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ABSTRACT. We address the following two questions regarding the maximal left ideals of
the Banach algebra Z(F) of bounded operators acting on an infinite-dimensional Banach
space E':

(I) Does #(F) always contain a maximal left ideal which is not finitely generated?
(IT) Is every finitely-generated, maximal left ideal of %(E) necessarily of the form
{T e BE):Tr=0} (%)
for some non-zero x € E?

Since the two-sided ideal . (E) of finite-rank operators is not contained in any of the
maximal left ideals given by (x), a positive answer to the second question would imply
a positive answer to the first.

Our main results are: (i) Question (I) has a positive answer for most (possibly all)
infinite-dimensional Banach spaces; (ii) Question (II) has a positive answer if and only
if no finitely-generated, maximal left ideal of Z(F) contains .Z (E); (iii) the answer to
Question (II) is positive for many, but not all, Banach spaces.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The purpose of this paper is to study the maximal left ideals of the Banach algebra %(FE)
of (bounded, linear) operators acting on a Banach space E, particularly the maximal left
ideals that are finitely generated. A general introduction to the Banach algebra Z(F) can
be found in [9, §2.5]. Our starting point is the elementary observation that Z(FE) always
contains a large supply of singly-generated, maximal left ideals, namely

MLy ={T € B(E): Tz =0} (x € E\{0}) (1.1)

(see Proposition 2.2 for details). We call the maximal left ideals of this form fized, inspired
by the analogous terminology for ultrafilters.

The Banach algebra #(FE) is semisimple, as is well known (e.g., see [9, Theorem 2.5.8]);
that is, the intersection of its maximal left ideals is {0}. We observe that this is already
true for the intersection of the fixed maximal left ideals.
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In the case where the Banach space F is finite-dimensional, an elementary result in linear
algebra states that the mapping

F—A{TeABFE):FCkerT}

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals
of B(E) (e.g., see |21, p. 173, Exercise 3|). Hence each maximal left ideal . of A(F)
corresponds to a unique minimal, non-zero linear subspace of F, that is, a one-dimensional
subspace, and therefore .Z is fixed. This conclusion is also an easy consequence of our work,
as outlined in Remark 1.2(ii), below. By contrast, this statement is false whenever F is
infinite-dimensional because the two-sided ideal .7 (F) of finite-rank operators is proper,
so that, by Krull’s theorem, it is contained in a maximal left ideal, which cannot be fixed
since, for each x € E'\ {0}, there is a finite-rank operator 7" on E such that Tz # 0.

Inspired by these observations, the first-named author raised the following two questions
for an infinite-dimensional Banach space E:

(I) Does ZA(F) always contain a maximal left ideal which is not finitely generated?
(IT) Is every finitely-generated, maximal left ideal of A(FE) necessarily fixed?

In the light of the previous paragraph, we note that a positive answer to (II) would imply
a positive answer to (I). Moreover, for similar reasons, it seems natural to consider also
the following, formally more specific, variant of Question (II):

(III) Is the ideal .#(FE) of finite-rank operators ever contained in a finitely-generated,
maximal left ideal of B(E)?

The answers to the above questions depend only on the isomorphism class of the Banach
space E. This follows from a theorem of Eidelheit, which states that two Banach spaces E
and F are isomorphic if and only if the corresponding Banach algebras #A(FE) and Z(F)
are isomorphic (e.g., see [9, Theorem 2.5.7]).

After presenting some preliminary material in Section 2, we shall use a counting argument
in Section 3 to answer Question (I) positively for a large class of Banach spaces, including
all separable Banach spaces which contain an infinite-dimensional, closed, complemented
subspace with an unconditional basis and, more generally, all separable Banach spaces with
an unconditional Schauder decomposition (see Corollary 3.3 for details).

We then turn our attention to Questions (II) and (III). The main conclusion of Section 4
is that, for a given Banach space F, they are equivalent, in the sense that Question (IT) has
a positive answer if and only if Question (ITI) has a negative answer. This is an immediate
consequence of the following dichotomy theorem for maximal left ideals, which can be
viewed as the analogue of the fact that an ultrafilter on a set M is either fixed (in the sense
that it consists of precisely those subsets of M which contain a fixed element x € M), or
it contains the Fréchet filter of all cofinite subsets of M.

Theorem 1.1 (Dichotomy for maximal left ideals). Let E be a non-zero Banach space.
Then, for each mazimal left ideal £ of B(E), exactly one of the following two alternatives
holds:

(i) £ is fized; or

(i) & contains F (E).
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Remark 1.2. (i) The result that we shall prove in Section 4 is in fact slightly stronger
than Theorem 1.1, but also more technical to state, since it involves the larger ideal
of inessential operators instead of .7 (F) (see Corollary 4.2 for details).

(ii) Let E be a non-zero, finite-dimensional Banach space. Then % (FE) = ZA(F), so
that no proper left ideal of Z(FE) satisfies condition (ii) of Theorem 1.1. Hence
Theorem 1.1 implies that each maximal left ideal of Z(F) is fixed.

We shall also show that a conclusion similar to that of Theorem 1.1 holds for closed
left ideals of ZA(FE) that are not necessarily maximal provided that either the underlying
Banach space FE is reflexive, or that we restrict our attention to the closed left ideals which
are finitely generated.

Theorem 1.3 (Dichotomy for closed left ideals). Let E be a non-zero Banach space,
let £ be a closed left ideal of (F), and suppose that either E is reflexive or £ is finitely
generated (or both). Then exactly one of the following two alternatives holds:

(i) & is contained in a fized mazimal left ideal; or
(i) £ contains F(E).

We note that Theorems 1.1 and 1.3 are genuine dichotomies in the sense that in both
theorems the two alternatives (i) and (ii) are mutually exclusive because, as observed above,
no fixed maximal left ideal of #(E) contains .7 (F).

The purpose of Sections 5 and 6 is to show that Question (II) has a positive answer
for many Banach spaces, both ‘classical’ and more ‘exotic’ ones. We can summarize our
results as follows, and refer to Sections 5 and 6 for full details, including precise definitions
of any unexplained terminology.

Theorem 1.4. Let E be a Banach space which satisfies one of the following siz conditions:

(i) E has a Schauder basis and is complemented in its bidual;

(ii) E is isomorphic to the dual space of a Banach space with a Schauder basis;

(iii) E is an injective Banach space;

(iv) E=co(I), E=H, or E=cy(I') ® H, where T is a non-empty index set and H is a
Hilbert space;

(v) E is a Banach space which has few operators;

(vi) E = C(K), where K is a compact Hausdorff space without isolated points, and each
operator on C(K) is a weak multiplication.

Then each finitely-generated, mazimal left ideal of B(E) is fized.

On the other hand, there is a Banach space for which the answer to Question (II) is nega-
tive; this is the main result of Section 7. Its statement involves Argyros—Haydon’s Banach
space having very few operators. We denote this space by Xag, and refer to Theorem 7.5
for a summary of its main properties.

Theorem 1.5. Let E = Xxgq @ loo. Then the set

H = B T € A(FE) : T, is compact (1.2)
15, T22 ’
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is a mazimal two-sided ideal of codimension one in B(FE), and hence also a mazimal left
ideal. Moreover, 1 1s singly generated as a left ideal, and it is not fized.

This theorem suggests in particular that the Banach space £ = Xag @ / is a natural
candidate for providing a negative answer to Question (I). However, as we shall also show
in Section 7, it does not.

Theorem 1.6. Let E = Xag @ lo. Then the ideal #; given by (1.2) is the unique
non-fized, finitely-generated, mazimal left ideal of B(E). Hence

Wy — {<T171 Tm) € B(E) : Ty, is weakly compact} ) (1.3)

which is a mazimal two-sided ideal of B(E), is not contained in any finitely-generated,
mazimal left ideal of B(E).

To conclude this summary of our results, let us point out that Question (II) remains
open in some important cases, notably for £ = C'(K), where K is any infinite, compact
metric space such that C'(K) 2 co.

As a final point, we shall explain how our work fits into a more general context. The
main motivation behind Question (I) comes from the fact that it is the special case where
o/ = AB(E) for a Banach space E of the following conjecture, raised and discussed in [10]:

Let o7 be a unital Banach algebra such that every maximal left ideal of <f
is finitely generated. Then < is finite-dimensional.

A stronger form of this conjecture in the case where o/ is commutative was proved by
Ferreira and Tomassini [13]; extensions of this result are given in [10]. The conjecture is
also known to be true for C*-algebras, although we have not been able to locate a precise
statement of this result in the literature. We are very grateful to David Blecher and Mikael
Rgrdam for having communicated proofs of it to us. Blecher and the second author [6] are
currently working on a generalization of this result to the class of Hilbert C*-modules.

The conjecture is suggested by Sinclair and Tullo’s theorem [42] which states that a
Banach algebra o7 is finite dimensional if each closed left ideal of &7 (not just each maximal
one) is finitely generated. This result has been generalized by Boudi [7], who showed
that the conclusion that <7 is finite dimensional remains true under the formally weaker
hypothesis that each closed left ideal of o7 is countably generated. Boudi’s theorem can in
fact be deduced from Sinclair and Tullo’s theorem because a closed, countably-generated
left ideal is necessarily finitely generated by [10, Proposition 1.5|.

Another result that is related to our general theme, but of a different flavour from those
just mentioned, is due to Gronbak |20, Proposition 7.3|, who has shown that, for a Banach
space E with the approximation property, the mapping

Fspan{z @ \:z € E, A€ F}

is an isomorphism of the lattice of closed linear subspaces F' of the dual space of E onto
the lattice of closed left ideals of the Banach algebra of compact operators on E; we refer
to the next section for details of the notation and terminology used in this statement.
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2. PRELIMINARIES

Our notation is mostly standard. We write |I'| for the cardinality of a set I'. As usual,
N, and R; denote the first and second infinite cardinals, respectively, while ¢ = 2% is the
cardinality of the continuum.

Let E be a Banach space, always supposed to be over the complex field C. We denote
by Ig the identity operator on E. For a non-empty set I', we define

loo(DE) ={f: T = E:|fllc <oo},  where |[flo= sup [FAGAIE
ve

so that (. (T', F) is a Banach space with respect to the norm || - ||. The following special
conventions apply:

o [ (I') =l (I',C);

o (o, = l(N);

e E" =(({1,...,n}, E) for each n € N.

We write E* for the (continuous) dual space of the Banach space E. The duality bracket
between E and E*is (-, -), while kg: E — E** denotes the canonical embedding of F
into its bidual. By an operator, we understand a bounded, linear operator between Banach
spaces; we write A(E, F') for the set of all operators from E to another Banach space F,
and denote by T* € Z(F*, E*) the adjoint of an operator T € AB(E, F).

We shall require the following standard notions for T' € Z(E, F):

(i) T is a finite-rank operator if it has finite-dimensional range. We write .7 (E, F') for

the set of finite-rank operators from E to F. It is well known that

F(E,F)=span{y® \:y € F, A € E*}, (2.1)
where y ® A denotes the rank-one operator given by
YA z— (r,\N)y, E—=F (ye F, A€ E).
The following elementary observation will be used several times:
Rly® NS =(Ry)® (S*\) (Se€B(D,E),ye F, A€ E*, Re B(F,G)), (2.2)

valid for any Banach spaces D, F, F, and G.

(ii) T is compact if the image under T of the unit ball of F is a relatively norm-compact
subset of F. We write # (E, F') for the set of compact operators from E to F.

(iii) T is weakly compact if the image under T of the unit ball of E is a relatively weakly
compact subset of F. We write # (E, F) for the set of weakly compact operators
from F to F.

