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The rotational temperature and number density of molecular nitrogen (N2) in the lower ther-
mosphere were measured by theN2 temperature instrument onboard the S-310-35 sounding
rocket, which was launched from Andøya at 0:33 UT on 13 December 2004, during the Dynam-
ics and Energetics of the Lower Thermosphere in Aurora (DELTA) campaign. The rotational
temperature measured at altitudes between 95 and 140 km, which is expected to be equal to
neutral temperature, is much higher than neutral temperature from the Mass Spectrometer Inco-
herent Scatter (MSIS) model. Neutral temperatures in the lower thermosphere were observed
using the auroral green line at 557.7 nm by two Fabry-Perot Interferometers (FPIs) at Skibotn
and the Kiruna Esrange Optical Platform System site. The neutral temperatures derived from
the look directions closest to the rocket correspond to the rotational temperature measured at an
altitude of 120 km. In addition, a combination of the all-sky camera images at 557.7 nm ob-
served at two stations, Kilpisjärvi and Muonio, suggests that the effective altitude of the auroral
arcs at the time of the launch is about 120 km. The FPI temperature observations are consistent
with the in situ rocket observations rather than the MSIS model.
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1. Introduction

The dissipation of energy originating in the magnetosphere and lower atmosphere plays an important

role in the energy budget controlling the temperature of the polar lower thermosphere (Fujiwaraet

al., 2004). However, correspondence of the time-varying energy dissipation rates to the resulting

temperature structure is presently not well investigated. In addition, the vertical structure of temperature

is also important for the dynamics in this region. Studies on instability formation and turbulence

generation in the neutral wind field require observations of the temperature structure in the background

atmosphere. Recent rocket observations in the polar lower thermosphere showed the neutral wind

jet with large wind shears during disturbed conditions (Larsenet al., 1997), but the mechanisms

responsible for generating the jet is still unclear.

In spite of the importance of temperature observation in the lower thermosphere, it is difficult to

obtain reliable temperatures from both in situ and remote sensing measurements. The low atmospheric

density in this region makes direct measurements difficult, and most techniques infer neutral tempera-

ture from Doppler temperature, ion temperature, and rotational temperature on the assumption that the

ions, the light-emitting particles, and the rotational state of the molecules, respectively, are in thermal

equilibrium with the neutral atmosphere. The Fabry-Perot Interferometer (FPI) derives the neutral tem-

perature from the Doppler width of airglow and auroral emissions, such as green (OI 557.7 nm) and red

(OI 630.0 nm) lines. In polar regions, the effective emission altitude of auroral green line varies depend-

ing on the precipitating electron energy. Since vertical temperature gradients in the lower thermosphere

are generally steep, there are difficulties in quantitative analysis of the neutral temperature derived from

the auroral green line measurement by the FPI. However, the green line temperature measurement is

potentially useful in estimating an auroral energy deposition (Holmeset al., 2005).

One of the objectives of the Dynamics and Energetics of the Lower Thermosphere in Aurora

(DELTA) campaign was to measure temperatures by a rocket-borne instrument, ground-based FPIs,

and the European Incoherent Scatter (EISCAT) radar during the auroral disturbances. This paper
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reports the in situ observations of rotational temperature and number density of atmospheric molecular

nitrogen (N2) by theN2 temperature instrument (NTV) onboard the sounding rocket. TheN2 rotational

temperature is expected to be equal to the neutral temperature in the lower thermosphere as described

in Sec. 2.1, thus this experiment provides the vertical structure of the neutral temperature. The results

were used to verify quantitatively the FPI temperature measurements.

