaea	NS_000029
Haloarcula marismortui ATCC43049 chromosome I	archaea	NC_006396
Haloarcula marismortui ATCC43049 chromosome II	archaea	NC_006397
Halobacterium sp. NRC-1	archaea	NC_002607
Halobacterium sp. NRC-1 plasmid pNRC100	archaea	NC_001869
Methanocaldococcus jannaschii DSM2661	archaea	NC_000909
Methanococcus maripaludis S2	archaea	NC_005791
Methanopyrus kandleri AV19	archaea	NC_003551
Methanosarcina acetivorans C2A	archaea	NC_003552
Methanosarcina barkeri str. fusaro chromosome 1	archaea	NC_007355
Methanosarcina mazei Go1	archaea	NC_003901
Methanothermobacter thermautotrophicus str. DeltaH	archaea	NC_000916
Nanoarchaeum equitans Kin4-M	archaea	NC_005213
Natronomonas pharaonis DSM2160	archaea	NC_007426
Picrophilus torridus DSM9790	archaea	NC_005877
Pyrobaculum aerophilum str. IM2	archaea	NC_003364
Pyrococcus abyssi GE5	archaea	NC_000868
Pyrococcus furiosus DSM3638	archaea	NC 003413
Pyrococcus horikoshii OT3	archaea	NC_000961
Sulfolobus acidocaldarius DSM639	archaea	NC_007181
Sulfolobus solfataricus P2	archaea	NC_002754
Sulfolobus tokodaii str. 7	archaea	NC_003106
Thermococcus kodakaraensis KOD1	archaea	NC_006624
Thermoplasma acidophilum DSM1728	archaea	NC_002578
Thermoplasma volcanium GSS1	archaea	NC_002689
Thermoplasmatales archaeon Gpl	archaea	NS_000033
Agrobacterium tumefaciens str. C58	eubacteria	NC_003062
Anabaena variabilis ATCC 29413	eubacteria	NC_007413
Aquifex aeolicus VF5	eubacteria	NC_000918
Azoarcus sp. EbN1	eubacteria	NC_006513
Bacillus cereus ATCC 10987	eubacteria	NC_003909
Bacillus cereus E33L	eubacteria	NC_006274
Bacillus subtilis sub sp. subtilis str. 168	eubacteria	NC_000964
Bacteroides fragilis NCTC9343	eubacteria	NC_003228
Bacteroides fragilis YCH46	eubacteria	NC_006347
Bartonella henselae str. Houston-1	eubacteria	NC_005956
Bartonella quintana str. Toulouse	eubacteria	NC_005955
BBUR Borrelia burgdorferi B31	eubacteria	NC_001318
Bifidobacterium longum NCC2705	eubacteria	NC_004307
Bordetella parapertussis 12822	eubacteria	NC_002928
Bordetella pertussis Tohamal	eubacteria	NC_002929
Bradyrhizobium japonicum USDA110	eubacteria	NC_004463
Brucella abortus biovar 1 str. 9-941 chromosome I	eubacteria	NC_006932
Brucella abortus biovar 1 str. 9-941 chromosome II	eubacteria	NC_006933
Brucella suis 1330 chromosome I	eubacteria	NC_004310
Buchnera aphidicola str. APS (Acyrthosiphonpisum)	eubacteria	NC_002528
Buchnera aphidicola str. Sg (Schizaphisgraminum)	eubacteria	NC_004061
Burkholderia mallei ATCC23344 chromosome 1	eubacteria	NC_006348
Burkholderia mallei ATCC23344 chromosome 2	eubacteria	NC_006349
Burkholderia pseudomallei 1710b chromosome l	eubacteria	NC_007434
Burkholderia pseudomallei 1710b chromosome II	eubacteria	NC_007435

Name	superkingdom	Accession
Burkholderia pseudomallei K96243 chromosome 1	eubacteria	NC 006350
Burkholderia sp. 383 chromosome 1	eubacteria	NC_007510
Burkholderia sp. 383 chromosome 2	eubacteria	NC_007511
Burkholderia sp. 383 chromosome 3	eubacteria	NC_007509
Candidatus Blochmannia pennsylvanicus str. BPEN	eubacteria	NC_007292
Candidatus Pelagibacter ubique HTCC1062	eubacteria	NC_007205
Carboxydothermus hydrogenoformans Z-2901	eubacteria	NC_007503
Caulobacter crescentus CB15	eubacteria	NC_002696
Chlamydia trachomatis A/HAR-13	eubacteria	NC_007429
Chlamydia trachomatis D/UW-3/CX	eubacteria	NC_000117
Chlamydophila caviae GPIC	eubacteria	NC_003361
Chlamydophila pneumoniae AR39	eubacteria	NC_002179
Chlamydophila pneumoniae CWL029	eubacteria	NC_000922
Chlamydophila pneumoniae J138	eubacteria	NC_002491
Chlorobium chlorochromatil CaD	eubacteria	NC_007514
Clostridium acetobutylicum AI CC824	eubacteria	NC_003030
Clostridium tetani E88	eubacteria	NC_004557
Colwellia psychrerythraea 34H		NC_003910
Corynebacterium giutamicum ATCC13032		NC_003450
Corynebactenum jerkerum K411		NC_007164
Coxiella Duffielli RSA495		NC_002971
		NC_007256
Deinalococcolues sp. GBDB1 Deinacoccolues radiodurane P1 chromosome 1		NC_001263
Deinococcus radiodurans P1 chromosome 2		NC_001203
Desulfovibrio vulgaris sub so vulgaris str. Hildenborough	eubacteria	NC 002037
Desulfovibriode sulfuricans G20		NC 007510
Ehrlichia canis str. lake	eubacteria	NC_007354
Envinia carotovora sub sp. atrosenticaSCRI1043	eubacteria	NC 004547
Escherichia coli CET073	eubacteria	NC_004431
Escherichia coli K12	eubacteria	NC_000913
Escherichia coli 0157 H7EDI 933	eubacteria	NC 002655
Francisella tularensis sub sp. tularensis Schu4	eubacteria	NC 006570
Geobacter metallireducens GS-15	eubacteria	NC 007517
Haemophilus ducrevi 35000HP	eubacteria	NC 002940
Haemophilus influenzae 86-028NP	eubacteria	NC 007146
Haemophilus influenzae RdKW20	eubacteria	NC_000907
Helicobacter pylori 26695	eubacteria	NC_000915
Helicobacter pylori J99	eubacteria	NC_000921
Leifsoniaxyli sub sp. xyli str. CTCB07	eubacteria	NC_006087
Leptospira interrogans serovar Copenhageni chromosome I	eubacteria	NC_005823
Leptospira interrogans serovar Copenhageni chromosome II	eubacteria	NC_005824
Leptospira interrogans serovar Lai str. 56601 chromosome I	eubacteria	NC_004342
Mannheimia succiniciproducens MBEL55E	eubacteria	NC_006300
Mesoplasma florum L1	eubacteria	NC_006055
Mesorhizobium loti MAFF303099	eubacteria	NC_002678
Methylococcus capsulatus str. Bath	eubacteria	NC_002977
Mycobacterium avium sub sp. paratuberculosis K-10	eubacteria	NC_002944
Mycobacterium bovis AF2122/97	eubacteria	NC_002945
Mycobacterium leprae IN	eubacteria	NC_002677
Mycobacterium tuberculosis H3/Rv	eubacteria	NC_000962
Mycoplasma genitalium G-37	eubacteria	NC_000908
iviycopiasma nyopneumoniae 7448	eupacteria	NC_007332
wycopiasma nyopneumoniae J Mycopiasma synaviae 52		NC_007295
Nijeopria gaporrhada 53		NC_007294
Neisseria moningitidis MC59		NC 002440
Neisseria meningitidis 72/01		NC 003112
พิธารรษาล กายาแก่งแก่เรียวสุด	cubaciena	110_003110

