
Logarithmic Sobolev inequalities and spectral concentration for

the cubic Schrödinger equation

Gordon Blowera∗, Caroline Bretta and Ian Doustb

aDepartment of Mathematics and Statistics, Lancaster University, Lancaster, England;
bSchool of Mathematics and Statistics, University of New South Wales, Sydney, Australia

(version 1.1 12 August 2013 )

The nonlinear Schrödinger equation NLSE(p, β), −iut = −uxx + β|u|p−2u = 0, arises from a
Hamiltonian on infinite-dimensional phase space L2(T). For p ≤ 6, Bourgain (Comm. Math.

Phys. 166 (1994), 1–26) has shown that there exists a Gibbs measure µβ
N

on balls ΩN = {φ ∈

L2(T) : ‖φ‖2
L2

≤ N} in phase space such that the Cauchy problem for NLSE(p, β) is well

posed on the support of µβ
N
, and that µβ

N
is invariant under the flow. This paper shows that

µβ
N

satisfies a logarithmic Sobolev inequality for the focussing case β < 0 and 2 ≤ p ≤ 4 on

ΩN for all N > 0; also µβ satisfies a restricted LSI for 4 ≤ p ≤ 6 on compact subsets of
ΩN determined by Hölder norms. Hence for p = 4, the spectral data of the periodic Dirac

operator in L2(T;C2) with random potential φ subject to µβ
N

are concentrated near to their
mean values. The paper concludes with a similar result for the spectral data of Hill’s equation
when the potential is random and subject to the Gibbs measure of KdV.
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1. Introduction

This paper is concerned with the statistical mechanics of families of solutions for
partial differential equations. The periodic nonlinear Schrödinger equation studied
is

NLSE(p, β) : −i∂u
∂t

= −∂
2u

∂x2
+ β|u(x, t)|p−2u(x, t), (1)

where u : T× R → C, p ≥ 2 and β ∈ R. The associated Cauchy problem specifies
the initial condition u(x, 0) = φ(x), where φ is periodic.
Invariant measures associated with this equation have been studied by several

authors, including Lebowitz, Rose and Speer [9], and Bourgain [4, 6]. Bourgain [6]

showed that for p ≤ 6, that there exists a Gibbs measure µβN on balls ΩN = {φ ∈
L2(T) : ‖φ‖2L2 ≤ N} in phase space such that the Cauchy problem for NLSE(p, β)

is well posed on the support of µβN , and that µβN is invariant under the flow. This

paper shows that µβN satisfies a logarithmic Sobolev inequality for the focussing
case β < 0 and 2 ≤ p ≤ 4 on ΩN for all N > 0. In the case of 4 ≤ p ≤ 6, we show

that µβN satisfies a restricted LSI on compact subsets of ΩN determined by certain
Hölder norms.
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A consequence of this result is that the spectral data of the periodic Dirac opera-

tor in L2(T;C2) with random potential φ subject to µβN for p = 4 are concentrated
near to their mean values. The equation NLSE(p, β) arises from the Hamiltonian

H(φ) =
1

2

∫

T

∣

∣φ′(x)
∣

∣

2 dx

2π
+
β

p

∫

T

|φ(x)|p dx
2π
. (2)

There is a sequence of invariants under the motion, including the number operator

N =

∫

T

|u(x, t)|2 dx
2π

(3)

and the Hamiltonian H(u(·, t)) itself. In much of what follows, it will be more
convenient to work with the coordinates of elements of L2(T;C) with respect to
the standard Fourier basis. That is, we shall consider the L2 function φ(x) =
∑∞

n=−∞(an + ibn)e
inx with real Fourier coefficients ((aj , bj))

∞
j=−∞ in `2. One can

then readily verify that, with

H(φ) =
1

2

∞
∑

n=−∞

n2(a2n + b2n) +
β

p

∫

T

∣

∣

∞
∑

n=−∞

(an + ibn)e
inx

∣

∣

p dx

2π
, (4)

the ((aj , bj))
∞
j=0 give a system of canonical coordinates. In order to obtain a nor-

malized Gibbs measure, one restricts attention to bounded subsets of L2(T;C), and
forms the modified canonical ensemble with phase space on the ball