2. Experiment

2.1 Instrumentation

In situ temperature and density measurements were made with the NTV onboard a sounding rocket

during the DELTA campaign. Rocket experiments using this instrument have been successfully carried

out twice in Japan (Kawashimaet al., 1997; Kuriharaet al., 2003). This is an active experiment using

the Electron Beam Fluorescence (EBF) technique, and the instrument consists of an electron gun to

excite and ionize the ambientN2 and a spectrometer to detect the fluorescence of theN+
2 first negative

(1N) system. An electron beam with an energy of 1 keV and a current of 10 mA is continuously emitted

from the electron gun in a direction perpendicular to the rocket axis, and the excitation-ionization of

N2 and the subsequent fluorescence of theN+
2 occur along the electron beam. A measurement volume

of the NTV is located at an intersection of the electron beam and the field of view of the spectrometer

and is 0.2 m away from the payload. The fluorescence spectrum of theN+
2 1N system between 380 and

460 nm, including the 1N(0,0) band at 391.4 nm, 1N(1,2) band at 423.7 nm, and 1N(0,1) band at 427.8

nm, is detected by a linear image sensor in the spectrometer. The exposure time for each spectrum is

245.76 ms. The analysis of the fluorescence spectrum provides properties of the initial state of theN2

molecules: rotational temperature, vibrational temperature, and number density ofN2. The rotational

temperature is determined by fitting a synthetic spectrum to the measured spectrum of the 1N(0,0) band,

and the vibrational temperature is determined by measuring the relative intensities of the 1N(0,1) and

1N(1,2) bands. The number density is calculated from the intensity of the 1N(0,0) band. The detailed
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description of the instrument and measurement method is presented by Kurihara and Oyama (2005).

An equilibrium between rotational and translational degrees of freedom forN2 is immediately

established in the lower thermosphere. Relaxation time for attaining the equilibrium,τRT, is given

by

τRT = ZRT τ0, (1)

whereZRT is the number of collisions needed for the rotational relaxation andτ0 is the mean free

time between collisions. Values ofZRT for N2–N2 collisions in the temperature range of 200–1000

K obtained in the laboratory experiments are 4–14 (Capitelliet al., 2000). The rotational relaxation

time τRT for the N2 gas is calculated to be∼ 10−3 s at 95 km altitude and∼ 10−1 s at 140 km.

Thus, the rotational temperature ofN2 is expected to be equal to the neutral temperature in the lower

thermosphere.

2.2 Rocket experiment

The NTV was installed on the top of the S-310-35 sounding rocket, which was launched northward

from Andøya (69.3◦N, 16.0◦E) at 0:33 UT on 13 December 2004. The temperature and density

measurements by the NTV were conducted in 97–140 km altitude in the ascent of the rocket flight,

and after stopping the electron beam emission for 10 s to get the background spectra, the measurements

were restarted 140–95 km altitude in the descent. After that, the temperature and density could not be

obtained because the fluorescence spectra were saturated due to the higher atmospheric density. The

rocket was separated into mother/daughter payloads at 106.6 km altitude during the ascent. The purpose

of the separation is to electrically isolate the other plasma instruments such as a fast Langmuir probe

(FLP) and an impedance probe (NEI) on the mother payload from the NTV on the daughter payload,

because the electron beam emission by the NTV causes significant charging of the rocket body.

The experimental conditions for the NTV in the DELTA campaign were different from that in the

previous experiments at the midlatitude because of auroral emissions. During the rocket flight, the

passages of several auroral arcs were observed by the all-sky camera (ASC) at Kilpisjärvi in the
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Fig. 1. The green line emissions observed by the ASC at Kilpisjärvi at intervals of 20 s during the rocket flight. The UT time and the corresponding rocket

altitude are indicated at the top of each image. The projection altitude of the ASC images, the rocket positions (red diamonds), the EISCAT CP-2 beam

positions (cyan diamonds), and the sampled volumes for the Skibotn FPI (yellow triangles) and KEOPS FPI (yellow boxes) is 110 km.

MIRACLE network as shown in Fig. 1. The ASC acquired the images at 557.7 nm with a sampling rate

of 20 s. Under such auroral condition, the background auroral emission can contaminate the spectra

observed by the NTV, because theN+
2 1N system induced by the EBF technique is commonly seen in

auroral spectra. Figure 2(a) and (b) show the spectra observed by the NTV spectrometer during the

ascent at 99.7 km and 84.9 km altitude, respectively. Note that the electron beam emission started at
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(a) EBF spectrum at 99.7 km
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(b) Auroral spectrum at 84.9 km

Fig. 2. Spectra from the NTV spectrometer observed at (a) 99.7 km and (b) 84.9 km altitudes. TheN+
2 1N bands in (a) are the fluorescence mainly

induced by the EBF technique, and the same bands in (b) are the background auroral emissions.

