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Abstract. We address the following two questions regarding the maximal left ideals of
the Banach algebra B(E) of bounded operators acting on an in�nite-dimensional Banach
space E :

(I) Does B(E) always contain a maximal left ideal which is not �nitely generated?
(II) Is every �nitely-generated, maximal left ideal of B(E) necessarily of the form

{T ∈ B(E) : Tx = 0} (∗)
for some non-zero x ∈ E?

Since the two-sided ideal F (E) of �nite-rank operators is not contained in any of the
maximal left ideals given by (∗), a positive answer to the second question would imply
a positive answer to the �rst.

Our main results are: (i) Question (I) has a positive answer for most (possibly all)
in�nite-dimensional Banach spaces; (ii) Question (II) has a positive answer if and only
if no �nitely-generated, maximal left ideal of B(E) contains F (E); (iii) the answer to
Question (II) is positive for many, but not all, Banach spaces.

1. Introduction and statement of main results

The purpose of this paper is to study the maximal left ideals of the Banach algebra B(E)
of (bounded, linear) operators acting on a Banach space E, particularly the maximal left
ideals that are �nitely generated. A general introduction to the Banach algebra B(E) can
be found in [9, �2.5]. Our starting point is the elementary observation that B(E) always
contains a large supply of singly-generated, maximal left ideals, namely

MLx =
{
T ∈ B(E) : Tx = 0

} (
x ∈ E \ {0}

)
(1.1)

(see Proposition 2.2 for details). We call the maximal left ideals of this form �xed, inspired
by the analogous terminology for ultra�lters.
The Banach algebra B(E) is semisimple, as is well known (e.g., see [9, Theorem 2.5.8]);

that is, the intersection of its maximal left ideals is {0}. We observe that this is already
true for the intersection of the �xed maximal left ideals.
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In the case where the Banach space E is �nite-dimensional, an elementary result in linear
algebra states that the mapping

F 7→ {T ∈ B(E) : F ⊆ kerT}
is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of left ideals
of B(E) (e.g., see [21, p. 173, Exercise 3]). Hence each maximal left ideal L of B(E)
corresponds to a unique minimal, non-zero linear subspace of E, that is, a one-dimensional
subspace, and therefore L is �xed. This conclusion is also an easy consequence of our work,
as outlined in Remark 1.2(ii), below. By contrast, this statement is false whenever E is
in�nite-dimensional because the two-sided ideal F (E) of �nite-rank operators is proper,
so that, by Krull's theorem, it is contained in a maximal left ideal, which cannot be �xed
since, for each x ∈ E \ {0}, there is a �nite-rank operator T on E such that Tx 6= 0.
Inspired by these observations, the �rst-named author raised the following two questions

for an in�nite-dimensional Banach space E :

(I) Does B(E) always contain a maximal left ideal which is not �nitely generated?
(II) Is every �nitely-generated, maximal left ideal of B(E) necessarily �xed?
In the light of the previous paragraph, we note that a positive answer to (II) would imply
a positive answer to (I). Moreover, for similar reasons, it seems natural to consider also
the following, formally more speci�c, variant of Question (II):
(III) Is the ideal F (E) of �nite-rank operators ever contained in a �nitely-generated,

maximal left ideal of B(E)?
The answers to the above questions depend only on the isomorphism class of the Banach

space E. This follows from a theorem of Eidelheit, which states that two Banach spaces E
and F are isomorphic if and only if the corresponding Banach algebras B(E) and B(F )
are isomorphic (e.g., see [9, Theorem 2.5.7]).
After presenting some preliminary material in Section 2, we shall use a counting argument

in Section 3 to answer Question (I) positively for a large class of Banach spaces, including
all separable Banach spaces which contain an in�nite-dimensional, closed, complemented
subspace with an unconditional basis and, more generally, all separable Banach spaces with
an unconditional Schauder decomposition (see Corollary 3.3 for details).
We then turn our attention to Questions (II) and (III). The main conclusion of Section 4

is that, for a given Banach space E, they are equivalent, in the sense that Question (II) has
a positive answer if and only if Question (III) has a negative answer. This is an immediate
consequence of the following dichotomy theorem for maximal left ideals, which can be
viewed as the analogue of the fact that an ultra�lter on a setM is either �xed (in the sense
that it consists of precisely those subsets of M which contain a �xed element x ∈ M), or
it contains the Fréchet �lter of all co�nite subsets of M .

Theorem 1.1 (Dichotomy for maximal left ideals). Let E be a non-zero Banach space.

Then, for each maximal left ideal L of B(E), exactly one of the following two alternatives

holds:

(i) L is �xed; or

(ii) L contains F (E).
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Remark 1.2. (i) The result that we shall prove in Section 4 is in fact slightly stronger
than Theorem 1.1, but also more technical to state, since it involves the larger ideal
of inessential operators instead of F (E) (see Corollary 4.2 for details).

(ii) Let E be a non-zero, �nite-dimensional Banach space. Then F (E) = B(E), so
that no proper left ideal of B(E) satis�es condition (ii) of Theorem 1.1. Hence
Theorem 1.1 implies that each maximal left ideal of B(E) is �xed.

We shall also show that a conclusion similar to that of Theorem 1.1 holds for closed
left ideals of B(E) that are not necessarily maximal provided that either the underlying
Banach space E is re�exive, or that we restrict our attention to the closed left ideals which
are �nitely generated.

Theorem 1.3 (Dichotomy for closed left ideals). Let E be a non-zero Banach space,

let L be a closed left ideal of B(E), and suppose that either E is re�exive or L is �nitely

generated (or both). Then exactly one of the following two alternatives holds:

(i) L is contained in a �xed maximal left ideal; or

(ii) L contains F (E).

We note that Theorems 1.1 and 1.3 are genuine dichotomies in the sense that in both
theorems the two alternatives (i) and (ii) are mutually exclusive because, as observed above,
no �xed maximal left ideal of B(E) contains F (E).
The purpose of Sections 5 and 6 is to show that Question (II) has a positive answer

for many Banach spaces, both `classical' and more `exotic' ones. We can summarize our
results as follows, and refer to Sections 5 and 6 for full details, including precise de�nitions
of any unexplained terminology.

Theorem 1.4. Let E be a Banach space which satis�es one of the following six conditions:

(i) E has a Schauder basis and is complemented in its bidual;

(ii) E is isomorphic to the dual space of a Banach space with a Schauder basis;

(iii) E is an injective Banach space;

(iv) E = c0(Γ), E = H, or E = c0(Γ)⊕H, where Γ is a non-empty index set and H is a

Hilbert space;

(v) E is a Banach space which has few operators;

(vi) E = C(K), where K is a compact Hausdor� space without isolated points, and each

operator on C(K) is a weak multiplication.

Then each �nitely-generated, maximal left ideal of B(E) is �xed.

On the other hand, there is a Banach space for which the answer to Question (II) is nega-
tive; this is the main result of Section 7. Its statement involves Argyros�Haydon's Banach
space having very few operators. We denote this space by XAH, and refer to Theorem 7.5
for a summary of its main properties.

Theorem 1.5. Let E = XAH ⊕ `∞. Then the set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
(1.2)
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is a maximal two-sided ideal of codimension one in B(E), and hence also a maximal left

ideal. Moreover, K1 is singly generated as a left ideal, and it is not �xed.

This theorem suggests in particular that the Banach space E = XAH ⊕ `∞ is a natural
candidate for providing a negative answer to Question (I). However, as we shall also show
in Section 7, it does not.

Theorem 1.6. Let E = XAH ⊕ `∞. Then the ideal K1 given by (1.2) is the unique

non-�xed, �nitely-generated, maximal left ideal of B(E). Hence

W2 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 is weakly compact

}
, (1.3)

which is a maximal two-sided ideal of B(E), is not contained in any �nitely-generated,

maximal left ideal of B(E).

To conclude this summary of our results, let us point out that Question (II) remains
open in some important cases, notably for E = C(K), where K is any in�nite, compact
metric space such that C(K) 6∼= c0.

As a �nal point, we shall explain how our work �ts into a more general context. The
main motivation behind Question (I) comes from the fact that it is the special case where
A = B(E) for a Banach space E of the following conjecture, raised and discussed in [10]:

Let A be a unital Banach algebra such that every maximal left ideal of A
is �nitely generated. Then A is �nite-dimensional.

A stronger form of this conjecture in the case where A is commutative was proved by
Ferreira and Tomassini [13]; extensions of this result are given in [10]. The conjecture is
also known to be true for C∗-algebras, although we have not been able to locate a precise
statement of this result in the literature. We are very grateful to David Blecher and Mikael
Rørdam for having communicated proofs of it to us. Blecher and the second author [6] are
currently working on a generalization of this result to the class of Hilbert C∗-modules.
The conjecture is suggested by Sinclair and Tullo's theorem [42] which states that a

Banach algebra A is �nite dimensional if each closed left ideal of A (not just each maximal
one) is �nitely generated. This result has been generalized by Boudi [7], who showed
that the conclusion that A is �nite dimensional remains true under the formally weaker
hypothesis that each closed left ideal of A is countably generated. Boudi's theorem can in
fact be deduced from Sinclair and Tullo's theorem because a closed, countably-generated
left ideal is necessarily �nitely generated by [10, Proposition 1.5].
Another result that is related to our general theme, but of a di�erent �avour from those

just mentioned, is due to Grønbæk [20, Proposition 7.3], who has shown that, for a Banach
space E with the approximation property, the mapping

F 7→ span{x⊗ λ : x ∈ E, λ ∈ F}
is an isomorphism of the lattice of closed linear subspaces F of the dual space of E onto
the lattice of closed left ideals of the Banach algebra of compact operators on E; we refer
to the next section for details of the notation and terminology used in this statement.
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2. Preliminaries

Our notation is mostly standard. We write |Γ| for the cardinality of a set Γ. As usual,
ℵ0 and ℵ1 denote the �rst and second in�nite cardinals, respectively, while c = 2ℵ0 is the
cardinality of the continuum.
Let E be a Banach space, always supposed to be over the complex �eld C. We denote

by IE the identity operator on E. For a non-empty set Γ, we de�ne

`∞(Γ, E) =
{
f : Γ→ E : ‖f‖∞ <∞

}
, where ‖f‖∞ = sup

γ∈Γ
‖f(γ)‖,

so that `∞(Γ, E) is a Banach space with respect to the norm ‖ · ‖∞. The following special
conventions apply:

• `∞(Γ) = `∞(Γ,C);
• `∞ = `∞(N);
• En = `∞

(
{1, . . . , n}, E

)
for each n ∈ N.

We write E∗ for the (continuous) dual space of the Banach space E. The duality bracket
between E and E∗ is 〈 · , · 〉, while κE : E → E∗∗ denotes the canonical embedding of E
into its bidual. By an operator, we understand a bounded, linear operator between Banach
spaces; we write B(E,F ) for the set of all operators from E to another Banach space F ,
and denote by T ∗ ∈ B(F ∗, E∗) the adjoint of an operator T ∈ B(E,F ).
We shall require the following standard notions for T ∈ B(E,F ) :

(i) T is a �nite-rank operator if it has �nite-dimensional range. We write F (E,F ) for
the set of �nite-rank operators from E to F . It is well known that

F (E,F ) = span{y ⊗ λ : y ∈ F, λ ∈ E∗}, (2.1)

where y ⊗ λ denotes the rank-one operator given by

y ⊗ λ : x 7→ 〈x, λ〉y, E → F (y ∈ F, λ ∈ E∗).

The following elementary observation will be used several times:

R(y ⊗ λ)S = (Ry)⊗ (S∗λ)
(
S ∈ B(D,E), y ∈ F, λ ∈ E∗, R ∈ B(F,G)

)
, (2.2)

valid for any Banach spaces D, E, F , and G.
(ii) T is compact if the image under T of the unit ball of E is a relatively norm-compact

subset of F . We write K (E,F ) for the set of compact operators from E to F .
(iii) T is weakly compact if the image under T of the unit ball of E is a relatively weakly

compact subset of F . We write W (E,F ) for the set of weakly compact operators
from E to F .

(iv) T is bounded below if, for some ε > 0, we have ‖Tx‖ > ε‖x‖ for each x ∈ E; or,
equivalently, T is injective and has closed range. This notion is dual to surjectivity
in the following precise sense (e.g., see [34, Theorem 3.1.22]):

T is surjective ⇐⇒ T ∗ is bounded below,
T is bounded below ⇐⇒ T ∗ is surjective.