ΩN =
{

φ ∈ L2(T;C) :

∫

T

|φ(x)|2 dx
2π

≤ N
}

(5)

for fixed N > 0. We then seek to define the Gibbs measure on ΩN via

µβN = Z(p, β,N)−1 exp
(

−H(φ)
)

IΩN
(φ)

∏

x∈[0,2π]

d2φ(x). (6)

To make this more precise, let (ζj , ζ
′
j)

∞
j=−∞ be mutually independent N(0, 1) Gaus-

sian random variables, and let Wiener loop W be the measure that is induced on
L2(T;C) by the random Fourier series

ω 7→ φω(x) =

∞
∑

j=−∞;j 6=0

ζj + iζ ′j
j

eijx.

Thus W provides an interpretation of exp
(

−1
2

∫

|φ′(x)|2 dx
)
∏

x∈T d
2φ(x). In terms

of the Fourier coefficients this may be written as the measure on `2 given by the

product
∏∞

j=−∞ exp
(

−1
2j

2(a2j + b2j )
)

j2 dajdbj
2π .

Dealing with the other term of the Hamiltonian from 4 is more delicate. By
results of [6] and [9], the factor exp

(

− β
p

∫

|φ(x)|pdx
)

is integrable over ΩN with
respect to Wiener loop for all β ∈ R, 0 < N <∞ and 2 ≤ p < 6. Here β < 0 gives
the focussing case, where p = 6 is marginal for there to exist a normalized Gibbs
measure; see [9].
By a cylindrical function, we mean F : `2 → R of the form F (x) = f((xj)

m
j=−m)

for some m < ∞, where f : R2m+1 → R is a C∞ function of compact support in
the sense of calculus.
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Definition 1.1: A probability measure ν on a Borel subset Ω of `2 is said to
satisfy a logarithmic Sobolev inequality (LSI) with constant α > 0 if

LSI(α) :

∫

Ω
F (x)2 log

(

F (x)2/

∫

F 2 dν
)

ν(dx) ≤ 2

α

∫

Ω
‖∇F (x)‖2`2 ν(dx) (7)

for all cylindrical functions F .

Such a logarithmic Sobolev inequality is used to derive concentration inequalities
for Lipschitz functions. If F : Ω → R is such that |F (x)−F (y)| ≤ ‖x− y‖`2 for all
x, y ∈ `2, and also

∫

Ω F (x)ν(dx) = 0, then
∫

Ω e
tF (x)ν(dx) ≤ et

2/(2α) for all t ∈ R; so
F is concentrated close to its mean value. In this respect, ν resembles a Gaussian
measure, and the significant examples live onKσ subsets of the infinite-dimensional
Hilbert space `2. In section 2 of this paper, the measures live on the ball ΩN in
`2, and then in sections 3 and 4 we consider random variables which are Lipschitz
functions on ΩN .
In order to state the main technical result of this paper, we need some additional

notation. Let `2 = `2(Z;R) have the usual inner product. For γ ≥ 0 we introduce
the Hölder spaces

Hγ =
{

φ(x) =

∞
∑

n=−∞

φne
inx : ‖φ‖2Hγ = |φ0|2 +

∞
∑

n=−∞

|n|2γ |φn|2 <∞
}

.

Let ΩN,K = {φ ∈ Hγ : ‖φ‖2L2 ≤ N and ‖φ‖Hγ ≤ K} and let ΩN,∞ = ∪∞
K=1ΩN,K .

Theorem 1.2 : The sets ΩN,K (K = 1, 2, . . . ) form an increasing sequence of
convex and compact subsets of ΩN such that:

(i) the Cauchy problem for NLSE(p, β) is well posed for initial datum φ ∈ ΩN,∞

for all β ∈ R and all 2 ≤ p < 6;
(ii) ΩN,∞ is invariant under the flow associated with NLSE(p, β), and ΩN,∞

supports the Gibbs measure on ΩN ;
(iii) the Gibbs measure on ΩN,K satisfies a logarithmic Sobolev inequality with

some constant α(N,K) > 0.
(iv) For 2 ≤ p ≤ 4, the LSI holds on ΩN itself with αN > 0.