97.3 km during the ascent. The spectra obtained below 97.3 km are not the fluorescence induced by the

EBF technique but the background emissions. In Fig. 2(a), theN+
2 1N(0,0), (0,1), and (1,2) bands are

predominantly strong, and other spectral features are not recognized. Figure 2(b) shows an example of

the background auroral emissions, and identifiable bands in Fig. 2(b) are the same as in Fig. 2(a). It

is therefore difficult to eliminate the auroral contamination from the observed spectra. The observed

intensity of the background auroral emissions changes with altitude and also with look direction of the

spectrometer because of the transient and localized nature of the auroral arc as observed simultaneously

by an auroral green line photometer (AGL) onboard the rocket (Iwagamiet al., 2005 in this issue).

At around 100 km altitude during the ascent, the intensity of the background auroral emission was

at least an order of magnitude lower than the intensity of the fluorescence by the EBF technique.

However, since the intensity by the EBF technique decreases rapidly with altitude in proportion to

theN2 number density, the auroral emissions can be a significant source of error in the temperature and
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Fig. 3. ObservedN2 rotational temperature profiles during the ascent (solid line) and the descent (dashed line) compared with neutral temperature profile

predicted by the MSISE-90 model (dotted line).

density measurements at the upper part of the observation, as discussed later.

3. Observational Results

3.1 Rotational temperature and number density of molecular nitrogen

Altitude profiles of the observedN2 rotational temperature during the ascent and descent of the

rocket flight are shown in Fig. 3. The uncertainty in the rotational temperature determination from

each spectrum increases with altitude because the signal to noise ratio of the spectrum decreases with a

decrease in density. In order to reduce the uncertainty, the spectra are grouped into altitude bins so that

the integrated spectra have comparable intensities. As a result, the altitude resolution of the rotational

temperature data in Fig. 3 varies from 1 km at 95 km altitude to 6 km at 140 km. The uncertainty in

Fig. 3 is estimated from the signal to noise ratio of the spectrum using the results of the laboratory

experiment and increases with altitude from 15 K at 95 km to 40 K at 140 km.

The profiles in the ascent and descent in Fig. 3 agree well above 102 km. Below this altitude, the

rotational temperature in the descent is significantly higher than that in the ascent. This enhancement
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is caused by aerodynamic effects resulting from supersonic motion of the rocket. The temperature of

the airflow around the sounding rocket is enhanced by compression depending on the attitude of the

rocket (Gumbel, 2001). As mentioned previously, the measurement volume of the NTV is located in

the vicinity of the payload, the rotational temperature measurement can be affected by the translational

temperature enhancement around the rocket. Kuriharaet al. (2005) used the Direct Simulation Monte

Carlo (DSMC) method to study the flow around the sounding rocket and the aerodynamic effects on

the NTV measurement. They showed that the measurement volume is less than 1 m downstream

from the shock front during the ascent. Atmospheric molecules in the flow travel the distance from

the shock front to the measurement volume in∼ 10−3 s at the flow speed of∼ 1 km. Considering

this travel timet and the rotational relaxation timeτRT in Eq. (1), the rotational temperature can be

higher than the background neutral temperature below 110 km wheret ' τRT. Above 110 km, the

rotational temperature is free from the aerodynamic effects, because the supersonic flow arrives at the

measurement volume in a much shorter time thanτRT.

The neutral temperature profile predicted by the Mass Spectrometer Incoherent Scatter (MSISE-90)

model (Hedinet al., 1991) is also plotted in Fig. 3. The MSISE-90 model is an empirical model to

predict expected values of the atmospheric parameters as a function of local time, latitude, longitude,

UT, F10.7, andAp. The observed rotational temperature is much higher than the neutral temperature

from the MSIS model in all altitudes, and the differences between the rotational temperature and the

neutral temperature are 70–140 K above 110 km.