Nitrobacter winogradskyi Nb-255 eubacteria NC 007406 Nitrosococus oceni ATCC 19707 eubacteria NC 007484 Nitrosomonas europaea ATCC 19707 eubacteria NC 007484 Nitrosomonas europaea ATCC 19718 eubacteria NC 007487 Nocardia farchical FM10152 eubacteria NC 007481 Parachiamydia sp. UWE25 eubacteria NC 007483 Pateurella multocida ub sp. multocida str. Pm70 eubacteria NC 007512 Pelobacter carbinolicus DSM2360 eubacteria NC 007512 Photobacterium profundum S59 chromosome 1 eubacteria NC 006371 Photobacterium profundum S59 chromosome 2 eubacteria NC 006371 Photobacterium profundum S59 chromosome 2 eubacteria NC 006371 Photobacterium arote NAT23 eubacteria NC 006371 Photobacterium arote NAT24 eubacteria NC 006371 Prochiorococcus marinus str. NATL2A eubacteria NC 006371 Prochiorococcus marinus str. NATL2A eubacteria NC 006735 Prochiorococcus marinus str. NATL2A eubacteria NC 006782 Pseudoalteromonas haloplankis TAC125 chromosome I eubacteria NC 007482 Pseudoalteromans haloplankis TAC125 chromosome I eubacteria NC 007482 Pseudoalteromonas haloplankis TAC125 chromosome I eubacteria NC 007482 Pseudoanonas fluorescens Pf-5 eubacteria NC 007482 Pseudomonas putida KT2440 eubacteria NC 007482 Pseudomonas syringae pv. phaseolicol 1448A eubacteria NC 007492 Pseudomonas syringae pv. phaseolicol 1448A eubacteria NC 007478 Pseudomonas syringae pv. phaseolicol 1448A eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC 007474 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC 007474 Ricketsia phaeroides 21 chromosome 1 eubacteria NC 007475 Shipella fiexneri 28 str. 26777 eubacteria NC 007474 Shipella fiexneri 28 str. 26171 eubacteria NC 007474 Shipella fiexneri 28 str. 201 eubacteria NC 007487 Shipella sonnel Sol46 eubacteria NC 007487 Shipella sonnel Sol46 eubacteria NC 007487	Name	Superkingdom	Accession
Nitrosonce: e organi ATCC 19707 eubacteria NC 004757 Nocardia farcinical FM10152 eubacteria NC 005861 Paratchamydia sp. UWE25 eubacteria NC 005861 Paratchamydia sp. UWE25 eubacteria NC 005861 Paratchamydia sp. UWE25 eubacteria NC 007498 Pelodictor of the S9 chromosome 1 eubacteria NC 006370 Photobacterium profundum S99 chromosome 1 eubacteria NC 006370 Photobacterium profundum S99 chromosome 2 eubacteria NC 006370 Photobacterium profundum S99 chromosome 1 eubacteria NC 006370 Photobacterium profundum S99 chromosome 1 eubacteria NC 006370 Photobacterium profundum S99 chromosome 1 eubacteria NC 006370 Photobacterium and sub sp. pastoris str. CCMP1986 eubacteria NC 006372 Propionibacterium and sub sp. pastoris str. CCMP1986 eubacteria NC 006372 Propionibacterium and sub sp. pastoris str. CCMP1986 eubacteria NC 007481 Pseudoalteromonas haloplankiis TAC125 chromosome I eubacteria NC 007481 Pseudoalteromonas haloplankiis TAC125 chromosome I eubacteria NC 007481 Pseudoantonas putida K1240 eubacteria NC 0074129 Psuedomonas syringae pV, phaseolicola 1448A eubacteria NC 007055 Psuedomonas syringae pV, phaseolicola 1448A eubacteria NC 0070247 Psuedomonas syringae pV, phaseolicola 1448A eubacteria NC 007074 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC 007748 Ralstonia isotropha JMP134 chromosome 1 eubacteria NC 007748 Ralstonia isotropha JMP134 chromosome 1 eubacteria NC 007748 Ralstonia isotropha JMP134 chromosome 2 eubacteria NC 007346 Ralstonia isotropha JMP134 chromosome 2 eubacteria NC 007346 Ralstonia isotropha JMP134 chromosome 2 eubacteria NC 007348 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC 007346 Ristotria isotropha JMP134 chromosome 2 eubacteria NC 007348 Sheyholoaccus sanophyticus sub sp. saprophyticus eubacteria NC 007348 Sheyholoaccus saprophyticus sub sp. saprophyticus eubacteria NC 007348 Sheyholoaccus saprophyticus sub sp. saprophyticus eubac	Nitrobacter winogradskyi Nb-255	eubacteria	NC 007406
Nitrosomonas europaea ATCC 19718 eubacteria NC_006381 Ocanobactilus iheyensis HTE831 eubacteria NC_006381 Ocanobactilus iheyensis HTE831 eubacteria NC_006381 Ocanobactilus iheyensis HTE831 eubacteria NC_007493 Parachlamydia sp. UWE25 eubacteria NC_007493 Pateurella multocida sub sp. multocida str. Pm70 eubacteria NC_007612 Pelobacter carbinolicus DSM2380 eubacteria NC_007512 Photbacterium profundum SS9 chromosome 1 eubacteria NC_006371 Photbacterium profundum SS9 chromosome 2 eubacteria NC_006371 Photbacterium profundum SS9 chromosome 2 eubacteria NC_006371 Photbacterium profundum SS9 chromosome 1 eubacteria NC_007355 Prochlorococcus marinus sub sp. pastoris str. CCMP1986 eubacteria NC_007492 Pseudoalteromans haloplanktis TAC125 chromosome 1 eubacteria NC_007482 Pseudoalteromans haloplanktis TAC125 chromosome 1 eubacteria NC_007482 Pseudoamonas guingae pv. tomato str. DC3000 eubacteria NC_007492 Pseudomonas syringae pv. syningae B728a eubacteria NC_007057 Pseudomonas syringae pv. tomato str. DC3000 eubacteria NC_007204 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_00738 Rodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_00738 Rodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007348 Rolobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007348 Rolobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007348 Rolobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007348 Rolobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007348 Shewholeance 2.8 str. 301 Ricketsia forbi str. MalifdE eubacteria NC_007348 Shewholeance 2.8 str. 301 Shewholeance 2.8 str. 301 Shewholeance 2.8 str. 301 Shewholeance 2.8 str. 301 Shewholeance 2.8 str. 301 S	Nitrosococcus oceani ATCC 19707	eubacteria	NC 007484
Nocardia farcinical FM10152eubacteriaNC_006836Occanobacillus ineyenis HTEB31eubacteriaNC_007681Pasteurella multocida sub sp. multocida str. Pm70eubacteriaNC_007683Pasteurella multocida sub Sp. Multocida str. Pm70eubacteriaNC_007683Pelodictyon luteolum DSM273eubacteriaNC_007698Photobacterium profundum SS8 chromosome 1eubacteriaNC_006370Photobacterium profundum SS8 chromosome 2eubacteriaNC_007512Prochorococcus marinus sub sp. Jabroins str. CCMP1966eubacteriaNC_007617Prochorococcus marinus sub sp. Jabroins str. CCMP1966eubacteriaNC_007481Prochorococcus marinus sub sp. pastoris str. CCMP1966eubacteriaNC_007481Pseudoalteromonas haloplanktis TAC125 chromosome 1eubacteriaNC_007481Pseudoalteromonas fluorescens Pt-5eubacteriaNC_007481Psuedomonas fluorescens Pt-1eubacteriaNC_007429Psuedomonas syringae pv. syningae B728aeubacteriaNC_007420Psuedomonas syringae pv. syningae B728aeubacteriaNC_007481Psuedomonas syringae pv. tomato str. DC3000eubacteriaNC_007484Psuedomonas syringae pv. tomato str. DC3000eubacteriaNC_007484Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007484Ralstonia eutropha JMP134 chromosome 2eubacteriaNC_007484Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007484Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007484Rickettisi aponeilas 21.	Nitrosomonas europaea ATCC 19718	eubacteria	NC 004757
Oceanobacillus ineyensis HTEB31eubacteriaNC_004193Parachlamydia sp. UWE25eubacteriaNC_007881Patachlamydia sp. UWE25eubacteriaNC_007498Pelodictyon luteolum DSM273eubacteriaNC_007112Photobacterium profundum SS8 chromosome 1eubacteriaNC_007312Photobacterium profundum SS8 chromosome 2eubacteriaNC_0073512Photobacterium profundum SS8 chromosome 1eubacteriaNC_007315Prochiorooccus marinus sub sp. pastoris str. CCMP1986eubacteriaNC_007355Prochiorooccus marinus sub sp. pastoris str. CCMP1986eubacteriaNC_007482Pseudoalteromonas haloplanktis TAC125 chromosome IIeubacteriaNC_007482Pseudoalteromonas haloplanktis TAC125 chromosome IIeubacteriaNC_007482Psuedomonas fluorescens PI-0-1eubacteriaNC_007482Psuedomonas gvingae pv. phaseolical 1448AeubacteriaNC_007492Psuedomonas syringae pv. phaseolical 1448AeubacteriaNC_007492Psuedomonas syringae pv. syringae B728aeubacteriaNC_007492Psuedomonas syringae pv. syringae B728aeubacteriaNC_007492Psuedomonas syringae pv. storingae pv. storingae pv. eubacteriaNC_007493Psuedomonas syringae pv. storingae pv. storingae pv. eubacteriaNC_007493Psubacteria eubacteriaNC_007494Psubacteria eubacteriaNC_007494Psubacteria eubacteriaNC_007494Psubacteria eubacteriaNC_007494Psubacteria eubacteriaNC_007494Psubacteria eubacteriaNC_0	Nocardia farcinical FM10152	eubacteria	NC 006361
Parachiamydia sp. UWE25 eubacteria NC_002663 Pasteurella multocida sub sp. multocida str. Pm70 eubacteria NC_002663 Palobacter carbinolicus DSM2380 eubacteria NC_007512 Photobacterium profundum SS8 chromosome 1 eubacteria NC_006370 Photobacterium profundum SS8 chromosome 2 eubacteria NC_006370 Photobacterium profundum SS8 chromosome 2 eubacteria NC_0065126 Prochlorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007512 Prochorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007572 Prochorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007572 Prochorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007672 Prochorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007672 Prochorococcus marinus sub sp. Janomodii TTO1 eubacteria NC_007672 Proglonibacterium acres KPA171202 eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoanteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoanters fluorescens Pt-5 eubacteria NC_007481 Pseudomonas syringae pv. thaseolicola 1448A eubacteria NC_0075773 Psuedomonas syringae pv. tomato str. OC3000 eubacteria NC_0074578 Psuedomonas syringae pv. tomato str. OC3000 eubacteria NC_0074578 Psuedomonas syringae pv. tomato str. OC3000 eubacteria NC_0074578 Psuedomonas syringae pv. tomato str. OC3000 eubacteria NC_0074578 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007408 Rickettsia prowazeki str. Malish 7 eubacteria NC_007494 Rickettsia prowazeki str. Malish 7 eubacteria NC_007494 Rickettsia prowazeki str. Malish 7 eubacteria NC_007494 Rickettsia prowazeki str. Malish 7 eubacteria NC_007493 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_007494 Salmonella enterica serovar Tybi str. CT18 eubacteria NC_007437 Shigella faxneri 2a str. 2457T eubacteria NC_007434 Sinphi/ococcus saprophyticus sub sp. saprophyticus eubacteria NC_007436 Streptococcus sprogenes MGA51034 eubacteria N	Oceanobacillus iheyensis HTE831	eubacteria	NC 004193
Pasteurelia multocida sub sp. multocida str. Pm70 eubacteria NC_002663 Pelobacter continolicue DSM2380 eubacteria NC_007498 Pelobacter continuito profundum SS9 chromosome 1 eubacteria NC_006371 Photobacterium profundum SS9 chromosome 2 eubacteria NC_006371 Photobacterium profundum SS9 chromosome 2 eubacteria NC_005176 Prochlorococcus marinus sub sp. pastoris str. CCMP1986 eubacteria NC_007355 Prochlorococcus marinus sub sp. pastoris str. CCMP1986 eubacteria NC_007482 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007482 Pseudoanteromonas haloplanktis TAC125 chromosome II eubacteria NC_007482 Pseudomonas fluorescens PI-5 eubacteria NC_007482 Pseudomonas guida RC2440 eubacteria NC_007005 Pseudomonas syringae pv. spirogae B728a eubacteria NC_007005 Pseudomonas syringae pv. spirogae B728a eubacteria NC_007005 Pseudomonas syringae pv. tomato str. DC3000 eubacteria NC_007204 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007248 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007494 Rickettis aphaeroides 2.1 chromosome 1 eubacteria NC_007495 Shidobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007494 Rickettis aphaeroides 2.1 chromosome 1 eubacteria NC_007494 Shigleal faxner 2 as tr. 2457T eubacteria NC_007494 Shigleal neterica serovar Choleraesuis str. SC-B67 eubacteria NC_007494 Shighla	Parachlamydia sp. UWE25	eubacteria	NC_005861
Pelobacter carbinolicus DSM2380eubacteriaNC_007498Pelodicyon Uteolum DSM273eubacteriaNC_006370Photobacterium profundum SS9 chromosome 1eubacteriaNC_006371Photobacterium profundum SS9 chromosome 2eubacteriaNC_006371Photohabdus luminescens sub sp. laumondii TTO1eubacteriaNC_007335Prochiorococcus marinus str. NATL2AeubacteriaNC_00737Prochiorococcus marinus sub sp. pastoris str. CCMP1986eubacteriaNC_007482Pseudoalteromonas haloplanktis TAC125 chromosome IeubacteriaNC_007482Psuedomonas fluorescens Pf-5eubacteriaNC_007482Psuedomonas fluorescens Pf-5eubacteriaNC_007492Psuedomonas fluorescens Pf-5eubacteriaNC_007492Psuedomonas syringae pv. phaseolicola 1448AeubacteriaNC_00707492Psuedomonas syringae pv. phaseolicola 1448AeubacteriaNC_007005Psuedomonas syringae pv. Springae D728aeubacteriaNC_007204Psuedomonas syringae pv. Singae D728aeubacteriaNC_007348Psuchomonas syringae pv. Singae D728aeubacteriaNC_007347Psuchomas syringae pv. Singae D728aeubacteriaNC_007347Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007348Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007348Rickettsia fis lu RRWXCatl2eubacteriaNC_007348Rickettsia fis li URRWXCatl2eubacteriaNC_007348Rickettsia ingli market sharovidesstr. CT18eubacteriaNC_007348 <tr< td=""><td>Pasteurella multocida sub sp. multocida str. Pm70</td><td>eubacteria</td><td>NC_002663</td></tr<>	Pasteurella multocida sub sp. multocida str. Pm70	eubacteria	NC_002663
Pelodictyon luteolum DSM273eubacteriaNC_007512Photobacterium profundum SS9 chromosome 2eubacteriaNC_006371Photobacterium profundum SS9 chromosome 2eubacteriaNC_005126Prochiorococus marinus stir. NATL2AeubacteriaNC_005072Propionibacterium acnes KPA171202eubacteriaNC_006371Pseudoalteromonas haloplanktis TAC125 chromosome IeubacteriaNC_007481Pseudoalteromonas haloplanktis TAC125 chromosome IeubacteriaNC_007412Psuedomonas fluorescens PFO-1eubacteriaNC_007472Psuedomonas plurescens PFO-1eubacteriaNC_007472Psuedomonas sylingae pv. phaseolicola 1448AeubacteriaNC_007472Psuedomonas sylingae pv. phaseolicola 1448AeubacteriaNC_0074773Psuedomonas sylingae pv. tomato str. DC3000eubacteriaNC_007347Psuedomonas sylingae pv. tomato str. DC3000eubacteriaNC_007347Ralstonia eutropha JMP134 chromosome 2eubacteriaNC_007347Ralstonia eutropha JMP134 chromosome 2eubacteriaNC_007347Ralstonia eutropha JMP134 chromosome 2eubacteriaNC_007494Rickettis in conni str. Malish 7eubacteriaNC_007494Rickettis in str. Malish 7eubacteriaNC_007493Rickettis in URWXCal2eubacteriaNC_007494Rickettis in URWXCal2eubacteriaNC_007494Rickettis in URWXCal2eubacteriaNC_007494Rickettis in URWXCal2eubacteriaNC_007494Risteria INCNC007417eubacteria	Pelobacter carbinolicus DSM2380	eubacteria	NC_007498
Photbacterium profundum SS9 chromosome 1 eubacteria NC_006370 Photbacterium profundum SS9 chromosome 2 eubacteria NC_005126 Prochiorococcus marinus str. NATL2A eubacteria NC_00735 Prochiorococcus marinus str. NATL2A eubacteria NC_006085 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007482 Pseudoalteromonas haloplanktis TAC135 chromosome II eubacteria NC_007482 Pseudomonas fluorescens PfO-1 eubacteria NC_007492 Psuedomonas syringae pv. phaseolicola 1448A eubacteria NC_007075 Psuedomonas syringae pv. Ismage B728a eubacteria NC_007075 Psuedomonas syringae pv. Ismage B728a eubacteria NC_007748 Psuedomonas syringae pv. Ismage B728a eubacteria NC_007474 Palstonia eutropha JMP134 chromosome 1 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007348 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007484 Rickettsia conti str. Malish 7 eubacteria NC_007484 Rickettsia conti str. Malish 7 Rickettsia phiaeroides 2.1 chromosome 2 eubacteria NC_007484 Rickettsia conti str. Malish 7 eubacteria NC_007484 Rickettsia conti str. Malish 7 eubacteria NC_007484 Rickettsia vonti str. Malish 7 Salmonella enterica serovar Tybni str. CT18 eubacteria NC_003437 Shigella flexneri 2 str. 2457T eubacteria NC_007350 Streptococcus saroparyticus JCSC143 eubacteria NC_007350 Streptococcus saropares SSI-1 eubacteria NC_007350 Streptococcus saropares SSI-5 eubacteria NC_007350 Streptococcus saropares SSI-5 eubacteria NC_007350 Streptococcus sprogenes SSI-5 eubacteria NC_007350 Streptococcus sprogenes SSI-1 eubacteria NC_007350 Streptococcus sprogenes SSI-1 eubacteria NC_007350 Streptococcus sprogenes SSI-1 eu	Pelodictyon luteolum DSM273	eubacteria	NC_007512
Photobacterium profundum SS9 chromosome 2 eubacteria NC_006371 Photorbabdus luminescens sub sp. pastoris str. CCMP1986 eubacteria NC_007335 Prochlorococcus marinus str. NATL2A eubacteria NC_00735 Prochlorococcus marinus str. NATL2A eubacteria NC_007431 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudoateromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudomonas fluorescens Pf-5 eubacteria NC_007482 Psuedomonas plutotexcens Pf-5 eubacteria NC_007478 Psuedomonas syringae pv. phaseolicola 1448A eubacteria NC_007573 Psuedomonas syringae pv. syringae B728a eubacteria NC_00705 Psuedomonas syringae pv. syringae B728a eubacteria NC_0070737 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007484 Rickettsia conorii str. Malish 7 eubacteria NC_007484 Rickettsia romoi str. Malish 7 eubacteria NC_007484 Rickettsia romoi str. Malish 7 Rickettsia felis URRWXCat2 eubacteria NC_007484 Rickettsia romoi str. Malish 7 Rickettsia felis URRWXCat2 eubacteria NC_003103 Rickettsia felis URRWXCat2 eubacteria NC_003103 Rickettsia felis URRWXCat2 eubacteria NC_003103 Rickettsia felis URRWXCat2 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. C118 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. SC-B67 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. C118 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. C118 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. SC-B67 eubacteria NC_003437 Shigella fenteria zerovar Tybhi str. C118 eubacteria NC_003437	Photobacterium profundum SS9 chromosome 1	eubacteria	NC_006370
Photorhabdus luminescens sub sp. laumondii TTO1 eubacteria NC_00735 Prochlorococcus marinus sub sp. pastoris str. CCMP1986 eubacteria NC_00735 Propionibacterium acnes KPA171202 eubacteria NC_00685 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoanteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudomonas fluorescens PFO-1 eubacteria NC_007475 Psuedomonas sputida KT2440 eubacteria NC_007735 Psuedomonas syringae pv. springae B728a eubacteria NC_007075 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007477 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007483 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rickettsia filis URRWXCal2 eubacteria NC_007493 Rickettsia fulis NT MilingTon eubacteria NC_003103 Rickettsia phi str. MadridE eubacteria NC_003103 Rickettsia phi str. MadridE eubacteria NC_003198 Shewanella oneidensis MR-1 eubacteria NC_004741 Shigella flexneri 2 astr. 301 eubacteria NC_00348 Shemeni a str. 301 eubacteria NC_00348 Shepholococcus sprogenes MGAS315 eubacteria NC_007348 Staphylococcus spongenes MGAS315 eubacteria NC_00738 Staphylococcus spongenes MGAS315 eubacteria NC_00748 Staphylococcus spongenes MGAS315 eubacteria NC_00748 Streptococcus pyogenes MGAS315 eubacteria NC_00748 Streptococcus pyogenes MGAS315 eubacteria NC_00748 Streptococcus pyogenes MGAS310394 eubacteria NC_00748 Str	Photobacterium profundum SS9 chromosome 2	eubacteria	NC_006371
Prochlorococcus marinus str. NATL2AeubacteriaNC_007335Prochlorococcus marinus sub sp. pastoris str. CCMP1986eubacteriaNC_005072Propionibacterium acnes KPA171202eubacteriaNC_007481Pseudoalteromonas haloplanktis TAC125 chromosome IeubacteriaNC_007482Psuedomonas fluorescens PF-5eubacteriaNC_007492Psuedomonas fluorescens PF-1eubacteriaNC_007492Psuedomonas putida KT2440eubacteriaNC_0070573Psuedomonas syringae pv. syringae B728aeubacteriaNC_007204Psuedomonas syringae pv. syringae B728aeubacteriaNC_007373Psuedomonas syringae pv. tomato str. DC3000eubacteriaNC_007347Psuchomonas syringae pv. tomato str. DC3000eubacteriaNC_007348Psychrobacter arcticus 273-4eubacteriaNC_007348Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007348Ralstonia solanacearum GMI1000eubacteriaNC_007494Rickettsia fis li URRWXCa12eubacteriaNC_007494Rickettsia fis li URRWXCa12eubacteriaNC_007494Rickettsia fis li URRWXCa12eubacteriaNC_007492Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_003432Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_004347Shewanella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_007494Shewanella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_007432Shewanella enterica serovar Choleraesuis str. SC-B67eubacteria<	Photorhabdus luminescens sub sp. laumondii TTO1	eubacteria	NC_005126
Prochlorococcus marinus sub sp. pastoris str. CCMP1986 eubacteria NC_006085 Pregionibacterium acnes KPA171202 eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudomonas fluorescens PF-5 eubacteria NC_007482 Psuedomonas fluorescens PF-5 eubacteria NC_007482 Psuedomonas gvirigae pv. phaseolicola 1448A eubacteria NC_002947 Psuedomonas syringae pv. syringae B728a eubacteria NC_007005 Psuedomonas syringae pv. syringae B728a eubacteria NC_007005 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007075 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007478 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007494 Rickettsia conori str. Malish 7 eubacteria NC_003103 Rickettsia felis URRVXCal2 eubacteria NC_003103 Rickettsia phaeroides 2.1 chromosome 1 eubacteria NC_003103 Rickettsia phaeroides 2.1 chromosome 2 eubacteria NC_003103 Rickettsia phi str. Walish 7 eubacteria NC_000453 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_00347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Streptococcus agalactiae A909 eubacteria NC_00748 Streptococcus agalactiae A909 eubacteria NC_00748 Streptococcus agaloxiae Shi	Prochlorococcus marinus str. NATL2A	eubacteria	NC_007335
Propionibacterium acnes KPA171202 eubacteria NC_007881 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007481 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007492 Psuedomonas fluorescens PF-5 eubacteria NC_007492 Psuedomonas syringae pv. phaseolicola 1448A eubacteria NC_007492 Psuedomonas syringae pv. phaseolicola 1448A eubacteria NC_007737 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007204 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_00738 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_007109 Rickettsia felis URRWXCal2 eubacteria NC_007109 Rickettsia felis URRWXCal2 eubacteria NC_007109 Rickettsia folis URRWXCal2 eubacteria NC_0006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_000437 Shigella flexneri 2a str. 2457T eubacteria NC_003103 Shewanella oneidensis MR-1 eubacteria NC_00347 Shigella flexneri 2a str. 2457T eubacteria NC_00347 Shigella flexneri 2a str. 2457T eubacteria NC_00347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2010 eubacteria NC_00347 Streptococcus sprogenes MGAS315 eubacteria NC_00347 Streptococcus sprogenes MGAS315 eubacteria NC_007360 Streptococcus sprogenes MGAS315 eubacteria NC_007360 Streptococcus sprogenes MGAS315 eubacteria NC_00646 Streptococcus sprogenes MGAS315 eubacteria NC_007360 Streptococcus sp	Prochlorococcus marinus sub sp. pastoris str. CCMP1986	eubacteria	NC_005072
Pseudoalteromonas haloplanktis TAC125 chromosome I eubacteria NC_007482 Pseudoalteromonas haloplanktis TAC125 chromosome II eubacteria NC_007482 Psuedomonas fluorescens Pf-5 eubacteria NC_007492 Psuedomonas pluida KT2440 eubacteria NC_007057 Psuedomonas syringae pv. syringae B728a eubacteria NC_007057 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007367 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007367 Psuedomonas suringae pv. tomato str. DC3000 eubacteria NC_007367 Psuedomonas outropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia outropha JMP134 chromosome 2 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_003103 Rickettsia typhi str. Wilmington eubacteria NC_003103 Rickettsia typhi str. Wilmington eubacteria NC_003198 Shigella flexneri 2a str. 301 eubacteria NC_003198 Shigella flexneri 2a str. 301 eubacteria NC_003474	Propionibacterium acnes KPA171202	eubacteria	NC_006085
Pseudoalteromonas haloplanktis TAC125 chromosome IIeubacteriaNC_007482Psuedomonas fluorescens Pf-5eubacteriaNC_007492Psuedomonas fluorescens Pf-1eubacteriaNC_002947Psuedomonas puingae pv. phaseolicola 1448AeubacteriaNC_007733Psuedomonas syringae pv. syringae B728aeubacteriaNC_007457Psuedomonas syringae pv. tomato str. DC3000eubacteriaNC_0074578Psuchomonas syringae pv. tomato str. DC3000eubacteriaNC_0074578Psychrobacter arcticus 273-4eubacteriaNC_007348Ralstonia eutropha JMP134 chromosome 1eubacteriaNC_007348Ralstonia eutropha JMP134 chromosome 2eubacteriaNC_007493Rhodobacter sphaeroides 2.1 chromosome 2eubacteriaNC_007494Rickettsia folis URRWXCaI2eubacteriaNC_007109Rickettsia folis URRWXCaI2eubacteriaNC_000963Rickettsia folis URRWXCaI2eubacteriaNC_000963Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_004347Shigella flexneri 2a str. 301eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_007384Staphylococcus haemolyticus JCSC143eubacteriaNC_007384Staphylococcus agnophyticus sub sp. Aureus Mu50eubacteriaNC_007384Staphylococcus pyogenes MGAS10394eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_007432Streptococcus shemophilus LNG183	Pseudoalteromonas haloplanktis TAC125 chromosome I	eubacteria	NC_007481
Psuedomonas fluorescens PfC-1eubacteriaNC_007492Psuedomonas fluorescens PfC-1eubacteriaNC_007492Psuedomonas syringae pv. phaseolicola 1448AeubacteriaNC_007705Psuedomonas syringae pv. syringae B728aeubacteriaNC_007005Psuedomonas syringae pv. syringae B728aeubacteriaNC_007204Psuctomonas syringae pv. syringae B728aeubacteriaNC_007204Ralstonia cutropha JMP134 chromosome 1eubacteriaNC_007347Ralstonia olanacearum GM1100eubacteriaNC_007347Ralstonia olanacearum GM1000eubacteriaNC_007348Rhodobacter sphaeroides 2.1 chromosome 1eubacteriaNC_007494Rickettis conorii str. Malish 7eubacteriaNC_007494Rickettis a conorii str. Malish 7eubacteriaNC_007493Rickettis a prowazekii str. MadridEeubacteriaNC_003103Rickettis a prowazekii str. MadridEeubacteriaNC_006905Salmonella enterica serovar Typhi str. CT18eubacteriaNC_004347Shigella flexneri 2 as tr. 301eubacteriaNC_007392Shigella flexneri 2 as tr. 301eubacteriaNC_007346Staphylococcus aprophyticus Sub sp. Aureus Mu50eubacteriaNC_007472Staphylococcus pyogenes MGAS10394eubacteriaNC_007347Streptococcus pyogenes MGAS10394eubacteriaNC_007296Streptococcus pyogenes MGAS10394eubacteriaNC_007347Streptococcus pyogenes MGAS6180eubacteriaNC_007345Streptococcus pyogenes MGAS10394eubacteria	Pseudoalteromonas haloplanktis TAC125 chromosome II	eubacteria	NC_007482
Psuedomonas jutida KT2440 eubacteria NC_00/492 Psuedomonas putida KT2440 eubacteria NC_002947 Psuedomonas syringae pv. sphaseolicola 1448A eubacteria NC_00705 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_00705 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_007204 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia fe sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_007494 Rickettsia felis URRWXCal2 eubacteria NC_00963 Rickettsia felis URRWXCal2 eubacteria NC_00963 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_00963 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 301 eubacteria NC_00347 Staphylococcus aperophyticus JCSC143 eubacteria NC_007350 Streptococcus saperophyticus sub sp. saprophyticus eubacteria NC_007350 Streptococcus saprophyticus sub sp. saprophyticus eubacteria NC_007350 Streptococcus saprophyticus sub sp. saprophyticus eubacteria NC_007350 Streptococcus pyogenes MGAS10394 eubacteria NC_007350 Streptococcus pyogenes MGAS11 eubacteria NC_007350 Streptococcus pyogenes MGAS6180 eubacteria NC_007350 Streptococc	Psuedomonas fluorescens Pf-5	eubacteria	NC_004129
Psuedomonas putida K 12440 eubacteria NC_002947 Psuedomonas syringae pv. springae B728a eubacteria NC_004578 Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_004578 Psychrobacter arcticus 273-4 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia solanacearum GMI1000 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rickettsia conorii str. Malish 7 eubacteria NC_007493 Rickettsia typhi str. Wilmington eubacteria NC_007493 Rickettsia lelis URRWXCal2 eubacteria NC_007493 Rickettsia lelis URRWXCal2 eubacteria NC_00963 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_003148 Shewanella oneidensis MR-1 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 305 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 305 eubacteria NC_004347 Staphylococcus aperophyticus sub sp. Aureus Mu50 eubacteria NC_004347 Staphylococcus aperophyticus sub sp. Aureus Mu50 eubacteria NC_007303 Streptococcus agalactiae A909 eubacteria NC_007468 Streptococcus pyogenes MGAS5103 eubacteria NC_004060 Streptococcus pyogenes MGAS5100 eubacteria NC_0040707 Streptococcus pyogenes MGAS5100 eubacteria NC_004606 Streptococcus pyogenes MGAS5100 eubacteria NC_004606 Streptococcus pyogenes MGAS5100 eubacteria NC_004648 Streptococcus pyogenes MGAS5103 eubacteria NC_004606 Str	Psuedomonas fluorescens PfO-1	eubacteria	NC_007492
Psuedomonas syringae pv. syringae B728a eubacteria NC_007005 Psuedomonas syringae pv. syringae B728a eubacteria NC_007005 Psuedomonas syringae pv. syringae B728a eubacteria NC_007065 Psuedomonas syringae pv. syringae B728a eubacteria NC_007347 Psychrobacter arcticus 273-4 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007109 Rickettis felis URRWXCal2 eubacteria NC_007109 Rickettis prowazekii str. MadridE eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006142 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_006142 Shewanella oneidensis MR-1 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 24573 eubacteria NC_004347 Shigella flexneri 2a str. 24574 Staphylococcus saprophyticus JCSC143 eubacteria NC_007188 Staphylococcus saprophyticus JCSC143 eubacteria NC_007188 Streptococcus galactiae A909 eubacteria NC_007432 Streptococcus pyogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS6180 eubacteria NC_007432 Streptococcus pyogenes MGAS6180 eubacteria NC_007365 Streptococcus pyogenes MGAS6180 eubacteria NC_007297 Streptococcus pyogenes MGAS6180 eubacteria NC_007355 Streptococcus pyogenes MGAS6180 eubacteria NC_007365 Streptococcus pyogenes MGAS6180 eubacteria NC_007365 Streptococcus pyogenes MGAS6180 eubacteria NC_007363 Streptococcus pyogenes MGAS6180 eubacteria NC_007365 Streptococcus pyogenes MGAS6180 eubacteria NC_007365 Strepto	Psuedomonas putida K12440	eubacteria	NC_002947
Psuedomonas syringae pv. tomato str. DC3000 eubacteria NC_004578 Psychrobacter arcticus 273-4 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007348 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007348 Ralstonia solanacearum GM1000 eubacteria NC_007348 Ralstonia solanacearum GM1000 eubacteria NC_007494 Rickettsia solanacearum GM1000 eubacteria NC_007494 Rickettsia conori str. Malish 7 eubacteria NC_007494 Rickettsia prowazekii str. Malish 7 eubacteria NC_007493 Rickettsia prowazekii str. Malish 7 eubacteria NC_007109 Rickettsia prowazekii str. Malish 7 eubacteria NC_007109 Rickettsia prowazekii str. Malish 7 eubacteria NC_007109 Rickettsia prowazekii str. Malish 7 eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-867 eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-867 eubacteria NC_003198 Shewanella oneidensis MR-1 eubacteria NC_004377 Shigella flexneri 2a str. 301 eubacteria NC_004377 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella flexneri 2a str. 301 eubacteria NC_003047 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_004337 Staphylococcus aneus sub sp. Aureus Mu50 eubacteria NC_007380 Staphylococcus aparolyticus JCSC143 eubacteria NC_007432 Streptococcus spogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS6180 eubacteria NC_007433 Streptococcus pyogenes MGAS6180 eubacteria NC_007493 Streptococcus pyogenes MGAS6180 eubacteria NC_007493 Streptococcus pyogenes SSI-1 eubacteria NC_007494 Streptococcus pyogenes SSI-1 eubacteria NC_007494 Streptococcus py Coelo5 eubacteria NC_007494	Psuedomonas syringae pv. phaseolicola 1448A	eubacteria	NC_005773
Psuchonolas symgae pV: tomato str. DC3000 eubacteria NC_007204 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007247 Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007347 Ralstonia solanacearum GM11000 eubacteria NC_003295 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_003295 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007109 Rickettsi felis URRWXCal2 eubacteria NC_007109 Rickettsi prowazekii str. MadridE eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006142 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_006905 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_003103 Staphylococcus sarophyticus Sub sp. saprophyticus eubacteria NC_007505 Streptococcus pyogenes MGAS10394 eubacteria NC_007458 Streptococcus pyogenes MGAS515 eubacteria NC_007404 Streptococcus pyogenes MGAS500 eubacteria NC_007495 Streptococcus pyogenes MGAS515 eubacteria NC_007495 Streptococcus pyogenes MGAS500 eubacteria NC_007495 Streptococcus pyogenes MGAS515 eubacteria NC_007495 Streptococcus pyogenes MGAS515 eubacteria NC_007497 Streptococcus pyogenes MGAS6180 eubacteria NC_007496 Streptococcus pyogenes MGAS515 eubacteria NC_007496 Streptococcus pyogenes MGAS500 eubacteria NC_007686 Streptococcus pyogenes MGAS515 eubacteria NC_007496 Streptococcus pyogenes MGAS515 eubacteria NC_007496 Streptococcus pyogenes MGAS6180 eubacteria NC_007496 Streptococcus sp. CC9902 eubacteria NC_007516 Synechococcus sp. CC9905 eubacteria NC_007516 Synechococcus sp. CC9905 eubacteria NC_007516 Synechococcus sp. CC9905 eubacteria N	Psuedomonas syringae pv. syringae B728a	eubacteria	NC_007005
Psychrobacter arcticus 27:3-4 eubacteria NC_007347 Ralstonia eutropha JMP134 chromosome 1 eubacteria NC_007347 Ralstonia solanacearum GMI1000 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007493 Rickettsia felis URRWXCal2 eubacteria NC_007109 Rickettsia felis URRWXCal2 eubacteria NC_007109 Rickettsia prowazekii str. Madish 7 eubacteria NC_007109 Rickettsia prowazekii str. MadridE eubacteria NC_000963 Rickettsia typhi str. Wilmington eubacteria NC_006905 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006905 Salmonella enterica serovar Tophi str. CT18 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004741 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_003198 Staphylococcus aarophyticus Sub sp. Aureus Mu50 eubacteria NC_007350 Streptococcus agalactiae A909 eubacteria NC_007350 Streptococcus agalactiae A909 eubacteria NC_007350 Streptococcus pyogenes MGAS315 eubacteria NC_007493 Streptococcus pyogenes MGAS315 eubacteria NC_004307 Streptococcus pyogenes MGAS315 eubacteria NC_007296 Streptococcus pyogenes MGAS315 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_007395 Streptococcus pyogenes MGAS6180 eubacteria NC_007395 Streptococcus pyogenes MGAS6180 eubacteria NC_007315 Streptococcus pyogenes MGAS6180 eubacteria NC_007315 Streptococcus pyogenes MGAS6180 eubacteria NC_007368 Synechococcus py CG905 eubacteria NC_007315 Streptococcus pyogenes MGAS6180 e	Psuedomonas syringae pv. tomato str. DC3000	eubacteria	NC_004578
Ralstonia eutropha JMP134 chromosome 2 eubacteria NC_007348 Ralstonia solanacearum GMI1000 eubacteria NC_007348 Ralstonia solanacearum GMI1000 eubacteria NC_007494 Rickettsi solanacearum GMI1000 eubacteria NC_007494 Rickettsi a conorii str. Malish 7 eubacteria NC_007494 Rickettsia conorii str. Malish 7 eubacteria NC_007494 Rickettsia felis URRWXCal2 eubacteria NC_0007493 Rickettsia felis URRWXCal2 eubacteria NC_000963 Rickettsia typhi str. Wilmington eubacteria NC_0006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_0006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004337 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_007168 Staphylococcus aparophyticus sub sp. saprophyticus eubacteria NC_007168 Staphylococcus agalactiae A909 eubacteria NC_007424 Streptococcus gagalactiae A909 eubacteria NC_007434 Streptococcus pyogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS10394 eubacteria NC_007295 Streptococcus pyogenes MGAS10394 eubacteria NC_007295 Streptococcus pyogenes MGAS10394 eubacteria NC_007295 Streptococcus pyogenes MGAS10394 eubacteria NC_007295 Streptococcus pyogenes MGAS11 eubacteria NC_007295 Streptococcus pyogenes MGAS11 eubacteria NC_007295 Streptococcus pyogenes MGAS510 eubacteria NC_007295 Streptococcus pyogenes MGAS6180 eubacteria NC_007295 Streptococcus pyo	Psychrobacter arcticus 273-4	eubacteria	NC_007204
Ralstonia eutophia JMP 134 Chronosome 2 eubacteria NC_007493 Ralstonia solanacearum GMI1000 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria NC_007493 Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria NC_007494 Rickettsia conorii str. Malish 7 eubacteria NC_007109 Rickettsia felis URRWXCal2 eubacteria NC_000963 Rickettsia fugi URRWXCal2 eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006905 Salmonella enterica serovar Tophi str. CT18 eubacteria NC_004741 Shigella flexneri 2a str. 2457T eubacteria NC_004741 Shigella flexneri 2a str. 2457T eubacteria NC_004743 Shigella flexneri 2a str. 2457T eubacteria NC_004743 Shigella flexneri 2a str. 301 eubacteria NC_007432 Staphylococcus aneus sub sp. Aureus Mu50 eubacteria NC_002758 Staphylococcus agalactiae A909 eubacteria NC_00730 Streptococcus agalactiae A909 eubacteria NC_00730 Streptococcus agalactiae A909 eubacteria NC_00730 Streptococcus pyogenes MGAS10394 eubacteria NC_00730 Streptococcus pyogenes MGAS510 eubacteria NC_007296 Streptococcus pyogenes MGAS510 eubacteria NC_007296 Streptococcus pyogenes MGAS510 eubacteria NC_007296 Streptococcus pyogenes MGAS510 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_006448 Streptococcus sp. CC9605 eubacteria NC_007493 Thermobifida fusca YX eubacteria NC_007333 Thermobifida fusca YX eubacteria NC_007404	Raistonia eutropha JMP134 chromosome 1	eubacteria	NC_007347
Radisbila Sulariadeardin Similates Rhodobacter sphaeroides 2.1 chromosome 1 eubacteria Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria Rhodobacter sphaeroides 2.1 chromosome 2 eubacteria Rickettsia conorii str. Malish 7 Rickettsia felis URR/WXCal2 eubacteria NC_007149 Rickettsia prowazekii str. MadridE salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006905 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_003198 Shewanella oneidensis MR-1 Shigella flexneri 2a str. 2457T Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_007484 Sinorhizobium meliloti 1021 eubacteria NC_007384 Staphylococcus aparophyticus JCSC143 Streptococcus pyogenes MGAS10394 Streptococcus pyogenes MGAS10394 Streptococcus pyogenes MGAS5108 Streptococcus pyogenes MGAS5108 Streptococcus pyogenes MGAS5108 Streptococcus pyogenes MGAS511 eubacteria NC_007297 Streptococcus pyogenes MGAS511 eubacteria NC_007297 Streptococcus pyogenes MGAS5180 eubacteria NC_007297 Streptococcus pyogenes MGAS5180 eubacteria NC_007448 Streptococcus pyogenes MGAS5180 eubacteria NC_007297 Streptococcus pyogenes MGAS5180 eubacteria NC_007448 Streptococcus pyogenes MGAS5180 eubacteria NC_007449 Streptococcus pyogenes MGAS5180 eubacteria NC_007446 Streptococcus pyogenes MGAS5180 eubacteria NC_007513 Thermobifida fusca YX eubacteria NC_007441 eubacteria NC_007441 eubacteria NC_007441 PL Streptococcus pyofenes Streptococcus pyofene Strept	Raistonia eutropha JMP 134 chromosome 2		NC_007346
Ninoubacter sphareroides 2.1 chromosome 1eubacteriaNC_007494Rhodobacter sphareroides 2.1 chromosome 2eubacteriaNC_007494Rickettsia conorii str. Malish 7eubacteriaNC_007103Rickettsia felis URRWXCal2eubacteriaNC_000963Rickettsia typh str. WilmingtoneubacteriaNC_006142Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_006905Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_004347Shewanella oneidensis MR-1eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_004347Shigella flexneri 2a str. 301eubacteriaNC_003198Sinorhizobium mellioti 1021eubacteriaNC_003047Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007350Streptococcus pyogenes MGAS10394eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus thermophilus LMG18311eubacteriaNC_003188Synechococcus sp. CC9805eubacteriaNC_007513Streptoroccus sp. CC9805eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007404	Raisionia solanacearum Givin 1000 Rhodobacter sphaeroides 2.1 chromosome 1	eubacteria	NC_003295
Rickettsia conori str. Malish 7 Rickettsia felis URRWXCal2 Rickettsia felis URRWXCal2 Rickettsia forwazekii str. MadridE Rickettsia prowazekii str. MadridE Salmonella enterica serovar Choleraesuis str. SC-B67 Rickettsia prowazekii str. MadridE Salmonella enterica serovar Typhi str. CT18 Rickettsia prowazekii str. 2457T Rigella flexneri 2a str. 2457T Rigella flexneri 2a str. 301 Rickettsia prowazekii str. NC_004347 Shigella flexneri 2a str. 301 Rickettsia provide sureus sub sp. Aureus Mu50 Richorizo sureus sub sp. Aureus Mu50 Richorizo saprophyticus JCSC143 Richorizo saprophyticus sub sp. saprophyticus Richorizo saprophyticus sub sp. saprophyticus Richorizo supogenes MGAS10394 Richorizo supogenes MGAS15 Richorizo spogenes MGAS6180 Richorizo supogenes MGAS6180 Richorizo supogenes MGAS6180 Richorizo supogenes MGAS6180 Richorizo supogenes SI-1 Richorizo supog	Rhodobacter sphaeroides 2.1 chromosome 2	eubacteria	NC 007493
Rickettisia felis URRWXCal2 eubacteria NC_007109 Rickettisia felis URRWXCal2 eubacteria NC_000963 Rickettisia prowazekii str. MadridE eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006905 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella sonnei Ss046 eubacteria NC_004337 Shigella sonnei Ss046 eubacteria NC_004347 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_007168 Staphylococcus saprophyticus JCSC143 eubacteria NC_007168 Staphylococcus saprophyticus sub sp. saprophyticus eubacteria NC_007350 Streptococcus pyogenes MGAS10394 eubacteria NC_004707 Streptococcus pyogenes MGAS5180 eubacteria NC_004707 Streptococcus pyogenes MGAS5180 eubacteria NC_007297 Streptococcus pyogenes MGAS5180 eubacteria NC_007297 Streptococcus pyogenes MGAS181 eubacteria NC_007297 Streptococcus pyogenes MGAS181 eubacteria NC_007297 Streptococcus pyogenes MGAS5180 eubacteria NC_007297 Streptococcus pyogenes MGAS618311 eubacteria NC_006464 Streptococcus hermophilus LMG18311 eubacteria NC_006448 Streptococcus sp. CC9605 eubacteria NC_003458 Synechococcus sp. CC9605 eubacteria NC_007313 Thermobifida fusca YX eubacteria NC_007313 Thermobifida fusca YX eubacteria NC_007304	Rickettsia conorii str. Malish 7	eubacteria	NC 003103
Ricketisia prowazekii str. MadridE eubacteria NC_000963 Ricketisia prowazekii str. MadridE eubacteria NC_000963 Ricketisia typhi str. Wilmington eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_003198 Shewanella oneidensis MR-1 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004347 Shigella sonnei Ss046 eubacteria NC_003047 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_007368 Staphylococcus saprophyticus JCSC143 eubacteria NC_007432 Streptococcus saparophyticus sub sp. saprophyticus eubacteria NC_007432 Streptococcus spogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS10394 eubacteria NC_007432 Streptococcus pyogenes MGAS1680 eubacteria NC_007297 Streptococcus pyogenes MGAS180 eubacteria NC_007296 Streptococcus pyogenes MGAS180 eubacteria NC_007432 Streptococcus pyogenes MGAS180 eubacteria NC_007037 Streptococcus pyogenes MGAS180 eubacteria NC_007432 Streptococcus pyogenes MGAS180 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_007296 Streptococcus pyogenes MGAS6180 eubacteria NC_004070 Streptococcus pyogenes MGAS6180 eubacteria NC_004066 Streptococcus pyogenes MGAS6180 eubacteria NC_004648 Streptococcus pyogenes SI-1 eubacteria NC_006448 Streptococcus pyogenes SI-1 eubacteria NC_006449 Streptococcus thermophilus LMG18311 eubacteria NC_003155 Streptomyces avermitilis MA-4680 eubacteria NC_003155 Streptomyces avermitilis MA-4680 eubacteria NC_003155 Streptomyces sp. CC9605 eubacteria NC_007516 Synechococcus sp. CC9605 eubacteria NC_007516 Synechococcus sp. CC9605 eubacteria NC_007333 Thermobifida fusca YX eubacteria NC_00744	Rickettsia felis URRWXCal2	eubacteria	NC_007109
Rickettia typhi str. Wilmington eubacteria NC_006142 Salmonella enterica serovar Choleraesuis str. SC-B67 eubacteria NC_006142 Salmonella enterica serovar Typhi str. CT18 eubacteria NC_003198 Shewanella oneidensis MR-1 eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 2457T eubacteria NC_004347 Shigella flexneri 2a str. 301 eubacteria NC_004337 Shigella sonnei Ss046 eubacteria NC_007384 Sinorhizobium meliloti 1021 eubacteria NC_003047 Staphylococcus aureus sub sp. Aureus Mu50 eubacteria NC_007168 Staphylococcus sarophyticus JCSC143 eubacteria NC_007168 Staphylococcus sagnophyticus sub sp. saprophyticus eubacteria NC_007350 Streptococcus pyogenes MGAS10394 eubacteria NC_007422 Streptococcus pyogenes MGAS10394 eubacteria NC_006086 Streptococcus pyogenes MGAS500 eubacteria NC_007068 Streptococcus pyogenes MGAS6180 eubacteria NC_007297 Streptococcus pyogenes MGAS6180 eubacteria NC_007297 Streptococcus pyogenes MGAS6180 eubacteria NC_007296 Streptococcus pyogenes SI-1 eubacteria NC_007429 Streptococcus thermophilus CNRZ1066 eubacteria NC_004070 Streptococcus thermophilus LMG18311 eubacteria NC_006448 Streptomyces avermitilis MA-4680 eubacteria NC_006448 Streptomyces coelicolor A3(2) eubacteria NC_003155 Streptomyces coelicolor A3(2) eubacteria NC_007513 Thermobifida fusca YX eubacteria NC_007513 Thermobifida fusca YX eubacteria NC_007404	Rickettsia prowazekii str. MadridE	eubacteria	NC_000963
Salmonella enterica serovar Choleraesuis str. SC-B67eubacteriaNC_006905Salmonella enterica serovar Typhi str. CT18eubacteriaNC_003198Shewanella oneidensis MR-1eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_004741Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella sonnei Ss046eubacteriaNC_007384Sinorhizobium meliloti 1021eubacteriaNC_002758Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_007168Staphylococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_007432Streptococcus pyogenes MGAS1180eubacteriaNC_007297Streptococcus thermophilus CNR21066eubacteriaNC_007296Streptococcus thermophilus CNR21066eubacteriaNC_006448Streptococcus sp. CC9605eubacteriaNC_003155Streptomyces oscilicolor A3(2)eubacteriaNC_007315Streptomyces sp. CC9902eubacteriaNC_007313Thermobifida fusca YXeubacteriaNC_007313Thermobifida fusca YXeu	Rickettsia typhi str. Wilmington	eubacteria	NC_006142
Salmonella enterica serovar Typhi str. CT18eubacteriaNC_003198Shewanella oneidensis MR-1eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_004741Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella sonnei Ss046eubacteriaNC_003047Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus aareus sub sp. Aureus Mu50eubacteriaNC_007364Staphylococcus agareus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_007432Streptococcus pyogenes MGAS15eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SI-1eubacteriaNC_007296Streptococcus pyogenes SI-1eubacteriaNC_006448Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007333Thermobifida fusca YXeubacteriaNC_007333Thermobifida fusca YXeubacteriaNC_007333Sthermophilus denitrificans ATCC2525eubacteriaNC_007404	Salmonella enterica serovar Choleraesuis str. SC-B67	eubacteria	NC 006905
Shewanella oneidensis MR-1eubacteriaNC_004347Shigella flexneri 2a str. 2457TeubacteriaNC_004347Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella sonnei Ss046eubacteriaNC_007384Sinorhizobium meliloti 1021eubacteriaNC_002758Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_007168Staphylococcus agalactiae A909eubacteriaNC_007432Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SI-1eubacteriaNC_007296Streptococcus thermophilus LMG18311eubacteriaNC_004648Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechocccus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007333Thermoshifus LB8eubacteriaNC_007433Thermoshifus denitrificans ATCC2525eubacteriaNC_007404	Salmonella enterica serovar Typhi str. CT18	eubacteria	NC 003198
Shigella flexneri 2a str. 2457TeubacteriaNC_004741Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella sonnei Ss046eubacteriaNC_007384Sinorhizobium meliloti 1021eubacteriaNC_002758Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus saprophyticus JCSC143eubacteriaNC_007168Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007432Streptococcus galactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_004070Streptococcus pyogenes MGAS315eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_006469Streptococcus pyogenes SSI-1eubacteriaNC_006448Streptococcus sthermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007313Synechococcus sp. CC9002eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermobifida fusca YXeubacteriaNC_007404Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Shewanella oneidensis MR-1	eubacteria	NC 004347
Shigella flexneri 2a str. 301eubacteriaNC_004337Shigella sonnei Ss046eubacteriaNC_007384Sinorhizobium meliloti 1021eubacteriaNC_003047Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus haemolyticus JCSC143eubacteriaNC_007168Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_004070Streptococcus pyogenes MGAS500eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes SI-1eubacteriaNC_007297Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptowces avermitilis MA-4680eubacteriaNC_003155Streptomyces avermitilis MA-4680eubacteriaNC_007330Synechococcus sp. CC9002eubacteriaNC_007516Synechococcus sp. CC9002eubacteriaNC_007333Thermobifida fusca YXeubacteriaNC_007333Thermobilius denitrificans ATCC2525eubacteriaNC_007404	Shigella flexneri 2a str. 2457T	eubacteria	NC 004741
Shigella sonnei Ss046eubacteriaNC_007384Sinorhizobium meliloti 1021eubacteriaNC_003047Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus haemolyticus JCSC143eubacteriaNC_007350Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_00470Streptococcus pyogenes MGAS315eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007355Thermobifida fusca YXeubacteriaNC_007356Thermobifius tHB8eubacteriaNC_007404	Shigella flexneri 2a str. 301	eubacteria	NC_004337
Sinorhizobium meliloti 1021eubacteriaNC_003047Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus haemolyticus JCSC143eubacteriaNC_007168Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_00686Streptococcus pyogenes MGAS315eubacteriaNC_00470Streptococcus pyogenes MGAS500eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_007296Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007513Synechococcus sp. CC9605eubacteriaNC_007513Synechococcus sp. CC9002eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermobifius HB8eubacteriaNC_007404	Shigella sonnei Ss046	eubacteria	NC_007384
Staphylococcus aureus sub sp. Aureus Mu50eubacteriaNC_002758Staphylococcus haemolyticus JCSC143eubacteriaNC_007168Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_004070Streptococcus pyogenes MGAS500eubacteriaNC_004070Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes SSI-1eubacteriaNC_007296Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptomyces avermitlis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007513Synechococcus sp. CC9605eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Sinorhizobium meliloti 1021	eubacteria	NC_003047
Staphylococcus haemolyticus JCSC143eubacteriaNC_007168Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_004070Streptococcus pyogenes MGAS315eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SI-1eubacteriaNC_007296Streptococcus thermophilus CNRZ1066eubacteriaNC_00448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Staphylococcus aureus sub sp. Aureus Mu50	eubacteria	NC_002758
Staphylococcus saprophyticus sub sp. saprophyticuseubacteriaNC_007350Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_006086Streptococcus pyogenes MGAS315eubacteriaNC_004070Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes SSI-1eubacteriaNC_0074606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007432Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Staphylococcus haemolyticus JCSC143	eubacteria	NC_007168
Streptococcus agalactiae A909eubacteriaNC_007432Streptococcus pyogenes MGAS10394eubacteriaNC_006086Streptococcus pyogenes MGAS315eubacteriaNC_004070Streptococcus pyogenes MGAS6180eubacteriaNC_007297Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Staphylococcus saprophyticus sub sp. saprophyticus	eubacteria	NC_007350
Streptococcus pyogenes MGAS10394eubacteriaNC_006086Streptococcus pyogenes MGAS315eubacteriaNC_004070Streptococcus pyogenes MGAS600eubacteriaNC_007297Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Streptococcus agalactiae A909	eubacteria	NC_007432
Streptococcus pyogenes MGAS315eubacteriaNC_004070Streptococcus pyogenes MGAS500eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_003155Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_007516Synechococcus sp. CC9605eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Streptococcus pyogenes MGAS10394	eubacteria	NC_006086
Streptococcus pyogenes MGAS500eubacteriaNC_007297Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_007404	Streptococcus pyogenes MGAS315	eubacteria	NC_004070
Streptococcus pyogenes MGAS6180eubacteriaNC_007296Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptococcus pyogenes MGAS500	eubacteria	NC_007297
Streptococcus pyogenes SSI-1eubacteriaNC_004606Streptococcus thermophilus CNRZ1066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptococcus pyogenes MGAS6180	eubacteria	NC_007296
Streptococcus thermophilus CNR21066eubacteriaNC_006449Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptococcus pyogenes SSI-1	eubacteria	NC_004606
Streptococcus thermophilus LMG18311eubacteriaNC_006448Streptomyces avermitilis MA-4680eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptococcus thermophilus CNRZ1066	eubacteria	NC_006449
Streptomyces avermitins MA-4660eubacteriaNC_003155Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptococcus thermophilus LMG18311	eubacteria	NC_006448
Streptomyces coelicolor A3(2)eubacteriaNC_003888Synechococcus sp. CC9605eubacteriaNC_007516Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Streptomyces avermitilis MA-4680	eubacteria	NC_003155
Synechococcus sp. CC9902eubacteriaNC_007513Synechococcus sp. CC9902eubacteriaNC_007513Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Superborecup sp. CC0605		NC 007516
Thermobifida fusca YXeubacteriaNC_007333Thermus thermophilus HB8eubacteriaNC_006461Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Synechococcus sp. CC0002		NC 007510
Thermus thermophilus HB8eubacteriaNC_007535Thiobacillus denitrificans ATCC2525eubacteriaNC_007404	Thermohifida fusca VX	eubacteria	NC 007333
Thiobacillus denitrificans ATCC2525 eubacteria NC_007404	Thermus thermonhilus HB8	eubacteria	NC 006461
_	Thiobacillus denitrificans ATCC2525	eubacteria	NC_007404