The proof of Theorem 1.2 occupies most of section 2. A version of (iv) with
additional hypotheses on N appeared in [2]. Consequences for the spectral theory
of Dirac operators with random potentials appear in section 3, where we show
that some spectral data can be described by linear statistics on a suitable space
of test functions. The final section 4 gives consequences for the spectrum of Hill’s
equation, where we present linear statistics that define Lipschitz functions.
Various works concerning concentration of Gibbs measure for nonlinear

Schrödinger equations appear in the literature; for instance, McKean and Vanin-
sky [11] consider the defocussing cubic Schrödinger equation. The authors of [7]
consider large deviations relating to an invariant measure for a modified cubic
Schrödinger equation in which the nonlinear factor β|u|2 in (1) is replaced by the
bounded factor β|u|2/(1 + |u|2).
All the measures that we consider will be Radon, that is inner regular and Borel,

and we will be considerate about the compact sets which almost support the mea-
sure. Given a bounded and positive measure, we often use Z to stand for the mea-
sure of the full space, and we multiply by Z−1 to rescale the measure to become a
probability.
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2. Convexity of the potentials

Definition 2.1: Let Ω be a convex subset of Hγ , and H : Ω → R be continuous.
Then H is uniformly convex on Ω with respect to ‖ · ‖2Hγ if there exists η > 0 such
that

sH(φ) + tH(ψ)−H(sφ+ tψ) ≥ ηst‖φ− ψ‖2Hγ (φ, ψ ∈ Ω) (8)

for all 0 < s, t such that s+ t = 1.

The proof of Theorem 1.2 depends upon the uniform convexity of the Hamilto-
nian, or perturbations of the Hamiltonian; in turn, this reduces to an elementary
computation of the second derivative of the Hamiltonians. We consider first the
nonlinear term. Let φ(x) =

∑∞
n=−∞(an + ibn)e

inx, ψ(x) =
∑∞

n=−∞ ξne
inx and

θ(x) =
∑∞

n=−∞ ηne
inx. Throughout, 〈·, ·〉 denotes the inner product on a complex

Hilbert space, linear in the first variable and conjugate linear in the second variable.

Lemma 2.2: Let V (φ) =
∫

T
|φ(x)|p dx

2π . Then V is a convex function of the real
variables ((aj), (bj)) with Hessian matrix satisfying

〈

Hess(V )φ

[

ψ
θ

]

,

[

ψ
θ

]

〉

=
p

2

∫

T

|φ(x)|p−2
∥

∥

∥

[

ψ(x) + iθ(x)
ψ(−x) + iθ(−x)

]

∥

∥

∥

2 dx

2π

+
p(p− 2)

4

∫

T

|φ(x)|p−4
∣

∣

∣

〈

[

φ(x)

φ(x)

]

,

[

ψ(x)− iθ(x)

ψ(−x) + iθ(−x)

]

〉
∣

∣

∣

2 dx

2π
.

(9)

Proof : This is an elementary computation of the matrix of second order partial
derivatives with respect to an and bn, which we leave to the reader (following
perhaps the proof of Theorem 3 of [2]). We are using the real and imaginary
Fourier coefficients an and bn of φ, which explains the unexpected appearance of
ψ(−x) on the right-hand side. �

Proposition 2.3:

(i) Let β, γ > 0 and 2 ≤ p < 6. Then H is uniformly convex with respect to
‖ . ‖2H1 on ΩN .

(ii) For all β < 0 and 2 ≤ p < 6, there exists 1/4 < γ < 1/2 such that for all
N,K > 0 there exists a bounded and continuous WK : ΩN,K → R such that
HK = H +WK is uniformly convex with respect to ‖ · ‖2Hγ for η = 1/4.

