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Abstract—This paper proposes a convolution particle filtering
approach for extended object tracking. Convolution particle
filters (CPFs) are likelihood free filters. They are based on convo-
lution kernel probability density representation. They use kernels
to approximate the likelihood of the observations and represent
the likelihood when it is analytically untractable or when the
observation noise it too small. Hence, the CPFs represent a
sub-family of particle filters with improved efficiency in state
estimation of nonlinear dynamic systems. A CPF is designed and
implemented for track maintenance of an object with an elliptical
shape. The object kinematics and its extent are estimated in the

presence of dense clutter. This nonparametric filter is validated
with a Poisson model for the measurements, originating from
the target and clutter. Simulation examples illustrate the filter
performance. It is shown that the CPF yields correct estimates of
the joint probability density function of the state variables and
unknown static parameters. The results obtained for the extended
objects show that the CPFs provides accurate on-line tracking,
with satisfactory estimation of the target shape and volume.

I. INTRODUCTION

Extended objects are characterised by a relatively large and

fluctuating number of sensor reports, which originate from

varying scattering centers of the object surface. The aim is

to infer both the location and size of the extended object [17]

based on the sequence of measurement data and available prior

information [21].

Since the data often contains signals reflected from the

environment (clutter) and not only from the extended target,

the data association problem is much more complex than that

of a conventional point target tracking. One possible solution

to this problem is suggested by Gilholm and Salmond [14],

[15]. They proposed a Bayesian filter for tracking an ex-

tended object based on two axiomatic assumptions: (1) the

number of received target and clutter measurements at each

time step are Poisson distributed (which means that several

measurements can originate from the target), and (2) the target

extent is modelled by a spatial probability distribution. The

Poisson assumption avoids the evaluation of data association

hypotheses, giving a wealth of Monte Carlo-based (particle)

filter algorithms. The measurement likelihood in this type

of filters is calculated as a convolution of a known object-

dependent spatial distribution of measurement sources with the

sensor error distribution. The likelihood computation requires

integration and complicates the filter application in a number

of practical situations.

The second problem of extended object tracking is related

to the estimation of extent parameters. The development of

efficient methods for simultaneous dealing with fixed model

parameters and dynamic state variables is still a very challeng-

ing task. The unknown size and shape parameters are usually

incorporated into the estimated state vector with the addition of

an artificial noise. The augmented state approach (containing

both the states and parameters) degrades the performance of

conventional particle filters. Furthermore, the discrete nature

of distribution approximations in particle filters can lead to

filter divergence in a long time period [16].

The convolution particle filters (CPFs) rely on convolution

kernel density estimation and regularisation of both state and

observation variable distributions [26], [8], [9], [27]. They

form a class of particle filters with valuable advantages:

simultaneous estimation of state variables and unknown static

parameters and continuous approximation of the correspond-

ing probability density functions (PDF). Being likelihood free

filters makes them attractive for solving complex problems

where the likelihood is not available in an analytical form.

The conditional PDF of static parameters is estimated without

adding of artificial noise. The kernel and artificial noise tech-

niques for fixed parameters evaluation are compared in [20],

where the superiority of the kernel smoothing of parameters

is demonstrated.

The application of CPF to extended target tracking avoids

the relatively intractable calculation of the observation like-

lihood function and allows correct estimation of the target

extent. The present paper implements one of the most effi-

cient variants of the convolution filter, namely the resampled

convolution filter [28].

The smoothing properties of kernel density approximation

are applied to the task of clutter spatial intensity estimation in

multiple target tracking applications in [10]. The convolution

kernel approximation of the probability hypothesis density



(PHD) of the PHD filter is successfully employed for tracking

of multiple targets in [22], [29]. In [2] we have implemented a

CPF for tracking of a stick (rod) type of object with a uniform

spatial probability distribution. The encouraging results gave

us the basis for the present research.

In addition to the lack of measurements related to the object

size, the main difficulty of extent estimation is the weak

relationship between kinematic and shape parameters. One

of the most recent, successful and widely used approach to

extended object tracking [18], [13] models the object extent

as a symmetric positive definite (SPD) random matrix. The

ellipsoidal extension is represented by an inverse Wishart

distribution. Shape parameters are estimated jointly with the

state dynamics in the framework of Kalman filtering. The

behaviour of group objects, including the group splitting and

merging can be modeled by the SPD random matrix. Other

approaches are described in [5], [4].