Name	Superkingdom	Accession
Thiomicrospira crunogena XCL-2	eubacteria	NC 007520
Tropheryma whipplei str. Twist	eubacteria	NC_004572
Vibrio cholerae O1 biovar eltor str. N16961 chromosome I	eubacteria	NC_002505
Vibrio vulnificus CMCP6 chromosome I	eubacteria	NC_004459
Vibrio vulnificus CMCP6 chromosome II	eubacteria	NC_004460
Wolbachia endosymbiont strain TRS of Brugiamalayi	eubacteria	NC_006833
Wolinella succinogenes DSM1740	eubacteria	NC_005090
Xanthomonas axonopodis pv. citri str. 306	eubacteria	NC_003919
Xanthomonas campestris pv. campestris str. 8004	eubacteria	NC_007086
Xanthomonas campestris pv. campestris str. ATCC33913	eubacteria	NC_003902
Xanthomonas campestris pv. vesicatoria str. 85-10	eubacteria	NC_007508
Xanthomonas oryzae pv. oryzae KACC10331	eubacteria	NC_006834
Xylella fastidiosa 9a5c		NC_002488
Xylella lasticilosa Temecularia I Versinia pagudetukoreularia ID22052		NC_004556
Peo tourus gonomo 12		NC_007210
Bos taurus genome 13	eukarvote	NC_007310
Bos taurus genome 14	eukarvote	NC 007312
Bos taurus genome 15	eukarvote	NC_007313
Bos taurus genome 16	eukarvote	NC_007314
Bos taurus genome 17	eukarvote	NC_007315
Bos taurus genome 18	eukarvote	NC 007316
Bos taurus genome 19	eukarvote	NC 007317
Bos taurus genome 20	eukarvote	NC 007318
Bos taurus genome 21	eukarvote	NC 007319
Bos taurus genome 22	eukaryote	NC_007320
Bos taurus genome 23	eukaryote	NC_007324
Bos taurus genome 24	eukaryote	NC_007325
Bos taurus genome 25	eukaryote	NC_007326
Bos taurus genome 26	eukaryote	NC_007327
Bos taurus genome 27	eukaryote	NC_007328
Bos taurus genome 28	eukaryote	NC_007329
Bos taurus genome 29	eukaryote	NC_007330
Bos taurus genome X	eukaryote	NC_007331
Candida albicans genomic DNA, genome /	eukaryote	NC_007436
Cryptococcus neoformans genome 1	eukaryote	NC_006670
Cryptococcus neoformans genome 10	eukaryote	NC_006679
Cryptococcus neoformans genome 12	eukaryole	NC_006681
Cryptococcus neoformans genome 12	eukaryote	NC_006682
Cryptococcus neoformans genome 14	eukarvote	NC_006683
Cryptococcus neoformans genome 2	eukarvote	NC_006684
Cryptococcus neoformans genome 3	eukarvote	NC_006685
Cryptococcus neoformans genome 4	eukarvote	NC_006686
Cryptococcus neoformans genome 5	eukarvote	NC 006687
Cryptococcus neoformans genome 6	eukarvote	NC_006691
Cryptococcus neoformans genome 7	eukaryote	NC_006692
Cryptococcus neoformans genome 8	eukaryote	NC_006693
Cryptococcus neoformans genome 9	eukaryote	NC_006694
Cryptosporidium parvum genome 1	eukaryote	NC_006980
Cryptosporidium parvum genome 2	eukaryote	NC_006981
Cryptosporidium parvum genome 3	eukaryote	NC_006982
Cryptosporidium parvum genome 4	eukaryote	NC_006983
Cryptosporidium parvum genome 5	eukaryote	NC_006984
Cryptosporidium parvum genome 6	eukaryote	NC_006985
Cryptosporidium parvum genome 7	eukaryote	NC_006986
Cryptosporidium parvum genome 8	eukaryote	NC_006987
Drosophila melanogaster genome ZL	eukaryole	INI_U33//9
		[Continued]