Proof : (i) Here the Hamiltonian, H = (1/2)
∫

T
|φ′(x)|2 dx/2π+(β/p)V (φ), is the

sum of two convex terms, and the inequality (8) follows from the parallelogram law
applied to the term (1/2)

∫

T
|φ′(x)|2 dx/2π in H1. This deals with the defocussing

case.
(ii) In the focussing case, we need to balance the uniform convexity of (1/2)

∫

|φ′|2
against the concavity of (β/p)V (φ). First we choose 1/4 < γ < 1/2 and Cγ such
that Hγ is contained in Lp−2 with ‖φ‖Lp−2 ≤ Cγ‖φ‖Hγ for all φ ∈ Hγ . Then we
choose 1/2 < δ < 1 such that Hδ is contained in L∞ with ‖φ‖L∞ ≤ Cδ‖φ‖Hδ

for all φ ∈ Hδ. Next we choose M to be the smallest integer that is larger than
(1 + |β|CγκpK

p−2)1/(2(1−δ)), where κp > 0 is to be chosen, and then introduce the
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function

WK((an, bn)
∞
n=−∞) = (1 + |β|CγκpK

p−2)M2δ
M
∑

j=−M

(a2j + b2j ), (10)

which is continuous on `2 and satisfies the bounds 0 ≤ WK ≤ (1 +
|β|CγκpK

p−2)M2δN on ΩN .
The functional FK(φ) = (1/2)

∫

|φ′|2 +WK(φ) therefore satisfies

〈

Hess(FK)φ

[

ψ
θ

]

,

[

ψ
θ

]

〉

=

M
∑

j=−M

(1 + |β|CγκpK
p−2)M2δ(|ξj |2 + |ηj |2)

+

∞
∑

j=−∞

j2(|ξj |2 + |ηj |2)

≥ (1 + |β|CγκpK
p−2)

∞
∑

n=−∞

|n|2δ(|ξn|2 + |ηn|2). (11)

This deals with the concavity of (β/p)V (φ), since by Lemma 2.2 there exist
constants κ and κp such that

|β|
p

〈

Hess(V )φ

[

ψ
θ

]

,

[

ψ
θ

]

〉

≤ |β|κ
p

‖φ‖p−2
Lp−2(‖ψ‖2L∞ + ‖θ‖2L∞)

≤ |β|κp
p

‖φ‖p−2
Hγ (‖ψ‖2Hδ + ‖θ‖2Hδ)

≤ |β|κp
p

Kp−2
∞
∑

n=−∞

|n|2δ(|ξn|2 + |ηn|2). (12)

Hence HK = FK + (β/p)V is uniformly convex with respect to ‖ · ‖2Hδ on ΩN,K ,
and hence also uniformly convex with respect to ‖ · ‖2`2 . �

Proof of Theorem 1.2 : (i) Bourgain [6] showed that the Cauchy problem is
well posed on Hγ .
(ii) Bourgain also showed that the solution operator for the Cauchy problem is

Lipschitz continuous for the L2 norm on each ΩN . There exists κ(N, p) > 0 such
that the solution u(x, t) with initial condition φ(x) ∈ ΩN and the solution v(x, t)
with initial condition ψ(x) ∈ ΩN satisfy ‖u( , t) − v( , t)‖Hγ ≤ κ(N, p)t‖φ − ψ‖Hγ .
Hence φ ∈ ΩN,K implies u( , t) ∈ ΩN,κ(N,p)tK , so each ΩN,K is progessively mapped
into another compact and convex subset ΩN,κ(N,p)tK . Hence ΩN,∞ is invariant under
the flow.
(iii) A standard result due to Bakry and Emery [1] states that any uniformly

convex potentialH on Euclidean space gives rise to a logarithmic Sobolev inequality
for e−H(x)dx. In our case, we can use Proposition 2.3 to show that the Hamiltonians
HK are uniformly convex, with constant η ≥ 1/4, and then follow the proof in
[3] which is based upon the Prékopa–Leindler inequality. Given LSI(η) for the
modified HK , we can use the Holley–Stroock Lemma ([8] and [15, Section 9.2]) to
recover a logarithmic Sobolev inequality for the original Hamiltonian H = HK −
WK with constant

α ≥ η exp
(

−2‖WK‖L∞

)

≥ (1/4) exp
(

−2(1 + |β|CγκpK
p−2)M2δN

)

.
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(iv) The final part follows similar lines to the proof of Proposition 2.3(ii). Observe
that, by Lemma 2.2,

|β|
2

〈

Hess(V )φ

[

ψ
θ

]

,

[

ψ
θ

]

〉

≤ |β|C
2

‖φ‖2L2

(

‖ψ‖2L∞ + ‖θ‖2L∞

)