(2.3)
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(v) T is strictly singular if no restriction of T to an in�nite-dimensional subspace of E
is bounded below; that is, for each ε > 0, each in�nite-dimensional subspace of E
contains a unit vector x such that ‖Tx‖ 6 ε. We write S (E,F ) for the set of strictly
singular operators from E to F .

(vi) T is a Fredholm operator if both of the quantities

α(T ) = dim kerT and β(T ) = dim
(
F/T (E)

)
(2.4)

are �nite, in which case T has closed range, and its Fredholm index is de�ned by

i(T ) = α(T )− β(T ) ∈ Z.

We write Φ(E,F ) for the set of Fredholm operators from E to F .
(vii) T is an upper semi-Fredholm operator if it has �nite-dimensional kernel and closed

range. We write Φ+(E,F ) for the set of upper semi-Fredholm operators from E to F .
(viii) T is inessential if IE − ST is a Fredholm operator for each S ∈ B(F,E). We write

E (E,F ) for the set of inessential operators from E to F .
In line with common practice, we set I (E) = I (E,E) whenever I denotes one of the
eight classes B, F , K , W , S , Φ, Φ+, and E of operators introduced above. Of these
classes, B, F , K , W , S , and E de�ne operator ideals in the sense of Pietsch, all of which
except F are closed. The following inclusions hold in general:

F (E,F ) ⊆ K (E,F ) ⊆
(
W (E,F ) ∩S (E,F )

)
⊆ S (E,F ) ⊆ E (E,F ) ⊆ B(E,F ).

We remark that a left, right, or two-sided ideal of B(E) is proper if and only if it does not
contain the identity operator IE. This shows in particular that the two-sided ideal E (E)
(and hence also F (E), K (E), and S (E)) is proper whenever E is in�nite-dimensional.
We shall require two perturbation results for (semi-)Fredholm operators. Firstly, the set

of Fredholm operators is stable under inessential perturbations, and the Fredholm index is
preserved under such perturbations (see [26, Theorem 6]):

S + T ∈ Φ(E,F ) with i(S + T ) = i(T )
(
S ∈ E (E,F ), T ∈ Φ(E,F )

)
. (2.5)

Secondly, the set of upper semi-Fredholm operators is stable under strictly singular per-
turbations (see [31, Proposition 2.c.10]):

S + T ∈ Φ+(E,F )
(
S ∈ S (E,F ), T ∈ Φ+(E,F )

)
. (2.6)

The following notion is central to this paper. Let Γ be a non-empty subset of B(E) for
some Banach space E. The left ideal generated by Γ is the smallest left ideal LΓ of B(E)
that contains Γ. It can be described explicitly as

LΓ =

{ n∑
j=1

SjTj : S1, . . . , Sn ∈ B(E), T1, . . . , Tn ∈ Γ, n ∈ N
}
. (2.7)

A left ideal L of B(E) is singly (respectively, �nitely, countably) generated if L = LΓ

for some singleton (respectively, non-empty and �nite, countable) subset Γ of B(E).
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In the case where Γ is non-empty and �nite, say Γ = {T1, . . . , Tn}, (2.7) simpli�es to

LΓ =

{ n∑
j=1

SjTj : S1, . . . , Sn ∈ B(E)

}
=
{
SΨΓ : S ∈ B(En, E)

}
, (2.8)

where we have introduced the operator

ΨΓ =
n∑
j=1

ιjTj ∈ B(E,En); (2.9)

here ιj : E → En denotes the canonical jth coordinate embedding. (Note that, strictly
speaking, the de�nition (2.9) of ΨΓ requires that Γ be an ordered n-tuple, not just a �nite
set. Whenever we consider ΨΓ, the ordering of Γ is always understood to be by increasing
index: Γ = (T1, . . . , Tn).)
The operator ΨΓ, together with its counterpart for in�nite Γ, which we shall introduce

in Section 4, will play a key role in our work. We shall give here only one, very simple,
application of ΨΓ, showing that each �nitely-generated left ideal of operators is already
singly generated for most `classical' Banach spaces.

Proposition 2.1. Let E be a Banach space which contains a complemented subspace that

is isomorphic to E⊕E. Then each �nitely-generated left ideal of B(E) is singly generated.

Proof. Let Γ be a non-empty, �nite subset of B(E), and set n = |Γ| ∈ N. By the assump-
tion, E contains a complemented subspace which is isomorphic to En, and hence IEn = V U
for some operators U ∈ B(En, E) and V ∈ B(E,En). We shall now complete the proof
by showing that the left ideal LΓ is generated by the single operator T = UΨΓ ∈ B(E).
By (2.8), we have T ∈ LΓ, so that L{T} ⊆ LΓ.
Conversely, each operator R ∈ LΓ has the form R = SΨΓ for some S ∈ B(En, E)

by (2.8), and therefore R = S(V U)ΨΓ = (SV )T ∈ L{T}. �

Our next result collects some basic facts about the �xed maximal left ideals of B(E),
most of which were already stated in the Introduction.

Proposition 2.2. Let x and y be non-zero elements of a Banach space E. Then:

(i) the set MLx given by (1.1) is the left ideal of B(E) generated by the projection

IE − x⊗ λ, where λ ∈ E∗ is any functional such that 〈x, λ〉 = 1;
(ii) the left ideal MLx is maximal;

(iii) MLx = MLy if and only if x and y are proportional.

In particular, B(E) contains |E| distinct, �xed maximal left ideals whenever E is in�nite-

dimensional.

Proof. (i). Let P = IE − x⊗ λ. The set MLx is clearly a left ideal which contains P , and
hence L{P} ⊆MLx. The reverse inclusion holds because, by (2.2), T (x⊗ λ) = 0 for each
T ∈MLx, so that T = TP ∈ L{P}.
(ii). The left ideal MLx is evidently proper. To verify that it is maximal, suppose that

T ∈ B(E) \MLx. Then Tx 6= 0, so that 〈Tx, µ〉 = 1 for some µ ∈ E∗. The operator
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S = IE − (x⊗ µ)T belongs to MLx because (x⊗ µ)Tx = 〈Tx, µ〉x = x, and consequently

IE = S + (x⊗ µ)T ∈MLx + L{T}.

(iii). It is clear that MLx = MLy if x and y are proportional. We prove the converse by
contraposition. Suppose that x and y are linearly independent. Then we can take λ ∈ E∗
such that 〈x, λ〉 = 1 and 〈y, λ〉 = 0, and hence x⊗ λ ∈MLy \MLx. �

We conclude this preliminary section with the observation that the answer to the ana-
logue of Question (I) for two-sided ideals is negative, as the following example shows.

Example 2.3. Consider the Hilbert space H = `2(ℵ1), and take a projection P ∈ B(H)
with separable, in�nite-dimensional range. The ideal classi�cation of Gramsch [17] and
Luft [33] implies that the ideal X (H) of operators with separable range is the unique
maximal two-sided ideal of B(H). Given T ∈ X (H), let Q ∈ B(H) be the orthogonal
projection onto T (H). Then T = QT , and alsoQ = V PU for some operators U, V ∈ B(H),
so that T = V PUT . Hence X (H) is the two-sided ideal of B(H) generated by the single
operator P . Since X (H) is the only maximal two-sided ideal of B(H), we conclude that
each maximal two-sided ideal of B(H) is singly generated, and therefore the analogue of
Question (I) for two-sided ideals has a negative answer.
With slightly more work, we can give a similar example for a separable Banach space.

To this end, consider the pth quasi-re�exive James space Jp for some p ∈ (1,∞). Edelstein
and Mityagin [12] observed that the two-sided ideal W (Jp) of weakly compact opera-
tors is maximal because it has codimension one in B(Jp). The �fth-named author [28,
Theorem 4.16] has shown that W (Jp) is the unique maximal two-sided ideal of B(Jp). His
work also implies that W (Jp) is singly generated as a two-sided ideal, as we shall now
explain. Let

J (∞)
p =

(⊕
n∈N

J (n)
p

)
`p

, where J (n)
p =

{
(αj)j∈N ∈ Jp : αj = 0 (j > n)

}
(n ∈ N).

This is clearly a re�exive Banach space, which is isomorphic to a complemented subspace
of Jp. (The latter observation is due to Edelstein and Mityagin [12, Lemma 6(d)]. An alter-
native approach can be found in [28, Proposition 4.4(iv)].) Take a projection P ∈ B(Jp)

whose range is isomorphic to J (∞)
p . By [29, Theorem 4.3], we have

W (Jp) =
{
TS : S ∈ B(Jp, J

(∞)
p ), T ∈ B(J (∞)

p , Jp)
}

=
{
V PU : U, V ∈ B(Jp)

}
,

so that W (Jp) is the two-sided ideal of B(Jp) generated by the single operator P .
On the other hand, Corollary 4.8, below, will show that W (Jp) is not �nitely generated

as a left ideal because Jp is non-re�exive.

3. Counting maximal left ideals

Let E be an in�nite-dimensional Banach space. An in�nite family (Eγ)γ∈Γ of non-zero,
closed subspaces of E is an unconditional Schauder decomposition of E if, for each x ∈ E,
there is a unique family (xγ)γ∈Γ with xγ ∈ Eγ for each γ ∈ Γ such that the series

∑
γ∈Γ xγ



MAXIMAL LEFT IDEALS OF OPERATORS ON A BANACH SPACE 9

converges unconditionally to x. In this case we can associate a projection PΥ ∈ B(E) with
each subset Υ of Γ by the de�nitions

P∅ = 0 and PΥx =
∑
γ∈Υ

xγ (x ∈ E) for Υ 6= ∅, (3.1)

where (xγ)γ∈Γ is related to x as above.
Using this notion, we can transfer a classical algebraic result of Rosenberg [40] to B(E).

Proposition 3.1. Let E be a Banach space with an unconditional Schauder decomposition

(Eγ)γ∈Γ. Then the Banach algebra B(E) contains at least 22|Γ| maximal left ideals which

are not �xed.

Proof. The power set P(Γ) of Γ is a Boolean algebra, and I =
{

Υ ∈ P(Γ) : |Υ| < |Γ|
}
is

a proper Boolean ideal of P(Γ). Since Γ is in�nite, a classical result of Pospí²il (see [38],
or [8, Corollary 7.4] for an exposition) states that the collection MI of maximal Boolean
ideals of P(Γ) containing I has cardinality 22|Γ| .
For each M ∈MI, let P(M) = {PΥ : Υ ∈M} ⊆ B(E), where PΥ is the projection given

by (3.1). Assume towards a contradiction that the left ideal LP(M) is not proper. Then,
for some n ∈ N, there are operators T1, . . . , Tn ∈ B(E) and sets Υ1, . . . ,Υn ∈M such that
IE =

∑n
j=1 TjPΥj

. Right-composing both sides of this identity with the projection PΓ\Υ,
where Υ =

⋃n
j=1 Υj ∈M, we obtain PΓ\Υ = 0, so that Γ = Υ ∈M, which contradicts the

fact that M is a proper Boolean ideal.
We can therefore choose a maximal left ideal MM of B(E) such that LP(M) ⊆ MM.

This maximal left ideal MM cannot be �xed because, for each x ∈ E \ {0}, we have
x =

∑
γ∈Γ P{γ}x, so that P{γ}x 6= 0 for some γ ∈ Γ. Hence P{γ} /∈MLx, but on the other

hand P{γ} ∈ LP(M) ⊆MM since {γ} ∈ I ⊆M.
Consequently we have a mapping M 7→MM from MI into the set of non-�xed, maximal

left ideals of B(E). We shall complete the proof by showing that this mapping is injective.
Suppose that M,N ∈ MI are distinct, and take a set Υ ∈ M \N. The maximality of N
implies that Γ \Υ ∈ N, and therefore

IE = PΥ + PΓ\Υ ∈ LP(M) + LP(N) ⊆MM + MN.

Thus, since the left ideals MM and MN are proper, they are distinct. �

Corollary 3.2. Let E be a Banach space with an unconditional Schauder decomposition

(Eγ)γ∈Γ, and suppose that E contains a dense subset D such that 2|D| < 22|Γ|. Then B(E)

contains at least 22|Γ| maximal left ideals which are not �nitely generated.