The aim of the present study is to design the CPF frame-

work for tracking extended objects with elliptical and circular

shapes. The object extent is modeled by a SPD non-random

(constant) matrix. The major and minor semi-axes of the

ellipse are treated as static parameters to be estimated by

the CPF. The ellipse orientation coincides with the estimated

object heading. The objective is to explore the capabilities of

the convolution filters to achieve a high estimation accuracy

of both state and extent parameters. The measurement sources

and clutter are uniformly distributed over the whole object sur-

face. The CPF is studied over scenarios of a nonmaneuvering

and maneuvering target.

The remaining part of the paper is organised as follows.

Section II formulates the problem. Section III summarises

the Bayesian sequential Monte Carlo (SMC) framework. The

theoretical background of the PF and CPF is described. Section

IV yields in details the CPF realisation. Results for object

tracking with circular and elliptical shapes are shown in

Section V. The concluding remarks are given in Section VI.

II. PROBLEM FORMULATION

The extended object dynamics and sensor equations are:

Xk = f(Xk−1,ηk), (1)

zk = h(xk,wk), (2)

where Xk =
(

xT
k , θ

T
)T

∈ R
nx+nθ , is the unknown object

state vector at time k, k ≥ 1, with T being the transpose

operation. The vector Xk consists of the object kinematic state

vector xk ∈ R
nx and the object extent is described by the

parameter vector θk ∈ R
nθ ; f(.) and h(.) are respectively

the object and the measurement transition PDFs, zk ∈ R
nz

is the measurement vector and ηk and wk are the process

and measurement noises, respectively. Suppose that the initial

probability density functions of p0(x) and p0(θ) are given.

Assume that at each time step k a set of sensor measurements

Zk = {z1, . . . , zmk
} ∈ R

nz×mk becomes available. Each of

these mk measurements originates either from the target or

from random clutter. The goal is to estimate, in real time,

the posterior state PDF p(Xk|Z1:k), given a sequence of

measurement sets Z1:k = {Z1, . . . ,Zk}, collected up to

time k.

III. BAYESIAN SEQUENTIAL ESTIMATION

The Bayesian recursive filter evaluates the posterior density

by first predicting the object state

p(Xk|Z1:k−1) =

∫

p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1

(3)

and then updating the prediction with the information from

the current set of measurements:

p(Xk|Z1:k) ∝ p(Zk|Xk)p(Xk|Z1:k−1). (4)

The system dynamics PDF p(Xk|Xk−1) is assumed to be

available from the model (1). The likelihood p(Zk|Xk) is

specified based on (2).

A. Particle filtering

Particle filters approximate the system state PDF by a

discrete set of N samples/particles with corresponding weights

{X
(i)
k , w

(i)
k , i = 1, . . . , N}. The particle set is propagated

and updated by the filter according to the relationships (3)-(4).

The empirical distribution given by the particles and weights

is used to approximate the state posterior pdf as

p(Xk|Z1:k) ≈

N
∑

i=1

w
(i)
k δ(Xk −X

(i)
k ), (5)

where δ(.) is the Dirac delta function, and the weights are

normalised such that
∑

i w
(i)
k = 1.

B. Convolution particle filtering

The approach, proposed in [26], [8], [9] is based on the

convolution kernel density estimation and regularisation of

both state and observation variable distributions. The CPF

relies on the following representation of the conditional state

density [26]:

p(Xk|Z1:k) =
p(Xk,Z1:k)

∫

p(Xk,Z1:k)dXk
. (6)

Suppose, that we can sample from the state and measurement

probability distribution functions, f(.|Xk−1) and h(.|Xk),
respectively. Then we can obtain a sample from the joint

distribution {X
(i)
k ,Z

(i)
k , i = 1, . . . , N} at time step k by k

successive simulations, starting from the sample of the initial

distribution p0(X). Similarly to the approximation (5), we can

get the following empirical estimate of the joint density

p(Xk,Z1:k) ≈
1

N

N
∑

i=1

δ(Xk −X
(i)
k ,Z1:k −Z

(i)
1:k). (7)