≤ 1

2

∞
∑

j=−∞

|β|CδN |j|2δ
(

|ξj |2 + |ηj |2
)

≤ 1

2

∞
∑

j=−∞

(

δj2 + (1− δ)(|β|CδN)1/(1−δ)
)(

|ξj |2 + |ηj |2
)

,

(13)

where we have used Hölder’s inequality at the last step. To deal with the final term,
we introduce the functional

YN (φ) = (1− δ)(|β|CδN)1/(1−δ)

∫

T

|φ(x)|2 dx
2π
, (14)

which is bounded and continuous on ΩN and which satisfies the bounds 0 ≤ YN ≤
(1− δ)(|β|Cδ)

1/(1−δ)N (2−δ)/(1−δ). The perturbed Hamiltonian

GN (φ) =
1

2

∫

T

|φ′(x)|2 dx
2π

+ Yn(φ) +
β

2
V (φ) (15)

then satisfies the uniform convexity condition

〈

Hess(GN )φ

[

ψ
θ

]

,

[

ψ
θ

]

〉

≥ 1

2
(1− δ)

∞
∑

j=−∞

j2(|ξj |2 + |ηj |2). (16)

Hence H = GN − YN is a bounded perturbation of a uniformly convex potential,

so using the Holley–Stroock Lemma as in (iii) above, we deduce that µβN satisfies
LSI(α(N, β)) on ΩN , for some α(N, β) > 0. �

The case p = 4 is often referred to as the cubic nonlinear Schrödinger equation,
since |u|2u appears in the differential equation. In the next section, we investigate
the associated Dirac operator with random potential φ.

3. Concentration for the spectral data of Dirac’s equation

Let φ = Q+iP for P,Q ∈ L2(T,R) and consider Dirac’s equation (D−λ/2)Ψλ = 0,
or in matrix form

(

[

0 1
−1 0

]

∂

∂x
−
[

P −Q
−Q −P

]

− λ

2

[

1 0
0 1

]

)

Ψλ(x) = 0, (17)

for 2× 2 matrices with initial condition

Ψλ(0) =

[

1 0
0 1

]

.
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Let the characteristic function be ∆φ(λ) = traceΨλ(2π), and introduce the zeros
λj of ∆(λ)2− 4 = 0 and the zeros λ′j of ∆

′(λ) = 0. The spectral data consist of the

λj and λ
′
j for φ(x) and the corresponding quantities for the translation φ(x+t). The

spectral data partially, but not completely, determines φ. Moser describes the effect
on the spectrum of translating the potential in terms of C. Neumann’s problem
regarding the motion of a particle on a sphere subject to a quadratic potential [12];
in our case, the sphere has infinite dimension. In the classical context of smooth
φ, the spectral data satisfy special estimates regarding the position of the λj .
However, for typical φ in the support of the Gibbs measure, φ is not differentiable,
and the classical results are inapplicable. Nevertheless, McKean and Vaninsky [11]
developed a spectral theory for φ ∈ L2, which integrates NLSE(4, β) in terms of
infinitely many action and angle variables, and consider the invariant measure in
the defocussing case where β > 0.
In this section we introduce statistics which describe the spectral data for ran-

dom φ. The statistics define Lipschitz functions on (ΩN , µ
β
N ), and hence by the

concentration of measure phenomenon are tightly concentrated about their mean
values.
For b > 0, let Sb be the horizontal strip Sb = {z ∈ C : | Im z| ≤ b}, and introduce

the real Banach space, for the supremum norm,

RH∞(Sb) = {g : Sb → C : g is holomorphic, g(z̄) = g(z) and sup
z∈Sb

|g(z)| <∞}.

(18)

Lemma 3.1: For 0 ≤ k < ∞ and all N < ∞, the mapping φ 7→ (∆
(j)
φ (0))kj=0 is

a Lipschitz function from ΩN to `2. The function φ 7→ ∆φ(λ) is continuous from
the norm topology to the topology of uniform convergence on compact sets.