Altitude profiles of the observedN2 number density are shown in Fig. 4. The ascent and descent

data are offset to ease comparison. Unlike the rotational temperature determination, number densities

are calculated from each spectrum with a high time resolution of 245.76 ms. Spin periods of the

rocket measured by an onboard geomagnetic aspectmeter are∼ 870 ms during the observation, and

hence about four density data are obtained per spin. For this reason, the density profiles in Fig. 4

show clear spin modulation caused by the aerodynamic effect. This spin modulation in the density
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Fig. 4. ObservedN2 number density profiles during the ascent (lower scale) and the descent (upper scale) compared withN2 number density profile

predicted by the MSISE-90 model (dotted lines).

profiles is a ram/wake modulation, which is caused by the compression/rarefaction, typically observed

by side-looking instruments (Gumbel, 2001). Similar spin modulation observed in the previous NTV

experiment at the midlatitude was quantitatively analyzed by Kuriharaet al. (2005). The amplitude of

the spin modulation during the decent is larger than that during the ascent, particularly in the lower

altitudes, because an angle of attack of the rocket is larger during the descent.

As in the case of the rotational temperature profiles, the density profiles during the ascent and descent

indicate a similar tendency. However, at 120–135 km altitude, the density during the ascent is higher

than that during the descent. This is mainly attributed to the auroral contamination of the observed

spectra. The projections of the auroral arcs observed by Kilpisjärvi all-sky camera in Fig. 1 show that

the auroral arc was located just on the south side of the rocket during the ascent and moved eastward

during the descent. The AGL onboard the rocket also detected larger slant emission rates of the green

line during the ascent (Iwagamiet al., 2005 in this issue).

In order to estimate the auroral contamination in the NTV spectra, the difference of the density
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Fig. 5. Slant emission rate of the green line observed by the AGL (solid line) and the 1N(0,0) band intensity observed by the NTV (dashed line). Both are

differences of the spin-averaged profiles between the ascent and descent.

profiles between the ascent and descent is converted to the original 1N(0,0) band intensity and compared

with the slant emission rate of the auroral green line observed by the AGL in Fig. 5. Although the AGL

was installed on the daughter payload, the AGL and NTV look in approximately the same direction

away from the rocket axis. The angles between the rocket axis and the line of sight of the AGL and

NTV are 60.0 and 67.5 degrees, respectively. The 1N(0,0) band intensity and the slant emission rate of

the green line in Fig. 5 are shown as differences of the spin-averaged profiles between the ascent and

descent. The 1N(0,0) band profile is similar to the green line above 105 km. This result implies that

most of the density difference between the ascent and descent is due to the auroral contamination and

that the true density profiles during the ascent and descent are very similar. The dissimilarity between

the 1N(0,0) band and the green line emission profiles below 105 km in Fig. 5 results from the large spin

modulation on the density profile during the descent. Kuriharaet al. (2005) performed the numerical

simulation of the spin modulation on the density measured by the NTV in the previous experiment

and showed that the simple running average of the spin modulation deviates from the true background

atmospheric density when the amplitude of the spin modulation is large.

The observed density profiles are also compared with the density profile from the MSIS model. The

observedN2 number density profiles both during the ascent and descent are lower than theN2 number

density predicted by the MSISE-90 model at all altitudes as shown in Fig. 4. The observed density
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during the descent, which is much less affected by the auroral contamination, gradually approaches the

MSISE-90 density with altitude from∼ 30% at 95 km to∼ 90% at 140km.

3.2 Neutral temperature

The two ground-based FPIs at Skibotn (69.3◦N, 20.4◦E) and the Kiruna Esrange Optical Platform

System (KEOPS) site (67.8◦N, 20.4◦E) sampled the auroral green line emission at 557.7 nm and

provided neutral temperatures and line of site wind velocities. Both FPIs operated a normal scan of

cardinal directions plus zenith but the KEOPS FPI had one extra direction of Northwest towards the

rocket trajectory as shown in Fig. 1. The detailed description of the instruments and observations

is presented by Griffinet al. (2005) in this issue. The neutral temperatures measured from the two

directions closest to the sounding rocket, the Skibotn West and the KEOPS Northwest, at the period

from 23:00 UT on 12 to 2:00 UT on 13 December 2004 are shown in Fig. 11 of Griffinet al. (2005).