(iv) T is bounded below if, for some ¢ > 0, we have ||Tx| > ¢||z| for each z € E; or,
equivalently, T is injective and has closed range. This notion is dual to surjectivity
in the following precise sense (e.g., see [34, Theorem 3.1.22]):

T is surjective — T* is bounded below,

T is bounded below = T™ is surjective. (2.3)
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(v) T is strictly singular if no restriction of T' to an infinite-dimensional subspace of E
is bounded below; that is, for each € > 0, each infinite-dimensional subspace of E
contains a unit vector x such that ||Tz|| < e. We write Z(FE, F') for the set of strictly
singular operators from E to F.

(vi) T is a Fredholm operator if both of the quantities

o(T) =dimkerT  and  B(T) = dim(F/T(E)) (2.4)
are finite, in which case T has closed range, and its Fredholm indez is defined by
i(T)=a(T) - B(T) € Z.

We write ®(FE, F) for the set of Fredholm operators from E to F.
(vii) T is an upper semi-Fredholm operator if it has finite-dimensional kernel and closed
range. We write &, (E, F') for the set of upper semi-Fredholm operators from E to F.
(viil) T is inessential if Iy — ST is a Fredholm operator for each S € A(F, E). We write
&(FE, F) for the set of inessential operators from E to F.
In line with common practice, we set #(E) = #(E, E) whenever .# denotes one of the
eight classes %, F, , W, ./, &, &, and & of operators introduced above. Of these
classes, B, #, %, W, .7, and & define operator ideals in the sense of Pietsch, all of which
except .# are closed. The following inclusions hold in general:

F(E,F)C X (E,F)C (#(E,F)n(E,F)) C ¥(E,F)C &(E,F)C B(E,F).

We remark that a left, right, or two-sided ideal of Z(FE) is proper if and only if it does not
contain the identity operator /. This shows in particular that the two-sided ideal &(FE)
(and hence also #(E), # (E), and . (E)) is proper whenever E is infinite-dimensional.

We shall require two perturbation results for (semi-)Fredholm operators. Firstly, the set
of Fredholm operators is stable under inessential perturbations, and the Fredholm index is
preserved under such perturbations (see [26, Theorem 6]):

S+Te®E,F) with i(S+T)=iT) (Se&(EF),Tec®EF)). (2.5

Secondly, the set of upper semi-Fredholm operators is stable under strictly singular per-
turbations (see |31, Proposition 2.c.10]):

S+Te®(EF) (SeS(EF),Ted (EF)). (2.6)

The following notion is central to this paper. Let I' be a non-empty subset of #(FE) for
some Banach space E. The left ideal generated by T" is the smallest left ideal £ of AB(F)
that contains I'. It can be described explicitly as

2 = {ZSjﬂzsl,...,SnE%(E), T,...,T, €T, neN}. (2.7)

J=1

A left ideal .Z of Z(F) is singly (respectively, finitely, countably) generated if £ = £t
for some singleton (respectively, non-empty and finite, countable) subset I" of Z(FE).
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In the case where T" is non-empty and finite, say I' = {73, ..., T,}, (2.7) simplifies to

= {Z ST S1,...,5 € ,%’(E)} = {S\I/p VS ,%’(E",E)}, (2.8)
j=1
where we have introduced the operator
U = Z ij} S %(E, En), (29)

=1

here t;: E — E™ denotes the canonical j™ coordinate embedding. (Note that, strictly
speaking, the definition (2.9) of W requires that I be an ordered n-tuple, not just a finite
set. Whenever we consider W, the ordering of I' is always understood to be by increasing
index: I' = (Ty,...,T,).)

The operator W, together with its counterpart for infinite I', which we shall introduce
in Section 4, will play a key role in our work. We shall give here only one, very simple,
application of W, showing that each finitely-generated left ideal of operators is already
singly generated for most ‘classical’ Banach spaces.

Proposition 2.1. Let E be a Banach space which contains a complemented subspace that
is isomorphic to E@® E. Then each finitely-generated left ideal of B(F) is singly generated.

Proof. Let I" be a non-empty, finite subset of #(E), and set n = |I'| € N. By the assump-
tion, E contains a complemented subspace which is isomorphic to £, and hence Ign = VU
for some operators U € B(E", E) and V € B(E, E™). We shall now complete the proof
by showing that the left ideal £t is generated by the single operator T'= UV € #(E).
By (2.8), we have T' € 4%, so that Ly C 2.
Conversely, each operator R € 4 has the form R = SVUr for some S € #(E", E)
by (2.8), and therefore R = S(VU)Vr = (SV)T € L. O

Our next result collects some basic facts about the fixed maximal left ideals of Z(E),
most of which were already stated in the Introduction.

Proposition 2.2. Let x and y be non-zero elements of a Banach space E. Then:

(i) the set ML, given by (1.1) is the left ideal of B(E) generated by the projection
Ip — . ® A, where A € E* is any functional such that (x,\) = 1;
(ii) the left ideal ML, is maximal;
(iii) AL, = ML, if and only if x and y are proportional.
In particular, B(E) contains |E| distinct, fired mazimal left ideals whenever E is infinite-
dimensional.

Proof. (i). Let P = Igp —x ® A. The set 4L, is clearly a left ideal which contains P, and
hence Zpy C MZ,. The reverse inclusion holds because, by (2.2), T'(z ® \) = 0 for each
T € ML, s0 that T =TP € Lpy.

(ii). The left ideal .Z.%, is evidently proper. To verify that it is maximal, suppose that
T € BE)\ ML, Then Tz # 0, so that (T'z,u) = 1 for some p € E*. The operator
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S =1Ip— (r®p)T belongs to AL, because (x @ u)Tx = (Tx, u)xr = x, and consequently
Ig =S4 (x@u)T € AL, + L1y

(iii). It is clear that #Z.Z, = .#.Z, if x and y are proportional. We prove the converse by
contraposition. Suppose that x and y are linearly independent. Then we can take A € E*
such that (z,\) =1 and (y,\) =0, and hence z ® A\ € AL, \ MAZ,. O

We conclude this preliminary section with the observation that the answer to the ana-
logue of Question (I) for two-sided ideals is negative, as the following example shows.

Example 2.3. Consider the Hilbert space H = (5(X;), and take a projection P € ZA(H)
with separable, infinite-dimensional range. The ideal classification of Gramsch [17] and
Luft [33]| implies that the ideal 2" (H) of operators with separable range is the unique
maximal two-sided ideal of Z(H). Given T € Z°(H), let Q € %(H) be the orthogonal
projection onto T'(H). Then T'= QT and also () = V PU for some operators U,V € AB(H),
so that T'= V PUT. Hence 2 (H) is the two-sided ideal of Z(H) generated by the single
operator P. Since 2 (H) is the only maximal two-sided ideal of #(H), we conclude that
each maximal two-sided ideal of Z(H) is singly generated, and therefore the analogue of
Question (I) for two-sided ideals has a negative answer.

With slightly more work, we can give a similar example for a separable Banach space.
To this end, consider the p'" quasi-reflexive James space J, for some p € (1,00). Edelstein
and Mityagin [12] observed that the two-sided ideal #(J,) of weakly compact opera-
tors is maximal because it has codimension one in Z(.J,). The fifth-named author |28,
Theorem 4.16| has shown that #/(.J,) is the unique maximal two-sided ideal of %(J,). His
work also implies that #/(J,) is singly generated as a two-sided ideal, as we shall now
explain. Let

JISOO) = (@ JIS"))E , where JIE") ={(aj)jen € Jy:; =0 (j >n)} (n € N).

neN

This is clearly a reflexive Banach space, which is isomorphic to a complemented subspace
of J,. (The latter observation is due to Edelstein and Mityagin [12, Lemma 6(d)]. An alter-
native approach can be found in [28, Proposition 4.4(iv)].) Take a projection P € %(J,)

whose range is isomorphic to Ji>. By [29, Theorem 4.3], we have

W (Jy) ={TS:5 € B(J,, J), T € B, J,)} ={VPU:UV € B(J,)},

P “p
so that #/(J,) is the two-sided ideal of #(J,) generated by the single operator P.

On the other hand, Corollary 4.8, below, will show that #/(J,) is not finitely generated
as a left ideal because J, is non-reflexive.

3. COUNTING MAXIMAL LEFT IDEALS

Let E be an infinite-dimensional Banach space. An infinite family (E,),er of non-zero,
closed subspaces of E is an unconditional Schauder decomposition of E if, for each x € F,
there is a unique family (z),er with z., € E, for each v € I" such that the series Zwer Ty
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converges unconditionally to z. In this case we can associate a projection Py € #(F) with
each subset T of I' by the definitions

Py=0 and Pro=)Y z, (z€E) for T#0, (3.1)

veY

where (z.)er is related to = as above.
Using this notion, we can transfer a classical algebraic result of Rosenberg |40] to Z(E).

Proposition 3.1. Let E be a Banach space with an unconditional Schauder decomposition
(Ey)ver. Then the Banach algebra ZB(E) contains at least 22" mmazimal left ideals which
are not fired.

Proof. The power set B(I") of T is a Boolean algebra, and J = {T € (') : |T| < [['|} is
a proper Boolean ideal of B(I"). Since I is infinite, a classical result of Pospisil (see [38],
or [8, Corollary 7.4] for an exposition) states that the collection My of maximal Boolean
ideals of 9B(I") containing J has cardinality 22"

For each MM € My, let P(ON) = {Py : T € M} C A(F), where Py is the projection given
by (3.1). Assume towards a contradiction that the left ideal Zpwy) is not proper. Then,
for some n € N, there are operators 11, ...,T, € ZA(F) and sets Tq,..., T, € M such that
Ig = Z?Zl T Py;. Right-composing both sides of this identity with the projection Prr,
where T = U;‘:l T; € M, we obtain Pr\y = 0, so that I' = T € M, which contradicts the
fact that 2 is a proper Boolean ideal.

We can therefore choose a maximal left ideal .#y of #(E) such that Zpwon) C .
This maximal left ideal .#Zy cannot be fixed because, for each x € E \ {0}, we have
x =3 cr Py, so that Py # 0 for some v € I'. Hence Ppy ¢ 4%, but on the other
hand Py € Zpony C Aoy since {v} € T C M.

Consequently we have a mapping 91 — .#yy from M5 into the set of non-fixed, maximal
left ideals of (FE). We shall complete the proof by showing that this mapping is injective.
Suppose that 9, 0N € My are distinct, and take a set T € 9\ M. The maximality of N
implies that T'\ T € 9, and therefore

Ig = Py + Pr\y € Zpon) + Loomy C Mon + M.
Thus, since the left ideals .#sy and .#y are proper, they are distinct. [

Corollary 3.2. Let E be a Banach space with an unconditional Schauder decomposition
(E,)er, and suppose that E contains a dense subset D such that 2/PI < 22" Then B(E)
contains at least 22" mazimal left ideals which are not finitely generated.

Proof. Since each point of E is the limit point of a sequence in D, we have |E| < |D|™.
Further, each operator on E is uniquely determined by its action on D, and consequently

1B(E)| < |EP| = |EIP! < (ID[¥)"" = |D|IP! = 2171, (3.2)

where the final equality follows from a standard result (e.g., see [22, Lemma 5.6]). Hence
%(E) contains at most (2‘D|)NO = 2Pl countable subsets, so that Z(FE) contains at most
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2IPI countably-generated left ideals. On the other hand, Proposition 3.1 implies that there
are at least 22" distinct maximal left ideals of Z(E). We have 2P < 22" by the assump-

tion, and hence #(FE) contains at least 22" maximal left ideals which are not countably
generated, and thus not finitely generated. O

The most important case of this corollary is as follows.

Corollary 3.3. Let E be a separable Banach space with an unconditional Schauder de-
composition (E,)yer. Then ZB(E) contains 2° mazimal left ideals which are not finitely
generated.