Proof : For all λ ∈ C such that |λ| ≤M , we solve the integral equation

Ψλ(x) = exp
(λx

2

[

0 −1
1 0

]

)

+

∫ x

0
exp

(λ(x− s)

2

[

0 −1
1 0

]

)

[

Q(s) P (s)
P (s) −Q(s)

]

Ψλ(s) ds

(19)
where the norm of the exponential matrix is uniformly bounded for 0 ≤ x ≤ 2π
and all λ ∈ Sb. Indeed, for all b > 0, the functions λ 7→ eixλ with x ∈ [0, 2π] are
uniformly bounded on Sb. First we let 0 < δ < 1/2(N +M + 1) and apply the
contraction mapping principle to the right-hand side, as a function of Ψλ ∈ L2[0, δ];
then we use Ψλ(δ) as the initial value for the corresponding integral equation on
[δ, 2δ] after 2π/δ steps, we obtain a solution for all x ∈ [0, 2π].
By Morera’s theorem, λ 7→ Ψλ(x) is analytic on C, and by the Cauchy–Schwarz

inequality we have a bound

‖Ψλ(x)‖2 ≤ 2e2πb + 4e2πb
∫ x

0
|φ(s)|2 ds

∫ x

0
‖Ψλ(s)‖2 ds, (20)

where
∫ x
0 |φ(s)|2 ds ≤ N for all φ ∈ ΩN ; similar bounds hold for the λ derivatives.

Hence by Gronwall’s inequality, the maps φ 7→ (d/dλ)jΨλ(x) are Lipschitz for
j = 0, . . . , k, hence φ 7→ ∆(j)(λ) is Lipschitz. Hence we can introduce αj > 0 such

that φ 7→ (αj∆
(j)
φ (0)) is Lipschitz from ΩN to `2. By Vitali’s convergence theorem,

we deduce that φ 7→ ∆φ(λ) is continuous for the topology of uniform convergence
on compact sets. �

Definition 3.2: Let D be the Dirac operator in L2(T;C2), so that D is self-
adjoint with eigenvalues λj . Then we define Λ : RH∞(Sb) → R to be the bounded
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linear functional on the space of test functions given by

Λ(g) =

M
∑

j=−M

g(λj) (g ∈ RH∞(Sb)), (21)

which is associated with D via (λj)
M
j=−M . Recalling that D depends upon φ, we

have a random variable φ 7→ Λφ(g) on (ΩN , µ
β
N ), called the linear statistic.

In statistical mechanics, the term additive observable [14] is used for linear statis-
tic. We pause to observe that, if (1+z2)g(z) ∈ RH∞(Sb), then the Fourier transform
ĝ(t) is of exponential decay as t→ ±∞, so we can write

trace g(D) = trace

∫ ∞

−∞
eitDĝ(t)

dt

2π
(22)

in the style of the Poisson summation formula, and thus obtain the limit of (21)
as M → ∞. Thus the linear statistic is a generalized trace formula.

Proposition 3.3: For all M < ∞ there exists NM > 0 such that for all g ∈
RH∞(Sb) there exists ηg > 0 such that:

(i) the linear statistic Λφ(g) =

M
∑

j=−M

g(λ′j), where ∆′
φ(λ

′
j) = 0, satisfies

∫

ΩNM

exp
(

tΛφ(g)− t

∫

Λ(g)
dµβN
Z

) µβN (dφ)

Z
≤ exp(ηgt

2) (t ∈ R); (23)

(ii) a similar result holds for the principal series of eigenvalues given by
∆φ(λ2j) = 0,

(iii) and likewise for the complementary series of eigenvalues given by
∆φ(λ2j−1) = 0.

Proof : By 1.2(iv), for all NM > 0, the measure µβ on ΩNM
satisfies LSI(α(NM ))

for some α(NM ) > 0. Hence by section 9.2 of [15], any K-Lipschitz function
Φ : ΩNM

→ R such that |Φ(φ) − Φ(ψ)| ≤ K‖φ − ψ‖L2 for all ψ, ψ ∈ ΩNM
and

∫

ΩNM

Φ(φ)µβN (dφ)/Z = 0 satisfies the concentration inequality

∫

ΩNM

exp(tΦ(φ))
µβNM

(dφ)

Z
≤ exp(K2t2/α(NM )) (t ∈ R).