Proof. Since each point of E is the limit point of a sequence in D, we have |E| 6 |D|ℵ0 .
Further, each operator on E is uniquely determined by its action on D, and consequently

|B(E)| 6 |ED| = |E||D| 6
(
|D|ℵ0

)|D|
= |D||D| = 2|D|, (3.2)

where the �nal equality follows from a standard result (e.g., see [22, Lemma 5.6]). Hence
B(E) contains at most

(
2|D|
)ℵ0 = 2|D| countable subsets, so that B(E) contains at most
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2|D| countably-generated left ideals. On the other hand, Proposition 3.1 implies that there
are at least 22|Γ| distinct maximal left ideals of B(E). We have 2|D| < 22|Γ| by the assump-
tion, and hence B(E) contains at least 22|Γ| maximal left ideals which are not countably
generated, and thus not �nitely generated. �

The most important case of this corollary is as follows.

Corollary 3.3. Let E be a separable Banach space with an unconditional Schauder de-

composition (Eγ)γ∈Γ. Then B(E) contains 2 c maximal left ideals which are not �nitely

generated.

Proof. The index set Γ is necessarily countable because E is separable. Hence, by Corol-
lary 3.2, B(E) contains at least 2 c maximal left ideals which are not �nitely generated.
On the other hand, (3.2) implies that B(E) has cardinality c, so that B(E) contains no
more than 2 c distinct subsets. �

Example 3.4. (i) Let E be a Banach space which has an unconditional Schauder ba-
sis (en)n∈N. Then E satis�es the conditions of Corollary 3.3, and hence B(E) con-
tains 2 c maximal left ideals which are not �nitely generated.
The class of Banach spaces which have an unconditional Schauder basis is large

and includes for instance the classical sequence spaces c0 and `p for p ∈ [1,∞), the
Lebesgue spaces Lp[0, 1] for p ∈ (1,∞), the Lorentz and Orlicz sequence spaces dw,p
and hM (e.g., see [31, Chapter 4]), the Tsirelson space T (e.g., see [31, Example 2.e.1]),
and the Schlumprecht space S (see [41, Proposition 2]).

(ii) Suppose that E is a Banach space which contains an in�nite-dimensional, closed,
complemented subspace F with an unconditional Schauder decomposition (Fγ)γ∈Γ.
Then E also has an unconditional Schauder decomposition, obtained by adding any
closed, complementary subspace of F to the collection (Fγ)γ∈Γ.
In particular, generalizing (i), we see that each separable Banach space E which

contains an in�nite-dimensional, closed, complemented subspace with an uncondi-
tional Schauder basis satis�es the conditions of Corollary 3.3, and hence B(E) con-
tains 2 c maximal left ideals that are not �nitely generated. This applies for in-
stance to E = L1[0, 1] because it contains a complemented copy of `1 (e.g., see [1,
Lemma 5.1.1]); to E = C(K) for any in�nite, compact metric space K because E
contains a complemented copy of c0 (e.g., see [1, Proposition 4.3.11]); to E = Jp for
p ∈ (1,∞), the pth quasi-re�exive James space, because Jp contains a complemented
copy of `p (see [12, Lemma 6(d)] or [28, Proposition 4.4(iii)]); and to E = K (X),
where X is any Banach space with an unconditional Schauder basis, because E con-
tains a complemented copy of c0 consisting of the compact operators whose matrix
representation with respect to the unconditional Schauder basis is diagonal.

(iii) There are separable Banach spaces E such that E has a unconditional Schauder
decomposition (En)n∈N with each En �nite-dimensional, but E does not have an
unconditional Schauder basis, notably Kalton and Peck's twisted `p-spaces Zp for
p ∈ (1,∞) (see [25, Corollary 9] and the remark following it). Each such Banach
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space E satis�es the conditions of Corollary 3.3, and hence B(E) contains 2 c maximal
left ideals which are not �nitely generated.

Remark 3.5. Corollary 3.3 is not true for all separable, in�nite-dimensional Banach
spaces. Indeed, we shall show in Theorem 6.2, below, that there are separable, in�nite-
dimensional Banach spaces E such that B(E) contains just one maximal left ideal which
is not �xed, and this ideal is not �nitely generated.

4. Proofs of the Dichotomy Theorems 1.1 and 1.3

The main purpose of this section is to prove Theorems 1.1 and 1.3.

Theorem 4.1. Let E be a non-zero Banach space, and let L be a proper left ideal of B(E)
such that L is not contained in any �xed maximal left ideal. Then the left ideal L +E (E)
is proper.

Proof. Suppose contrapositively that L is a left ideal of B(E) such that L +E (E) = B(E)
and L 6⊆MLx for each x ∈ E \ {0}. We shall then prove that L = B(E). By the �rst
assumption, we can write IE = R+S for some R ∈ L and S ∈ E (E), and hence R = IE−S
is a Fredholm operator of index zero by (2.5). The set

Z =
{
T ∈ L ∩ Φ(E) : i(T ) = 0

}
is therefore non-empty.
Our next aim is to show that, for each T ∈ Z with α(T ) > 0, there exists U ∈ Z such

that α(U) = α(T ) − 1, where α(·) is de�ned by (2.4). Indeed, take x ∈ kerT \ {0} and
y ∈ E \ T (E). Since L 6⊆MLx, we can �nd an operator V ∈ L such that V x 6= 0, and
hence 〈V x, λ〉 = 1 for some λ ∈ E∗. Let U = T + (y ⊗ λ)V . Then U ∈ Z because T ∈ Z
and (y ⊗ λ)V ∈ L ∩F (E), and also α(U) = α(T )− 1 because kerT = kerU ⊕ Cx, as is
easily veri�ed.
The result established in the previous paragraph implies in particular that Z contains

an operator U with α(U) = 0. Hence β(U) = α(U)− i(U) = 0, so that U is invertible, and
consequently L = B(E), as required. �

This result has as an immediate consequence the following dichotomy, which generalizes
Theorem 1.1 slightly because F (E) ( E (E).

Corollary 4.2 (Strong dichotomy for maximal left ideals). Let E be a non-zero Banach

space. Then, for each maximal left ideal L of B(E), exactly one of the following two

alternatives holds:

(i) L is �xed; or

(ii) L contains E (E).

Proof. Suppose that the maximal left ideal L of B(E) is not �xed. Then L 6⊆ MLx

for each x ∈ E \ {0}, so that Theorem 4.1 implies that L + E (E) is a proper left ideal
of B(E). Hence, by the maximality of L , we have L = L +E (E); that is, (ii) holds. �
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Remark 4.3. Corollary 4.2 can be seen as a counterpart for maximal left ideals of the
following observation due to the �fth-named author [28, Proposition 6.6]. Let E be an
in�nite-dimensional Banach space. Then E (E) is contained in each maximal two-sided
ideal of B(E).

Remark 4.4. Let A be a unital C∗-algebra. We write a 7→ a? for the involution on A .
(This should not be confused with the notation T ∗ for the adjoint of an operator T between
Banach spaces used elsewhere in this paper.) A state on A is a norm-one functional λ
on A which is positive, in the sense that 〈a?a, λ〉 > 0 for each a ∈ A . Given a state λ
on A , the set

Nλ =
{
a ∈ A : 〈a?a, λ〉 = 0

}
(4.1)

is a closed left ideal of A by the Cauchy�Schwarz inequality (e.g., see [23, Proposition 4.5.1]
or [35, p. 93]). The collection of all states on A forms a weak∗-compact, convex subset
of the dual space of A , called the state space of A . Its extreme points are the pure

states on A . Prosser [39, Theorem 6.2] has shown that the map λ 7→ Nλ gives a bijective
correspondence between the pure states on A and the maximal left ideals of A ; expositions
of this result can be found in [24, Theorem 10.2.10] and [35, Theorem 5.3.5].
In the case where A = B(H) for some Hilbert space H, the �xed maximal left ideals

correspond to the vector states, which are de�ned as follows. Let x ∈ H be a unit vector.
Then the functional ωx given by

〈T, ωx〉 = (Tx |x)
(
T ∈ B(H)

)
,

where ( · | · ) denotes the inner product on H, is a pure state on B(H), called the vector

state induced by x; and we have MLx = Nωx , as is easy to check. The conclusion of
Corollary 4.2 is known in this case because K (H) = E (H), and by [24, Corollary 10.4.4]
each pure state λ on B(H) is either a vector state, or K (H) ⊆ kerλ, in which case
K (H) ⊆ Nλ.
Finally, suppose that the Hilbert space H is separable and in�nite-dimensional. Then

clearly B(H) has c vector states, whereas it has 2 c pure states by [24, Proposition 10.4.15].
These conclusions also follow from Proposition 2.2 and Example 3.4(i), respectively.

We shall now turn our attention to the proof of Theorem 1.3. This requires some prepara-
tion. Let E be a Banach space. For each non-empty, bounded subset Γ of B(E), we can
de�ne an operator ΨΓ : E → `∞(Γ, E) by

(ΨΓx)(T ) = Tx (x ∈ E, T ∈ Γ). (4.2)

Note that, after natural identi�cations, this de�nition generalizes (2.9). Further, we can
de�ne a linear isometry ΞΓ from the Banach space

`1(Γ, E∗) =

{
g : Γ→ E∗ :

∑
T∈Γ

‖g(T )‖ <∞
}

into `∞(Γ, E)∗ by

〈f,ΞΓg〉 =
∑
T∈Γ

〈
f(T ), g(T )

〉 (
f ∈ `∞(Γ, E), g ∈ `1(Γ, E∗)

)
. (4.3)
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Letting ΩΓ = Ψ∗ΓΞΓ ∈ B
(
`1(Γ, E∗), E∗

)
, we then obtain a commutative diagram

E
ΨΓ //

� _

κE

��

`∞(Γ, E) � �
CκE //

� _

κ`∞(Γ,E)

��

`∞(Γ, E∗∗)

UΓ
∼=

��

`∞(Γ, E)∗∗

Ξ∗Γ

'' ''PPPPPPPPPPPPPPP

E∗∗
Ω∗Γ //

Ψ∗∗Γ
88rrrrrrrrrrrrrr

`1(Γ, E∗)∗,

(4.4)

where CκE : f 7→ κE ◦ f is the composition operator induced by κE, while UΓ is the usual
isometric identi�cation of `∞(Γ, E∗∗) with the dual space of `1(Γ, E∗) given by

〈g, UΓf〉 =
∑
T∈Γ

〈
g(T ), f(T )

〉 (
f ∈ `∞(Γ, E∗∗), g ∈ `1(Γ, E∗)

)
.

The �rst of the following two lemmas explains the relevance of the operator ΨΓ for our
present purpose, while part (iii) of the second identi�es the role of ΩΓ.

Lemma 4.5. Let x be a non-zero element of a Banach space E, and let Γ be a non-empty,

bounded subset of B(E). Then x ∈ ker ΨΓ if and only if LΓ ⊆MLx.

Proof. By the de�nition (4.2) of ΨΓ, we have

x ∈ ker ΨΓ ⇐⇒
(
Tx = 0 (T ∈ Γ)

)
⇐⇒ Γ ⊆MLx ⇐⇒ LΓ ⊆MLx,

which gives the result. �

Lemma 4.6. Let E be a non-zero Banach space, and let Γ be a non-empty, bounded subset

of B(E) for which the corresponding left ideal LΓ is closed.

(i) For each λ ∈ E∗, the set

Jλ = {y ⊗ λ : y ∈ E}

is a left ideal of B(E), and the following three conditions are equivalent:

(a) Jλ ⊆ LΓ;
(b) y ⊗ λ ∈ LΓ for some y ∈ E \ {0};
(c) λ ∈ ΩΓ

(
`1(Γ, E∗)

)
.

(ii) The operator ΩΓ has closed range.

(iii) The operator ΩΓ is surjective if and only if F (E) ⊆ LΓ.

Proof. (i). Equation (2.2) shows that Jλ is a left ideal.
The implication (a)⇒(b) is evident.
(b)⇒(c). Suppose that y⊗ λ ∈ LΓ for some y ∈ E \ {0}, so that y⊗ λ =

∑n
j=1 SjTj for

some n ∈ N, S1, . . . , Sn ∈ B(E) and T1, . . . , Tn ∈ Γ. We may suppose that T1, . . . , Tn are
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distinct. Choose µ ∈ E∗ such that 〈y, µ〉 = 1, and de�ne g : Γ→ E∗ by

g(T ) =

{
S∗jµ if T = Tj for some j ∈ {1, . . . , n},
0 otherwise.