Proof. The index set I is necessarily countable because F is separable. Hence, by Corol-
lary 3.2, Z(F) contains at least 2° maximal left ideals which are not finitely generated.
On the other hand, (3.2) implies that Z(F) has cardinality ¢, so that %(FE) contains no
more than 2° distinct subsets. [

Example 3.4. (i) Let £ be a Banach space which has an unconditional Schauder ba-
sis (e, )nen. Then E satisfies the conditions of Corollary 3.3, and hence A(E) con-
tains 2¢ maximal left ideals which are not finitely generated.

The class of Banach spaces which have an unconditional Schauder basis is large
and includes for instance the classical sequence spaces ¢y and ¢, for p € [1,00), the
Lebesgue spaces L,[0, 1] for p € (1,00), the Lorentz and Orlicz sequence spaces d,,
and hys (e.g., see |31, Chapter 4]), the Tsirelson space T' (e.g., see |31, Example 2.e.1]),
and the Schlumprecht space S (see [41, Proposition 2|).

(ii) Suppose that F is a Banach space which contains an infinite-dimensional, closed,
complemented subspace F' with an unconditional Schauder decomposition (F,).er.
Then E also has an unconditional Schauder decomposition, obtained by adding any
closed, complementary subspace of F to the collection (F,),er.

In particular, generalizing (i), we see that each separable Banach space E which
contains an infinite-dimensional, closed, complemented subspace with an uncondi-
tional Schauder basis satisfies the conditions of Corollary 3.3, and hence Z(F) con-
tains 2¢ maximal left ideals that are not finitely generated. This applies for in-
stance to E = L]0, 1] because it contains a complemented copy of ¢; (e.g., see |1,
Lemma 5.1.1]); to E = C(K) for any infinite, compact metric space K because E
contains a complemented copy of ¢q (e.g., see [1, Proposition 4.3.11]); to E = J, for
p € (1,00), the p' quasi-reflexive James space, because J, contains a complemented
copy of ¢, (see [12, Lemma 6(d)] or [28, Proposition 4.4(iii)]); and to £ = (X)),
where X is any Banach space with an unconditional Schauder basis, because £ con-
tains a complemented copy of ¢y consisting of the compact operators whose matrix
representation with respect to the unconditional Schauder basis is diagonal.

(iii) There are separable Banach spaces E such that E has a unconditional Schauder
decomposition (E,),eny with each E, finite-dimensional, but E does not have an
unconditional Schauder basis, notably Kalton and Peck’s twisted {,-spaces Z, for
p € (1,00) (see |25, Corollary 9| and the remark following it). Each such Banach
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space E satisfies the conditions of Corollary 3.3, and hence Z(F) contains 2 maximal
left ideals which are not finitely generated.

Remark 3.5. Corollary 3.3 is not true for all separable, infinite-dimensional Banach
spaces. Indeed, we shall show in Theorem 6.2, below, that there are separable, infinite-
dimensional Banach spaces F such that Z(F) contains just one maximal left ideal which
is not fixed, and this ideal is not finitely generated.

4. PROOFS OF THE DICHOTOMY THEOREMS 1.1 AND 1.3

The main purpose of this section is to prove Theorems 1.1 and 1.3.

Theorem 4.1. Let E be a non-zero Banach space, and let £ be a proper left ideal of B(F)
such that £ is not contained in any fized mazimal left ideal. Then the left ideal £ + &(E)
18 proper.

Proof. Suppose contrapositively that .2 is a left ideal of #(FE) such that £+ & (E) = #B(E)
and & € ML, for each z € E'\ {0}. We shall then prove that . = Z(F). By the first
assumption, we can write [ = R+.S for some R € £ and S € &(F), and hence R = Ip—S
is a Fredholm operator of index zero by (2.5). The set

¥ ={TeZLnNdE):iT)=0}

is therefore non-empty.

Our next aim is to show that, for each T' € 2 with «(T) > 0, there exists U € £ such
that «(U) = «(T) — 1, where «(-) is defined by (2.4). Indeed, take x € ker T\ {0} and
y€ E\T(F). Since & € ML, we can find an operator V' € £ such that Vx # 0, and
hence (Va,\) =1 for some A € E*. Let U =T + (y ® \)V. Then U € & because T' € &
and (y @ \)V € ZN.Z(F), and also a(U) = a(T) — 1 because ker T = ker U @ Cx, as is
easily verified.

The result established in the previous paragraph implies in particular that 2 contains
an operator U with a(U) = 0. Hence B(U) = a(U) —i(U) = 0, so that U is invertible, and
consequently & = ZA(FE), as required. O

This result has as an immediate consequence the following dichotomy, which generalizes
Theorem 1.1 slightly because .7 (E) C &(E).

Corollary 4.2 (Strong dichotomy for maximal left ideals). Let E be a non-zero Banach
space. Then, for each mazximal left ideal £ of B(E), exactly one of the following two
alternatives holds:

(i) £ is fized; or

(i) Z contains &(EF).

Proof. Suppose that the maximal left ideal £ of #(F) is not fixed. Then & € #ZL,
for each x € E'\ {0}, so that Theorem 4.1 implies that £ + &(F) is a proper left ideal
of Z(F). Hence, by the maximality of ., we have . = £ + &(E); that is, (ii) holds. O
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Remark 4.3. Corollary 4.2 can be seen as a counterpart for maximal left ideals of the
following observation due to the fifth-named author |28, Proposition 6.6]. Let E be an
infinite-dimensional Banach space. Then &(F) is contained in each maximal two-sided
ideal of A(F).

Remark 4.4. Let o/ be a unital C*-algebra. We write a — a* for the involution on <.
(This should not be confused with the notation 7* for the adjoint of an operator T' between
Banach spaces used elsewhere in this paper.) A state on &/ is a norm-one functional A
on 7/ which is positive, in the sense that (a*a,\) > 0 for each a € &/. Given a state A
on o/, the set
M={aec d :(a*a,\) =0} (4.1)

is a closed left ideal of o/ by the Cauchy—Schwarz inequality (e.g., see [23, Proposition 4.5.1]
or [35, p. 93|). The collection of all states on &/ forms a weak*-compact, convex subset
of the dual space of &7, called the state space of <. Its extreme points are the pure
states on 7. Prosser |39, Theorem 6.2] has shown that the map A — A5 gives a bijective
correspondence between the pure states on &7 and the maximal left ideals of .o7; expositions
of this result can be found in [24, Theorem 10.2.10] and [35, Theorem 5.3.5|.

In the case where of = Z(H) for some Hilbert space H, the fixed maximal left ideals
correspond to the vector states, which are defined as follows. Let x € H be a unit vector.
Then the functional w, given by

(T.we) = (Tx]x) (T € B(H)),

where (-|-) denotes the inner product on H, is a pure state on B(H), called the vector
state induced by x; and we have #ZZ, = .4, , as is easy to check. The conclusion of
Corollary 4.2 is known in this case because J# (H) = &(H), and by [24, Corollary 10.4.4]
each pure state A on HB(H) is either a vector state, or £ (H) C ker A\, in which case
H(H) C i,

Finally, suppose that the Hilbert space H is separable and infinite-dimensional. Then
clearly (H ) has ¢ vector states, whereas it has 2 pure states by |24, Proposition 10.4.15].
These conclusions also follow from Proposition 2.2 and Example 3.4(i), respectively.

We shall now turn our attention to the proof of Theorem 1.3. This requires some prepara-
tion. Let E be a Banach space. For each non-empty, bounded subset I' of #(F), we can
define an operator ¥r: E — ((I", E) by

(Ura)(T) =Tz (x € E, TeT). (4.2)

Note that, after natural identifications, this definition generalizes (2.9). Further, we can
define a linear isometry =Zr from the Banach space

68 = {0 B S D) < oo}

Ter

into (T, E)* by
(f,Zrg) =Y _{f(T),9(T))  (f €l(T,E), g € L(T, EY)). (4.3)

Tel
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Letting Qr = U;Er € B((,(T, E*), E*), we then obtain a commutative diagram

\I/F CHE
E (oo (T, B)Y—E (T, E**) (4.4)
Reoo (T, E)
kg (oo(T, B)* ~ | Up
Qr
B 0 (T, E7),

where C, . : f — kg o f is the composition operator induced by kg, while Up is the usual
isometric identification of £, (I", E**) with the dual space of ¢1(I", E*) given by

(9,Ucf) = (9(T). f(1))  (f €LloclT, E7), g € L(L, E)).
Ter
The first of the following two lemmas explains the relevance of the operator Wr for our

present purpose, while part (iii) of the second identifies the role of Qr.

Lemma 4.5. Let x be a non-zero element of a Banach space E, and let I" be a non-empty,
bounded subset of B(E). Then x € ker Ur if and only if £+ C ML,

Proof. By the definition (4.2) of ¥, we have
zeker¥p <« (Tz=0 (Tel) < ICHMYL — 4K C.HMZL,
which gives the result. O

Lemma 4.6. Let E be a non-zero Banach space, and let I' be a non-empty, bounded subset
of B(E) for which the corresponding left ideal £t is closed.

(i) For each \ € E*, the set

IHh={y® A :yeFE}
is a left ideal of B(E), and the following three conditions are equivalent:
(a) 7x C 2
(b) y®@ A € L for somey € E\ {0};
(c) X € Qr(4i(T, EY)).
(ii) The operator Qr has closed range.
(iii) The operator Qr is surjective if and only if F(E) C Zr.

Proof. (i). Equation (2.2) shows that ¢, is a left ideal.

The implication (a)=>(b) is evident.

(b)=(c). Suppose that y @ A € £ for some y € E'\ {0}, so that y@ A = >_7_| S;T; for
somen € N, Sy,...,S5, € B(F) and Ty,...,T, € I'. We may suppose that T3,...,T, are



14 H. G. DALES, T. KANTA, T. KOCHANEK, P. KOSZMIDER, AND N. J. LAUSTSEN

distinct. Choose p € E* such that (y, u) = 1, and define g: I' — E* by

Stp it T =T; for some j € {1,...,n},
g(jv — 7 'J { }
0 otherwise.

Then g has finite support, so that trivially it belongs to ¢, (I", E*), and Qrg = A because

(x,Qrg) = (Vrx,Epg) = Z<Tﬂ€ 9(T)) = Z<7}$75;M> = <Z Sjzj,u>
j=1 Jj=1

= ((y@ Nz, 1) = (@, Wy, 1) = (x,)) (¢ € E).

Hence \ € Qr (61(F,E*)).
(c)=(a). Suppose that A\ = Qrg for some g € ¢,(I', E*). Then, for each y € E, we have

(y@ Nz = (z,Qrg)y = > (T, 9(T))y =Y (yog(T)Tx  (z€E), (4.5)

Tel Tell

The series Y. (y®g(T))T converges absolutely because g € (1(I', E*) and T is bounded,
and each term of this series belongs to the left ideal .21, which is closed by hypothesis.
Hence the sum of the series, which is equal to y ® A by (4.5), also belongs to 4, and so
I\ C Lr.

(ii). Suppose that (\;)jen is a sequence in Qp(¢1(I, E*)) which converges to A € E*.
By (i), we have ¢, C %t for each j € N. Hence

y®)\:h_>my®)\j€‘$p (y € E)
J

because .4t is closed, so that A € Qr (61 (', E%) ) by another application of (i).

(iii). Suppose that Qr is surjective. Then (i) implies that #, C % for each A € E*,
and consequently .Z (F) C 4 by (2.1).

Conversely, suppose that .Z(E) C 4, and let A\ € E* be given. Since ¢, C .#(E),
(i) implies that A € Qp(¢1(T, E*)), so that Qr is surjective. O

We can now characterize the closed left ideals of Z(FE) that contain .#(E) as follows,
provided either that E is reflexive or that we restrict our attention to the closed left
ideals that are finitely generated. Note that Theorem 1.3 is simply a restatement of the
equivalence of conditions (a) and (e).