The kernel estimate pNk (Xk,Z1:k) of the true density

p(Xk,Z1:k) is obtained by convolution of the empirical

estimate (7) with an appropriate kernel



pNk (Xk,Z1:k) =
1

N

N
∑

i=1

KX
h (Xk −X

(i)
k )KZ̄

h (Z1:k −Z
(i)
1:k),

(8)

where KZ̄
h (Z1:k − Z

(i)
1:k) =

∏k
j=1 K

Z
h (Zj − Z

(i)
j ) and KX

h

and KZ
h are the Parzen-Rosenblatt kernels of appropriate

dimensions. According to equation (6), the estimate of the

posterior conditional state density has the following form:

pNk (Xk|Z1:k) =

∑N
i=1 K

X
h (Xk −X

(i)
k )KZ̄

h (Z1:k −Z
(i)
1:k)

∑N
i=1 K

Z̄
h (Z1:k −Z

(i)
1:k)

.

(9)

The convergence properties of the posterior density estimate

to the optimal filter are investigated in [26], [8], [9], [28].

Since the state vector comprises both the kinematic state and

the extent, equation (9) can be written in the form:

pNk (xk, θk|Z1:k) =

=

∑N
i=1 K

Z
h (Zk − z

(i)
k )Kθ

h(θk − θ
(i)
k )Kx

h(xk − x
(i)
k )

∑N
i=1 K

Z
h (Zk − z

(i)
k )

, (10)

where Kx
h(xk − x

(i)
k ) and Kθ

h(θk − θ
(i)
k ) are the kernels for

state and parameter vectors.

The main difference between the CPF and PF consists in

the way the particle weights are estimated. By simulating

according to the observation equation, a sample from the

observation distribution is obtained. The discrete observation

density is approximated with a continuous kernel density,

which is used to calculate the weights in place of the

likelihood function in the PF algorithm.

The implementation of the CPF requires a careful selection of

several design parameters: the initial density, kernels, kernel

bandwidths and number of particles. The widespread Gaussian

kernel function is used in the present implementation. The

choice of the kernel bandwidth is crucial, since it affects

the filter convergence and accuracy of the state estimates.

The theoretical considerations for the selection of kernel

parameters are comprehensively presented in [24].

The kernel bandwidths are selected as follows:

1. Choice of the bandwidth hZ for the kernel KZ
h .

An automatic bandwidth selection method designed for a

Gaussian kernel is proposed in [7]. The authors give also a

MATLAB program for the two-dimensional data, (kde.m),

with diagonal bandwidth matrix, which we employ here. The

density estimate, obtained by this procedure is shown in Fig.1.

2. Choice of bandwidths hx and hθ for the kernel KX .

The smoothing parameters are chosen according to [24], p. 87:

hx = [4/(nx + 2)]1/(nx+4)N−1/(nx+4),

hθ = σθ[4/(2nθ + 1)]1/(nθ+4)N−1/(nθ+4),

σ2
θ = n−1

θ

∑nθ

i=1 Σθ(ii),

where Σθ is the sample covariance matrix of the parameter

vector.

The resampling procedure is performed according to the

scheme, proposed in [24], (pp. 143-144). The first and second

moments of the resampled realisations are the same as those

of the original, starting sample.

A detailed description of the CPF algorithm is given in Table

1. The estimation of the kinematic states and extent parameters

is presented separately for clarity.

