Grewe, D. and Wang, Zheng and O'Boyle, M.F.P. (2013) Portable mapping of data parallel programs to OpenCL for heterogeneous systems. In: Code Generation and Optimization (CGO), 2013 IEEE/ACM International Symposium on :. IEEE, pp. 1-10. ISBN 978-1-4673-5524-7
Full text not available from this repository.Abstract
General purpose GPU based systems are highly attractive as they give potentially massive performance at little cost. Realizing such potential is challenging due to the complexity of programming. This paper presents a compiler based approach to automatically generate optimized OpenCL code from data-parallel OpenMP programs for GPUs. Such an approach brings together the benefits of a clear high level-language (OpenMP) and an emerging standard (OpenCL) for heterogeneous multi-cores. A key feature of our scheme is that it leverages existing transformations, especially data transformations, to improve performance on GPU architectures and uses predictive modeling to automatically determine if it is worthwhile running the OpenCL code on the GPU or OpenMP code on the multi-core host. We applied our approach to the entire NAS parallel benchmark suite and evaluated it on two distinct GPU based systems: Core i7/NVIDIA GeForce GTX 580 and Core 17/AMD Radeon 7970. We achieved average (up to) speedups of 4.51× and 4.20× (143× and 67×) respectively over a sequential baseline. This is, on average, a factor 1.63 and 1.56 times faster than a hand-coded, GPU-specific OpenCL implementation developed by independent expert programmers.