Theorem 4.7. Let E be a non-zero Banach space, let £ be a closed left ideal of B(E), and
take a non-empty, bounded subset I' of B(FE) such that £ = Zr. Suppose that either E is
reflexive or I' is finite. Then the following five conditions are equivalent:

(a) no fired mazimal left ideal of B(E) contains L

(b) the operator Wr is injective;

(c) the operator Wr is bounded below;

(d) the operator Qr is surjective;

(e) £ contains F (E).
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Proof. The following implications hold without any further assumptions on E or I

Conditions (a) and (b) are equivalent by Lemma 4.5.

Conditions (d) and (e) are equivalent by Lemma 4.6(iii).

Evidently (c) implies (b).

Condition (d) implies (¢). Indeed, suppose that Qr = WiZEp is surjective. Then U} is
also surjective, and therefore Ur is bounded below by (2.3).

The remaining implication, that (b) implies (d), does require further assumptions. We
consider first the case where E is reflexive. The operators xg and C,, in the diagram (4.4)
are then isomorphisms, and so ¥p and Qf are equal up to isomorphic identifications.
Hence (2.3) implies that (c¢) and (d) are equivalent. Moreover, Qr has closed range by
Lemma 4.6(ii). The same is therefore true for Ur by the closed range theorem (e.g., see
[34, Theorem 3.1.21]), and so conditions (b) and (c) are also equivalent.

Secondly, suppose that the set I' is finite. Then the operator Zp: ¢1(I", E*) — (o (T, E)*
given by (4.3) is an isomorphism, and so Qr and ¥} are equal up to isomorphic identifica-
tions. Hence the conclusion follows as in the first case. 0J

As an easy consequence of this result, we obtain that the ideal of weakly compact
operators is finitely generated as a left ideal only in the trivial case where it is not proper.

Corollary 4.8. The following three conditions are equivalent for a Banach space E:
(a) #(E) is finitely generated as a left ideal;
(b) #(E) = #(E);
(c) the Banach space E is reflexive.

Proof. The equivalence of (b) and (c) is standard, and (b) obviously implies (a).

To see that (a) implies (c), suppose that # (E) = 2 for some non-empty, finite subset
I' ={Ty,...,T,} of B(E). It clearly suffices to consider the case where E is non-zero.
Theorem 4.7 implies that the operator Ur is bounded below because #(E) contains .7 (E).
Since the operators T1,...,T, are weakly compact, the same is true for U by the defi-
nition (2.9). Hence the Davis—Figiel-Johnson—Pelczynski factorization theorem (see [11],
or [32, Theorem 2.g.11] for an exposition) implies that, for some reflexive Banach space F,
there are operators R € #A(E,F) and S € A(F,E") such that Yp = SR. Now R is
bounded below because Wr is, and therefore E is isomorphic to the subspace R(E) of the
reflexive space F, so that E is reflexive. [

We conclude this section with an example that shows that Theorem 4.7 may not be true
if we drop the assumption that either the Banach space E is reflexive or the set I' is finite.
This requires the following easy variant of Lemma 4.6(i).

Lemma 4.9. Let T' be an operator on a Banach space E, and suppose that y ® X € L

for some y € E\ {0} and A € E*. Then \ € T*(E*).

Proof. Let (S;);en be a sequence in #(FE) such that S;7 — y ® X as j — oo, and choose
€ E* such that (y, u) = 1. Then we have

T*(S;p) = (S 1) = (YA u=(y,m)A =X as j— oo,
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from which the conclusion follows. O

Example 4.10. Let T be the operator on /., given by

T(0y)jen = (—% + i %) - ((a)jen € £ec). (4.6)

j=n+1

Then T is compact and leaves the subspace ¢y invariant. Define Ty: x — Tx, ¢g — ¢,
and consider the closed left ideal .2 = Zpy of %(cy). We have £ C J (co) because Ty
is compact. Our aim is to show that . satisfies condition (a), but not condition (e), of
Theorem 4.7.

We begin by verifying that ker 7" = C(1,1,...). It is clear that 7'(1,1,...) = (0,0,...).
Conversely, suppose that (¢;);en € ker 7. Then, for each n € N, we have

o
Qn _ vl
2n 277
j=n+1
so that

o0
% . Ani1 & o Qni1 Qnt1 o Q41
on  9n+l 2i  9n+l on+l — 9n

j=n+2

Hence «,, = o, 41 for each n € N, and the conclusion follows.

This shows in particular that T} is injective because cq Nker T = {0}. Consequently
Ty ¢ ML, for each x € ¢ \ {0}, and so .Z satisfies condition (a) of Theorem 4.7.

On the other hand, identifying ci* with ¢, in the usual way, we find that 7;* = 7', which
is not injective, so that 7f does not have norm-dense range by [34, Theorem 3.1.17(b)].

Take A € ¢§ \ Tg(cp) and y € E '\ {0}. Then, by Lemma 4.9, y ® A ¢ &£, so that £ does
not satisfy condition (e) of Theorem 4.7.

5. ‘CLASSICAL’ BANACH SPACES FOR WHICH EACH FINITELY-GENERATED, MAXIMAL
LEFT IDEAL IS FIXED

The purpose of this section is to show that Question (II) has a positive answer for many
standard examples of Banach spaces F.

We begin by showing that a much stronger conclusion is true in certain cases, namely
that no finitely-generated, proper left ideal of Z(F) contains .# (E). This result relies on
two lemmas. The first states that conditions (c)—(e) of Theorem 4.7 are equivalent for each
finitely-generated left ideal .Z of #(F), whether or not .Z is closed.

Lemma 5.1. Let E be a Banach space. Then the following three conditions are equivalent
for each non-empty, finite subset I' of B(E):

(a) the operator Vr is bounded below;

(b) the operator Qr is surjective;

(c) Zr contains F (E).
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Proof. The equivalence of (a) and (b) follows as in the final paragraph of the proof of
Theorem 4.7.

To see that (b) and (c) are also equivalent, we note that Lemma 4.6(i) is true without
the assumption that £t is closed, provided that the set I' is finite, because in this case the
series considered in the proof of Lemma 4.6(i), (c)=(a), is finite. Hence Lemma 4.6(iii)
also carries over to the present setting, and the conclusion follows. [

Our second lemma characterizes the finite subsets I' of Z(F) that do not generate
a proper left ideal in terms of standard operator-theoretic properties of Wr.

Lemma 5.2. Let E be a non-zero Banach space. Then the following three conditions are
equivalent for each non-empty, finite subset I' of B(E):

(a) the operator Wy is bounded below and its range is complemented in E'l;
(b) the operator Wy is left invertible;
(c) L = AB(E).

Proof. The equivalence of (a) and (b) is an easy standard result, true for any operator be-

tween Banach spaces, while the equivalence of (b) and (c) follows immediately from (2.8).
0

Proposition 5.3. Let E be a Banach space, and let n € N. Then F(E) is contained in
a proper left ideal of B(F) generated by n operators if and only if E"™ contains a closed
subspace I such that F is isomorphic to E and F is not complemented in E™.

Proof. We may suppose that E is non-zero, and prove both implications by contraposition.

=>. Suppose that each subspace F' of E" such that F' = E is automatically comple-
mented, and let I" be a subset of #(F) of cardinality n such that #(E) C 2. We
must prove that £ = Z(F); that is, by Lemma 5.2, we must show that the operator Ur
is bounded below and has complemented range. Lemma 5.1 implies that U is indeed
bounded below, and its range is therefore a closed subspace of E™ isomorphic to E, so that
it is complemented by the assumption.

<. Suppose that B(FE) is the only left ideal with (at most) n generators that con-
tains .# (F), and let F' be a closed subspace of E™ such that F' is isomorphic to E. We
must prove that F' is complemented in E™. Take an operator " € Z(FE, E™) which is
bounded below and has range F'. Letting I' = {1 T, ..., p,T} C B(E), where

pr: (T5)jy = ap, E" = E (ke{1,...,n}),

we have Ur = T by the definition (2.9) of Wr. This operator is bounded below, and there-
fore Lemma 5.1 implies that 4 contains % (E). Hence, by the assumption, 4 = B(E),
so that the range of W, which is equal to F', is complemented in £ by Lemma 5.2. [

Combining this result with Theorem 1.1, we reach the following conclusion.

Corollary 5.4. Let E be a Banach space such that, for each n € N, each closed sub-
space of E™ isomorphic to E is automatically complemented in E™. Then B(F) is the
only finitely-generated left ideal of B(E) which contains F(E), and hence each finitely-
generated, mazimal left ideal of B(E) is fized.
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Example 5.5. The condition of Corollary 5.4 on the Banach space F is satisfied in each
of the following three cases:

(i) E is a Hilbert space.

(ii) E is an injective Banach space; that is, whenever a Banach space I’ contains a closed
subspace GG which is isomorphic to F, then G is automatically complemented in F.
For instance, the Banach space E = (. (I') is injective for each non-empty set I
More generally, £ = C(K) is injective whenever the Hausdorff space K is Stonean
(that is, compact and extremely disconnected).

(iii) £ = ¢o(T") for a non-empty set I' (this follows from Sobeczyk’s theorem [43] for count-
able " and from [18] (or [3, Proposition 2.8]) in the general case); here ¢o(I") denotes
the closed subspace of /. (I') consisting of those functions f: I' — C for which the
set {7y €T :|f(v)| = e} is finite for each £ > 0.

Thus, in each of these three cases, Z(F) is the only finitely-generated left ideal of Z(F)
which contains .% (E), and each finitely-generated, maximal left ideal of Z(F) is fixed.

Our next goal is to prove a result (Theorem 5.9) which, under much less restrictive
conditions on the Banach space E than Corollary 5.4, gives the slightly weaker conclusion
that A(F) is the only finitely-generated left ideal of Z(FE) which contains J# (E). We
note in particular that Corollary 4.2 ensures that this conclusion is still strong enough to
ensure that each finitely-generated, maximal left ideal of #(F) is fixed, thus answering
Question (IT) positively for a large number of Banach spaces.

Let E be a Banach space with a Schauder basis e = (e;);en. For each k£ € N, we denote
by P the k" basis projection associated with e. The basis constant of e is

Ke =sup{|| Pl : k € N} € [1,00).
The basis e is monotone if Ko = 1.

Lemma 5.6. Let E be a Banach space with a Schauder basis € = (e;)jen, and let v =
(75)jen be a decreasing sequence of non-negative real numbers. Then

o o
doaie = ) e (5.1)
j=1 j=1

defines an operator A, € B(E) of norm at most Key1. This operator is compact if and
only if v; — 0 as j — oo.

Proof. Equation (5.1) clearly defines a linear mapping A, from span{e; : j € N} into E.
Since span{e; : j € N} is dense in ), it suffices to show that this mapping is bounded with
norm at most Kevy;. Now, for each = = 25:1 aje; € span{e; : j € N}, where k£ € N and
at,...,ax € C, we have

k k—1
Az =P+ ) 7P — Piaz) =Y (3 — 1) Pie 4w,

j=2 7j=1
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so that
k—1

1Az <D (= i) Kellell + yellell < Keyall|l,
7j=1
as required.
To prove the final clause, we note that, by a standard result, (P;),en is a bounded left
approximate identity for JZ(E) (e.g., see |9, p. 318]), so that A, is compact if and only if
P,A, — A, as j — oo. Hence the estimates

Yit1 < ||[(Ie — P)A,|| € Ke(Ke + 1)1 (j €N),

which are easy to verify, give the result. [

Corollary 5.7. Let E be a Banach space with a Schauder basis € = (e;)jen, let k € N,
and let n = (nj)le be an increasing k-tuple of non-negative real numbers. Then

0o k
Z()éj@j — anajejv E— E| (52)
j=1 j=1

defines an operator of norm at most 2Kny

Proof. Define
f = {ekjﬂ fOI“j: <k,

€; for j > k.