Name	Superkingdom	Accession
Drosophila melanogaster genome 2R	eukaryote	NT_033778
Drosophila melanogaster genome 3L	eukaryote	NT_037436
Drosophila melanogaster genome 3R	eukaryote	NT_033777
Drosophila melanogaster genome 4	eukaryote	NC_004353
Drosophila melanogaster genome X	eukaryote	NC_004354
Leishmania major strain Friedlin genome 27	eukaryote	NC_007268
Leishmania major strain Friedlin genome 29	eukaryote	NC_007270
Leishmania major strain Friedlin genome 4	eukaryote	NC_007245
Saccharomyces cerevisiae genome I	eukaryote	NC_001133
Saccharomyces cerevisiae genome II	eukaryote	NC_001134
Saccharomyces cerevisiae genome III	eukaryote	NC_001135
	eukaryote	NC_001136
	eukaryote	NC_001141
	eukaryole	NC_001137
	eukaryole	NC_001130
		NC_001140
Saccharomyces cerevisiae genome Y	eukaryote	NC_001140
Saccharomyces cerevisiae genome XI	eukaryote	NC_001142
Saccharomyces cerevisiae genome XII	eukaryote	NC 001143
Saccharomyces cerevisiae genome XIII	eukaryote	NC 001145
Saccharomyces cerevisiae genome XIV	eukaryote	NC 001146
Saccharomyces cerevisiae genome XV	eukarvote	NC_001147
Saccharomyces cerevisiae genome XVI	eukarvote	NC_001148
Trypanosoma brucei TREU927 genome 1	eukarvote	NC 007334
Trypanosoma brucei TREU927 genome 10	eukarvote	NC 007283
Trypanosoma brucei TREU927 genome 11 scaffold 1	eukarvote	NT 165288
Trypanosoma brucei TREU927 genome 2	eukarvote	NC 005063
Trypanosoma brucei TREU927 genome 3	eukaryote	NC_007276
Trypanosoma brucei TREU927 genome 4	eukaryote	NC_007277
Trypanosoma brucei TREU927 genome 5	eukaryote	NC_007278
Trypanosoma brucei TREU927 genome 6	eukaryote	NC_007279
Trypanosoma brucei TREU927 genome 7	eukaryote	NC_007280
Trypanosoma brucei TREU927 genome 8	eukaryote	NC_007281
Trypanosoma brucei TREU927 genome 9	eukaryote	NC_007282
Trypansomabrucei TREU927 genome 11 scaffold 2	eukaryote	NT_165287
Acanthamoeba polyphaga mimivirus	virus	NC_006450
Adoxophyes honmai nucleopolyhedrovirus	virus	NC_004690
Aeromonas phage 31	virus	NC_007022
African swine fever virus	virus	NC_001659
Agrotis segetum granulovirus	virus	NC_005839
Alcelaphine herpesvirus 1	virus	NC_002531
Ambystoma tigrinum virus	VIrus	NC_005832
Amsacta moorei entomopoxvirus	VIIUS	NC_002520
Ateline herpesvirus 3	VIIUS	NC_001987
Autographa californica nucleopolyneorovirus	virus	NC_001023
bacteriophage 44 RRZ.ol	virus	NC_005135
bacteriophage G1	virus	NC_005200
bacteriophage K//P/0	virus	NC_005083
hacteriophage RM378	virus	NC_004735
hacteriophage SPBc2	virus	NC_001884
bacteriophage S-PM2 virion	virus	NC_006820
bacteriophage T5 virion	virus	NC 005859
Bombyx mori nucleopolyhedrovirus	virus	NC 001962
Bovine herpesvirus 1	virus	NC 001847
Bovine herpesvirus 4	virus	NC 002665
Bovine herpesvirus 5	virus	NC_005261