Then g has �nite support, so that trivially it belongs to `1(Γ, E∗), and ΩΓg = λ because

〈x,ΩΓg〉 = 〈ΨΓx,ΞΓg〉 =
∑
T∈Γ

〈
Tx, g(T )

〉
=

n∑
j=1

〈Tjx, S∗jµ〉 =

〈 n∑
j=1

SjTjx, µ

〉
=
〈
(y ⊗ λ)x, µ

〉
= 〈x, λ〉〈y, µ〉 = 〈x, λ〉 (x ∈ E).

Hence λ ∈ ΩΓ

(
`1(Γ, E∗)

)
.

(c)⇒(a). Suppose that λ = ΩΓg for some g ∈ `1(Γ, E∗). Then, for each y ∈ E, we have

(y ⊗ λ)x = 〈x,ΩΓg〉y =
∑
T∈Γ

〈
Tx, g(T )

〉
y =

∑
T∈Γ

(
y ⊗ g(T )

)
Tx (x ∈ E). (4.5)

The series
∑

T∈Γ

(
y⊗g(T )

)
T converges absolutely because g ∈ `1(Γ, E∗) and Γ is bounded,

and each term of this series belongs to the left ideal LΓ, which is closed by hypothesis.
Hence the sum of the series, which is equal to y ⊗ λ by (4.5), also belongs to LΓ, and so
Jλ ⊆ LΓ.
(ii). Suppose that (λj)j∈N is a sequence in ΩΓ

(
`1(Γ, E∗)

)
which converges to λ ∈ E∗.

By (i), we have Jλj ⊆ LΓ for each j ∈ N. Hence

y ⊗ λ = lim
j→∞

y ⊗ λj ∈ LΓ (y ∈ E)

because LΓ is closed, so that λ ∈ ΩΓ

(
`1(Γ, E∗)

)
by another application of (i).

(iii). Suppose that ΩΓ is surjective. Then (i) implies that Jλ ⊆ LΓ for each λ ∈ E∗,
and consequently F (E) ⊆ LΓ by (2.1).
Conversely, suppose that F (E) ⊆ LΓ, and let λ ∈ E∗ be given. Since Jλ ⊆ F (E),

(i) implies that λ ∈ ΩΓ

(
`1(Γ, E∗)

)
, so that ΩΓ is surjective. �

We can now characterize the closed left ideals of B(E) that contain F (E) as follows,
provided either that E is re�exive or that we restrict our attention to the closed left
ideals that are �nitely generated. Note that Theorem 1.3 is simply a restatement of the
equivalence of conditions (a) and (e).

Theorem 4.7. Let E be a non-zero Banach space, let L be a closed left ideal of B(E), and
take a non-empty, bounded subset Γ of B(E) such that L = LΓ. Suppose that either E is

re�exive or Γ is �nite. Then the following �ve conditions are equivalent:

(a) no �xed maximal left ideal of B(E) contains L ;
(b) the operator ΨΓ is injective;

(c) the operator ΨΓ is bounded below;

(d) the operator ΩΓ is surjective;

(e) L contains F (E).
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Proof. The following implications hold without any further assumptions on E or Γ:
Conditions (a) and (b) are equivalent by Lemma 4.5.
Conditions (d) and (e) are equivalent by Lemma 4.6(iii).
Evidently (c) implies (b).
Condition (d) implies (c). Indeed, suppose that ΩΓ = Ψ∗ΓΞΓ is surjective. Then Ψ∗Γ is

also surjective, and therefore ΨΓ is bounded below by (2.3).
The remaining implication, that (b) implies (d), does require further assumptions. We

consider �rst the case where E is re�exive. The operators κE and CκE in the diagram (4.4)
are then isomorphisms, and so ΨΓ and Ω∗Γ are equal up to isomorphic identi�cations.
Hence (2.3) implies that (c) and (d) are equivalent. Moreover, ΩΓ has closed range by
Lemma 4.6(ii). The same is therefore true for ΨΓ by the closed range theorem (e.g., see
[34, Theorem 3.1.21]), and so conditions (b) and (c) are also equivalent.
Secondly, suppose that the set Γ is �nite. Then the operator ΞΓ : `1(Γ, E∗)→ `∞(Γ, E)∗

given by (4.3) is an isomorphism, and so ΩΓ and Ψ∗Γ are equal up to isomorphic identi�ca-
tions. Hence the conclusion follows as in the �rst case. �

As an easy consequence of this result, we obtain that the ideal of weakly compact
operators is �nitely generated as a left ideal only in the trivial case where it is not proper.

Corollary 4.8. The following three conditions are equivalent for a Banach space E :

(a) W (E) is �nitely generated as a left ideal;

(b) W (E) = B(E);
(c) the Banach space E is re�exive.

Proof. The equivalence of (b) and (c) is standard, and (b) obviously implies (a).
To see that (a) implies (c), suppose that W (E) = LΓ for some non-empty, �nite subset

Γ = {T1, . . . , Tn} of B(E). It clearly su�ces to consider the case where E is non-zero.
Theorem 4.7 implies that the operator ΨΓ is bounded below because W (E) contains F (E).
Since the operators T1, . . . , Tn are weakly compact, the same is true for ΨΓ by the de�-
nition (2.9). Hence the Davis�Figiel�Johnson�Peªczy«ski factorization theorem (see [11],
or [32, Theorem 2.g.11] for an exposition) implies that, for some re�exive Banach space F ,
there are operators R ∈ B(E,F ) and S ∈ B(F,En) such that ΨΓ = SR. Now R is
bounded below because ΨΓ is, and therefore E is isomorphic to the subspace R(E) of the
re�exive space F , so that E is re�exive. �

We conclude this section with an example that shows that Theorem 4.7 may not be true
if we drop the assumption that either the Banach space E is re�exive or the set Γ is �nite.
This requires the following easy variant of Lemma 4.6(i).

Lemma 4.9. Let T be an operator on a Banach space E, and suppose that y ⊗ λ ∈ L{T}
for some y ∈ E \ {0} and λ ∈ E∗. Then λ ∈ T ∗(E∗).

Proof. Let (Sj)j∈N be a sequence in B(E) such that SjT → y ⊗ λ as j → ∞, and choose
µ ∈ E∗ such that 〈y, µ〉 = 1. Then we have

T ∗(S∗jµ) = (SjT )∗µ→ (y ⊗ λ)∗µ = 〈y, µ〉λ = λ as j →∞,
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from which the conclusion follows. �

Example 4.10. Let T be the operator on `∞ given by

T (αj)j∈N =

(
−αn

2n
+

∞∑
j=n+1

αj
2j

)
n∈N

(
(αj)j∈N ∈ `∞

)
. (4.6)

Then T is compact and leaves the subspace c0 invariant. De�ne T0 : x 7→ Tx, c0 → c0,
and consider the closed left ideal L = L{T0} of B(c0). We have L ⊆ K (c0) because T0

is compact. Our aim is to show that L satis�es condition (a), but not condition (e), of
Theorem 4.7.
We begin by verifying that kerT = C(1, 1, . . .). It is clear that T (1, 1, . . .) = (0, 0, . . .).

Conversely, suppose that (αj)j∈N ∈ kerT . Then, for each n ∈ N, we have

αn
2n

=
∞∑

j=n+1

αj
2j
,

so that
αn
2n

=
αn+1

2n+1
+

∞∑
j=n+2

αj
2j

=
αn+1

2n+1
+
αn+1

2n+1
=
αn+1

2n
.

Hence αn = αn+1 for each n ∈ N, and the conclusion follows.
This shows in particular that T0 is injective because c0 ∩ kerT = {0}. Consequently

T0 /∈MLx for each x ∈ c0 \ {0}, and so L satis�es condition (a) of Theorem 4.7.
On the other hand, identifying c∗∗0 with `∞ in the usual way, we �nd that T ∗∗0 = T , which

is not injective, so that T ∗0 does not have norm-dense range by [34, Theorem 3.1.17(b)].
Take λ ∈ c∗0 \ T ∗0 (c∗0) and y ∈ E \ {0}. Then, by Lemma 4.9, y ⊗ λ /∈ L , so that L does
not satisfy condition (e) of Theorem 4.7.

5. `Classical' Banach spaces for which each finitely-generated, maximal

left ideal is fixed

The purpose of this section is to show that Question (II) has a positive answer for many
standard examples of Banach spaces E.
We begin by showing that a much stronger conclusion is true in certain cases, namely

that no �nitely-generated, proper left ideal of B(E) contains F (E). This result relies on
two lemmas. The �rst states that conditions (c)�(e) of Theorem 4.7 are equivalent for each
�nitely-generated left ideal L of B(E), whether or not L is closed.

Lemma 5.1. Let E be a Banach space. Then the following three conditions are equivalent

for each non-empty, �nite subset Γ of B(E) :

(a) the operator ΨΓ is bounded below;

(b) the operator ΩΓ is surjective;

(c) LΓ contains F (E).
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Proof. The equivalence of (a) and (b) follows as in the �nal paragraph of the proof of
Theorem 4.7.
To see that (b) and (c) are also equivalent, we note that Lemma 4.6(i) is true without

the assumption that LΓ is closed, provided that the set Γ is �nite, because in this case the
series considered in the proof of Lemma 4.6(i), (c)⇒(a), is �nite. Hence Lemma 4.6(iii)
also carries over to the present setting, and the conclusion follows. �

Our second lemma characterizes the �nite subsets Γ of B(E) that do not generate
a proper left ideal in terms of standard operator-theoretic properties of ΨΓ.

Lemma 5.2. Let E be a non-zero Banach space. Then the following three conditions are

equivalent for each non-empty, �nite subset Γ of B(E) :

(a) the operator ΨΓ is bounded below and its range is complemented in E|Γ|;
(b) the operator ΨΓ is left invertible;

(c) LΓ = B(E).

Proof. The equivalence of (a) and (b) is an easy standard result, true for any operator be-
tween Banach spaces, while the equivalence of (b) and (c) follows immediately from (2.8).

�

Proposition 5.3. Let E be a Banach space, and let n ∈ N. Then F (E) is contained in

a proper left ideal of B(E) generated by n operators if and only if En contains a closed

subspace F such that F is isomorphic to E and F is not complemented in En.

Proof. We may suppose that E is non-zero, and prove both implications by contraposition.
⇒. Suppose that each subspace F of En such that F ∼= E is automatically comple-

mented, and let Γ be a subset of B(E) of cardinality n such that F (E) ⊆ LΓ. We
must prove that LΓ = B(E); that is, by Lemma 5.2, we must show that the operator ΨΓ

is bounded below and has complemented range. Lemma 5.1 implies that ΨΓ is indeed
bounded below, and its range is therefore a closed subspace of En isomorphic to E, so that
it is complemented by the assumption.
⇐. Suppose that B(E) is the only left ideal with (at most) n generators that con-

tains F (E), and let F be a closed subspace of En such that F is isomorphic to E. We
must prove that F is complemented in En. Take an operator T ∈ B(E,En) which is
bounded below and has range F . Letting Γ = {ρ1T, . . . , ρnT} ⊆ B(E), where

ρk : (xj)
n
j=1 7→ xk, En → E

(
k ∈ {1, . . . , n}

)
,

we have ΨΓ = T by the de�nition (2.9) of ΨΓ. This operator is bounded below, and there-
fore Lemma 5.1 implies that LΓ contains F (E). Hence, by the assumption, LΓ = B(E),
so that the range of ΨΓ, which is equal to F , is complemented in En by Lemma 5.2. �

Combining this result with Theorem 1.1, we reach the following conclusion.

Corollary 5.4. Let E be a Banach space such that, for each n ∈ N, each closed sub-

space of En isomorphic to E is automatically complemented in En. Then B(E) is the

only �nitely-generated left ideal of B(E) which contains F (E), and hence each �nitely-

generated, maximal left ideal of B(E) is �xed.
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Example 5.5. The condition of Corollary 5.4 on the Banach space E is satis�ed in each
of the following three cases:
(i) E is a Hilbert space.
(ii) E is an injective Banach space; that is, whenever a Banach space F contains a closed

subspace G which is isomorphic to E, then G is automatically complemented in F .
For instance, the Banach space E = `∞(Γ) is injective for each non-empty set Γ.
More generally, E = C(K) is injective whenever the Hausdor� space K is Stonean
(that is, compact and extremely disconnected).