Then f = (f;)jen is a Schauder basis for E (because we have reordered only finitely many
vectors of the original basis e), and the m'™ basis projection associated with f is given by
P, — Py, for m < k and P, for m > k, so that Ky < 2K,. Now Lemma 5.6 gives the
desired conclusion because

GWZAW: Zajfjf—)Z’Yj&jfj, E—>E,
P =1

where v = (7;) en denotes the decreasing sequence (., Nk—1,-..,71,0,0,...). O
We now come to our key lemma.

Lemma 5.8. Let E be a Banach space with a monotone Schauder basis, and let " be
a non-empty, finite subset of B(E) for which F(E) C Zr. Then the sequence (t;)jen
given by

=inf{||T||: T € B(E",E), P, =TV¥r} € (0,00) (j €N) (5.3)

is increasing. Suppose that (t;);en s unbounded, and let v = (tA_l/2)

J
tor A, given by (5.1) is compact and does not belong to 2.

Proof. Set n = |I'| € N. For each j € N, we have P; € .F#(E) C 4, so that (2.8) ensures
that the set appearing in the definition (5.3) of ¢; is non-empty, and ¢; > || ¥r|~* > 0. To
see that t;41 > t;, suppose that P; 1y = T'Up for some T' € #(E", E). Then P; = (P;T)¥r,
so that ¢; < ||[P;T|| < ||T|| by the monotonicity of the Schauder basis for E.

jen. Then the opera-
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The first part of the final clause (that A, is compact if (¢;) ey is unbounded) is immediate
from Lemma 5.6. We shall prove the second part by contraposition. Suppose that A, € Zt,
so that A, = SV¥r for some S € #(E", E). Then, for each k € N, we have a commutative
diagram

j2
E L
A
Uy T O
3k

where n(k) = (tjl-/2)§:1 and the operator ©, is given by (5.2). Hence, by the defini-

tion (5.3) of t; and Corollary 5.7, we obtain
1/2
e < ©m 1| < 26,151
which implies that the sequence (¢;);en is bounded by 4[5 O

Theorem 5.9. Let E be a Banach space which is complemented in its bidual and has
a Schauder basis. Then B(E) is the only finitely-generated left ideal of B(E) which con-
tains A (E), and hence each finitely-generated, mazimal left ideal of B(F) is fized.

Proof. Let € = (e;)jen be a Schauder basis for £. By passing to an equivalent norm on FE,
we may suppose that e is monotone. Suppose that I' is a non-empty, finite subset of A(E)
such that . (E) C 4, and set n = |I'| € N. Lemma 5.8 implies that the sequence (¢;);en
given by (5.3) is bounded, so that we can find a bounded sequence (7});ey in #(E", E)
such that P; = T, ¥y for each j € N.

We may identify Z(E", E**) with the dual space of the projective tensor product E"®E*;
the duality bracket is given by

(x @\, S) = () Sx) (x€ E", Ne E*, S € B(E",E™))

(e.g., see |9, Proposition A.3.70]). Hence #B(E", E**) carries a weak*-topology, with respect
to which its unit ball is compact by the Banach-Alaoglu theorem. Consequently the
bounded sequence (kgTj) ey has a weak*-accumulation point, say T' € Z(E", E**). Then,
for each j € N, A € E* and € > 0, we can find an integer k£ > j such that

3 2 |<\111"6j X )\, T — /iETk>‘ = }<>\, T\prej - KETk\Ilpej>’ = ‘</\,T\I/F6j — liEej>|.

Since € > 0 and A € E* were arbitrary, we conclude that TWre; = kge;, and therefore
TVUr = kg. By the assumption, kg has a left inverse, say A € A(E**, F). Hence we have
IE = (AT)\I]F € gp, so that gp = @(E) ]

Example 5.10. Theorem 5.9 implies that, for £ = ¢, or E = L,[0, 1], where p € (1, 00),
PB(F) is the only finitely-generated left ideal of H(FE) which contains J¢ (E), and each
finitely-generated, maximal left ideal of #(FE) is fixed. This conclusion is also true for
p = 1; indeed, ¢; is a dual space and therefore complemented in its bidual, while L;[0, 1]
is complemented in its bidual by [1, Theorem 6.3.10].
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Many other Banach spaces are known to be complemented in their biduals. The following
list gives some examples.

(i) Let E be a Banach space which is isomorphic to a complemented subspace of a dual
Banach space; that is, for some Banach space F, there are operators U € Z(FE, F*)
and V € Z(F*, F) such that I = VU. Then the diagram

I
E & E
K
F*
U l U 1%
F*** i
I *
F F P

is commutative. This implies that the operator kgV kU is a projection of E**
onto kg(E), so that E is complemented in its bidual.

(ii) Let £ be a Banach lattice which does not contain a subspace isomorphic to ¢o. Then E
is complemented in its bidual by [32, Theorem 1.c.4].

(iii) Let E be a non-zero Banach space for which Z(FE) is complemented in its bidual, so
that Iz = Akgp) for some operator A € B(B(E)™, B(E)). Choosing A € E*
and y € E with (y,\) = 1, we can define operators by

Uy z—z) E— ABE), and Vy: T—=Ty, ABE)—E,
which induce a commutative diagram

RE

E E**
&\ U**

A

R#(E
I BE) — " (B
lawy |,
v
E ! B(E).

This shows that V,AU}* is a left inverse of kg, and so E is complemented in its
bidual.

Remark 5.11. Theorem 5.9 does not provide any new information for Banach spaces of the
form £ = C(K), where K is a compact Hausdorff space, because the assumption that C'(K)
is complemented in its bidual implies that C'(K) is injective, so that Example 5.5(ii) already
applies.

A slight variation of the proof of Theorem 5.9 gives the following conclusion.
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Theorem 5.12. Let E be a Banach space with a Schauder basis. Then ZB(E*) is the

only finitely-generated left ideal of B(E*) which contains F(E*), and hence each finitely-
generated, mazimal left ideal of B(E*) is fized.

Proof. (Sketch.) Let I" be a non-empty, finite subset of (E*) such that . (E*) C 4, and
set n = |['| € N. As in the proof of Theorem 5.9, we may suppose that £ has a monotone
Schauder basis e. Then, arguing as in the proof of Lemma 5.8, we see that the sequence

t;=wf{|T||: T e B((E")",E"), P; =T¥r} € (0,00)  (j €N)

is increasing and bounded. (Indeed, if (t});en were unbounded, then for v = ((t;)_lﬂ)jeN,

we would have A% € F(E*)\ Zr, contrary to our assumption.) Consequently there exists
a bounded sequence (T});jen in Z((E£*)", £*) such that P’ = T;Ur for each j € N. Let T
be a weak*-accumulation point of (7}),en, where we have identified Z((E*)", E*) with the
dual space of the projective tensor product E®(E*)" via the duality bracket given by

(x @ u, Sy = (x,Su) (re B, pe (E)", SeB(E), E)). (5.4)

For each x € E, A\ € E*, and € > 0, we can find j, € N such that ||z — Pjz| < (2| \|+1)~*
whenever j > jo. Choosing j > jo such that ‘(x QWA T — Tj>‘ < ¢/2 and applying (5.4),
we then obtain

[z, (TOr — Ip)N)| < [z, (TVr — PN+ |(z, (Ig — P;)*A)
< |<x, (T — T])\I/p/\ﬂ + |<x — ij,)\)‘ <e.
This implies that TWr = I+, and therefore 4 = Z(E*). O

Example 5.13. Theorem 5.12 applies in the following two cases which have not already
been resolved:

(i) E = X®X*, where X is a Banach space with a shrinking Schauder basis (this ensures
that E has a Schauder basis); then E* = Z(X™), so that the conclusion is that each
finitely-generated, maximal left ideal of Z(%#(X™*)) is fixed. The most important case
is where X, and hence X*, is a separable, infinite-dimensional Hilbert space; in this
case #B(X*) does not have the approximation property [44].

(i) E = (B, ey E”)é1’ where (E,)nen is a sequence of Banach spaces with Schauder

bases whose basis constants are uniformly bounded; then E* = (6D, E;;)g , and

so the conclusion is that each finitely-generated, maximal left ideal of Z((P E;) ' )
is fixed.

The conditions imposed on the Banach space E in Theorems 5.9 and 5.12 are clearly
preserved under the formation of finite direct sums. By contrast, this need not be the
case for the condition of Corollary 5.4. For instance, ¢y and £, both satisfy this condition
by Example 5.5(ii)—(iii), whereas their direct sum ¢y & ¢, does not. We shall explore this
situation in greater depth in Section 7. Notably, as a particular instance of Theorem 7.3, we
shall see that the main conclusion of Corollary 5.4 fails for F = ¢o@ (o because . (co® o)
is contained in a proper, closed, singly-generated left ideal of B(co ® (o).
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We do not know the answer to Question (II) for E = ¢y @ ¢, but the following result
answers this question positively for another direct sum arising naturally from Example 5.5,
with the ideal .(E) of strictly singular operators taking the role that was played by % (FE)
in Corollary 5.4 and % (F) in Theorem 5.9.

Proposition 5.14. Let E = ¢y(I') @ H, where I is a non-empty set and H is a Hilbert
space. Then B(F) is the only finitely-generated left ideal of B(E) which contains . (EF),
and hence each finitely-generated, mazximal left ideal of B(F) is fized.

Proof. Let £ be a finitely-generated left ideal of Z(F) such that .(F) C .. We may
suppose that I' is infinite and H is infinite-dimensional. Proposition 2.1 implies that .Z is
generated by a single operator T' € A(F), say, while Lemma 5.1 shows that 7" is bounded
below and thus is an upper semi-Fredholm operator.

We can represent 1" as a matrix of operators:

T — T1’12 Co(r> — C()(F) Tl’gl H — CO(F)
o TQJ: CU(F) — H T2722 H—H '

Each operator from H to ¢y(I") is strictly singular because no infinite-dimensional subspace
of ¢y(T") is isomorphic to a Hilbert space. Similarly, each operator from ¢q(I") to H is strictly
singular. Hence, by (2.6), we obtain

Tii 0\ .. (0 T
( 0 T272> =T (CF271 0 > € (I)+<E>7

which clearly implies that 77, € @, (¢(I")) and Tho € ®(H). Let P, € F(co(I')) and
P, € #(H) be projections onto the kernels of T ; and T35, respectively. Then

Tl,l: €T +— T171£L’7 ker Pl — T171(C()(F)),

is an isomorphism, and we have T} 1(co(I")) = ker P, = ¢o(I") because ¢o(I") is isomorphic
to its hyperplanes. Consequently, as in Example 5.5(iii), the range of T3 ; is complemented
in ¢(I"), so that we can extend the inverse of le to obtain an operator S; € Z(co(I))
which satisfies S1711 = I @) — P1. Similarly, we can find an operator S, € %(H) such
that SoT59 = Iy — P,. In conclusion, we have

_ (50 P =511 _
Iy = (0 52> T+ (—S2T2,1 b, > cL+ S (E) =2,
and thus . = #(F).

The final clause follows immediately from Corollary 4.2 because . (E) C &(E). O

6. ‘EXOTIC’ BANACH SPACES FOR WHICH EACH FINITELY-GENERATED, MAXIMAL
LEFT IDEAL IS FIXED

In this section, we shall answer Question (IT) positively for two classes of custom-made
Banach spaces of a distinctly non-classical nature, using an approach which is completely
different from the one taken in Section 5. More precisely, for each Banach space E in either
of these two classes, we are able to describe all the maximal left ideals of Z(FE) explicitly,
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and it will then follow easily that only the fixed maximal left ideals are finitely generated.
The reason that we can describe all the maximal left ideals of Z(F) is, roughly speaking,
that #(F) is ‘small’. As we shall see, in both cases each non-fixed, maximal left ideal
of B(E) is a two-sided ideal of codimension one.