Name	Superkingdom	Accession
Bovine papular stomatitis virus	virus	NC 005337
Callitrichine herpesvirus 3	virus	NC_004367
Camelpoxvirus	virus	NC_003391
Canarypoxvirus	virus	NC_005309
Cercopithecine herpesvirus 1	virus	NC_004812
Cercopithecine herpesvirus 15	virus	NC_006146
Cercopithecine herpesvirus 17	virus	NC_003401
Cercopithecine herpesvirus 2	virus	NC_006560
Cercopithecine herpesvirus 7	virus	NC_002686
Cercopithecine herpesvirus 8	virus	NC_006150
Chimpanzee cytomegalovirus	virus	NC_003521
Choristoneura fumiferana defective nucleopolyhedrovirus	virus	NC_005137
Choristoneura fumiferana MNPV	virus	NC_004778
Chrysodeixis chalcites nucleopolyhedrovirus	virus	NC_007151
Cowpox virus	virus	NC_003663
Cryptophlebia leucotreta granulovirus	virus	NC_005068
Culex nigripalpus baculovirus	virus	NC_003084
Cyanophage P-SSM2	virus	NC_006883
Cyanophage P-SSM4	virus	NC_006884
Cydia pomonella granulovirus	virus	NC_002816
Ectocarpus siliculosus virus	virus	NC_002687
Ectromelia virus	virus	NC_004105
Emiliania huxleyi virus 86	virus	NC_007346
Enterobacteria phage RB43	virus	NC_007023
Enterobacteria phage RB49	virus	NC_005066
Enterobacteria phage RB69	virus	NC_004928
Enterobacteria phage T4	virus	NC_000866
Epiphyas postvittana nucleopolyhedrovirus	virus	NC_003083
Equid herpesvirus 1	virus	NC_001491
Equid herpesvirus 2	virus	NC_001650
Equid herpesvirus 4	virus	NC_001844
Fowipox virus	virus	NC_002188
Frogvirus 3	virus	NC_005946
Gallid herpesvirus 1	VIRUS	NC_006623
Gallid herpesvirus 2	VIrus	NC_002229
Galild herpesvirus 3	VIrus	NC_002577
Goatpox virus	VIrus	NC_004003
Helicoverpa armigera nuclearpoiynedrosisvirus	VIIUS	NC_003094
Helicoverpa zea single nucleocapsid nucleopolynedrovirus	VIIUS	NC_003349
Heliocoverpa armigera nucleopolyneurovirus G4	VILUS	NC_002054
	VILUS	NC_004150
	VILUS	NC_001700
Human herpesvirus 2 (strain Dumas)	VILUS	NC_001248
Human herpesvirus 3 (sirain Dunias)	VILUS	NC_001346
Human herpesvirus 5 (laboratory strain AD160)	VILUS	NC_001345
Human herpesvirus 5 (laboratory strain Ap 109)	VILUS	NC_001347
Human herpesvirus 6	virus	NC_001664
Human herpesvirus 6B	virus	NC_000808
Human herpesvirus 7	virus	NC_001716
Human herpesvirus 8 genome	virus	NC_003409
Ictalurid hernesvirus 1	virus	NC 001493
Infectious spleen and kidney necrosis virus	virus	NC 003494
Invertebrate iridescent virus 6	virus	NC 003038
Lactobacillus plantarum bacteriophage LP65virion	virus	NC_006565
Lumpy skin disease virus	virus	NC 003027
Lymantria dispar nucleopolyhedrovirus	virus	NC 001973
Lymphocystis disease virus 1	virus	NC 001824
		[Continued]

Name	Superkingdom	Accession
Lymphocystis disease virus-isolate China	virus	NC 005902
Macaca fuscata rhadinovirus	virus	NC_007016
Mamestra configurata NPV-A	virus	NC_003529
Mamestra configurata nucleopolyhedrovirus B	virus	NC_004117
Melanoplus sanguinipes entomopoxvirus	virus	NC_001993
Meleagrid herpesvirus 1	virus	NC_002641
Molluscum contagiosum virus	virus	NC_001731
Monkeypox virus	virus	NC_003310
Muledeerpox virus	virus	NC_006966
Murid herpesvirus 1	virus	NC_004065
Murid herpesvirus 2	virus	NC_002512
Murid herpesvirus 4	virus	NC_001826
Mycobacteriophage Bxz1 virion	virus	NC_004687
Mycobacteriophage Omega virion	virus	NC_004688
Myxoma virus	virus	NC_001132
Orf virus	virus	NC_005336
Orgyia pseudotsugata multicapsid nucleopolyhedrovirus	virus	NC_001875
Ostreid herpesvirus 1	virus	NC_005881
Paramecium bursaria Chlorellavirus 1	virus	NC_000852
Phthorimaea operculella granulovirus	virus	NC_004062
Plutella xylostella granulovirus	virus	NC_002593
Psittacid herpesvirus 1	virus	NC_005264
Psuedomonas phage phiKZ	virus	NC_004629
Rabbit fibroma virus	virus	NC_001266
Rachiplusia ou multiple nucleopolyhedrovirus	virus	NC_004323
Saimiriine herpesvirus 2	virus	NC_001350
Sheeppox virus	virus	NC_004002
Shrimp whitespot syndrome virus	virus	NC_003225
Singapore grouper iridovirus	virus	NC_006549
Spodoptera exigua nucleopolyhedrovirus	virus	NC_002169
Spodoptera litura nucleopolyhedrovirus	virus	NC_003102
Staphylococcus phage K virion	virus	NC_005880
Staphylococcus phage Twort	virus	NC_007021
Suid herpesvirus 1	virus	NC_006151
Swinepox virus	virus	NC_003389
Trichoplusia ni SNPV virus	virus	NC_007383
Tupaia herpesvirus	virus	NC_002794
Vaccinia virus	virus	NC_001559
Variola virus	virus	NC_001611
Xestiac-nigrum granulovirus	virus	NC_002331
Yaba monkey tumorvirus	virus	NC_005179
Yaba-like disease virus	virus	NC_002642

$$\tau_m = \frac{\alpha_m}{\gamma}$$

 τ changes at each iteration of the process, and is the ratio of two other values α and γ .

 α is calculated for each iteration *m* as follows:

$$\alpha_m = 1 - \left(\frac{m-1}{t}\right)$$

where *m* is the number of the current iteration, and *t* the number of total iterations requested. Therefore, the number of iterations of the SOM, a parameter chosen at the start of the process, determines the gradient at which α will decrease as the iterations progress.

Whereas α is the same for all cells in the SOM and changes according to the iteration number only, γ is the Euclidean distance on the SOM from the weight vector being trained within range \mathcal{R} of the winning weight vector. **Table 3.** Viral genomes used for the SOM covering a wide range of viruses, shown in Figure 2. 579 viral genomes have at least 10kb of sequence. This is approximately 35% of all fully sequenced viral genomes available at the time of the analysis.

		Bacillus phage PZA
Name	Accession	Japanese encephalitis virus
Bovine adenovirus 2	AC 000001	Achole plasmaphage L2
Bovine adenovirus 2		Venezuelan equine encephalitis
Canine adenovirus type 1	AC_000003	virus
Duck adenovirus 1		Avian infectious bronchitis virus
Human adenovirus type 12		Human adenovirus F
Human adenovirus type 12		Human adenovirus A
Human adenovirus type 17		Bovine viral diarrheavirus 1
Human adenovirus type 2		Dengue virus type 2
Porcine adenovirus 5		Dengue virus type 3
Simian adenovirus 21	$AC_{0000009}$	Dengue virus type 1
Simian adenovirus 25	AC_000010	Equid herpesvirus 1
Murine adenovirus 1		Cryphonectria hypovirus 1
Fowl adenovirus 9	AC_000012	Ictalurid herpesvirus 1
Fowl adenovirus 1	AC_000013	Measles virus
Human adenovirus type 11	AC_000014	O'nyong-nyong virus
Turkey adenovirus 3	AC_000015	Rabies virus
Human adenovirus type 1	AC_{000017}	Ross River virus
Human adenovirus type 7	AC_000017	Sindbis virus
Human adenovirus type 7		Sendai virus
Canine adenovirus type 33		Vaccinia virus
Paramecium hursaria Chlorella	NC 000852	Vesicular stomatitis Indiana virus
	NC_000032	West Nile virus
Viral hemorrhagic senticemia virus	NC 000855	Cell fusing agent virus
Enterobacteria phage T/	NC_000866	Beet vellows virus
Alteromonas nhage PM2	NC_000867	Enterobacteria phage T7
Strentococcus thermonhilus	NC_000871	Lake Victoria marburg virus
hacterionhage Sfi19	110_000071	Bacteriophage P4
Strentococcus thermonhilus	NC 000872	Variola virus
hacterionhage Sfi21	110_000072	Sonchus yellow net virus
Lactobacillus bacterionbage phi adb	NC 000896	Autographa californica
Human hernesvirus 6B	NC_000898	nucleopolyhedrovirus
Fowl adenovirus D	NC_000899	Rice tungro spherical virus
Bacteriophage VT2-Sa	NC_000902	Equid herpesvirus 2
Snakehead rhabdovirus	NC_000903	Infectious hematopoietic necrosis
Bacteriophage 933W	NC_000924	virus
Enterobacteria phage Mu	NC_000929	African swine fever virus
Acyrthosiphon pisum bacteriophage	NC_000935	Citrus tristeza virus
APSF-1		Human herpesvirus 6
Murine adenovirus A	NC 000942	Tick-borne encephalitis virus
Murray Valley encephalitis virus	NC 000943	Haemophilus phage HP1
Myxomavirus	NC 001132	Lactococcus phage c2
Rabbit fibromavirus	NC_001266	Human herpesvirus 7
Bacteriophage phi YeO3-12	NC 001271	Fowl adenovirus A
Enterobacteria phage 186	NC 001317	Human immunodeficiency virus 2
Mycobacterium phage L5	NC 001335	Snakehead retrovirus
Sulfolobus spindle-shaped virus 1	NC 001338	Molluscum contagiosum virus
Human herpesvirus 4	NC 001345	Canine adenovirus
Human herpesvirus 5	NC 001347	Human foamy virus
(laboratory strain AD169)		Human respiratory syncytial virus
Human herpesvirus 3 (strain Dumas)	NC 001348	Papaya ringspot virus
Saimiriine herpesvirus 2	NC 001350	Barmah Forest virus
Simian foamy virus	NC 001364	Human spuma retrovirus
· · · · · ·		Human parainfluenza virus 3
	[Continued]	

Name

Human adenovirus C

Bacteriophage lambda

Enterobacteria phage PRD1

Accession

NC 001405

NC 001416

NC_001421 NC_001423 NC_001437 NC_001447 NC_001449

NC_001451 NC_001454

NC_001460 NC_001461 NC_001474 NC_001475 NC_001477 NC_001491 NC_001492 NC_001493 NC_001498

NC_001512 NC_001542 NC_001544

NC_001547 NC_001552 NC_001559 NC_001560 NC_001563 NC_001564 NC_001598 NC_001604 NC_001608

NC_001609 NC_001611 NC_001615

NC_001623

NC_001632 NC_001650 NC_001652

NC_001659 NC_001661 NC_001664

NC_001672 NC_001697 NC_001706

NC_001716 NC_001720 NC_001722 NC_001724 NC_001731 NC_001734 NC_001736 NC_001785 NC_001785 NC_001795 NC_001796 [Continued]