The temperatures from two directions are in very good agreement at∼ 500 K just before the launch

time. The Skibotn West data show a temperature jump of 150 K at 0:36:37 UT just after the launch

and return to the former 500 K level at the next data point in 7.5 minutes. The KEOPS Northwest

temperature gradually increases after the launch time up to∼ 600 K and drops to∼ 300 K after 1:15

UT. The data from the other directions show a temperature of around 500 K during the rocket flight.

3.3 Auroral emission height

The two ASCs at Kilpisj̈arvi (69.0◦N, 20.9◦E) and Muonio (68.0◦N, 23.5◦E) in the MIRACLE

network acquired the green line emissions simultaneously. A combination of the two ASC images

can be used to determine the altitude of auroral arcs by a stereo imaging technique. Figure 6 shows the

combined ASC images for different projection altitudes at 0:34 and 0:37 UT on 13 December 2004.

The two ASC images from Kilpisjärvi and Muonio are combined on the middle line between the two

stations. The combined images for the projection altitude of 120 km show better connections of the

continuous arc at the seam of the two ASC images than those for 110 and 130 km. These results

suggest that the effective altitude of the auroral arc at around the time of the launch is about 120 km.
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Fig. 6. Combined ASC images for the projection altitude of 110, 120, and 130 km at 0:34 and 0:37 UT on 13 December 2004. The two ASC images

from Kilpisjärvi (KIL) and Muonio (MUO) are combined on the middle line between the two stations. The combined images for 120 km show smooth

connections of the continuous arc than those for 110 and 130 km.

4. Discussion

The results of the observations of the rotational temperature and number density ofN2 in the

DELTA campaign have features different from the MSIS model predictions. The observed rotational
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temperature is 40–140 K higher than the neutral temperature from the MSIS model above 110 km in

the DELTA campaign. On the other hand, the observedN2 number density is significantly lower than

the MSIS model value especially in lower altitudes. However, the MSIS model is an empirical model

based on the existing observational data, and the data coverage is the poorest at high latitudes in the

upper mesosphere and lower thermosphere (Hedinet al., 1991).

The temperature prediction by the MSIS model in the lower thermosphere is based on the assumption

that the neutral temperature is equal to the ion temperature. The validity of this assumption during the

geomagnetically disturbed period can be checked by comparing the rotational temperature with the ion

temperature observed by the EISCAT radar during the DELTA campaign. A detailed comparison is

provided in Nozawaet al. (2005) in this issue. The ion temperature retrieved from incoherent scatter

spectra is influenced by the ion-neutral collision frequency. The ion-neutral collision frequency depends

on the neutral density and composition, so that the large deviation of the observedN2 number density

from the MSIS model value can affect the estimation of the ion temperature. Maedaet al. (2005)

discussed the effect of the assumed ion-neutral collision frequency on the ion temperature derived from

the EISCAT-UHF radar at Tromsø and the ESR at Longyearbyen. They showed that the underestimate

(overestimate) of the ion-neutral collision frequency resulted in the overestimate (underestimate) of the

ion temperature around 100 km altitude particularly at the periods of strong electric fields. In addition,

the change in the ion-neutral collision frequency can produce significant effects on the estimation of

theE region neutral wind, conductivities, ionospheric current, and thereby the electromagnetic energy

transfer rate, from the EISCAT measurements (Fujiiet al., 1998).

The large deviations from the MSIS model were also observed in the previous experiments at the

midlatitude (Kawashimaet al., 1997; Kuriharaet al., 2003). The largest differences reached 150

K increase in temperature and 50% decrease in density at 115 km altitude. These deviations are

comparable to those in the DELTA campaign. Contrastingly, above 130 km altitude in the midlatitude

observations, the temperature and density were lower and higher, respectively, than the MSIS model.
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Fig. 7. Comparison of the in situ and FPI temperature observations. The rotational temperature from the NTV (solid line) and the neutral temperature from

MSISE-90 model (dotted line) are plotted as a function of altitude (left scale), and the neutral temperatures from the Skibotn West (dashed line) and the

KEOPS Northwest (dot-dashed line) directions are plotted as a function of universal time on 13 December 2004 (right scale). The effective altitude of

the auroral arc determined from the combined ASC images and the time of the rocket launch are also represented by the arrows.