We begin with a lemma which can be viewed as a counterpart of Corollary 4.8 for left
ideals of strictly singular operators.

Lemma 6.1. Let E be a Banach space, and let £ be a left ideal of B(E) such that
F(E) C ¥ C L (E). Then the following three conditions are equivalent:

(a) & is finitely generated;

(b) £ = B(E);

(c) E is finite-dimensional.

Proof. The implications (c)=-(b)=-(a) are clear.

(a)=-(c). Suppose that £ = 4 for some non-empty, finite subset I' of Z(F). Lemma 5.1
implies that the operator Wr is bounded below, while (2.9) and the fact that I' C . (F)
show that Ur is strictly singular. Hence the domain E of Wr is finite-dimensional. [

A Banach space F has few operators if E is infinite-dimensional and each operator on F
is the sum of a scalar multiple of the identity operator and a strictly singular operator;
that is, B(F) = Clg + .“(F). Gowers and Maurey [16] showed that each hereditarily
indecomposable Banach space has few operators, and constructed the first example of such
a space.

Theorem 6.2. Let E be a Banach space which has few operators. Then (E) is the
unique non-fized, mazimal left ideal of B(E), and .7 (E) is not finitely generated as a left
ideal.

Proof. Let £ be a maximal left ideal of #(FE), and suppose that .Z is not fixed. Then, by
Corollary 4.2, £ contains &(E) and hence .(F), which has codimension one in Z(F),
so that £ = &(F) = ./(FE). This proves the first clause. The second clause follows from
Lemma 6.1. 0J

To set the scene for our second result, we begin with a short excursion into the theory
of semidirect products of Banach algebras. Let % be a Banach algebra, and let 4 and .%#
be a closed subalgebra and a closed, two-sided ideal of A, respectively. Then £ is the
semidirect product of € and .# if € and ¢ are complementary subspaces of Z; that is,
C+ 7 =R and €N .F = {0}. In this case, we denote by p: Z — € the projection of #
onto € along .. This is an algebra homomorphism, as is easy to check. It is relevant for
our purposes because it induces an isomorphism between the lattices of closed left ideals

Lat,(2) = {£ : £ is a closed left ideal of 2 such that .# C .} (6.1)
and
Lat(€) = {4 : A is a closed left ideal of €'}. (6.2)

More precisely, for each £ € Lat (%), we have p(£) = £ NE € Lat(¥), and the
mapping .Z — p(Z) is a lattice isomorphism of Lat » (%) onto Lat(%); its inverse is given
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by A +— A + Z. Suppose that the left ideal £ € Lat (%) is generated by a subset I'
of . Then evidently p(.Z) is generated by the subset p(I') of €, so that p maps each
closed, finitely-generated left ideal of Z containing . to a closed, finitely-generated left
ideal of €.

We shall next state two classical results about C'(K)-spaces. The first is due to Pelczyn-
ski [36, Theorem 1|, and characterizes the weakly compact operators from a C(K)-space
into an arbitrary Banach space.

Theorem 6.3. Let K be a compact Hausdorff space, and let E be a Banach space. Then
the following three conditions are equivalent for each operator T € B(C(K), E):

(a) T is weakly compact;

(b) T is strictly singular;

(c) T does not fix a copy of cy.

The second result describes the maximal ideals of the Banach algebra C'(K), as well as the
finitely-generated ones. (Note that the notions of a left, right, and two-sided ideal coincide
in C(K) because C'(K) is commutative.) Given a point k € K, we write e;: C(K) — C
for the evaluation map at k; that is, e,(f) = f(k) for each f € C(K). This is a surjective
algebra homomorphism of norm one.

Theorem 6.4. Let K be a compact Hausdorff space. Then:

(i) each mazimal ideal of C(K) has the form kerey for a unique point k € K;
(ii) the mazimal ideal ker ey, is finitely generated if and only if k is isolated in K.

Proof. The first clause is folklore (e.g., see [9, Theorem 4.2.1(i)]), while the second is the
complex-valued counterpart of a classical theorem of Gillman [14, Corollary 5.4]. Both
clauses are also easy to verify directly. O

We require one further notion before we can present our result. For a compact Hausdorff
space K and a function ¢ € C(K), we denote by M, € ZA(C(K)) the multiplication
operator given by g; that is, M, f = gf for each f € C'(K). The mapping

p: g— M, C(K)— AB(C(K)), (6.3)

is an isometric, unital algebra homomorphism. An operator T € ZA(C(K)) is a weak
maultiplication if it has the form T'= M, + S for some g € C'(K) and S € # (C(K)). The
fourth-named author [27, Theorem 6.1] (assuming the continuum hypothesis) and Plebanek
[37, Theorem 1.3] (without any assumptions beyond ZFC) have constructed an example
of a connected, compact Hausdorff space K for which each operator on C'(K) is a weak
multiplication. This ensures that the following theorem is not vacuous.

Theorem 6.5. Let K be a compact Hausdorff space without isolated points and such that
each operator on C(K) is a weak multiplication.
(i) The Banach algebra B(C(K)) is the semidirect product of the subalgebra p(C(K))
and the ideal W (C(K)), where p is the homomorphism given by (6.3).
(ii) The following four conditions are equivalent for each subset L of B(C(K)):
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(a) Z is a non-fized, mazimal left ideal of B(C(K));

(b) Z is a mazimal left ideal of B(C(K)), and £ is not finitely generated;

(c) Z is a mazimal two-sided ideal of B(C(K));

(d) £ ={My;+S5:5€#(C(K)) and g € C(K) with g(k) =0} for some k € K.
In the positive case, the point k € K such that (d) holds is uniquely determined by £ .

Proof. (i). We have B(C(K)) = p(C(K))+# (C(K)) because each operator on C'(K) is a
weak multiplication. Theorem 6.3 allows us to replace # (C(K)) with .(C(K)), which we
shall do in the remainder of this proof because the latter ideal suits our approach better.

To see that u(C(K)) N . (C(K)) = {0}, suppose that g € C(K) \ {0}. Take ky € K
such that g(ko) # 0, set € = |g(ko)|/2 > 0, and choose an open neighbourhood N of kg
such that |g(k)| > € for each k € N. Using Urysohn’s lemma and the fact that kg is not
isolated in K, we deduce that the subspace

F={feCK): f(k)=0 (ke K\N)}
of C'(K) is infinite dimensional. Since

1M fll = sup{lg(k)f (k)| : ke N} > el f] (f€F),

we conclude that M, is not strictly singular, as required.
(ii). For each k € K, let

2 = p(kerey) + S (C(K)) = {My;+ S5 : S € S(C(K)) and g € C(K) with g(k) =0}.

By (i), 2% is a two-sided ideal of codimension one in Z(C(K)), and thus maximal both
as a left and a two-sided ideal. The implication (d)=(c) is now immediate, while (d)=(b)
follows because p(Z%) = p(kerey) is not finitely generated by Theorem 6.4(ii), so that 2%
is not finitely generated as a left ideal, as explained in the paragraph following (6.2).

The implication (b)=-(a) is clear because each fixed, maximal left ideal is finitely gener-
ated by Proposition 2.2(i).

(a)=(d). Suppose that .Z is a non-fixed, maximal left ideal of Z(C(K)). Then, by
Corollary 4.2, .Z contains & (C(K)) and thus . (C(K)), so that .Z is a maximal element
of the lattice Lat ook (#(C(K))) given by (6.1). Hence, in the notation of (6.2), there
is a maximal element .4 of the lattice Lat(u(C(K))) such that & = A + S (C(K)).
Theorem 6.4(i) implies that A4 = u(kerey) for some k € K, and consequently . = 2.

(c)=(d). Suppose that .Z is a maximal two-sided ideal of Z(C(K)). Then, as mentioned
in Remark 4.3, .Z contains & (C(K)) and hence . (C(K)), so that & = 2 for some k € K
by (i) and Theorem 6.4(i).

The final clause follows because ker ey, # kerey, whenever ki, ky € K are distinct, and
hence also 2, # Z%,. O

Remark 6.6. Example 5.5(ii)—(iii) and Theorem 6.5 show that, for certain compact Haus-
dorff spaces K, Question (IT) has a positive answer for E = C'(K). However, this question
remains open for some very important C'(K)-spaces. Indeed, it is known that C'(K) con-
tains a closed subspace which is isomorphic to C'(K) and which is not complemented
in C(K) for each of the following compact Hausdorff spaces K :
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(1) K =1[0,1] (see [2]);

(ii) K =[0,q] for any ordinal a > w*, where [0, o] denotes the set of ordinals less than
or equal to «, equipped with the order topology. (Baker [5] showed this for o = w*;
the conclusion for general o > w* follows immediately from Baker’s result because
C0,a] = C0, o] ® C[0,w”].)

Hence, by Lemma 5.1, #(C(K)) is contained in a singly-generated, proper left ideal
of Z(C(K)) for each of these K, but we do not know whether such a left ideal can be
chosen also to be maximal (or even closed).

This question cannot be answered by a variant of Theorem 5.9 because we can strengthen
the above conclusion to obtain that .2 (C(K)) is contained in a singly-generated, proper
left ideal of #(C(K)) for each of the above K. To see this, take an operator U € Z(C(K))
which is bounded below and whose range F' = U(C(K)) is not complemented in C'(K),
and consider the isomorphism U: x — Uz, C(K) — F. Then, for each S € # (C(K)), the
operator SU™: F' — C(K) has an extension T' € # (C(K)) by a theorem of Grothendieck
(see [19, pp. 559-560], or [30, Theorem 1]). Hence we have S = TU, and consequently
H(C(K)) € Loy,

7. A NON-FIXED AND SINGLY-GENERATED, MAXIMAL LEFT IDEAL OF OPERATORS

The main aim of this section is to prove Theorems 1.5 and 1.6. Several parts of those
theorems are special cases of more general results, which may be of independent interest,
and so we shall take a more general approach, specializing only when we need to.

Recall that, for a non-empty set I, we denote by /. (I") the Banach space of bounded,
complex-valued functions defined on I', and fo, = ((N). Our first result collects some
known facts about operators from /(') that we shall use several times.

Lemma 7.1. Let ' be a non-empty set, and let X be a Banach space.

(1) An operator from €. (T') to X is weakly compact if and only if it is strictly singular.
(ii) Suppose that the set ' is infinite. Then each operator from {y(I') to X is weakly
compact if and only if X does not contain a subspace isomorphic to l.

Proof. (i). This is a special case of Theorem 6.3.

(ii). The hard part is the implication <, which however follows immediately from [31,
Proposition 2.f.4].

The forward implication is straightforward. Suppose contrapositively that X contains
a subspace isomorphic to (., and take an operator U € HB({y, X) which is bounded
below. Choose an injective mapping 6: N — I', and define an operator Cy € B({ (1), )
by Cyf = fo0 for each f € {,(I"). Then UCj is not weakly compact, for instance because
it fixes a copy of /. O

In the remainder of this section we shall consider a Banach space X such that

(I) the bidual of X is isomorphic to ¢ () for some infinite set T, via a fixed isomor-
phism V: X** — ((T;); and
(IT) no subspace of X is isomorphic to f.



28 H. G. DALES, T. KANTA, T. KOCHANEK, P. KOSZMIDER, AND N. J. LAUSTSEN

For example, X = ¢, satisfies both of these conditions with T; = N.

Let Ty be a disjoint copy of T; (that is, Ty is a set of the same cardinality as T
and satisfies Ty N YTy = @), and set T = T; U To. We consider (o (T1) and (. (T2)
as complementary subspaces of /. (T) in the natural way, and denote by P, and P the
corresponding projections of £, (1) onto (Y1) and (o (Ts), respectively. Moreover, we
shall choose a bijection ¢: To — T; we then obtain an isometric isomorphism C, of £, (T)
onto the subspace (o (Y2) by the definition C,f = f o ¢ for each f € £ (T).