————————————————————————-

Table 1. The convolution particle filter for extended object

tracking

————————————————————————-

I. Initialisation:

k = 0, for i = 1, . . . , N generate particles

x̄
(i)
0 ∼ p0(x), θ̄

(i)
0 ∼ p0(θ), w

(i)
0 = 1/N , k = k + 1

II. Iterate: over steps 1) to 5) for k ≥ 1

if k = 1: Prediction: for i = 1, . . . , N

x
(i)
k ∼ f(.|x̄

(i)
0 , θ̄

(i)
0 ) - state sampling

θ
(i)
k ∼ θ̄

(i)
0 - parameter sampling

z
(i)
k ∼ h(.|x

(i)
0 , θ

(i)
0 ) - observation sampling

go to step 3)

if k > 1:

1) Resampling: for i = 1, . . . , N

(x̄
(i)
k−1, θ̄

(i)
k−1) ∼ pNk−1(xk−1, θk−1|Z1:k−1), w

(i)
k−1 = 1/N

2) Prediction: for i = 1, . . . , N

x
(i)
k ∼ f(.|x̄

(i)
k−1, θ̄

(i)
k−1) - state sampling

θ
(i)
k ∼ θ̄

(i)
k−1 - parameter sampling

z
(i)
k ∼ h(.|x

(i)
k−1, θ

(i)
k−1) - observation sampling

3) Weights updating: for i = 1, . . . , N

w
(i)
k = w

(i)
k−1

∑

zk∈Zk
KZ

h (zk − z
(i)
k ),

4) Estimating the conditional densities:

pNk (xk, θk|Z1:k) =
∑

N

i=1 w
(i)
k

Kθ

h
(θk−θ

(i)
k

)Kx

h
(xk−x

(i)
k

)
∑

N

i=1 w
(i)
k

The conditional densities of the kinematic state and extent

are derived via marginalisation of the joint density

pNk (θk|Z1:k) =
∑

N

i=1 w
(i)
k

Kθ

h
(θk−θ

(i)
k

)
∑

N

i=1 w
(i)
k

pNk (xk|Z1:k) =
∑

N

i=1 w
(i)
k

Kx

h
(xk−x

(i)
k

)
∑

N

i=1 w
(i)
k

5) Estimating the output state and parameter vectors:

x̂k =
∑N

i=1 w̄
(i)
k x

(i)
k , θ̂k =

∑N
i=1 w̄

(i)
k θ

(i)
k

where w̄
(i)
k are the normalised weights.

————————————————————————-
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Fig. 1. Sample of the measurements and kernel density approximation
of the observation distribution, obtained by MATLAB code kde.m [7]

IV. CONVOLUTION PF FOR EXTENDED OBJECT TRACKING

A. Model of the Extended Target

The extended target model describes both the dynamic

behaviour and spatial characteristics of the target. The

selected models for nonmaneuvering and maneuvering object

in 2D dimensions and its shape are described next.

Nonmaneuvering target. The temporal evolution of the target

centroid in Cartesian coordinates is given by the nearly con-

stant velocity model [3], [23]:

xk = Axk−1 + Γηk−1, (11)

where xk = (xk, ẋk, yk, ẏk)
T is a vector containing the

position coordinates xk, yk, and velocities ẋk, ẏk, of the

center of the extent;

A = diag(A1,A1), A1 =

(

1 Ts

0 1

)

,

Γ =

(

T 2
s /2 Ts 0 0
0 0 T 2

s /2 Ts

)T

,

Ts is the sampling interval and ηk = (ηx, ηy)
T
k is a discrete-

time white noise sequence with components ηx and ηy ,

corresponding to noisy “accelerations” along x and y axes,

respectively.

Maneuvering target. The object dynamics is described by a

multiple-model structure with one nonmaneuvering model (11)

and two coordinated turn (CT) motion models, which have

(nearly) constant speed V and (nearly) constant turn rates ω.

The angular rates ω are known, equal in value and opposite

in sign. The state vector xk = (xk, ẋk, yk, ẏk)
T is four-

dimensional (as in the nonmaneuvering mode). The dynamic

model with known turn rate has the following linear form [3]:

xk = B(ω)xk−1 + Γηk−1, (12)

B(ω)=









1 sinωTs/ω 0 −(1− cosωTs)/ω
0 cosωTs 0 − sinωTs

0 (1− cosωTs)/ω 1 sinωTs/ω
0 sinωTs 0 cosωTs









.

Since the nonmaneuvering model could be considered as a

coordinated turn model with a zero turn rate (ω = 0), the

temporal sequence of turn rates ωk is modeled as a Markov

chain taking values from the set ωi, i = 1, . . . ,M, (M = 3),
with known initial P0(i) , P{ω0 = i} and transition

probabilities pij , P{ωk = ωi|ωk−1 = ωj}, i, j = 1, . . . ,M .