So we need to check that the restricted linear statistics give us Lipschitz functionals.
Consider first the case of φ = 0. Let 0 < rj < min{b, 1/4}, and let C(λ′j,0; rj)

be the circles with radii rj that are centred at the zeros of ∆′
0, let C =

⊕M
j=−MC(λ

′
j,0, rj) be a finite chain of circles. By Lemma 3.1, there exists NM > 0

such that |∆′
φ(λ)−∆′

0(λ)| < (1/2)|∆′
0(λ)| for all λ on C; Now ∆′

0(λ) = 0 has only

simple zeros, and likewise for ∆′
φ by Rouché’s theorem; hence by the calculus of

residues the restricted linear statistic associated with φ satisfies

M
∑

j=−M

g(λ′j) =
1

2πi

∫

C
g(λ)

∆′′
φ(λ)

∆′
φ(λ)

dλ. (24)
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Hence by Lemma 3.1, the map φ 7→
∑M

j=−M g(λ′j) is Lipschitz in a neighbourhood
of φ = 0.
The proofs of (iii) and (iii) are similar. �

To clarify the connection between the spectral data of Dirac’s equation and the
NLSE we consider

0 =
(

[

0 1
−1 0

]

∂

∂t
−
[

Q′ − (β/2)(P 2 +Q2) P ′

P ′ −Q′ − (β/2)(P 2 +Q2)

]

− λ

[

−P Q
Q P

]

+
λ2

2

)

Ψλ(x, t) (25)

where P ′ denotes ∂P
∂x . Its [11] observed that, when φ satisfies NLSE(4, β), the pair

of equations (17) and (25) are compatible.

4. Concentration of the spectral data for Hill’s equation

Suppose that q ∈ L2(T;R) is π-periodic, and note that Dirac’s equation (17) re-
duces with P = (1 + q)/2 and Q = i(1− q)/2, to Hill’s equation in the form

−f ′′ + qf = λf. (26)

The periodic spectrum of Hill’s equation consists of those λ such that a non-trivial
periodic solution exists for (26), and it is known that the corresponding eigenvalues
are λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . , namely the zeros of ∆(λ)2 − 4 = 0. This data
partially, but not completely, determines q; see [10].
The intervals (λ2j−1, λ2j) are known as the spectral gaps, or intervals of in-

stability, and Erdelyi showed as in (9.55) of [5] that the sequence of gap lengths
(λ2j−λ2j−1)

∞
j=1 ∈ `2; this estimate cannot be much improved for typical q ∈ L2. We

now consider the midpoints (λ2n−1 + λ2n)/2 of these gaps, and form the sequence

tn =
√

(λ2n−1 + λ2n)/2 (n = 1, 2, . . . );

t0 = 0;

tn = −
√

(λ−(2n+1) + λ−2n)/2 (n = −1,−2, . . . ). (27)

The space of potentials that have a given periodic spectrum can be parameterized
by the real torus T∞, which arises from a spectral curve [10]. The KdV equation
gives rise to an evolution which preserves the periodic spectrum of Hill’s equation.
The Hamiltonian

H(q) =
1

2

∫

T

(q′(x))2
dx

2π
− β

6

∫

T

q(x)3
dx

2π
(28)

has canonical equations of motion which give the periodic KdV equation ∂u
∂t +

∂3u
∂x3 + βu∂u

∂x = 0 and as above, we take the phase space to be ΩN = {q ∈ L2(T;R) :
∫

T
q(x)2/2π ≤ N}. Bourgain [5] introduced a Gibbs measure νβN on ΩN , and showed

that the Cauchy problem is well posed on the support of νβN . In this section, we
consider the periodic spectral data for u in the support of the Gibbs measure. The
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definition of νβN is analogous to the construction of µβN in the introduction, and is
presented in more detail in [6] and [2].
For b > 0, we recall the Paley–Wiener space PW(b) of entire functions g of

exponential type such that g ∈ L2(R;C) and

lim sup
y→∓∞

log |g(iy)|
|y| ≤ b, (29)

so that PW(b) is a complex Hilbert space for the usual inner product on L2(R;C),
with a real linear subspace RPW(b) = {g ∈ PW(b) : ḡ(z) = g(z̄) ∀z ∈ C}.