Let B = X ® (o (T) with norm ||(z, f)HE = max{||z||x, || |l }. We identify operators T
on E with (2 x 2)-matrices

Tll X=X Tl’gigoo(T)%X
Tgl X — E (T) Tg}gi KOO(T> — KOO(T)

Note that assumption (II) and Lemma 7.1(ii) imply that the operator T} » is always weakly
compact. This fact will play a key role for us.

Despite our focus on left ideals, our first result about the Banach space E is concerned
with two-sided ideals.

Proposition 7.2. (i) The set

w = (D D) B(E): Ty, € W (X)
Ty Tap
is a proper, closed two-sided ideal of B(E), and Wi is a mazimal two-sided ideal
of B(E) if and only if W (X) is a maximal two-sided ideal of B(X).
(ii) The set

wy =1 (L D) ¢ )., e w(1)
Toq Too ’

is a proper, closed two-sided ideal of B(F), and the following three conditions are
equivalent:

(a) #45 is a mazimal two-sided ideal of B(E);
(b) # (Lso(Y)) is a mazimal two-sided ideal of B(Lso(T));
(

c) T is countable.

Proof. (i). The mapping
T'—>T171+W<X), %( )—><@ /W

is a surjective algebra homomorphism of norm one. Hence its kernel, Which is equal to 71, is
a closed two-sided ideal of Z(F). This ideal is proper because, by assumption (I), X is non-
reflexive. The fundamental isomorphism theorem implies that ,@ )/ = B(X) /W (X)
Thus the algebra Z(FE / )/ # is simple if and only if Z(X / W (X) is simple, and therefore
#1 is a maximal two-sided ideal of #(F) if and only if 7/( ) is a maximal two-sided ideal
of B(X).

(ii). An obvious modification of the argument given above shows that %5 is a proper,
closed two-sided ideal of Z(F), and that conditions (a) and (b) are equivalent. The impli-
cation (c¢)=-(b) follows from |31, Proposition 2.f.4].
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Conversely, to prove that (b)=-(c), suppose that # ({-(Y)) is a maximal two-sided
ideal of #(l-(Y)), and denote by ¥4, (¢~ (T)) the set of operators on ¢ (Y) that factor
through /... This is a two-sided ideal of Z (. (T)) because {4 is isomorphic to lo @ ls.
Hence ¥ ({oo(Y)) + # ({(Y)) is also a two-sided ideal, which is strictly greater than
W ({+(Y)) because (. (Y) contains a complemented copy of ¢+, and any projection with

range isomorphic to £, belongs to 4. (¢oo(T)) \ # (¢« (Y)). Consequently, by the maxi-

mality of # ({-(Y)), there are operators R € 4 ({s(Y)) and S € # ({(Y)) such that
Ircry=R+S. Then R = I, (v)— S is a Fredholm operator by (2.5) and Lemma 7.1(i), so
that I,y = URT for some operators T, U € H({(T)) because {(T) is isomorphic to
its hyperplanes. Thus the identity operator on /(Y1) factors through /.., which is possible
only if T is countable. O

Set

L— (V(;X C(,L) € B(E), (7.1)

where the operators V' and C, were introduced on p. 27. Since the ranges of V and C,, are
contained in the complementary subspaces £, (1) and (. (Y3) of £, (T), respectively, we
have

LG, N g = IVixz + Coflloo = max{[[Vixz]loo, |Cp flloo }
= max{|Vixzloo |fl} (2 €X, f € £u(T)),

which shows that the operator L is bounded below because Vkx is bounded below. This
conclusion is also immediate from our next result and Lemma 5.1.

Theorem 7.3. The ideal # defined in Proposition 7.2(1) is the left ideal generated by the
operator L given by (7.1); that is,

M =21y

Proof. We have L € #; because Ly ; = 0, and hence the inclusion D follows.
We shall prove the reverse inclusion in three steps. First, we see that

0o 0\ (0 0 0 0.
0 Igoo(y) - 0 C;lpg VK,X C(p {Lh

and consequently, for each T 5 € B(lo(T), X) and Tho € B(l(Y)), we have

0 T172 . 0 TLQ 0 0
0 72) =0 26 al) <o ")
Second, let Th; € B(X,l(T)). Being bounded below, the operator Vkx is an isomor-
phism onto its range Y := Vix(X) C (Y1), so that it has an inverse R € Z(Y, X).

By the injectivity of (o (Y1), the composite operator Th 1R € B(Y,l-(Y)) extends to
an operator S € B(l(Y1),l(Y)), which then satisfies SVkyxy = T5;. Hence we have

0 0\ (0 0[O0 0
(TQ,1 o) = (o SP1> (VKX @) € Zuy (7:3)
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Third, each operator 71, € #/(X) satisfies T75(X*) C rx(X) (e.g., see [34, Theo-
rem 3.5.8]). We can therefore define an operator U € B((o(Y1), X) by Uf = k(' T{ VL f
for each f € (oo(T1). Since kxUVkx =T kx = kxTh1, we have UVky = T, and so

Ty 0\ _ (0 UPN\[( 0 0
( 0 0) - (o 0 ) <V/ix ap) € 2y (74)

Combining (7.2)—(7.4), we conclude that each operator 7' € #; belongs to Z{;. O

Remark 7.4. Since the operator L given by (7.1) is bounded below and generates a proper
left ideal of A(FE), its range is not complemented in E by Lemma 5.2. This is also easy to
verify directly.

A Banach space F' has very few operators if F' is infinite-dimensional and each operator
on F is the sum of a scalar multiple of the identity operator and a compact operator;
that is, B(F) = Clp + 2 (F). Argyros and Haydon [4] constructed the first example of
a Banach space X g which has very few operators. We shall now specialize to the case
where X = Xg. The following result collects those properties of X g that we shall require.

Theorem 7.5 (Argyros and Haydon). There is a Banach space Xay with the following
three properties:

(1) Xan has very few operators;
(ii) Xan has a Schauder basis;
(iii) the dual space of Xy is isomorphic to {;.

Using this, we can easily prove Theorem 1.5.

Proof of Theorem 1.5. We begin by checking that X,y satisfies the two assumptions made
on p. 27: Theorem 7.5(iii) ensures that X3} is isomorphic to ¢, while Theorem 7.5(ii)
(or (iii)) implies that Xay does not contain £.,. Moreover, we have # (Xan) = # (Xan)
because Theorem 7.5(iii) implies that Xap is non-reflexive, so that #(Xag) is a closed,
non-zero, proper two-sided ideal of Z(Xay), and £ (Xag) is the only such ideal by Theo-
rem 7.5(i)—(ii). Hence the set %] given by (1.2) is equal to the ideal #] defined in Propo-
sition 7.2(i), and #] is singly generated as a left ideal by Theorem 7.3. Theorem 7.5(i)
implies that #] has codimension one in Z(F), so that it is trivially maximal as a left, right,
and two-sided ideal. (The latter also follows from Proposition 7.2(i).) Being a non-zero
two-sided ideal, J#] contains .Z (E), and therefore .7, is not fixed. O]

Remark 7.6. Theorem 1.5 implies that the class of Banach spaces for which Question (II)
has a positive answer is not closed under finite direct sums. Indeed, Xy and /. both
belong to this class by Theorem 6.2 and Example 5.5(ii), respectively, whereas their direct
sum does not.

We shall next give a characterization of the ideal %] defined by (1.2). Theorem 1.6 will
be an easy consequence of this result.

Theorem 7.7. Let ' = Xy @ ls. Then the following three conditions are equivalent for
each subset £ of B(E):
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(a) £ = J;
(b) Z is a non-fized, finitely-generated, mazimal left ideal of B(E);
(c) Z is a mazimal left ideal of B(F) and contains an operator which is bounded below.

Proof. (a)=(b). This is immediate from Theorem 1.5.

(b)=(c). Suppose that .Z is a non-fixed, finitely-generated, maximal left ideal of Z(F),
so that . = 21 for some non-empty, finite subset I' of B(E). Set n = |I'| € N.
By Lemma 5.1, the operator Wr is bounded below. Moreover, there is an operator
T € #(E™, E) which is bounded below because X,y embeds in f., and /, is isomor-
phic to the direct sum of 2n — 1 copies of itself. Hence the composite operator TWr is
bounded below, and it belongs to .Z by (2.8).

(c)=-(a). Suppose that .Z is a maximal left ideal of Z(F) and that .# contains an opera-
tor R = (Rj)3 -, which is bounded below. Then R does not belong to any fixed maximal
left ideal, so that &(F) C £ by Corollary 4.2. Lemma 7.1 shows that each operator
from (., to Xay is strictly singular, and thus inessential. Hence, by [15, Proposition 1],
each operator from Xag to £ is also inessential, and so we conclude that

N The) poc H(Xan), Tro € B(loo, Xan),
To1 Top ’ ’

T271 S @(XAH,KOO), Tgyg € W<€oo)} = (gg(E) - Z. (75)

Since the operator R is bounded below, its restriction R, = (ﬁ;j) is also bounded

below, and is thus an upper semi-Fredholm operator. Consequently ( 32’2 ) is an upper semi-
Fredholm operator by (2.6) because R » is strictly singular, and therefore Ry 5 is an upper
semi-Fredholm operator. Let ) € .% ({) be a projection onto ker Ry 5. Then the restriction
of Ry 5 to ker () is an isomorphism onto its range, which is a closed subspace of /. Since £
is injective, the inverse of this isomorphism extends to an operator S: ¢, — ker ) C /.,
which then satisfies SRy = I, — (). Hence we have

0 0 \ [0 0\ (R Ruis 0 0
(st 1.0 0)= (0 &) (r Ry ez andns (3 ) ) ez
by (7.5). Combining this with (7.5), we see that % C ., and consequently % = £ by
the maximality of 7. O

Proof of Theorem 1.6. The equivalence of conditions (a) and (b) in Theorem 7.7 shows
that 7] is the unique non-fixed, finitely-generated, maximal left ideal of #(FE). Proposi-
tion 7.2(ii) implies that #% is a maximal two-sided ideal. Since .Z(E) C #5 ¢ Jt5, #5 is
not contained in any finitely-generated, maximal left ideal of B(E). O

One may wonder whether the conclusion of Theorem 1.5 that the ideal #; introduced in
Proposition 7.2(i) is maximal as a left ideal might be true more generally, that is, not only
in the case where X is Argyros—Haydon’s Banach space. Our next result implies that this
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is false for X = ¢y. Note that all weakly compact operators on ¢y are compact, so that, in
this case, #, is equal to

A = T The)) o PBlco @ loo) : Tin € H (co) ¢ (7.6)
Trn Top

Proposition 7.8. The ideal J#| given by (7.6) is not contained in any finitely-generated,
mazimal left ideal of B(co ® ls).

For clarity, we present the main technical step in the proof of Proposition 7.8 as a
separate lemma.

Lemma 7.9. For each operator T € B(cy) \ P1(co), there exist a projection Qo € B(cyp)
and a normalized basic sequence (x,,)nen 0 co such that (x,)nen is equivalent to the standard
unit vector basis for cy and

1
QoTon—1 = Top_1, Qoxan = 0, and ||T5Un|| < E (” € N)- (7-7)

Proof. Let (ep)nen denote the standard unit vector basis for ¢y. Since T ¢ @ (cp), there
are two cases to consider.

Case 1: a(T) = co. Then ker T' contains a closed subspace Y which is isomorphic to ¢
and complemented in ¢y (e.g., see |31, Proposition 2.a.2|). Let (z,),eny be a normalized
Schauder basis for Y such that (z,),en is equivalent to (e,)nen. Since Y is complemented
in ¢ and the basis (z,,)nen is unconditional, there is a projection Qg € %(co) which satisfies
the first two identities in (7.7), while the third one is trivial because z,, € Y C ker T for
each n € N.