Name	Accession	Name	Accession
Human herpesvirus 2	NC 001798	Mumps virus	NC_002200
Respiratory syncytial virus	NC 001803	Equine foamy virus	NC_002201
Human herpesvirus 1	NC_001806	Streptococcus thermophilus	NC_002214
Louping ill virus	NC_001809	bacteriophage Sfi11	
Duck adenovirus A	NC_001813	Gallid herpesvirus 2	NC_002229
Lymphocystis disease virus 1	NC_001824	Northern cereal mosaic virus	NC_002251
Streptococcus phage Cp-1	NC_001825	I ransmissible gastroenteritis virus	NC_002306
Murid herpesvirus 4	NC_001826	Staphylococcus aureus	NC_002321
Bovine foamy virus	NC_001831	Vostiac pigrum grapulovirus	NC 002221
Bacteriophage sk1	NC_001835	Enterobacteria phage P22	NC 002371
Little cherry virus 1	NC_001836	Pseudomonas phage D3	NC 002484
Sweet polato reathery motile virus	NC_001841	Staphylococcus aureus prophage	NC 002486
Equid herpesvirus 4 Murino hopatitic virus strain A50	NC_001846	phiPV83	110_002100
Bovine hernesvirus 1	NC_001847	Frog adenovirus	NC 002501
Walleve dermal sarcoma virus	NC_001867	Murid herpesvirus 2	NC 002512
Simian-Human immunodeficiency	NC_001870	Ovine adenovirus A	NC_002513
virus		Mycoplasma virus P1	NC_002515
Feline foamy virus	NC 001871	Roseophage SIO1	NC_002519
Rhopalosiphum padi virus	NC 001874	Amsacta moorei entomopox virus	NC_002520
Orgyia pseudotsugata	NC_001875	Bovine ephemeral fever virus	NC_002526
nucleopolyhedrovirus	-	Alcelaphine herpesvirus 1	NC_002531
Bovine adenovirus B	NC_001876	Equine arteritis virus	NC_002532
Bacteriophage SPBc2	NC_001884	Lactate dehydrogenase-elevating	NC_002534
Enterobacteria phage P2	NC_001895	VIrus Zaina akala vinua	NO 000540
Mycobacteriophage D29	NC_001900	Zalre ebola virus	NC_002549
Bacteriophage N15	NC_001901	Blutelle vylestelle grapulovirue	NC_002502
Methanobacterium phage psiM2	NC_001902	Newcastle disease virus	NC_002595
Hendra Virus	NC_001906	Methanothermobacter wolfeii	NC_002628
	NC_001909	prophage psiM100	110_002020
labo Ora virus	NC_001921	Dengue virus type 4	NC 002640
Myconlasma arthritidis	NC_001924	Meleagrid herpesvirus 1	NC_002641
bacteriophage MAV1	110_001042	Yaba-like disease virus	NC_002642
Hemorrhagic enteritis virus	NC 001958	Human coronavirus 229E	NC_002645
Porcine reproductive and respiratory	NC 001961	Bacillus phage GA-1	NC_002649
syndrome virus	—	Heliocoverpa armigera	NC_002654
Bombyx mori nucleopolyhedrovirus	NC_001962	nucleopolyhedrovirus G4	
Lymantria dispar nucleopolyhedrovirus	NC_001973	Mycobacteriophage Bxb1	NC_002656
Bacteriophage phi-C31	NC_001978	Classical swine fever virus	NC_002657
Ateline herpesvirus 3	NC_001987	Staphylococcus aureus temperate	NC_002661
Bovine respiratory syncytial virus	NC_001989	Phage phi SLI	
Melanoplus sanguinipes entomopox	NC_001993	Booteriophage bll 285	NC_002665
VII'US		Bacteriophage bll 286	NC_002667
Yellow fever virus	NC_002031	Bacteriophage bll 309	NC_002668
Bovine viral diarmea virus genolype 2	NC_002032	Bacteriophage bll 310	NC_002669
Streptococcus thermophilus	NC_002007	Bacteriophage bIL311	NC 002670
bacterionhage DT1	NC_002072	Bacteriophage blL312	NC 002671
Bovine parainfluenza virus3	NC 002161	Bovine adenovirus D	NC_002685
Enterobacteria phage HK022	NC_002166	Cercopithecine herpesvirus 7	NC_002686
Bacteriophage HK97	NC 002167	Ectocarpus siliculosus virus	NC_002687
Spodoptera exigua	NC_002169	Porcine adenovirus C	NC_002702
nucleopolyhedrovirus	_	Bacteriophage Tuc2009	NC_002703
Streptococcus thermophilus	NC_002185	Nipah virus	NC_002728
bacteriophage 7201		Bacteriophage HK620	NC_002730
Fowlpox virus	NC_002188	Lactococcus lactis bacteriophage	NC_002747
lupaia paramyxovirus	NC_002199	1 F 90 I-1	
	[Continued]		[Continued]

Name	Accession	Name	Accession
Tupaia herpesvirus	NC 002794	Mamestra configurata NPV-A	NC 003529
Lactococcus phage BK5-T	NC_002796	Cryphonectria hypovirus	NC 003534
Spring viremia of carp virus	NC_002803	Dasheen mosaic virus	NC 003537
Cydia pomonella granulovirus	NC_002816	Lettuce mosaic virus	NC 003605
Taura syndrome virus	NC_003005	Maize chlorotic dwarf virus	NC 003626
Lumpy skin disease virus	NC_003027	Modoc virus	NC 003635
Invertebrate iridescent virus 6	NC_003038	Cowpox virus	NC 003663
Avian paramyxovirus 6	NC_003043	Rio Bravo virus	NC 003675
Bovine coronavirus	NC_003045	Apoi virus	NC_003676
Streptococcus pneumoniae	NC_003050	Pestivirus Reindeer-1	NC_003677
bacteriophage MM1		Pestivirus Giraffe-1	NC_003678
Epiphyas postvittana	NC_003083	Border disease virus 1	NC_003679
nucleopolyhedrovirus		Powassan virus	NC_003687
Culex nigripalpus baculovirus	NC_003084	Langat virus	NC_003690
Bacteriophage Mx8	NC_003085	Rice yellow stunt virus	NC_003746
Simian hemorrhagic fever virus	NC_003092	Acyrthosiphon pisum virus	NC_003780
Helicoverpa armigera	NC_003094	Sweet potato mild mottle virus	NC_003797
nuclearpolyhedrosis virus	NO 000400	Eastern equine encephalitis virus	NC_003899
Spodopteralitura	NC_003102	Aura virus	NC_003900
nucleopolynedrovirus		Vibriophage VpV262	NC_003907
Sulfolobus islandicus filamentous	NC_003157 NC_003214	Western equine encephalomyelitis	NC_003908
virus		Salmon nancreas disease virus	NC 003930
Semliki forest virus	NC 003215	Tamana bat virus	NC_003996
Bacteriophage A118	NC_003216	Human adenovirus B	NC_004001
Shrimp white spot syndrome virus	NC_003225	Sheeppox virus	NC_004002
Australian bat lyssa virus	NC_003243	Goatpox virus	NC 004003
Human adenovirus E	NC_003266	Leek vellow stripe virus	NC_004011
Bacteriophage phiCTX	NC_003278	Ovine adenovirus 7	NC_004037
Bacteriophage phiETA	NC_003288	Phthorimaea operculella	NC_004062
Bacteriophage PSA	NC_003291	granulovirus	
Bacteriophage 13	NC_003298	Murid herpesvirus 1	NC_004065
Mankovnov virue	NC_003309	Lactococcus lactisbacteriophage	NC_004066
Rectoriophage K120	NC_003310	ul36	NO 004074
Haemonhilus nhage HP2	NC_003315		NC_004074
Sinorhizobium meliloti phage PBC5	NC_003324	VIIUSPIIICIII Sulfalabua ialandiaua rad abanad	NC_004064
Halovirus HF2	NC_003345	virus 2	NC_004080
Helicoverpa zea nucleopolyhedrovirus	NC 003349	Sulfolobus islandicus rod-shaned	NC 004087
Bacteriophage P27	NC_003356	virus 1	110_004007
Mycobacteriophage TM4	NC_003387	Ectromelia virus	NC_004105
Swinepox virus	NC_003389	Lactobacillus casei bacteriophage A2	NC_004112
Cyanophage P60	NC_003390	Mamestra configurata	NC_004117
Camelpox virus	NC_003391	nucleopolyhedrovirus B	
Cercopitnecine nerpesvirus 17	NC_003401	Montana myotis leukoencephalitis	NC_004119
Human herpesvirus 8	NC_003409	virus	
Slooping discose virus	NC_003417	Human metapneumovirus	NC_004148
Dercine enidemic diarrhea virus	NC_003435	Heliothis zea virus 1	NC_004156
Human parainfluenza virus 2	NC_003443	Dugbe virus segment L	NC_004159
Shigella flexneri bacterionbage V	NC_003444	Chikungunya virus	NC_004161
Human parainfluenza virus 1 strain	NC_003461	Chikungunya virus Ractorionhago R102	NC_004102
Washington/1964		Bacteriophage SPP1	NC_004105
Infectious spleen and kidnev	NC 003494	Bacteriophage phi-105	NC 004167
necrosis virus		Bacteriophage r1t	NC 004302
Chimpanzee cytomegalovirus	NC_003521	Streptococcus thermophilus	NC 004303
Bacteriophage phi3626	NC_003524	bacteriophage O1205	
Stx2 converting bacteriophage I	NC_003525	Bacteriophage phig1e	NC_004305
	[Continued]		[Continued]

Accession

NC 004831

NC_004902

NC 004913

NC_004914

NC_004927

NC_004928

NC_004996

NC_005028

NC_005029

NC 005036

NC 005038 NC 005039

NC_005045

NC_005056 NC_005062

NC_005064

NC_005065

NC_005066

NC_005068

NC_005069

NC_005083 NC 005084

NC_005091

NC_005093

NC_005135

NC_005137

NC_005147

NC_005178 NC_005179

NC_005258

NC 005259

NC 005260

NC 005261 NC_005262

NC_005263

NC_005264

NC_005265

NC_005282

NC_005283

NC_005284

NC 005294

NC_005301

NC_005309 NC_005336

NC_005337 NC_005339

NC_005340

NC_005342

NC_005344

NC_005345

Name	Accession	Name
Salmonella typhimurium phage ST64B	NC_004313	Enterobacteria phage SP6 Xanthomonas oryzae bacteriophage
Rachiplusia ou multiple	NC_004323	Xp10
nucleopolyhedrovirus		Stx1 converting bacteriophage
Burkholderia cepacia phage Bcep781	NC_004333	Stx2 converting bacteriophage II
Saimonella typnimurium bacteriopnage	NC_004348	Halovirus HF1
ST04T Alkhurma virus	NC 004355	Enteropacteria phage RB69
Callitrichine hernesvirus 3	NC_004367	Banava loaf distortion mosaic
Treeshrew adenovirus	NC 004453	notyvirus
Vibrio harvevi bacteriophage VHML	NC 004456	Onion vellow dwarf virus
Bacteriophage IN93	NC_004462	Goose paramyxovirus SF02
Pseudomonas aeruginosa phage PaP3	NC_004466	Adoxophyes orana granulovirus Yokose virus
Streptococcus pyogenes phage 315.1	NC_004584	Bacteriophage phiKMV
Streptococcus pyogenes phage 315.2	NC_004585	Bacteriophage WPhi
Streptococcus pyogenes phage 315.3	NC_004586	Omsk hemorrhagic fever virus
Streptococcus pyogenes phage 315.5	NC_004588	Kamiti River virus
Streptococcus pyogenes phage 315.6	NC 004589	Enterobacteria phage RB49
Staphylococcus aureus phage phili	NC 004615	Cryptophlebia leucotreta granulovirus
Staphylococcus aureus phage phi12	NC 004616	Bacteriophage PY54
Staphylococcus aureus phage phi13	NC_004617	Bacteriophage KVP40
Pseudomonas phage phiKZ	NC_004629	Fer-de-lance virus
Bacteriophage phi-BT1	NC_004664	Burkholderia cepacia phage
Pseudomonas phage gh-1	NC_004665	BcepNazgul
Grapevine leaf roll-associated virus 3	NC_004667	Hirame rhabdovirus
Staphylococcus pilage 44AnjD Staphylococcus aureus phage phiP68	NC_004676	Bacteriophage 44RR2.8t
Mycobacteriophage Che8	NC_004680	
Mycobacteriophage CJW1	NC 004681	Human coronavirus OC43
Mycobacteriophage Bxz2	NC 004682	Bacteriophage D3112
Mycobacteriophage Che9c	NC_004683	Yaba monkey tumor virus
Mycobacteriophage Rosebush	NC_004684	Bacillus thuringiensis bacteriophage
Mycobacteriophage Corndog	NC_004685	Bam35c
Mycobacteriophage Che9d	NC_004686	Mycobacteriophage PG1
Mycobacteriophage Bxz1	NC_004687	Bacteriophage Aeh1
Mycobacteriophage Barnyard	NC_004680	Bovine nerpesvirus 5 Burkhelderia eonacia phago
Adoxophyes honmai	NC_004690	Boon22
nucleopolyhedrovirus		Burkholderia cenocepacia phage
SARS coronavirus	NC_004718	Bcep1
Grapevine rootstock stem lesion	NC_004724	Psittacid herpesvirus 1
associated virus		Sulfolobus spindle-shaped virus 2
Bacteriophage RM378	NC_004735	Bacteriophage Felix01
Staphylococcus phage phiN315	NC_004740	Dolphin morbillivirus
Lactococcus phage P335	NC_004745	Bacteriophage philu260
Enterobacteria phage epsilon15	NC_004740	Crimean Congo bemorrhagic fever
Yersinia pestis phage phiA1122	NC_004777	virus segment l
Choristoneura fumiferana MNPV	NC 004778	
Cercopithecine herpesvirus 1	NC_004812	Orfvirus
Phage phi4795	NC_004813	Bovine papularstomatitis virus
Streptococcus phage C1	NC_004814	Mossman virus
Bacteriophage phBC6A51	NC_004820	Bacteriophage PSP3
Bacteriophage phBC6A52	NC_004821	Burkholderia cepacia phage Bcep43
	NC 004827	
	110_00+000	Dacteriopriage VVVD

Name	Accession	Name	Accession
Lactobacillus johnsonii prophage	NC_005354	Rinderpest virus	NC_006296
Lj928	_	Bovine adenovirus A	NC_006324
Lactobacillus johnsonii prophage Lj965	NC_005355	Bacteriophage 11b	NC_006356
Bacteriophage 77	NC_005356	Peste-des-petits-ruminants virus	NC_006383
Bordetella phage BPP-1	NC_005357	Simian parainfluenza virus 41	NC_006428
Sulfolobus spindle-shaped virus	NC_005360	Mokola virus	NC_006429
Ragged Hills		Simian parainfluenza virus5	NC_006430
Sulfolobus spindle-shaped virus	NC_005361	Sudan ebola virus	NC_006432
Kamchatka-1	NO 005000	Acanthamoeba polyphaga mimivirus	NC_006450
Bordetella phage BMP-1	NC_005808	Varroa destructor virus 1	NC_006494
Bordetella phage BIP-1	NC_005809	Bacteriophage B3	NC_006548
Asidianus filomentus virus 1	NC_005822	Singapore grouper iridovirus	NC_006549
	NC_005830	Osulu virus Decudemenes corruginese phage E116	NC_006552
Ambyotomo tigrinum viruo	NC_005031	Thermoprotous topox opherical virus 1	NC_000552
Enterohaetoria phago T1	NC_005032	Pacillus darkii bastarianbaga PC M1a	NC_006557
	NC_005033	Cotob virue	NC_006559
Agrous segeturi granulovirus	NC_005039	Getall vilus	NC_000550
bacteriophage ST104	NC_005641	Lactobacillus plantarum	NC_000500
Enterobacteria phage P1	NC 005856	bacteriophage L P65	NC_000505
Bacteriophage phik()2	NC_005857	Human coronavirus HKU1	NC 006577
Bacteriophage T5	NC_005850	Pneumonia virus of mice 13666	NC 006570
Porcine adenovirus A	NC_005869	Gallid hernesvirus 1	NC_006623
Pyrobaculum spherical virus	NC 005872	Cotesia congregata virus segment	NC 006633
Kakugo virus	NC_005876	Circle 1	140_000000
Vibriophage VP2	NC_005879	Cotesia congregata virus segment	NC 006634
Staphylococcus phage K	NC_005880	Circle 2	
Ostreid herpesvirus 1	NC 005881	Cotesia congregata virus segment	NC 006635
Burkholderia cenocepacia phage	NC 005882	Circle 3	
BcepMu	_	Cotesia congregata virus segment	NC 006636
Pseudomonas aeruginosa	NC 005884	Circle 4	_
bacteriophage PaP2	—	Cotesia congregata virus segment	NC_006637
Actinoplanes phage phiAsp2	NC_005885	Circle 5	—
Burkholderia cenocepacia phage	NC_005886	Cotesia congregata virus segment	NC_006638
BcepB1A		Circle 6	
Burkholderia cepacia complex phage	NC_005887	Cotesia congregata virus segment	NC_006639
BcepC6B		Circle 7	
Vibriophage VP5	NC_005891	Cotesia congregata virus segment	NC_006641
Sulfolobus turreted icosahedral virus	NC_005892	Circle 9	
Bacteriophage phiAI3	NC_005893	Cotesia congregata virus segment	NC_006642
Lymphocystis disease virus-isolate	NC_005902		
China Na adiarian a artifan		Cotesia congregata virus segment	NC_006643
Neodiprion sertifer	NC_005905		
		Colesia congregata virus segment	NC_000044
Frog virus 3	NC_005906	Cotosia congregata virus segment	NC 006645
Bacterionhage phiMEV/1	NC_005940	Circle 13	NC_000045
Maize fine streak virus	NC 005974	Cotesia congregata virus segment	NC 006646
Maize mosaic virus	NC_005975	Circle 14	140_000040
Simian adenovirus A	NC_006144	Cotesia congregata virus segment	NC 006648
Cerconithecine hernesvirus 15	NC_006146	Circle 17	
Cercopithecine herpesvirus 8	NC_006150	Cotesia congregata virus segment	NC 006649
Suid herpesvirus 1	NC 006151	Circle 18	
Watermelon mosaic virus	NC 006262	Cotesia congregata virus segment	NC 006650
Sulfolobus tengchongensis spindle-sha	ped virus	Circle 19	
STSV1	NC_006268	Cotesia congregata virus segment	NC_006651
Human herpesvirus 5 (wildtype strain	NC_006273	Circle 20	_
Merlin)	_	Cotesia congregata virus segment	NC_006653
	[Continued]		[Continued]