(iii) E = c0(Γ) for a non-empty set Γ (this follows from Sobczyk's theorem [43] for count-
able Γ and from [18] (or [3, Proposition 2.8]) in the general case); here c0(Γ) denotes
the closed subspace of `∞(Γ) consisting of those functions f : Γ → C for which the
set
{
γ ∈ Γ : |f(γ)| > ε

}
is �nite for each ε > 0.

Thus, in each of these three cases, B(E) is the only �nitely-generated left ideal of B(E)
which contains F (E), and each �nitely-generated, maximal left ideal of B(E) is �xed.

Our next goal is to prove a result (Theorem 5.9) which, under much less restrictive
conditions on the Banach space E than Corollary 5.4, gives the slightly weaker conclusion
that B(E) is the only �nitely-generated left ideal of B(E) which contains K (E). We
note in particular that Corollary 4.2 ensures that this conclusion is still strong enough to
ensure that each �nitely-generated, maximal left ideal of B(E) is �xed, thus answering
Question (II) positively for a large number of Banach spaces.
Let E be a Banach space with a Schauder basis e = (ej)j∈N. For each k ∈ N, we denote

by Pk the kth basis projection associated with e. The basis constant of e is

Ke = sup
{
‖Pk‖ : k ∈ N

}
∈ [1,∞).

The basis e is monotone if Ke = 1.

Lemma 5.6. Let E be a Banach space with a Schauder basis e = (ej)j∈N, and let γ =
(γj)j∈N be a decreasing sequence of non-negative real numbers. Then

∆γ :
∞∑
j=1

αjej 7→
∞∑
j=1

γjαjej (5.1)

de�nes an operator ∆γ ∈ B(E) of norm at most Keγ1. This operator is compact if and

only if γj → 0 as j →∞.

Proof. Equation (5.1) clearly de�nes a linear mapping ∆γ from span{ej : j ∈ N} into E.
Since span{ej : j ∈ N} is dense in E, it su�ces to show that this mapping is bounded with
norm at most Keγ1. Now, for each x =

∑k
j=1 αjej ∈ span{ej : j ∈ N}, where k ∈ N and

α1, . . . , αk ∈ C, we have

∆γx = γ1P1x+
k∑
j=2

γj(Pjx− Pj−1x) =
k−1∑
j=1

(γj − γj+1)Pjx+ γkx,
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so that

‖∆γx‖ 6
k−1∑
j=1

(γj − γj+1)Ke‖x‖+ γk‖x‖ 6 Keγ1‖x‖,

as required.
To prove the �nal clause, we note that, by a standard result, (Pj)j∈N is a bounded left

approximate identity for K (E) (e.g., see [9, p. 318]), so that ∆γ is compact if and only if
Pj∆γ → ∆γ as j →∞. Hence the estimates

γj+1 6
∥∥(IE − Pj)∆γ

∥∥ 6 Ke(Ke + 1)γj+1 (j ∈ N),

which are easy to verify, give the result. �

Corollary 5.7. Let E be a Banach space with a Schauder basis e = (ej)j∈N, let k ∈ N,
and let η = (ηj)

k
j=1 be an increasing k-tuple of non-negative real numbers. Then

Θη :
∞∑
j=1

αjej 7→
k∑
j=1

ηjαjej, E → E, (5.2)

de�nes an operator of norm at most 2Keηk

Proof. De�ne

fj =

{
ek−j+1 for j 6 k,

ej for j > k.

Then f = (fj)j∈N is a Schauder basis for E (because we have reordered only �nitely many
vectors of the original basis e), and the mth basis projection associated with f is given by
Pk − Pk−m for m < k and Pm for m > k, so that Kf 6 2Ke. Now Lemma 5.6 gives the
desired conclusion because

Θη = ∆γ :
∞∑
j=1

αjfj 7→
∞∑
j=1

γjαjfj, E → E,

where γ = (γj)j∈N denotes the decreasing sequence (ηk, ηk−1, . . . , η1, 0, 0, . . .). �

We now come to our key lemma.

Lemma 5.8. Let E be a Banach space with a monotone Schauder basis, and let Γ be

a non-empty, �nite subset of B(E) for which F (E) ⊆ LΓ. Then the sequence (tj)j∈N
given by

tj = inf
{
‖T‖ : T ∈ B(E|Γ|, E), Pj = TΨΓ

}
∈ (0,∞) (j ∈ N) (5.3)

is increasing. Suppose that (tj)j∈N is unbounded, and let γ = (t
−1/2
j )j∈N. Then the opera-

tor ∆γ given by (5.1) is compact and does not belong to LΓ.

Proof. Set n = |Γ| ∈ N. For each j ∈ N, we have Pj ∈ F (E) ⊆ LΓ, so that (2.8) ensures
that the set appearing in the de�nition (5.3) of tj is non-empty, and tj > ‖ΨΓ‖−1 > 0. To
see that tj+1 > tj, suppose that Pj+1 = TΨΓ for some T ∈ B(En, E). Then Pj = (PjT )ΨΓ,
so that tj 6 ‖PjT‖ 6 ‖T‖ by the monotonicity of the Schauder basis for E.
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The �rst part of the �nal clause (that ∆γ is compact if (tj)j∈N is unbounded) is immediate
from Lemma 5.6. We shall prove the second part by contraposition. Suppose that ∆γ ∈ LΓ,
so that ∆γ = SΨΓ for some S ∈ B(En, E). Then, for each k ∈ N, we have a commutative
diagram

E
Pk //

∆γ

##GGGGGGGGGGGGGGG

ΨΓ

��

E

En S // E,

Θη(k)

OO

where η(k) = (t
1/2
j )kj=1 and the operator Θη(k) is given by (5.2). Hence, by the de�ni-

tion (5.3) of tk and Corollary 5.7, we obtain

tk 6 ‖Θη(k)S‖ 6 2t
1/2
k ‖S‖,

which implies that the sequence (tj)j∈N is bounded by 4‖S‖2. �

Theorem 5.9. Let E be a Banach space which is complemented in its bidual and has

a Schauder basis. Then B(E) is the only �nitely-generated left ideal of B(E) which con-

tains K (E), and hence each �nitely-generated, maximal left ideal of B(E) is �xed.

Proof. Let e = (ej)j∈N be a Schauder basis for E. By passing to an equivalent norm on E,
we may suppose that e is monotone. Suppose that Γ is a non-empty, �nite subset of B(E)
such that K (E) ⊆ LΓ, and set n = |Γ| ∈ N. Lemma 5.8 implies that the sequence (tj)j∈N
given by (5.3) is bounded, so that we can �nd a bounded sequence (Tj)j∈N in B(En, E)
such that Pj = TjΨΓ for each j ∈ N.
We may identify B(En, E∗∗) with the dual space of the projective tensor product En⊗̂E∗;

the duality bracket is given by

〈x⊗ λ, S〉 = 〈λ, Sx〉
(
x ∈ En, λ ∈ E∗, S ∈ B(En, E∗∗)

)
(e.g., see [9, Proposition A.3.70]). Hence B(En, E∗∗) carries a weak∗-topology, with respect
to which its unit ball is compact by the Banach�Alaoglu theorem. Consequently the
bounded sequence (κETj)j∈N has a weak∗-accumulation point, say T ∈ B(En, E∗∗). Then,
for each j ∈ N, λ ∈ E∗ and ε > 0, we can �nd an integer k > j such that

ε >
∣∣〈ΨΓej ⊗ λ, T − κETk〉

∣∣ =
∣∣〈λ, TΨΓej − κETkΨΓej〉

∣∣ =
∣∣〈λ, TΨΓej − κEej〉

∣∣.
Since ε > 0 and λ ∈ E∗ were arbitrary, we conclude that TΨΓej = κEej, and therefore
TΨΓ = κE. By the assumption, κE has a left inverse, say Λ ∈ B(E∗∗, E). Hence we have
IE = (ΛT )ΨΓ ∈ LΓ, so that LΓ = B(E). �

Example 5.10. Theorem 5.9 implies that, for E = `p or E = Lp[0, 1], where p ∈ (1,∞),
B(E) is the only �nitely-generated left ideal of B(E) which contains K (E), and each
�nitely-generated, maximal left ideal of B(E) is �xed. This conclusion is also true for
p = 1; indeed, `1 is a dual space and therefore complemented in its bidual, while L1[0, 1]
is complemented in its bidual by [1, Theorem 6.3.10].
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Many other Banach spaces are known to be complemented in their biduals. The following
list gives some examples.
(i) Let E be a Banach space which is isomorphic to a complemented subspace of a dual

Banach space; that is, for some Banach space F , there are operators U ∈ B(E,F ∗)
and V ∈ B(F ∗, E) such that IE = V U . Then the diagram

E
IE //

κE

((QQQQQQQQQQQQQQQQ

U

��

E

E∗∗

U∗∗
��

F ∗∗∗
κ∗F

((QQQQQQQQQQQQQQQ

F ∗

κF ∗
66mmmmmmmmmmmmmmm IF ∗ // F ∗

V

OO

is commutative. This implies that the operator κEV κ∗FU
∗∗ is a projection of E∗∗

onto κE(E), so that E is complemented in its bidual.
(ii) Let E be a Banach lattice which does not contain a subspace isomorphic to c0. Then E

is complemented in its bidual by [32, Theorem 1.c.4].
(iii) Let E be a non-zero Banach space for which B(E) is complemented in its bidual, so

that IB(E) = ΛκB(E) for some operator Λ ∈ B
(
B(E)∗∗,B(E)

)
. Choosing λ ∈ E∗

and y ∈ E with 〈y, λ〉 = 1, we can de�ne operators by

Uλ : x 7→ x⊗ λ, E → B(E), and Vy : T 7→ Ty, B(E)→ E,

which induce a commutative diagram

E
κE //

Uλ

%%LLLLLLLLLLLLL

IE

��

E∗∗

U∗∗λ
��

B(E)
κB(E)

//

IB(E)

''NNNNNNNNNNNNN
B(E)∗∗

Λ
��

E B(E).
Vyoo

This shows that VyΛU∗∗λ is a left inverse of κE, and so E is complemented in its
bidual.

Remark 5.11. Theorem 5.9 does not provide any new information for Banach spaces of the
form E = C(K), whereK is a compact Hausdor� space, because the assumption that C(K)
is complemented in its bidual implies that C(K) is injective, so that Example 5.5(ii) already
applies.

A slight variation of the proof of Theorem 5.9 gives the following conclusion.
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Theorem 5.12. Let E be a Banach space with a Schauder basis. Then B(E∗) is the

only �nitely-generated left ideal of B(E∗) which contains F (E∗), and hence each �nitely-

generated, maximal left ideal of B(E∗) is �xed.

Proof. (Sketch.) Let Γ be a non-empty, �nite subset of B(E∗) such that F (E∗) ⊆ LΓ, and
set n = |Γ| ∈ N. As in the proof of Theorem 5.9, we may suppose that E has a monotone
Schauder basis e. Then, arguing as in the proof of Lemma 5.8, we see that the sequence

t′j = inf
{
‖T‖ : T ∈ B

(
(E∗)n, E∗

)
, P ∗j = TΨΓ

}
∈ (0,∞) (j ∈ N)

is increasing and bounded. (Indeed, if (t′j)j∈N were unbounded, then for γ =
(
(t′j)

−1/2
)
j∈N,

we would have ∆∗γ ∈ F (E∗) \LΓ, contrary to our assumption.) Consequently there exists
a bounded sequence (Tj)j∈N in B((E∗)n, E∗) such that P ∗j = TjΨΓ for each j ∈ N. Let T
be a weak∗-accumulation point of (Tj)j∈N, where we have identi�ed B((E∗)n, E∗) with the
dual space of the projective tensor product E⊗̂(E∗)n via the duality bracket given by

〈x⊗ µ, S〉 = 〈x, Sµ〉
(
x ∈ E, µ ∈ (E∗)n, S ∈ B((E∗)n, E∗)

)
. (5.4)

For each x ∈ E, λ ∈ E∗, and ε > 0, we can �nd j0 ∈ N such that ‖x−Pjx‖ 6 ε(2‖λ‖+1)−1

whenever j > j0. Choosing j > j0 such that
∣∣〈x⊗ΨΓλ, T − Tj〉

∣∣ 6 ε/2 and applying (5.4),
we then obtain∣∣〈x, (TΨΓ − IE∗)λ〉

∣∣ 6 ∣∣〈x, (TΨΓ − P ∗j )λ〉
∣∣+
∣∣〈x, (IE − Pj)∗λ〉∣∣

6
∣∣〈x, (T − Tj)ΨΓλ〉

∣∣+
∣∣〈x− Pjx, λ〉∣∣ 6 ε.