Case 2: a(T) < oo and T'(¢p) is not closed. For each n € N, choose €, € (0, 1) such that
(1+|IT|en(l —&,)" ! < n~!. By induction, we shall construct a normalized block basic
sequence (7, )nen Of (€n)nen such that ||Tx,|| < n~! for each n € N.

To start the induction, we observe that 7' cannot be bounded below because its range is
not closed, so that we can find a unit vector y; € ¢o such that | Ty, || < ;. Approximating y;
within ; by a finitely-supported vector and normalizing it, we obtain a finitely-supported
unit vector 1 € ¢p such that | Taq|| < (1 + ||T]))e1(1 — 1)t < 1 by the choice of ;.

Now assume inductively that, for some n € N, unit vectors x1,...,x, € ¢y with consecu-
tive supports have been chosen such that ||7z;|| < 1/j for each j € {1,...,n}. Let m € N
be the maximum of the support of z,, so that z1,...,x, € span{ey,..., ey}, and let P,

be the m'™ basis projection associated with (e;)jen. If Tker p,, Were bounded below, then
it would have closed range, so that

T(co) = T(ker P,,) + span{Tey,...,Te,}

would also be closed, being the sum of a closed subspace and a finite-dimensional one.
This is false, and hence Ty p,, is not bounded below. We can therefore choose a unit
vector y,1 € ker Py, such that ||Ty,41]| < €,41. Now, as in the first step of the induction,
we approximate y,,1 within €,,,1 by a finitely-supported vector in ker P,, and normalize it
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to obtain a finitely-supported unit vector x, 1 € ker P, such that
A+ 1T Do _ 1
1— En+1 = n+ 1

[Tz <

by the choice of €,,,1. Hence the induction continues.

By [31, Proposition 2.a.1|, the sequence (z,)nen is equivalent to (e,)nen, and its closed
linear span is complemented in ¢y. Therefore, as in Case 1, we obtain a projection
Qo € B(cp) such that the first two identities in (7.7) are satisfied, while the third one
holds by the construction of (z,)nen. O

Proof of Proposition 7.8. Assume towards a contradiction that £ is a finitely-generated,
maximal left ideal of HB(co @ () such that £ C Z. Proposition 2.1 implies that £ is
generated by a single operator, say

T Tio
T = ’ ‘e R ).
(T2,1 T2,2> (co @ Loo)

We claim that 777 is not an upper semi-Fredholm operator. Assume the contrary;
that is, ker 7' ; is finite-dimensional, so that we can take a projection P € % (cy) onto
ker Ty, and T71(co) is closed. Then the restriction fmz x+— Tz, ker P — T3 4(co), 18
an isomorphism. TIts range is complemented in ¢y by Sobczyk’s theorem [43| because it
is isomorphic to ker P, which is a closed subspace of finite codimension in ¢y, and hence
isomorphic to ¢y. We can therefore extend the inverse of 7 ; to an operator S € %(cy),
which then satisfies ST}, = I, — P. Since P has finite rank, we have

P 0 T1,1 0 o o 0 TLQ .
<0 I&X})GQ%{Q% and <0 O)_T <T2,1 Tm)eiﬂ H C &L,

which implies that

L, 0\ (P 0 S 0\ (T 0
(0 Igw)_(o Igm)Jr(o 0)(0 0)63'

This, however, contradicts the assumption that the left ideal .Z is proper, and thus com-
pletes the proof of our claim.

Hence, by Lemma 7.9, we obtain a projection Qy € H(cy) and a normalized basic se-
quence (Zp)pen in ¢o such that (z,)nen is equivalent to the standard unit vector basis
(€n)nen for ¢o and

1
QoTon—1 = Ton_1, Qorap = 0, and |Th 12| < - (n € N). (7.8)

The sequence (z,)qen is weakly null because it is equivalent to the weakly null sequence
(€n)nen, and so the sequence (Rx,,)nen is norm-null for each R € £ (¢g). Now let

0
The maximality of the left ideal . implies that either
(i) Qe or (ii) L+ f{@} = %(Co S¥) foo).
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We shall complete the proof by showing that both of these alternatives are impossible.
In case (i), we can write Q = ST for some operator S = (S;x)7 .-, € HBlco @ loo).
Defining Py € B(cy ® loo, o) by Po(z, f) = x for each x € ¢y and f € {,, we have

Topn—1 = POQ(@n—l; 0) = POST($2n—17 0) = SLITI,len—l + 51,2T2,1$2n—1 (n € N)~

This, however, is absurd since the left-hand side is a unit vector, whereas the right-hand
side norm-converges to 0 as n — oo because |11 1%9,—1| — 0 by (7.8) and 51275 €
W(Co) = %(CQ).

In case (ii), there are operators U,V € HB(co @ lx) such that [, g0, = UT + VQ.
Define Py as above, and write U = (Uj,k>]2',k:1- Then, since Qoo, = 0, we have

Top = Po(UT +VQ)(220,0) = U111 122, + Ur 212172, (n € N),

which leads to a contradiction as in case (i) because the left-hand side is a unit vector,
whereas the right-hand side norm-converges to 0 as n — oc. U

ACKNOWLEDGEMENTS

We are grateful to David Blecher (Houston) and Mikael Rgrdam (Copenhagen) for having
informed us that the conjecture of the first author and Zelazko stated on p. 4 has a positive
answer for C*-algebras, and for having shown us how to deduce it from standard facts.

Key parts of this work were carried out during a visit of Piotr Koszmider to Lancaster
in February 2012. The visit was supported by a London Mathematical Society Scheme 2
grant (ref. 21101). The authors gratefully acknowledge this support.

REFERENCES

[1] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts Math. 233, Springer-
Verlag, New York, 2006.

[2] D. Amir, Continuous function spaces with the bounded extension property, Bull. Res. Concil Israel
Sect. F 101 (1962), 133-138.

[3] S. A. Argyros, J. F. Castillo, A. S. Granero, M. Jiménez, and J. P. Moreno, Complementation and
embeddings of ¢o(I) in Banach spaces, Proc. London Math. Soc. 85 (2002), 742-768.

[4] S. A. Argyros and R. G. Haydon, A hereditarily indecomposable .Z..-space that solves the scalar-
plus-compact problem, Acta Math. 206 (2011), 1-54.

[5] J. W. Baker, Some uncomplemented subspaces of C'(X) of the type C(Y"), Studia Math. 36 (1970),
85-103.

[6] D. Blecher and T. Kania, Finite generation in C*-algebras and Hilbert C*-modules, in preparation.

[7] N. Boudi, Banach algebras in which every left ideal is countably generated, Irish Math. Soc. Bull. 48
(2002), 17-24.

[8] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Grundlehren math. Wissenschaften 211,
Springer-Verlag, New York-Heidelberg, 1974.

[9] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24, Clarendon
Press, Oxford, 2000.

[10] H. G. Dales and W. Zelazko, Generators of maximal left ideals in Banach algebras, Studia Math. 212
(2012), 173-193.
[11] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski, Factoring weakly compact operators,

J. Funct. Anal. 17 (1974), 311-327.



MAXIMAL LEFT IDEALS OF OPERATORS ON A BANACH SPACE 35

[12] I. S. Edelstein and B. S. Mityagin, Homotopy type of linear groups of two classes of Banach spaces,
Funct. Anal. Appl. 4 (1970), 221-231.

[13] V. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup.
Pisa 5 (1978), 471-488.

[14] L. Gillman, Countably generated ideals in rings of continuous functions, Proc. Amer. Math. Soc. 11
(1960), 660—666.

[15] M. Gonzélez, On essentially incomparable Banach spaces, Math. Z. 215 (1994), 621-629.

[16] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6
(1993), 851-874.

[17] B. Gramsch, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967),
97-115.

[18] A.S. Granero, On complemented subspaces of ¢o(I), Atti Sem. Mat. Fis. Univ. Mdédena XLVI (1998),
35-36.

[19] A. Grothendieck, Une caractérisation vectorielle métrique des espaces Ly, Canad. J. Math. 7 (1955),
552-561.

[20] N. Grgnbak, Morita equivalence for Banach algebras, J. Pure Appl. Algebra 99 (1995), 183-219.

[21] N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, California, 1980.

[22] T. Jech, Set Theory, Third Millennium Ed., revised and expanded, Springer-Verlag, Berlin, 2003.

[23] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras I: Elementary
theory, Pure and Applied Math. 100, Academic Press, New York, 1983.

[24] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras II: Advanced
theory, Pure and Applied Math. 100, Academic Press, Orlando, Florida, 1986.

[25] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans.
Amer. Math. Soc. 255 (1979), 1-30.

[26] D. Kleinecke, Almost-finite, compact, and inessential operators, Proc. Amer. Math. Soc. 14 (1963),
863-868.

[27] P. Koszmider, Banach spaces of continuous functions with few operators, Math. Ann. 330 (2004),
151-183.

[28] N. J. Laustsen, Maximal ideals in the algebra of operators on certain Banach spaces, Proc. Edinburgh
Math. Soc. 45 (2002), 523-546.

[29] N. J. Laustsen, Commutators of operators on Banach spaces, J. Operator Th. 48 (2002), 503-514.

[30] J. Lindenstrauss, On the extension property for compact operators, Bull. Amer. Math. Soc. 68 (1962),
484-487.

[31] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Ergeb. Math. Grenzgeb. 92, Springer-
Verlag, Berlin—New York, 1977.

[32] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Ergeb. Math. Grenzgeb. 97, Springer-
Verlag, Berlin—New York, 1979.

[33] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space,
Czechoslovak Math. J. 18 (1968), 595-605.

[34] R. E. Megginson, An introduction to Banach space theory, Graduate Texts Math. 183, Springer-Verlag,
New York, 1998.

[35] G. J. Murphy, C*-algebras and operator theory, Academic Press, Boston, MA, 1990.

[36] A. Pelczyniski, On strictly singular and strictly cosingular operators. 1. Strictly singular and strictly
cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13
(1965), 31-36.

[37] G. Plebanek, A construction of a Banach space C(K) with few operators, Topology Appl. 143 (2004),
217-239.

[38] B. Pospisil, On bicompact spaces. Publ. Fac. Sci. Univ. Masaryk 270 (1939), 3-16.

[39] R. T. Prosser, On the ideal structure of operator algebras, Mem. Amer. Math. Soc. 45 (1963).



36 H. G. DALES, T. KANTA, T. KOCHANEK, P. KOSZMIDER, AND N. J. LAUSTSEN

[40] A. Rosenberg, The number of irreducible representations of simple rings with no minimal ideals, Amer.
J. Math, 75 (1953), 523-530.

[41] Th. Schlumprecht. An arbitrarily distortable Banach space. Israel J. Math. 76 (1991), 81-95.

[42] A. M. Sinclair and A. W. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211
(1974), 151-153.

[43] A. Sobczyk, Projection of the space (m) on its subspace (cg), Bull. Amer. Math. Soc. 47 (1941),
938-947.

[44] A. Szankowski, Z(H) does not have the approximation property, Acta Math. 147 (1981), 89-108.

Dales, Kania, and Laustsen
Department of Mathematics and Statistics, Fylde College
Lancaster University, Lancaster LA1 4YF, UK;

e-mail: g.dales@lancaster.ac.uk, t.kania@lancaster.ac.uk and

n.laustsen@lancaster.ac.uk
Kochanek
Institute of Mathematics, University of Silesia
ul. Bankowa 14, 40-007 Katowice, Poland;
e-mail: t_kochanek@up.pl

Koszmider
Institute of Mathematics, Polish Academy of Sciences
ul. Sniadeckich 8, 00-956 Warszawa, Poland;

e-mail: P.Koszmider@Impan.pl