Name	Accession	Name	Accession
Circle 22		Microplitis demolitor bracovirus	NC 007039
Cotesia congregata virus segment Circle 23	NC_006654	segment N Microplitis demolitor bracovirus	NC 007040
Cotesia congregata virus segment Circle 25	NC_006655	segment L Microplitis demolitor bracovirus	NC 007041
Cotesia congregata virus segment Circle 26	NC_006656	segment I Microplitis demolitor bracovirus	NC 007044
Cotesia congregata virus segment	NC_006657	segment O Bacteriophage PT1028	NC 007045
Cotesia congregata virus segment	NC_006658	Bacteriophage 187	NC_007046
Cotesia congregata virus segment	NC_006659	Bacteriophage 53	NC_007048
Cotesia congregata virus segment	NC_006660	Bacteriophage 26384	NC_007050
Cotesia congregata virus segment	NC_006661	Bacteriophage 34	NC_007052
Cotesia congregata virus segment	NC_006662	Bacteriophage 47	NC_007054
Bacteriophage S-PM2	NC 006820	Bacteriophage EW	NC_007055 NC_007056
Murine hepatitis virus strain JHM	NC_006852	Bacteriophage 96	NC_007057
Simian adenovirus 1	NC_006879	Bacteriophage ROSA	NC_007058
Cyanophage P-SSP7	NC_006882	Bacteriophage 71	NC_007059
Cyanophage P-SSM2	NC_006883	Bacteriophage 55	NC_007060
Cyanophage P-SSM4	NC_006884	Bacteriophage 29	NC_007061
Lactobacilius plantarum	NC_006936	Bacteriophage 52A	NC_007062
Bacteriophage phi II 001	NC 006038	Bacteriophage 92	NC_007063
Bacteriophage KS7	NC 006940	Bacteriophage X2	NC 007065
Taro vein chlorosis virus	NC 006942	Bacteriophage G1	NC_007066
Mint virus 1	NC 006944	Phytophthora endorna virus 1	NC 007069
Bacillus thuringiensis phage GIL16c	NC 006945	Burkholderia pseudomallei phage	NC 007145
Karshi virus	NC_006947	phi52237	—
Salmonella typhimurium bacteriophage ES18	NC_006949	Vibriophage VP4 Chrysodeixis chalcites	NC_007149 NC_007151
Listonella pelagia phage phiHSIC	NC_006953	nucleopolyhedrovirus	
Muledeerpox virus	NC_006966	Bacteriophage SH1	NC_007217
Vaccinia virus	NC_006998	Bacteriophage JK06	NC_007291
Macaca fuscata rhadinovirus	NC_007016	Emiliania huxleyi virus 86	NC_007346
Streptococcus thermophilus	NC_007019	Trichopiusia ni SNPV virus	NC_007383
Daclenophage 2972	NC 007020	Acidianus two-tailed virus	NC_007409
Stanbylococcus phago Twort	NC_007020	Broda virus	NC_007433
Aeromonas phage 31	NC_007021	Grapevine leaf roll-associated virus 2	NC_007447
Enterobacteria phage RB43	NC_007022	Enterobacteria nhage 17	NC 007440
Xanthomonas campestris py	NC 007023	Enterobacteria phage PR3	NC 007450
pelargonii phage Xp15		Enterobacteria phage PR4	NC 007451
Feline coronavirus	NC 007025	Enterobacteria phage PR5	NC 007452
Microplitis demolitor bracovirus	NC_007034	Enterobacteria phage PR772	NC_007453
segment G	-	J-virus	NC_007454
Microplitis demolitor bracovirus	NC_007035	Coliphage K1F	NC_007456
segment H		Bacillus anthracis phage Cherry	NC_007457
Microplitis demolitor bracovirus	NC_007036	Bacillus anthracis phage Gamma	NC_007458
segment J		Burkholderia cepacia phage Bcep176	NC_007497
segment K	NC_007037	Bacteriophage Lc-Nu	NC_007501
Microplitis demolitor bracovirus segment M	NC_007038		

 τ can therefore be seen to decrease as the SOM progresses, since α decreases, and also to decrease the further one goes away from the winning weight vector, since γ increases.

The range within which weight vectors are trained at each iteration is calculated:

$$\Re_m = \alpha_m S$$

where *S* is the length or breadth of the SOM, whichever is the smaller. The area of the SOM being trained therefore also shrinks as α decreases with increasing iterations.

Once each data vector has found its winning weight vector and trained it, also training the weight vectors within range \Re of the winning weight vector, then one iteration is completed. New values of α , τ and \Re are then calculated, and the second iteration can commence. It can be intuitively grasped that there is a great deal of "churn" in initial iterations of the SOM. When α is close to 1, data vectors will effectively change their winning weight vector to copies of themselves. Only at the limits of the trained area \mathfrak{R} will the effect be subtler. However, as the number of iterations mounts, α will decrease and each data vector will have a relatively weaker effect on its winning weight vector and even less on those weight vectors in its vicinity. Observation (data not shown) of distribution of a simple data set over a SOM through the iterative process shows that a relatively chaotic process dominates until approximately halfway through the nominated number of iterations, at which point structure rapidly builds in the SOM. The final 10% or so of iterations consist mostly of fine-tuning of the final weight vector values. Training SOMs can also be time consuming, especially for large data sets of high dimensionality vectors trained over large numbers of iterations. The longest run presented here (that in Fig. 2) took in excess of 3 weeks on a single 2.8 GHz Intel processor under a Linux operating system. One of the major motivations of this paper was to define ways to reduce SOM training time without losing accuracy or sensitivity.

After the final iteration, each data vector is again compared to each weight vector and assigned to the closest. This results in partition of each data vector to one cell in the SOM, thus spreading the multi-dimensional data across the two-dimensional surface of the SOM. Conversely, each final weight vector in the SOM is assigned to its closest data vector, the *centroid nearest neighbour* (cnn). If the data vectors belong to several categories, each cell in the SOM can be colored according to the origin of its cnn, which is then said to *dominate* that cell in the SOM. This allows the production of colorcoded *dominance maps* indicating the general

Figure 1. Dominance maps for GS-2 applied to a 50×50 SOM over 100 iterations. The eubacterial and viral SOMs are shown at a larger scale owing to their greater detail. Dominance areas are color coded.

Figure 2. Dominance map for GS-2 of 10kb fragments of viruses applied to a 50×50 SOM over 1000 iterations. The category "Bacterio-phages" refers to unclassified phages. Most phages are members of the family *Caudovirales*. The text added to the dominance map shows the general divisions of the *Poxviridae* and *Caudovirales* which form more than one well defined dominance area.

spread of the data vector set over the SOM. NCBI taxonomic categories were used throughout, except for herpesviruses where the International Committee on the Taxonomy of Viruses (ICTV) usage is followed (Davison 2002; Davison et al. 2005; Fauquet et al. 2005).

4. Availability of scripts

All Perl scripts, for processing genomes, calculating genome signatures, and running SOMs are available on request from the author (d.gatherer@mrcvu.gla. ac.uk).

Results

1. SOMs on large sequence datasets

The ability of SOMs to distinguish the origin of fragments of DNA based on their genome signatures, was initially tested using GS-2 (see Methods, section 2, above) measured over fragments of 100 kb. At the time of analysis there were 79 eukaryotic, 156 eubacterial, 30 archaeal and 122 viral genomes with more than 100 kb of sequence each (Table 2). The dimension of the SOM was 50×50 and 100 iterations were used.

At the end of the iterations, dominance areas (see Methods, section 3, above), were used to color the SOM. For the entire data set, "all life" in Figure 1, the superkingdoms of archaea, eubacteria and eukaryota were chosen, along with the unranked category of viruses. Within each of the SOMs applied to the superkingdoms and the viruses, the next level down was used for coloring dominance maps. This is the phylum level in the archaea and eubacteria, and the family level in the viruses. In the eukaryota, the relative scarcity of completely sequenced genomes required a more *ad hoc* classification.

When all input sets are pooled, GS-2 produces a SOM in which eubacterial sequences cluster together (Fig. 1; "All life", green). Archaeal sequences are split into several groups that are situated along the boundary between the eubacteria and the eukaryotes. Likewise, viral sequences are split into one group in the top left corner and other clusters along the eubacterial-eukaryotic border. It is evident that this "all life" SOM does not contribute to the issue of the phylogeny of the three superkingdoms, except to underline that archaea are not derivatives of either eukaryotes or eubacteria.

When the SOM is confined to archaeal sequences (Fig. 1; "Archaea"), those genomes

Figure 3. Dominance maps for GS-2 of 10kb fragments of herpesviruses applied to a 50×50 SOM over 500 iterations. The SOM is colored first according to genus membership and then according to family membership (reduced scale inset).

designated "unclassified" by NCBI, are located well within the territory of the *Euryarchaeota*, strongly suggesting that they belong to this phylum. In general the archaeal inter-phylum boundaries are clear, although the *Crenarchaeaota* are split into two clusters. The predominance of *Euryarchaeota* in terms of area is a reflection of the larger number of complete genomes in that phylum.

Likewise, in the eukaryotes (Fig. 1; "Eukaryota"), the large size of the human genome contributes to a large area dominated by the *Vertebrata*. It should

Figure 4. Dominance maps herpesvirus families, illustrating the effect of varying GS values using 10kb herpesvirus sequences, on a 10×10 SOM (except for GS-3 at 20×20) over 100 iterations.

Figure 5. The density of herpesviral sequences, classed by family, on a 10×10 SOM after 100 iterations. >95% density: red; 5%–95% density: yellow; <5% density: white. The figure in each box is the ratio of sequences in red to yellow areas of the SOM.

be remembered that the classification in the eukaryotes is *ad hoc* owing to the relatively small number of complete genomes. However, it is interesting that the boundaries between the dominance areas are as distinct as those in the archaea.

The situation is considerably more complicated within the eubacteria (Fig. 1; "Eubacteria"), being the superkingdom with the greatest number of completely sequenced genomes. Some eubacterial phyla are rather fragmented in their dominance areas. For instance, the phylum *Firmicutes* occupies several partly adjacent areas. The phylum Deinococcus has two small and rather distant dominance areas, and the Bacteroidetes and Spirochaetes both have small outlying fragments. The Proteobacteria dominate the right side of the SOM and penetrate between the various groups on the left side. The overall impression is of less clear-cut differences in GS-2 between phyla in eubacteria than in eukaryotes or archaea.

A similar situation is observed in the SOM on viral sequences (Fig. 1; "Viruses"). A few viral families, such as the *Baculoviridae*, the family *Mimivirus* and the *Nimaviridae* do manage coherent dominance areas, but all others are extensively mixed. The *Baculoviridae* are the only family of any size than maintain a distinctive dominance area.

This basic illustration of the SOM in action demonstrates that for a single parameter set, namely 50×50 SOM and 100 iterations, different phylogenetic groups exhibit variable degrees of partition across the SOM.

2. Increased resolution SOM on viruses

To increase the resolution of the SOM against viral sequences, GS-2 was reapplied to viral sequences only using 10 kb fragments. This enables a larger number of viral genomes to be analysed, up from 122 to 579, as genomes of 10 kb or more can be included (Table 3). The number of iterations was increased to 1000. The resulting dominance map is shown in Figure 2.

When viral sequences alone are considered at higher resolution, the SOM becomes very complex. The family level classification is maintained for the dominance map but there are now more families, since viruses as small as 10 kb are eligible. Perhaps the most salient feature is that *Poxviridae* are divisible into sheep/goat pox viruses and others (Fig. 2: "sheep/goat" and "other pox"). Additionally phages, within the family *Caudovirales*, tend to be differentially located on the SOM in four major areas, one of which,

Figure 6. The density of herpesviral sequences, classed by family, on a 10×10 SOM of GS-2, run over a varying number of iterations, *i*. >95% density: red; 5%–95% density: yellow; <5% density: white. The figure in each box is the ratio of sequences in red to yellow areas of the SOM.

mycophages, accounts for two of these areas (Fig. 2: "myco- ϕ ", "entero- ϕ " and "cocco- ϕ "). Again the *Baculoviridae* form a noticeably large and coherent cluster. *Herpesviridae*, by contrast, are spread across the entire map.

Herpesviridae (Table 1) are next considered alone under the same conditions as in Figure 2. Dominance maps for this narrower selection are shown in Figure 3.

Figure 3 shows that when family-level taxonomy is considered within herpesviruses, GS-2 distinguishes the ostreid herpesviruses and the ictaluriviruses as two fairly homogenous blocs distinct from the *Alloherpesviridae* (Davison, 2002), comprising the alpha, beta and gamma families. At the genus-level, *Muromegalovirus* alone forms a nearly contiguous bloc although *Mardivirus* nearly does so. The remaining genera, like the families, are considerably mixed across the SOM. Like the wide spread of herpesvirus signatures across the viral SOM, this is a reflection of the degree of sequence heterogeneity with the *Herpesviridae*.

The three figures presented above demonstrate that the SOM is an intriguing tool for the conceptualisation of relationships between genome signatures. However, the evident complexity of some of the topographical arrangements raises serious questions concerning its utility as a diagnostic tool for phylogeny. Therefore, some experiments are described which address this issue in a quantitative way.

3. Effect of length of *k*-mer used to generate genome signature

In order to investigate if genome signatures of longer k give better resolution than k = 2, 10 kb herpesvirus sequences were processed into genome signature of GS-2 to GS-6 and the SOM was trained for 100 iterations (Fig. 4). On first inspection, it does not appear that a higher genome signature provides any better resolution than a lower one. The GS-3 SOM was also run on a 20×20 map, but again this produces no major change to the overall pattern. In all cases, ostreid herpesvirus and ictalurivirus have coherent dominance areas on the SOM. At GS-5, alpha herpesviruses also have a coherent dominance area, but this disappears again at GS-6. In order to further investigate this apparent lack of improvement at higher values of k, the density of sequences of each family was plotted onto the SOM (Fig. 5). Instead of the dominance map approach, in which each cell is colored according to the affiliation of its cnn (Fig. 1–4 are all of this type), cells in which more than 95% of allocated sequences are of a single type are colored red, and those with fewer than 5% of that type are white. Cells between these two extremes are colored yellow. A ratio is then produced of red-to-yellow in each SOM. A perfectly partitioned SOM will therefore have a ratio of infinity, indicating no mixed cells, or more accurately no cells with greater than 5% mixture of the "wrong" family.

Figure 5 demonstrates that family level taxonomy is better determined at higher GS in all five families of herpesviruses. The ratio of high alpha-density (>95%, red) to medium alpha-density (5% to 95%, yellow) increases from 0.88 to 2.83 as the GS increases from 2 to 4. The corresponding increases for the beta and gamma families are from 0.52 to 2.33 and from 1.91 to 2.11 respectively. For the ostreid herpesviral sequences, perfect partition is reached at GS-4 and for the ictalurid viruses at GS-3. This is probably a reflection of the presence of a single virus in each of these categories with a correspondingly lower number of sequences analysed.

4. Effect of length of training phase of SOM

It is therefore apparent that genome signature of longer values of k produce some improvement in the accuracy of the final partition on the SOM.