Proposition 4.1:

(i) Suppose that
∫

T
q(x)dx/2π = 0 and

∫

T
|q(x)|dx/2π < 1/2. Then there exist

constants A,B > 0 such that

A‖g‖2L2 ≤
∞
∑

n=−∞

|g(tn)|2 ≤ B‖g‖2L2 (g ∈ PW(2)), (30)

and
∑∞

j=−∞(g(tj)− g(j)) is absolutely convergent for all g ∈ RPW(2).

(ii) There exists N > 0 such that, for all g ∈ RPW(2), the linear statistics

Λq(g) =
∑M

n=−M g(tn) satisfy the concentration of measure condition as in

(23) with respect to Gibbs measure νβN on ΩN .

Proof : (i) To recover a function in PW(2) from its values at a sequence of equally
spaced real points, the optimal sampling rate is the Nyquist rate π/2. By sampling
more frequently, we can accommodate the irregularity of the points (tn). From
Borg’s estimates, one can show that the sequence satisfies |tn − n| < 1/4 for all
integers n; hence, the sequence (tn) is uniformly discrete and satisfies the sampling
conditions tn → ±∞ as n→ ±∞, tn+1− tn < 3/2 and tn− tm > 1/2 for all n > m.
Then one can invoke the sampling theorem in Corollary 7.3.7 of [13] which gives
the stated result (30).
Each g ∈ RPW(2) is band limited, in the sense that the Fourier transform is

supported on [−2, 2], and likewise g′ is band limited. By the mean value theorem,
for each j, there exists t′j between j and tj such that g(tj)−g(j) = g′(t′j)(tj−j), and
the sequence (t′j) is likewise uniformly discrete and sampling. Since g′ ∈ RPW(2),
we can write

∞
∑

j=−∞;j 6=0

|g(tj)− g(j)| ≤
(

∞
∑

j=−∞;j 6=0

|g′(t′j)|2
)1/2(

∞
∑

j=−∞;j 6=0

(t2j − j2)2

(tj + j)2

)1/2

≤ 2
√
B‖g‖L2

(

∞
∑

j=−∞;j 6=0

C2

j2

)1/2
(31)

since by (9.55) of [5], there exists C such that |t2j − j2| ≤ C for all j.
(ii) Let ∆ be the characteristic function of Hill’s equation, which is defined as for

Dirac’s equation, and hence is entire. The periodic spectrum is given by the zeros
of ∆(λ)2 − 4 = 0, so for each g ∈ RPW(2) we can use Cauchy’s integral formula

t22n =

∫

C(4n2;1/4)

λ∆′(λ)

∆(λ)− 2

dλ

4πi
(32)
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to express the functionals from the principal series, and a corresponding formula for
the t22n−1 from the complementary series. Each functional φ 7→ ∆φ(λ) is Lipschitz,
uniformly on the circle of integration, as in Lemma 3.1, and hence φ 7→ g(tj) is
also Lipschitz for each j and g ∈ RPW(2). In Corollary 2 of [2], we proved that
νN satisfies a logarithmic Sobolev inequality, and hence a concentration of measure
inequality for real Lipschitz functions on ΩN for N > 0 suitably small. �

The spectral curve of Hill’s equation is the transcendental curve

Eφ = {(w, z) ∈ C
2 : w2 = 4−∆φ(z)

2} (33)

with branch points at the λj . In our case the branch points are random, although
they remain close to their mean values with high probability, as shown by the linear
statistics in 4.1. To interpret this geometrically, we consider the linear isomorphism
between the spaces

{

h ∈ L2([−b, b];R) : h(t) = h(−t) ∀t ∈ [−b, b];
∫ b

−b
h(t) dt = 0

}

(34)

and

{

g ∈ RPW(b) : g(z) = g(−z) ∀z ∈ C; x2g(x) ∈ L2(R)
}

(35)

given by the Fourier transform g(z) =
∫ b
−b

1−cos zt
z2 h(t)dt. Take such a g with b = 2;

then f(z) = g(
√
z/2) is an entire function of order 1/2 and type 1, hence belongs

to the space I3/2 as in [10]. McKean and Trubowitz consider complex sequences
(xj) such that

∑∞
j=1 xjf(λ2j) converges, and interpret such an expression in terms

of the Jacobi map on Eφ into the infinite real torus T∞.
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