This implies that TΨΓ = IE∗ , and therefore LΓ = B(E∗). �

Example 5.13. Theorem 5.12 applies in the following two cases which have not already
been resolved:
(i) E = X⊗̂X∗, where X is a Banach space with a shrinking Schauder basis (this ensures

that E has a Schauder basis); then E∗ ∼= B(X∗), so that the conclusion is that each
�nitely-generated, maximal left ideal of B(B(X∗)) is �xed. The most important case
is where X, and hence X∗, is a separable, in�nite-dimensional Hilbert space; in this
case B(X∗) does not have the approximation property [44].

(ii) E =
(⊕

n∈NEn
)
`1
, where (En)n∈N is a sequence of Banach spaces with Schauder

bases whose basis constants are uniformly bounded; then E∗ ∼=
(⊕

n∈NE
∗
n

)
`∞
, and

so the conclusion is that each �nitely-generated, maximal left ideal of B
((⊕

E∗n
)
`∞

)
is �xed.

The conditions imposed on the Banach space E in Theorems 5.9 and 5.12 are clearly
preserved under the formation of �nite direct sums. By contrast, this need not be the
case for the condition of Corollary 5.4. For instance, c0 and `∞ both satisfy this condition
by Example 5.5(ii)�(iii), whereas their direct sum c0 ⊕ `∞ does not. We shall explore this
situation in greater depth in Section 7. Notably, as a particular instance of Theorem 7.3, we
shall see that the main conclusion of Corollary 5.4 fails for E = c0⊕`∞ because F (c0⊕`∞)
is contained in a proper, closed, singly-generated left ideal of B(c0 ⊕ `∞).
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We do not know the answer to Question (II) for E = c0 ⊕ `∞, but the following result
answers this question positively for another direct sum arising naturally from Example 5.5,
with the ideal S (E) of strictly singular operators taking the role that was played by F (E)
in Corollary 5.4 and K (E) in Theorem 5.9.

Proposition 5.14. Let E = c0(Γ) ⊕ H, where Γ is a non-empty set and H is a Hilbert

space. Then B(E) is the only �nitely-generated left ideal of B(E) which contains S (E),
and hence each �nitely-generated, maximal left ideal of B(E) is �xed.

Proof. Let L be a �nitely-generated left ideal of B(E) such that S (E) ⊆ L . We may
suppose that Γ is in�nite and H is in�nite-dimensional. Proposition 2.1 implies that L is
generated by a single operator T ∈ B(E), say, while Lemma 5.1 shows that T is bounded
below and thus is an upper semi-Fredholm operator.
We can represent T as a matrix of operators:

T =

(
T1,1 : c0(Γ)→ c0(Γ) T1,2 : H → c0(Γ)
T2,1 : c0(Γ)→ H T2,2 : H → H

)
.

Each operator from H to c0(Γ) is strictly singular because no in�nite-dimensional subspace
of c0(Γ) is isomorphic to a Hilbert space. Similarly, each operator from c0(Γ) toH is strictly
singular. Hence, by (2.6), we obtain(

T1,1 0
0 T2,2

)
= T −

(
0 T1,2

T2,1 0

)
∈ Φ+(E),

which clearly implies that T1,1 ∈ Φ+(c0(Γ)) and T2,2 ∈ Φ+(H). Let P1 ∈ F (c0(Γ)) and
P2 ∈ F (H) be projections onto the kernels of T1,1 and T2,2, respectively. Then

T̃1,1 : x 7→ T1,1x, kerP1 → T1,1(c0(Γ)),

is an isomorphism, and we have T1,1(c0(Γ)) ∼= kerP1
∼= c0(Γ) because c0(Γ) is isomorphic

to its hyperplanes. Consequently, as in Example 5.5(iii), the range of T1,1 is complemented
in c0(Γ), so that we can extend the inverse of T̃1,1 to obtain an operator S1 ∈ B(c0(Γ))
which satis�es S1T1,1 = Ic0(Γ) − P1. Similarly, we can �nd an operator S2 ∈ B(H) such
that S2T2,2 = IH − P2. In conclusion, we have

IE =

(
S1 0
0 S2

)
T +

(
P1 −S1T1,2

−S2T2,1 P2

)
∈ L + S (E) = L ,

and thus L = B(E).
The �nal clause follows immediately from Corollary 4.2 because S (E) ⊆ E (E). �

6. `Exotic' Banach spaces for which each finitely-generated, maximal

left ideal is fixed

In this section, we shall answer Question (II) positively for two classes of custom-made
Banach spaces of a distinctly non-classical nature, using an approach which is completely
di�erent from the one taken in Section 5. More precisely, for each Banach space E in either
of these two classes, we are able to describe all the maximal left ideals of B(E) explicitly,
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and it will then follow easily that only the �xed maximal left ideals are �nitely generated.
The reason that we can describe all the maximal left ideals of B(E) is, roughly speaking,
that B(E) is `small'. As we shall see, in both cases each non-�xed, maximal left ideal
of B(E) is a two-sided ideal of codimension one.
We begin with a lemma which can be viewed as a counterpart of Corollary 4.8 for left

ideals of strictly singular operators.

Lemma 6.1. Let E be a Banach space, and let L be a left ideal of B(E) such that

F (E) ⊆ L ⊆ S (E). Then the following three conditions are equivalent:

(a) L is �nitely generated;

(b) L = B(E);
(c) E is �nite-dimensional.

Proof. The implications (c)⇒(b)⇒(a) are clear.
(a)⇒(c). Suppose that L = LΓ for some non-empty, �nite subset Γ of B(E). Lemma 5.1

implies that the operator ΨΓ is bounded below, while (2.9) and the fact that Γ ⊆ S (E)
show that ΨΓ is strictly singular. Hence the domain E of ΨΓ is �nite-dimensional. �

A Banach space E has few operators if E is in�nite-dimensional and each operator on E
is the sum of a scalar multiple of the identity operator and a strictly singular operator;
that is, B(E) = CIE + S (E). Gowers and Maurey [16] showed that each hereditarily
indecomposable Banach space has few operators, and constructed the �rst example of such
a space.

Theorem 6.2. Let E be a Banach space which has few operators. Then S (E) is the

unique non-�xed, maximal left ideal of B(E), and S (E) is not �nitely generated as a left

ideal.

Proof. Let L be a maximal left ideal of B(E), and suppose that L is not �xed. Then, by
Corollary 4.2, L contains E (E) and hence S (E), which has codimension one in B(E),
so that L = E (E) = S (E). This proves the �rst clause. The second clause follows from
Lemma 6.1. �

To set the scene for our second result, we begin with a short excursion into the theory
of semidirect products of Banach algebras. Let B be a Banach algebra, and let C and I
be a closed subalgebra and a closed, two-sided ideal of B, respectively. Then B is the
semidirect product of C and I if C and I are complementary subspaces of B; that is,
C + I = B and C ∩I = {0}. In this case, we denote by ρ : B → C the projection of B
onto C along I . This is an algebra homomorphism, as is easy to check. It is relevant for
our purposes because it induces an isomorphism between the lattices of closed left ideals

LatI (B) =
{
L : L is a closed left ideal of B such that I ⊆ L

}
(6.1)

and
Lat(C ) =

{
N : N is a closed left ideal of C

}
. (6.2)

More precisely, for each L ∈ LatI (B), we have ρ(L ) = L ∩ C ∈ Lat(C ), and the
mapping L 7→ ρ(L ) is a lattice isomorphism of LatI (B) onto Lat(C ); its inverse is given



MAXIMAL LEFT IDEALS OF OPERATORS ON A BANACH SPACE 25

by N 7→ N + I . Suppose that the left ideal L ∈ LatI (B) is generated by a subset Γ
of B. Then evidently ρ(L ) is generated by the subset ρ(Γ) of C , so that ρ maps each
closed, �nitely-generated left ideal of B containing I to a closed, �nitely-generated left
ideal of C .
We shall next state two classical results about C(K)-spaces. The �rst is due to Peªczy«-

ski [36, Theorem 1], and characterizes the weakly compact operators from a C(K)-space
into an arbitrary Banach space.

Theorem 6.3. Let K be a compact Hausdor� space, and let E be a Banach space. Then

the following three conditions are equivalent for each operator T ∈ B(C(K), E) :

(a) T is weakly compact;

(b) T is strictly singular;

(c) T does not �x a copy of c0.

The second result describes the maximal ideals of the Banach algebra C(K), as well as the
�nitely-generated ones. (Note that the notions of a left, right, and two-sided ideal coincide
in C(K) because C(K) is commutative.) Given a point k ∈ K, we write εk : C(K) → C
for the evaluation map at k; that is, εk(f) = f(k) for each f ∈ C(K). This is a surjective
algebra homomorphism of norm one.

Theorem 6.4. Let K be a compact Hausdor� space. Then:

(i) each maximal ideal of C(K) has the form ker εk for a unique point k ∈ K;
(ii) the maximal ideal ker εk is �nitely generated if and only if k is isolated in K.

Proof. The �rst clause is folklore (e.g., see [9, Theorem 4.2.1(i)]), while the second is the
complex-valued counterpart of a classical theorem of Gillman [14, Corollary 5.4]. Both
clauses are also easy to verify directly. �

We require one further notion before we can present our result. For a compact Hausdor�
space K and a function g ∈ C(K), we denote by Mg ∈ B(C(K)) the multiplication
operator given by g; that is, Mgf = gf for each f ∈ C(K). The mapping

µ : g 7→Mg, C(K)→ B(C(K)), (6.3)

is an isometric, unital algebra homomorphism. An operator T ∈ B(C(K)) is a weak

multiplication if it has the form T = Mg + S for some g ∈ C(K) and S ∈ W (C(K)). The
fourth-named author [27, Theorem 6.1] (assuming the continuum hypothesis) and Plebanek
[37, Theorem 1.3] (without any assumptions beyond ZFC) have constructed an example
of a connected, compact Hausdor� space K for which each operator on C(K) is a weak
multiplication. This ensures that the following theorem is not vacuous.

Theorem 6.5. Let K be a compact Hausdor� space without isolated points and such that

each operator on C(K) is a weak multiplication.

(i) The Banach algebra B(C(K)) is the semidirect product of the subalgebra µ(C(K))
and the ideal W (C(K)), where µ is the homomorphism given by (6.3).

(ii) The following four conditions are equivalent for each subset L of B(C(K)) :
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(a) L is a non-�xed, maximal left ideal of B(C(K));
(b) L is a maximal left ideal of B(C(K)), and L is not �nitely generated;

(c) L is a maximal two-sided ideal of B(C(K));
(d) L =

{
Mg + S : S ∈ W (C(K)) and g ∈ C(K) with g(k) = 0

}
for some k ∈ K.

In the positive case, the point k ∈ K such that (d) holds is uniquely determined by L .

Proof. (i). We have B(C(K)) = µ(C(K))+W (C(K)) because each operator on C(K) is a
weak multiplication. Theorem 6.3 allows us to replace W (C(K)) with S (C(K)), which we
shall do in the remainder of this proof because the latter ideal suits our approach better.
To see that µ(C(K)) ∩ S (C(K)) = {0}, suppose that g ∈ C(K) \ {0}. Take k0 ∈ K

such that g(k0) 6= 0, set ε = |g(k0)|/2 > 0, and choose an open neighbourhood N of k0

such that |g(k)| > ε for each k ∈ N . Using Urysohn's lemma and the fact that k0 is not
isolated in K, we deduce that the subspace

F =
{
f ∈ C(K) : f(k) = 0 (k ∈ K \N)

}
of C(K) is in�nite dimensional. Since

‖Mgf‖ = sup
{
|g(k)f(k)| : k ∈ N

}
> ε‖f‖ (f ∈ F ),

we conclude that Mg is not strictly singular, as required.
(ii). For each k ∈ K, let

Zk = µ(ker εk) + S (C(K)) =
{
Mg + S : S ∈ S (C(K)) and g ∈ C(K) with g(k) = 0

}
.