However, longer k results in longer data vectors, increasing at order 4^k and therefore much slower training of the SOM. One way to speed training of the SOM is simply to reduce the number of training cycles. The effect of the number of iterations on density of each family is displayed in Figure 6.

Figure 6 shows that increasing the number of iterations has a mixed effect on the density of family sequences. The alpha herpesviral sequences increase in density from 0.92 to 1.35 as the number of iterations increases from 10 to 1000, and the beta herpesviruses from 0.52 to 0.83. The ostreid herpesviral sequences are also perfectly clustered at 100 iterations. However, the gamma and ictal-urid sequences are more poorly partitioned at higher numbers of iterations.

5. Jack-knifing analysis

Figures 1–6 provide a largely qualitative impression of the effectiveness of SOMs in correctly assigning the origins of DNA sequences based on their genome signature. To provide a further more quantitative assessment of the parameters of the process, a jack-knifing analysis was carried out. All herpesviral sequences were divided randomly into two groups. Genome signatures and SOMs

for GS-2, 1	l <mark>Okb f</mark> rags,	100 iteration	IS		for 10x10	D, 10kb frags	, 100 iteratio	ns		
sub-family		genus		sub-family			genus			
SOM	Correct	Undecided	Correct	Undecided	sig	Correct	Undecided	Correct	Undecided	
5x5	79	0	64	0	GS-2	84	4.4	64	0	
10x10	84	4.4	79	3.8	GS-3	87	4.4	87	6.5	
20x20	83	31	85	34	GS-4	88	3.8	87	3.8	
30x30	86	59	94	60	GS-5	90	4.1	85	6.1	
40x40	92	75	89	70	GS-6	88	8.5	84	8.5	
50x50	96	79	92	79	GS-7	82	7.2	77	7.2	
100x100	91	78	92	79	GS-8	61	6.5	54	7.8	
for 10x10,	10kb fragn	nents, GS-2			i i Contra di					
	sub-family	f i	genus		Co	nelucior				
iterations	Correct	Undecided	Correct	Undecided	Conclusions.					
10	81	5.1	75	4.4	• L	arger SC	JMs are	more	accurate	
50	80	1.7	74	2.7	but less sensitive					
100	84	4.4	79	3.8	• Ontimal GS is 4 to 5					
500	84	4.1	76	4.1	More iterations slightly increas					
1000	83	4.1	82	6.5						
5000	86	2.7	79	7.2	S	ensitivit	У			
10000	83	4.4	80	1						

Figure 7. Jack-knifing experiments to determine effects of SOM size (top left), GS number (top right) and number of iterations (lower left). The "undecided" column indicates the percentage of sequences in the test set that could not be assigned to a sub-family or genus. The "correct" column indicates the percentage of assignable sequences that were correctly assigned. Optimal values are highlighted in yellow.

were constructed as appropriate using one half. Then the remaining half was applied to the SOM to predict their origin at the family and genus level. To make a prediction concerning the origin of a data vector, the Euclidean distances between that vector and all of the weight vectors of the preconstructed SOM, are calculated. The origin of the nearest weight vector is taken to be the classification of the data vector being tested. Where a data vector falls into a cell on the SOM containing none of the original data vectors used to construct the SOM, its origin is deemed to be "undecided" (Fig. 7).

When SOM size is varied for GS-2 at 100 iterations (Fig. 7, top left table), SOMs of greater than 10×10 introduce considerably uncertainty into the assignment. However, for those sequences that can be assigned, 95% accuracy at the subfamily level is achieved in a 50×50 SOM. Likewise, a 30×30 SOM gives 94% accuracy at the genus level. When SOM size is held at 10×10 and the signature length at GS-2 and the number of iterations is varied (Fig. 7, lower left table), there is little effect on the sensitivity. At the subfamily level, there are never more than 4.4% of sequences that cannot be assigned, and never more than 7.2% at the genus level. Where sequences can be assigned, optimal accuracy is achieved at 1000 or 5000 iterations, but the variation in accuracy is low. Increasing the iterations from 10 to 5000 only gives a 4% increase in accuracy of assignment at the sub-family level. When 100 iterations are used and the SOM size is held at 10×10 (Fig. 7, top right table), GS-4 or GS-5 appear to be optimal.

Discussion

Genome signatures provide a summary of the *k*-mer content of a genome, corrected for compositional bias. Various studies in a wide range of species have revealed that genome signatures are generally constant within genomes and similar in related genomes (Karlin and Ladunga, 1994; Karlin et al. 1998; Gentles and Karlin, 2001). The extent to which this is a phenomenon of neutral drift or one of active conservation is unknown. It is intuitively obvious that two identical genomes will have identical genome signatures, and that as they diverge the genome signatures will also diverge. Indeed this is the basis of a least one bioinformatical tool that assesses sequence relatedness (Li et al. 2001; Li et al. 2002). However, various suggestions have been made for conservative selection pressures which would act to maintain genome signature similarity in related organisms, including dinucleotide stacking energies, curvature, methylation, superhelicity, context-dependent mutation biases and effects deriving from related replication machinery (Karlin and Burge, 1995; Blaisdell et al. 1996). If these factors are similar within a clade, they might act as a brake on genome signature divergence. The conservation of genome signatures within genomes (which is what originally gave rise to the term "signature" in this context) would tend to suggest that signatures do not drift neutrally, at least *within* genomes.

Figure 1 demonstrates that at the phylum level within the three superkingdoms of cellular life, satisfactory partition of GS-2 can be obtained by the SOM. However, this is less true for eubacteria than it is for eukaryotes and archaea. At the family level in viruses the picture is considerably more confused, with only the Baculoviridae demonstrating anything like territorial coherence on the SOM at GS-2 (Fig. 1 and 2). This may well be a reflection of speed of substitution in viral genomes. However at the species level, the same coherence within genomes as found in cellular organisms may well be the norm. For instance, when the ostreid and ictalurid herpesvirus families are included in a SOM with the Alloherpesviridae, these two families, both represented by a single viral genome, have strongly discrete areas on the SOM (Fig. 3 and 4).

This does not mean that genome signatures are not diagnostic tools for phylogenetic assignment at the family and sub-family level in herpesviruses, merely that the results should be interpreted with caution. The use of higher values of k appears to have a marginal effect on improving the discrete distribution of family-level herpesviral signatures on the SOM (Fig. 5) but jack-knifing indicates that this does not improve above k = 5(Fig. 7). The effects of larger dimension SOMs and increased iterations are ambiguous at best. Optimal values appear to be around GS-4 or GS-5 with 500 to 1000 iterations of the SOM. The size of the SOM might be varied, with an initial run at high dimension (e.g. 50×50) followed by a lower dimension run (e.g. 10×10) for sequences unassigned by the first run (Fig. 7).

The use of genome signatures in the identification of pathogenicity islands is by now well established (Karlin, 1998; Karlin, 2001; Dufraigne et al. 2005). They are valuable in this context in that they indicate regions within genomes that have characteristics different to the rest of the genome. However, it is apparent from the present work that it is difficult on the basis of genome signatures to accurately identify the origin of the exogenous DNA. A BLAST search is more likely to generate informative hits in this context. Nevertheless for sequences that cannot be precisely identified on the basis of alignment-based methods such as BLAST, genome signatures with SOMs holds out the prospect of identification of origin to a reasonable level.

The optimization of SOM parameters reported here may also extend to other applications of SOMs. Of particular interest in bioinformatics is their use for the analysis of microarray data. The experimental design would be the same, with a standard microarray data set (e.g. the breast cancer data provided by Reid et al. 2005) substituting for the genome signature arrays. Dominance mapping would be done by clinical outcome, and jack-knife analysis could test the accuracy and sensitivity of assignment of that outcome.

References

- Abe, T., Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T. and Ikemura, T. 2003a. Informatics for unveiling hidden genome signatures. *Genome. Res.*, 13:693–702.
- Abe, T., Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T. and Ikemura, T. 2002. A novel bioinformatic strategy for unveiling hidden genome signatures of eukaryotes: Self-organizing map of oligonucleotide frequency. *Genome Informatics*, 13:13–20.
- Abe, T., Kanaya, S., Kinouchi, M., Ishihara, N., Kosaka, Y., Kozuki, T., Ohyama, A. and Ikemura, T. 2003b. Self-organizing maps reveal hidden genome characteristics on a single map analysing 90 genomes of prokaryotes and eukaryotes. In: *Human Genome Mapping* 2003. Human Genome Organization.
- Andrade, M.A., Casari, G., Sander, C. and Valencia, A. 1997. Classification of protein families and detection of the determinant residues with an improved self-organizing map. *Biol Cybern*, 76:441–50.
- Arrigo, P., Giuliano, F., Scalia, F., Rapallo, A. and Damiani, G 1991. Identification of a new motif on nucleic acid sequence data using Kohonen's self-organizing map. *Comput. Appl. Biosci.*, 7:353– 7.
- Blaisdell, B., Campbell, A. and Karlin, S. 1996. Similarities and dissimilarities of phage genomes. *Proc. Natl. Acad. Sci.*, U.S.A., 93:5854–9.
- Brocchieri, L. 2001. Phylogenetic inferences from molecular sequences: review and critique. *Theoretical Population Biology*, 59:27–41.
- Campanaro, S., Vezzi, A., Vitulo, N., Lauro, F., D'Angelo, M., Simonato, F., Cestaro, A., Malacrida, G., Bertoloni, G., Valle, G. et al. 2005. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. *BMC Genomics*, 6:122–36.
- Campbell, A., Mrazek, J., Karlin, S. 1999. Genome signature comparisons among prokaryotic, plasmid and mitochondrial DNA. *Proc. Natl. Acad. Sci.*, U.S.A., 96:9184–9.
- Coenye, T. and Vandamme, P. 2004. Use of the genomic signature in bacterial classification and identification. *Systematic and Applied Microbiology*, 27:175–85.

- Covell, D.G., Wallqvist, A., Rabow, A.A. and Thanki, N. 2003. Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. *Mol. Cancer Ther*, 2:317–32.
- Davison, A. 2002. Evolution of the herpesviruses. Veterinary Microbiology, 86:69–88.
- Davison, A., Eberle, R., Ehlers, B., Hayward, G., McGeoch, D., Minson, A., Pellett P, Roizman, B., Studdert, M. and Thiry, E. 2005. A planned order: Herpesvirales. In: *ICTV*. San Francisco
- Deschavanne, P., Giron, A., Vilain, J., Fagot, F. and Fertil, B. 1999. Genomic signature: Characterization and classification of species assessed by chaos game representation of sequences. *Mol. Biol. Evol.*, 16:1391–9.
- Dufraigne, C., Fertil, B., Lespinats, S., Giron, A. and Deschavanne, P. 2005. Detection and characterization of horizontal transfers in prokaryotes using genomic signature. *Nucl. Acids Res.*, 33:e6.
- Edwards, S., Fertil, B., Giron, A. and Deschavanne, P. 2002. A genomic schism in birds revealed by phylogenetic analysis of DNA strings. *Syst Biol*, 51:599–613.
- Fauquet, C., Mayo, M., Maniloff, M. and Desselburger, U., Ball, L.: Virus Taxonomy: The Eighth Report of the International Committee on Taxonomy of Viruses.: Elsevier; 2005.
- Gentles, A., Karlin, S. 2001. Genome-scale compositional comparisons in eukaryotes. *Genome Res*, 11:540–6.
- Giuliano, F., Arrigo P., Scalia F., Cardo, P.P. and Damiani, G. 1993. Potentially functional regions of nucleic acids recognized by a Kohonen's self-organizing map. *Comput Appl Biosci*, 9:687–93.
- Jernigan, R., Baran, R. 2002. Pervasive properties of the genomic signature. *BMC Genomics*, 3:23–32.
- Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H. and Ikemura, T. 2001. Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. *Gene*, 276:89–99.
- Karlin, S. 2001. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. *Trends in Microbiology*, 9:335–43.
- Karlin, S. 1998. Global dinucleotide signatures and analysis of genomic heterogeneity. *Current Opinion in Microbiology*, 1:598–610.
- Karlin, S., Brocchieri, L., Mrazek, J., Campbell, A. and AM, S. 1999. A chimeric prokaryotic ancestry of mitochondrial and primitive eukaryotes. *Proc. Natl. Acad. Sci.*, U.S.A., 96:9190–95.
- Karlin, S. and Burge, C. 1995. Dinucleotide relative abundance extremes: a genomic signature. *Trends in Genetics*, 11:283–90.
- Karlin, S., Campbell, A. and Mrázek, J. 1998. Comparative DNA analysis across diverse genomes. *Annual. Review. of Genetics.*, 32:185–225.
- Karlin, S. and Ladunga, I. 1994. Comparisons of eukaryotic genomes sequences. Proc. Natl. Acad. Sci. U.S.A., 91:12832–6.
- Karlin, S. and Mrazek, J. 1996. What drives codon choices in human genes? J. Mol. Biol., 262:459–72.
- Karlin, S. and Mrázek, J. 1997. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci., U.S.A., 94:10227–32.
- Karlin, S., Mrázek, J., Campbell, A. 1997. Compositional biases of bacterial genomes and evolutionary implications. *Journal of Bacteriology*, 179:3899–913.
- Kohonen, T: Self-Organizing Maps, vol. 30, 2 edn. Berlin: Springer; 1997.
- Li, W., Jaroszewski, L. and Godzik, A. 2001. Clustering of highly homologous sequences to reduce the size of large protein database. *Bioinformatics*, 17:282–3.
- Li, W., Jaroszewski, L. and Godzik, A. 2002. Tolerating some redundancy significantly speeds up clustering of large protein databases. *Bioinformatics*, 18:77–82.
- Mahony, S., McInerney, J.O., Smith, T.J. and Golden, A. 2004. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models. *BMC Bioinformatics*, 5:23.
- McHardy, A.C., Martin, H.G., Tsirigos, A., Hugenholtz, P. and Rigoutsos, I. 2007. Accurate phylogenetic classification of variable-length DNA fragments. *Nature Methods*, 4:63–72.

- Oja, M., Sperber, G.O., Blomberg, J. and Kaski, S. 2005. Self-organizing map-based discovery and visualization of human endogenous retroviral sequence groups. *Int. J. Neural. Syst.*, 15:163–79.
- Paz, A., Kirzhner, V., Nevo, E. and Korol, A. 2006. Coevolution of DNAinteracting proteins and genome "dialect". *Mol. Biol. Evol.*, 23:56–64.
- Reid, J.F., Lusa, L., De Cecco, L., Coradini, D., Veneroni, S., Daidone, M.G., Gariboldi, M. and Pierotti, M.A. 2005. Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J. Natl. Cancer Inst, 97:927–30.
- Ressom, H., Wang, D. and Natarajan, P. 2003. Clustering gene expression data using adaptive double self-organizing map. *Physiol. Genomics.*, 14:35–46.
- Russell, G. and Subak-Sharpe, J. 1977. Similarity of the general designs of protochordates and invertebrates. *Nature*, 266:533–5.
- Russell, G., Walker, P., Elton, R. and Subak-Sharpe, J. 1976. Doublet frequency analysis of fractionated vertebrate nuclear DNA. J. Mol. Biol., 108:1–23.
- Russo, J., Moral, R., Balogh, G., Mailo, D. and Russo, I. 2005. The protective role of pregnancy in breast cancer. *Breast Cancer Research*, 7:131–42.
- Samsonova, E.V., Kok, J.N. and Ijzerman, A.P. 2006. TreeSOM: Cluster analysis in the self-organizing map. *Neural Networks*, 19:935–49.
- Sandberg, R., Bränden, C-I, Ernberg, I. and Cöster, J. 2003. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G + C content. *Gene*, 311:35–42.
- Sandberg, R., Winberg, G., Bränden, C-I, Kaske, A., Ernberg, I. and Cöster, J. 2001. Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. *Genome Res.*, 11:1404–9.

- Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. and Golub, T. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. *Proc. Natl. Acad. Sci.*, U.S.A., 96:2907–12.
- Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. and Glockner, F.O. 2004. Application of tetranucleotide frequencies for the assignment of genomic fragments. *Environ. Microbiol.*, 6:938–47.
- Ultsch, A. 1993. Self-organized feature maps for monitoring and knowledge acquisition of a chemical process. In: Gielen, S., Kappen, B, ed. Proc. Intl. Conf. on Artificial Neural Networks (ICANN). Amsterdam: Springer-Verlag, 1993:864–7.
- Wang, H.C., Badger, J., Kearney, P. and Li, M. 2001. Analysis of codon usage patterns of bacterial genomes using the self-organizing map. *Mol. Biol. Evol.*, 18:792–800.
- Wang, Y., Hill, K., Singh, S., Kan, L. 2005. The spectrum of genomic signatures: from dinucleotides to chaos game representation. *Gene*, 346:173–85.
- Xiao, L., Wang, K., Teng, Y. and Zhang, J. 2003. Component plane presentation integrated self-organizing map for microarray data analysis. *FEBS Lett*, 538:117–24.