The results of the NTV experiments in the midlatitude and polar region show that the observed large

deviations of the temperature and density from the MSIS model are less likely to be systematic errors

inherent in the NTV experiment and are common in the lower thermosphere.

The auroral contamination in the observed spectra cannot be easily eliminated, but it becomes evident

from the comparison with the green line emission measurement by the AGL that the density difference

between the ascent and descent is mostly caused by the auroral contamination. In other words, the

density profiles during the ascent and descent turned out to be very similar. It is not easy to estimate

the effect of the auroral contamination on the rotational temperature measurement, but the actual

differences of the observed rotational temperature between the ascent and descent are within the margin

of uncertainty. Judging from the results of the in situ observations, the neutral atmosphere was fairly

uniform at least along the rocket trajectory.

The rotational temperature from the in situ observation are compared with the neutral temperature
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from the ground-based FPI observations in Fig. 7. Only the altitude profile of the rotational temperature

observed during the ascent is presented in Fig. 7 for simplicity. The effective altitude of the auroral arcs

during the rocket flight is determined to be∼ 120 km from the combinations of the two ASC images at

Kilpisj ärvi and Muonio in Fig. 6, and this altitude corresponds to the rotational temperature of∼ 500

K at 120 km as shown in Fig. 7. The FPI neutral temperatures in Fig. 7 are limited to the observation

of the two directions closest to the sounding rocket, the Skibotn West and the KEOPS Northwest, at the

period from 0:00 UT on 12 to 1:00 UT on 13 December 2004. As described previously, the FPI neutral

temperatures are at 500 K level except for the time just after the launch. The reason for this deviation

is investigated in detail by Griffinet al. (2005) in this issue. As a result, the neutral temperature from

the ground-based FPI observations is consistent with the observed rotational temperature rather than

the MSIS model profile.

It should be noted that the temperature jump at the Skibotn West in the FPI observation is a reliable

result with a small error bar. Griffinet al. (2005) discussed the temperature peaks from 23:00 on 12 to

2:00 UT on 13. It is difficult, however, to simply conclude that the temperature peaks are caused by

either changes in the auroral emission height or some localized heating mechanisms, because the rocket

trajectory and the sampled volumes of the FPIs are not ovelapped directly. Further studies including

high spatial and time resolution simulations of a moving auroral arc are necessary to explain these

observations.

5. Summary

The rotational temperature and number density ofN2 in the polar lower thermosphere were observed

with the rocket-borne NTV in the DELTA campaign. The observed rotational temperature is 70-140

K higher than the MSIS model above 110 km, where the aerodynamical effects on the rotational

temperature measurement are negligible. The observedN2 number density during the descent, when

the auroral contamination was sufficiently small, is much lower than the MSIS model and changes with
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altitude from 30% at 95 km to 90% at 140 km. This density reduction from the MSIS model density

has a significant impact on the use of the ion-neutral collision frequency in the EISCAT observation and

thereby the estimation of the ion temperature, neutral wind, ionospheric current, and electromagnetic

energy transfer rate. The results of the NTV observation in the DELTA campaign and the previous

midlatitude experiments show that large temperature and density deviations from the MSIS model

are commonly seen in the lower thermosphere. The similarity of the profiles between the ascent and

descent for both the rotational temperature and number density indicate that the neutral atmosphere was

horizontally uniform along the rocket trajectory.

The results of the in situ observations are compared with the FPI temperature observation. The ef-

fective altitude of the auroral arcs during the flight are determined to be∼ 120 km from the combined

ASC images, because the combined images for the projection altitude of 120 km show better connec-

tions of the continuous arc at the seam of the two ASC images than those for 110 and 130 km. The

neutral temperature of∼ 500 K from the ground-based FPI observations just before the launch time

is consistent with the observed rotational temperature at 120 km rather than the MSIS model profile.

Further studies are needed to clarify the cause of the temperature peaks in the FPI observations after

the lunch time, because the rocket trajectory and the sampled volumes of the FPIs are not overlapped

directly.
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