By (i), Zk is a two-sided ideal of codimension one in B(C(K)), and thus maximal both
as a left and a two-sided ideal. The implication (d)⇒(c) is now immediate, while (d)⇒(b)
follows because ρ(Zk) = µ(ker εk) is not �nitely generated by Theorem 6.4(ii), so that Zk

is not �nitely generated as a left ideal, as explained in the paragraph following (6.2).
The implication (b)⇒(a) is clear because each �xed, maximal left ideal is �nitely gener-

ated by Proposition 2.2(i).
(a)⇒(d). Suppose that L is a non-�xed, maximal left ideal of B(C(K)). Then, by

Corollary 4.2, L contains E (C(K)) and thus S (C(K)), so that L is a maximal element
of the lattice LatS (C(K))(B(C(K))) given by (6.1). Hence, in the notation of (6.2), there
is a maximal element N of the lattice Lat(µ(C(K))) such that L = N + S (C(K)).
Theorem 6.4(i) implies that N = µ(ker εk) for some k ∈ K, and consequently L = Zk.
(c)⇒(d). Suppose that L is a maximal two-sided ideal of B(C(K)). Then, as mentioned

in Remark 4.3, L contains E (C(K)) and hence S (C(K)), so that L = Zk for some k ∈ K
by (i) and Theorem 6.4(i).
The �nal clause follows because ker εk1 6= ker εk2 whenever k1, k2 ∈ K are distinct, and

hence also Zk1 6= Zk2 . �

Remark 6.6. Example 5.5(ii)�(iii) and Theorem 6.5 show that, for certain compact Haus-
dor� spaces K, Question (II) has a positive answer for E = C(K). However, this question
remains open for some very important C(K)-spaces. Indeed, it is known that C(K) con-
tains a closed subspace which is isomorphic to C(K) and which is not complemented
in C(K) for each of the following compact Hausdor� spaces K :
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(i) K = [0, 1] (see [2]);
(ii) K = [0, α] for any ordinal α > ωω, where [0, α] denotes the set of ordinals less than

or equal to α, equipped with the order topology. (Baker [5] showed this for α = ωω;
the conclusion for general α > ωω follows immediately from Baker's result because
C[0, α] ∼= C[0, α]⊕ C[0, ωω].)

Hence, by Lemma 5.1, F (C(K)) is contained in a singly-generated, proper left ideal
of B(C(K)) for each of these K, but we do not know whether such a left ideal can be
chosen also to be maximal (or even closed).
This question cannot be answered by a variant of Theorem 5.9 because we can strengthen

the above conclusion to obtain that K (C(K)) is contained in a singly-generated, proper
left ideal of B(C(K)) for each of the above K. To see this, take an operator U ∈ B(C(K))
which is bounded below and whose range F = U(C(K)) is not complemented in C(K),
and consider the isomorphism Ũ : x 7→ Ux, C(K)→ F . Then, for each S ∈ K (C(K)), the
operator SŨ−1 : F → C(K) has an extension T ∈ K (C(K)) by a theorem of Grothendieck
(see [19, pp. 559�560], or [30, Theorem 1]). Hence we have S = TU , and consequently
K (C(K)) ⊆ L{U}.

7. A non-fixed and singly-generated, maximal left ideal of operators

The main aim of this section is to prove Theorems 1.5 and 1.6. Several parts of those
theorems are special cases of more general results, which may be of independent interest,
and so we shall take a more general approach, specializing only when we need to.
Recall that, for a non-empty set Γ, we denote by `∞(Γ) the Banach space of bounded,

complex-valued functions de�ned on Γ, and `∞ = `∞(N). Our �rst result collects some
known facts about operators from `∞(Γ) that we shall use several times.

Lemma 7.1. Let Γ be a non-empty set, and let X be a Banach space.

(i) An operator from `∞(Γ) to X is weakly compact if and only if it is strictly singular.

(ii) Suppose that the set Γ is in�nite. Then each operator from `∞(Γ) to X is weakly

compact if and only if X does not contain a subspace isomorphic to `∞.

Proof. (i). This is a special case of Theorem 6.3.
(ii). The hard part is the implication ⇐, which however follows immediately from [31,

Proposition 2.f.4].
The forward implication is straightforward. Suppose contrapositively that X contains

a subspace isomorphic to `∞, and take an operator U ∈ B(`∞, X) which is bounded
below. Choose an injective mapping θ : N→ Γ, and de�ne an operator Cθ ∈ B(`∞(Γ), `∞)
by Cθf = f ◦ θ for each f ∈ `∞(Γ). Then UCθ is not weakly compact, for instance because
it �xes a copy of `∞. �

In the remainder of this section we shall consider a Banach space X such that
(I) the bidual of X is isomorphic to `∞(Υ1) for some in�nite set Υ1 via a �xed isomor-

phism V : X∗∗ → `∞(Υ1); and
(II) no subspace of X is isomorphic to `∞.
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For example, X = c0 satis�es both of these conditions with Υ1 = N.
Let Υ2 be a disjoint copy of Υ1 (that is, Υ2 is a set of the same cardinality as Υ1

and satis�es Υ1 ∩ Υ2 = ∅), and set Υ = Υ1 ∪ Υ2. We consider `∞(Υ1) and `∞(Υ2)
as complementary subspaces of `∞(Υ) in the natural way, and denote by P1 and P2 the
corresponding projections of `∞(Υ) onto `∞(Υ1) and `∞(Υ2), respectively. Moreover, we
shall choose a bijection ϕ : Υ2 → Υ; we then obtain an isometric isomorphism Cϕ of `∞(Υ)
onto the subspace `∞(Υ2) by the de�nition Cϕf = f ◦ ϕ for each f ∈ `∞(Υ).
Let E = X⊕`∞(Υ) with norm

∥∥(x, f)
∥∥
E

= max
{
‖x‖X , ‖f‖∞

}
. We identify operators T

on E with (2× 2)-matrices(
T1,1 : X → X T1,2 : `∞(Υ)→ X

T2,1 : X → `∞(Υ) T2,2 : `∞(Υ)→ `∞(Υ)

)
.

Note that assumption (II) and Lemma 7.1(ii) imply that the operator T1,2 is always weakly
compact. This fact will play a key role for us.
Despite our focus on left ideals, our �rst result about the Banach space E is concerned

with two-sided ideals.

Proposition 7.2. (i) The set

W1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 ∈ W (X)

}
is a proper, closed two-sided ideal of B(E), and W1 is a maximal two-sided ideal

of B(E) if and only if W (X) is a maximal two-sided ideal of B(X).
(ii) The set

W2 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 ∈ W (`∞(Υ))

}
is a proper, closed two-sided ideal of B(E), and the following three conditions are

equivalent:

(a) W2 is a maximal two-sided ideal of B(E);
(b) W (`∞(Υ)) is a maximal two-sided ideal of B(`∞(Υ));
(c) Υ is countable.

Proof. (i). The mapping

T 7→ T1,1 + W (X), B(E)→ B(X)
/
W (X),

is a surjective algebra homomorphism of norm one. Hence its kernel, which is equal to W1, is
a closed two-sided ideal of B(E). This ideal is proper because, by assumption (I), X is non-
re�exive. The fundamental isomorphism theorem implies that B(E)

/
W1
∼= B(X)

/
W (X).

Thus the algebra B(E)
/
W1 is simple if and only if B(X)

/
W (X) is simple, and therefore

W1 is a maximal two-sided ideal of B(E) if and only if W (X) is a maximal two-sided ideal
of B(X).
(ii). An obvious modi�cation of the argument given above shows that W2 is a proper,

closed two-sided ideal of B(E), and that conditions (a) and (b) are equivalent. The impli-
cation (c)⇒(b) follows from [31, Proposition 2.f.4].
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Conversely, to prove that (b)⇒(c), suppose that W (`∞(Υ)) is a maximal two-sided
ideal of B(`∞(Υ)), and denote by G`∞(`∞(Υ)) the set of operators on `∞(Υ) that factor
through `∞. This is a two-sided ideal of B(`∞(Υ)) because `∞ is isomorphic to `∞ ⊕ `∞.
Hence G`∞(`∞(Υ)) + W (`∞(Υ)) is also a two-sided ideal, which is strictly greater than
W (`∞(Υ)) because `∞(Υ) contains a complemented copy of `∞, and any projection with
range isomorphic to `∞ belongs to G`∞(`∞(Υ)) \ W (`∞(Υ)). Consequently, by the maxi-
mality of W (`∞(Υ)), there are operators R ∈ G`∞(`∞(Υ)) and S ∈ W (`∞(Υ)) such that
I`∞(Υ) = R+S. Then R = I`∞(Υ)−S is a Fredholm operator by (2.5) and Lemma 7.1(i), so
that I`∞(Υ) = URT for some operators T, U ∈ B(`∞(Υ)) because `∞(Υ) is isomorphic to
its hyperplanes. Thus the identity operator on `∞(Υ) factors through `∞, which is possible
only if Υ is countable. �

Set

L =

(
0 0

V κX Cϕ

)
∈ B(E), (7.1)

where the operators V and Cϕ were introduced on p. 27. Since the ranges of V and Cϕ are
contained in the complementary subspaces `∞(Υ1) and `∞(Υ2) of `∞(Υ), respectively, we
have∥∥L(x, f)

∥∥
E

= ‖V κXx+ Cϕf‖∞ = max
{
‖V κXx‖∞, ‖Cϕf‖∞

}
= max

{
‖V κXx‖∞, ‖f‖∞

} (
x ∈ X, f ∈ `∞(Υ)

)
,

which shows that the operator L is bounded below because V κX is bounded below. This
conclusion is also immediate from our next result and Lemma 5.1.

Theorem 7.3. The ideal W1 de�ned in Proposition 7.2(i) is the left ideal generated by the

operator L given by (7.1); that is,
W1 = L{L}.

Proof. We have L ∈ W1 because L1,1 = 0, and hence the inclusion ⊇ follows.
We shall prove the reverse inclusion in three steps. First, we see that(

0 0
0 I`∞(Υ)

)
=

(
0 0
0 C−1

ϕ P2

)(
0 0

V κX Cϕ

)
∈ L{L},

and consequently, for each T1,2 ∈ B(`∞(Υ), X) and T2,2 ∈ B(`∞(Υ)), we have(
0 T1,2

0 T2,2

)
=

(
0 T1,2

0 T2,2

)(
0 0
0 I`∞(Υ)

)
∈ L{L}. (7.2)

Second, let T2,1 ∈ B(X, `∞(Υ)). Being bounded below, the operator V κX is an isomor-
phism onto its range Y := V κX(X) ⊆ `∞(Υ1), so that it has an inverse R ∈ B(Y,X).
By the injectivity of `∞(Υ1), the composite operator T2,1R ∈ B(Y, `∞(Υ)) extends to
an operator S ∈ B(`∞(Υ1), `∞(Υ)), which then satis�es SV κX = T2,1. Hence we have(

0 0
T2,1 0

)
=

(
0 0
0 SP1

)(
0 0

V κX Cϕ

)
∈ L{L}. (7.3)
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Third, each operator T1,1 ∈ W (X) satis�es T ∗∗1,1(X∗∗) ⊆ κX(X) (e.g., see [34, Theo-
rem 3.5.8]). We can therefore de�ne an operator U ∈ B(`∞(Υ1), X) by Uf = κ−1

X T ∗∗1,1V
−1f

for each f ∈ `∞(Υ1). Since κXUV κX = T ∗∗1,1κX = κXT1,1, we have UV κX = T1,1, and so(
T1,1 0
0 0

)
=

(
0 UP1

0 0

)(
0 0

V κX Cϕ

)
∈ L{L}. (7.4)

Combining (7.2)�(7.4), we conclude that each operator T ∈ W1 belongs to L{L}. �

Remark 7.4. Since the operator L given by (7.1) is bounded below and generates a proper
left ideal of B(E), its range is not complemented in E by Lemma 5.2. This is also easy to
verify directly.

A Banach space F has very few operators if F is in�nite-dimensional and each operator
on F is the sum of a scalar multiple of the identity operator and a compact operator;
that is, B(F ) = CIF + K (F ). Argyros and Haydon [4] constructed the �rst example of
a Banach space XAH which has very few operators. We shall now specialize to the case
whereX = XAH. The following result collects those properties ofXAH that we shall require.

Theorem 7.5 (Argyros and Haydon). There is a Banach space XAH with the following

three properties:

(i) XAH has very few operators;

(ii) XAH has a Schauder basis;

(iii) the dual space of XAH is isomorphic to `1.

Using this, we can easily prove Theorem 1.5.

Proof of Theorem 1.5. We begin by checking that XAH satis�es the two assumptions made
on p. 27: Theorem 7.5(iii) ensures that X∗∗

AH
is isomorphic to `∞, while Theorem 7.5(ii)

(or (iii)) implies that XAH does not contain `∞. Moreover, we have W (XAH) = K (XAH)
because Theorem 7.5(iii) implies that XAH is non-re�exive, so that W (XAH) is a closed,
non-zero, proper two-sided ideal of B(XAH), and K (XAH) is the only such ideal by Theo-
rem 7.5(i)�(ii). Hence the set K1 given by (1.2) is equal to the ideal W1 de�ned in Propo-
sition 7.2(i), and W1 is singly generated as a left ideal by Theorem 7.3. Theorem 7.5(i)
implies that K1 has codimension one in B(E), so that it is trivially maximal as a left, right,
and two-sided ideal. (The latter also follows from Proposition 7.2(i).) Being a non-zero
two-sided ideal, K1 contains F (E), and therefore K1 is not �xed. �

Remark 7.6. Theorem 1.5 implies that the class of Banach spaces for which Question (II)
has a positive answer is not closed under �nite direct sums. Indeed, XAH and `∞ both
belong to this class by Theorem 6.2 and Example 5.5(ii), respectively, whereas their direct
sum does not.

We shall next give a characterization of the ideal K1 de�ned by (1.2). Theorem 1.6 will
be an easy consequence of this result.

Theorem 7.7. Let E = XAH ⊕ `∞. Then the following three conditions are equivalent for

each subset L of B(E) :
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(a) L = K1;
(b) L is a non-�xed, �nitely-generated, maximal left ideal of B(E);
(c) L is a maximal left ideal of B(E) and contains an operator which is bounded below.

Proof. (a)⇒(b). This is immediate from Theorem 1.5.
(b)⇒(c). Suppose that L is a non-�xed, �nitely-generated, maximal left ideal of B(E),

so that L = LΓ for some non-empty, �nite subset Γ of B(E). Set n = |Γ| ∈ N.
By Lemma 5.1, the operator ΨΓ is bounded below. Moreover, there is an operator
T ∈ B(En, E) which is bounded below because XAH embeds in `∞, and `∞ is isomor-
phic to the direct sum of 2n − 1 copies of itself. Hence the composite operator TΨΓ is
bounded below, and it belongs to L by (2.8).
(c)⇒(a). Suppose that L is a maximal left ideal of B(E) and that L contains an opera-

tor R = (Rj,k)
2
j,k=1 which is bounded below. Then R does not belong to any �xed maximal

left ideal, so that E (E) ⊆ L by Corollary 4.2. Lemma 7.1 shows that each operator
from `∞ to XAH is strictly singular, and thus inessential. Hence, by [15, Proposition 1],
each operator from XAH to `∞ is also inessential, and so we conclude that{(

T1,1 T1,2

T2,1 T2,2

)
: T1,1 ∈ K (XAH), T1,2 ∈ B(`∞, XAH),

T2,1 ∈ B(XAH, `∞), T2,2 ∈ W (`∞)

}
= E (E) ⊆ L . (7.5)

Since the operator R is bounded below, its restriction R|`∞ =
( R1,2

R2,2

)
is also bounded

below, and is thus an upper semi-Fredholm operator. Consequently
(

0
R2,2

)
is an upper semi-

Fredholm operator by (2.6) because R1,2 is strictly singular, and therefore R2,2 is an upper
semi-Fredholm operator. LetQ ∈ F (`∞) be a projection onto kerR2,2. Then the restriction
of R2,2 to kerQ is an isomorphism onto its range, which is a closed subspace of `∞. Since `∞
is injective, the inverse of this isomorphism extends to an operator S : `∞ → kerQ ⊆ `∞,
which then satis�es SR2,2 = I`∞ −Q. Hence we have(

0 0
SR2,1 I`∞ −Q

)
=

(
0 0
0 S

)(
R1,1 R1,2

R2,1 R2,2

)
∈ L , and thus

(
0 0
0 I`∞

)
∈ L

by (7.5). Combining this with (7.5), we see that K1 ⊆ L , and consequently K1 = L by
the maximality of K1. �

Proof of Theorem 1.6. The equivalence of conditions (a) and (b) in Theorem 7.7 shows
that K1 is the unique non-�xed, �nitely-generated, maximal left ideal of B(E). Proposi-
tion 7.2(ii) implies that W2 is a maximal two-sided ideal. Since F (E) ⊆ W2 * K1, W2 is
not contained in any �nitely-generated, maximal left ideal of B(E). �

One may wonder whether the conclusion of Theorem 1.5 that the ideal W1 introduced in
Proposition 7.2(i) is maximal as a left ideal might be true more generally, that is, not only
in the case where X is Argyros�Haydon's Banach space. Our next result implies that this
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is false for X = c0. Note that all weakly compact operators on c0 are compact, so that, in
this case, W1 is equal to

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(c0 ⊕ `∞) : T1,1 ∈ K (c0)

}
. (7.6)

Proposition 7.8. The ideal K1 given by (7.6) is not contained in any �nitely-generated,

maximal left ideal of B(c0 ⊕ `∞).

For clarity, we present the main technical step in the proof of Proposition 7.8 as a
separate lemma.

Lemma 7.9. For each operator T ∈ B(c0) \ Φ+(c0), there exist a projection Q0 ∈ B(c0)
and a normalized basic sequence (xn)n∈N in c0 such that (xn)n∈N is equivalent to the standard

unit vector basis for c0 and

Q0x2n−1 = x2n−1, Q0x2n = 0, and ‖Txn‖ 6
1

n
(n ∈ N). (7.7)

Proof. Let (en)n∈N denote the standard unit vector basis for c0. Since T /∈ Φ+(c0), there
are two cases to consider.

Case 1: α(T ) =∞. Then kerT contains a closed subspace Y which is isomorphic to c0

and complemented in c0 (e.g., see [31, Proposition 2.a.2]). Let (xn)n∈N be a normalized
Schauder basis for Y such that (xn)n∈N is equivalent to (en)n∈N. Since Y is complemented
in c0 and the basis (xn)n∈N is unconditional, there is a projection Q0 ∈ B(c0) which satis�es
the �rst two identities in (7.7), while the third one is trivial because xn ∈ Y ⊆ kerT for
each n ∈ N.

Case 2: α(T ) <∞ and T (c0) is not closed. For each n ∈ N, choose εn ∈ (0, 1) such that
(1 + ‖T‖)εn(1 − εn)−1 6 n−1. By induction, we shall construct a normalized block basic
sequence (xn)n∈N of (en)n∈N such that ‖Txn‖ 6 n−1 for each n ∈ N.
To start the induction, we observe that T cannot be bounded below because its range is

not closed, so that we can �nd a unit vector y1 ∈ c0 such that ‖Ty1‖ 6 ε1. Approximating y1

within ε1 by a �nitely-supported vector and normalizing it, we obtain a �nitely-supported
unit vector x1 ∈ c0 such that ‖Tx1‖ 6 (1 + ‖T‖)ε1(1− ε1)−1 6 1 by the choice of ε1.
Now assume inductively that, for some n ∈ N, unit vectors x1, . . . , xn ∈ c0 with consecu-

tive supports have been chosen such that ‖Txj‖ 6 1/j for each j ∈ {1, . . . , n}. Let m ∈ N
be the maximum of the support of xn, so that x1, . . . , xn ∈ span{e1, . . . , em}, and let Pm
be the mth basis projection associated with (ej)j∈N. If T |kerPm were bounded below, then
it would have closed range, so that

T (c0) = T (kerPm) + span{Te1, . . . , T em}

would also be closed, being the sum of a closed subspace and a �nite-dimensional one.
This is false, and hence T |kerPm is not bounded below. We can therefore choose a unit
vector yn+1 ∈ kerPm such that ‖Tyn+1‖ 6 εn+1. Now, as in the �rst step of the induction,
we approximate yn+1 within εn+1 by a �nitely-supported vector in kerPm and normalize it
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to obtain a �nitely-supported unit vector xn+1 ∈ kerPm such that

‖Txn+1‖ 6
(1 + ‖T‖)εn+1

1− εn+1

6
1

n+ 1

by the choice of εn+1. Hence the induction continues.
By [31, Proposition 2.a.1], the sequence (xn)n∈N is equivalent to (en)n∈N, and its closed

linear span is complemented in c0. Therefore, as in Case 1, we obtain a projection
Q0 ∈ B(c0) such that the �rst two identities in (7.7) are satis�ed, while the third one
holds by the construction of (xn)n∈N. �

Proof of Proposition 7.8. Assume towards a contradiction that L is a �nitely-generated,
maximal left ideal of B(c0 ⊕ `∞) such that K1 ⊆ L . Proposition 2.1 implies that L is
generated by a single operator, say

T =

(
T1,1 T1,2

T2,1 T2,2

)
∈ B(c0 ⊕ `∞).

We claim that T1,1 is not an upper semi-Fredholm operator. Assume the contrary;
that is, kerT1,1 is �nite-dimensional, so that we can take a projection P ∈ F (c0) onto
kerT1,1, and T1,1(c0) is closed. Then the restriction T̃1,1 : x 7→ T1,1x, kerP → T1,1(c0), is
an isomorphism. Its range is complemented in c0 by Sobczyk's theorem [43] because it
is isomorphic to kerP , which is a closed subspace of �nite codimension in c0, and hence
isomorphic to c0. We can therefore extend the inverse of T̃1,1 to an operator S ∈ B(c0),
which then satis�es ST1,1 = Ic0 − P . Since P has �nite rank, we have(

P 0
0 I`∞

)
∈ K1 ⊆ L and

(
T1,1 0
0 0

)
= T −

(
0 T1,2

T2,1 T2,2

)
∈ L −K1 ⊆ L ,

which implies that(
Ic0 0
0 I`∞

)
=

(
P 0
0 I`∞

)
+

(
S 0
0 0

)(
T1,1 0
0 0

)
∈ L .

This, however, contradicts the assumption that the left ideal L is proper, and thus com-
pletes the proof of our claim.
Hence, by Lemma 7.9, we obtain a projection Q0 ∈ B(c0) and a normalized basic se-

quence (xn)n∈N in c0 such that (xn)n∈N is equivalent to the standard unit vector basis
(en)n∈N for c0 and

Q0x2n−1 = x2n−1, Q0x2n = 0, and ‖T1,1xn‖ 6
1

n
(n ∈ N). (7.8)

The sequence (xn)n∈N is weakly null because it is equivalent to the weakly null sequence
(en)n∈N, and so the sequence (Rxn)n∈N is norm-null for each R ∈ K (c0). Now let

Q =

(
Q0 0
0 0

)
∈ B(c0 ⊕ `∞).

The maximality of the left ideal L implies that either

(i) Q ∈ L or (ii) L + L{Q} = B(c0 ⊕ `∞).
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We shall complete the proof by showing that both of these alternatives are impossible.
In case (i), we can write Q = ST for some operator S = (Sj,k)

2
j,k=1 ∈ B(c0 ⊕ `∞).

De�ning P0 ∈ B(c0 ⊕ `∞, c0) by P0(x, f) = x for each x ∈ c0 and f ∈ `∞, we have
x2n−1 = P0Q(x2n−1, 0) = P0ST (x2n−1, 0) = S1,1T1,1x2n−1 + S1,2T2,1x2n−1 (n ∈ N).

This, however, is absurd since the left-hand side is a unit vector, whereas the right-hand
side norm-converges to 0 as n → ∞ because ‖T1,1x2n−1‖ → 0 by (7.8) and S1,2T2,1 ∈
W (c0) = K (c0).
In case (ii), there are operators U, V ∈ B(c0 ⊕ `∞) such that Ic0⊕`∞ = UT + V Q.

De�ne P0 as above, and write U = (Uj,k)
2
j,k=1. Then, since Q0x2n = 0, we have

x2n = P0(UT + V Q)(x2n, 0) = U1,1T1,1x2n + U1,2T2,1x2n (n ∈ N),

which leads to a contradiction as in case (i) because the left-hand side is a unit vector,
whereas the right-hand side norm-converges to 0 as n→∞. �
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