Target extent. The physical extension of the target is repre-

sented by a SPD constant matrix, since every positive definite

matrix has a corresponding ellipsoid. An arbitrarily oriented

ellipsoid is defined by

ellipse(B) = {z̃ ∈ R
nz |z̃TB−1z̃ ≤ 1}, z̃ = (z − ẑ), (13)

where the center of the ellipsoid ẑ coincides with the predicted

object position and B is a positive definite matrix. The

eigenvalues of B are the squares of the semi-axis lengths.

The eigenvectors of B define the semi-axis directions. The

evolution model for the extent is assumed to be:

θk = θk−1, θ = (a, ℘)T , (14)

where the first component of the parameter vector (a) is the

major semi-axis of the ellipse and the second (℘ = b/a) is

the aspect ratio (the ratio between the minor b and major

semi-axis). The ellipse orientation ϕ coincides with the

estimated heading: ϕ = arctan(ẏk, ẋk).

It is assumed that the aspect ratio ℘ takes values in the set of

the following physically feasible values: ℘ ∈ [℘, ℘], where

℘ = 0.1 and ℘ = 1. In the filter implementation, the aspect

ratio particles are constrained inside the lower and higher set

limits.

The circular shape could be considered to be a special case of

elliptical shape, with equal major and minor semi-axis lengths.

Then the parameter vector contains only one component which

is the radius of the circle θ = (r).

B. Measurement Generation

The measurement set Zk = {z1, . . . , zmk
}, received from

the sensor at time k originates either from the target or

from random clutter. According to the Poisson model, the

number of target and clutter measurements is assumed to

be Poisson distributed with means λT and λC , respectively.

Clutter measurements are independent of the target, while

measurements from the target are distributed according to

the known spatial extent model [14], [15]. The model of

the spatial extent describes how measurement sources are

distributed over the target surface. The PDF of a source ξ,

given the target state vector x can be written as p(ξ|x).
In the present paper, a uniform distribution of the sources

is assumed. The clutter measurements are also distributed

uniformly in the observation space.

The problem of generating random points, uniformly dis-

tributed in a hyperellipsoid has different solutions, proposed in

the tracking literature. Here we rely on the efficient algorithm,

suggested by J. Dezert and C. Musso [11]. The MATLAB



source code, given by the authors is applied for generating

measurement sources and false alarms in an ellipsoidal vali-

dation gate. The volume of the validation gate is calculated

on the basis of object size and sensor errors.

C. Observation Model

Range and azimuth observations from a sensor, positioned

at the beginning of the Cartesian coordinate system are con-

sidered as measurements. The measurement vector is z
j
k =

(djk, β
j
k)

T , where djk is the range and βj
k is the azimuth of the

measurement j, j = 1, . . . ,mk. The measurement equation is

of the form:

z
j
k = h(ξjk) +w

j
k, (15)

where h is the nonlinear function

h(ξjk) =

(

√

ξj2x,k + ξj2y,k, tan
−1

ξjy,k

ξjx,k

)

, (16)

ξjx,k and ξjy,k denote the Cartesian coordinates of the source

point ξ. The measurement noise w
j
k is supposed to be Gaus-

sian, with a known covariance matrix R = diag(σ2
d, σ

2
β).

V. PERFORMANCE EVALUATION

Simulation results with elliptical and circular target shape

are considered to illustrate the filter performance. Root-Mean

Squared Errors (RMSEs), combined on both position coordi-

nates [3] are chosen as a measure of the algorithm accuracy.

The average estimates of extent parameters also give useful

information for the filter quality. In general, the estimates

would be biased, and graphical results give an idea of the

bias size. In the present work, a loss of track is registered, if

the absolute value of position errors exceeds a threshold of

80 [m] or the major semi-axis errors exceed a magnitude of

4 [m]. The simulation results, presented below are based on

50 Monte Carlo runs.

A. Nonmaneuvering target

The target is moving with a constant speed of v = 10 [m/s]
along a heading of −160 [deg]. The initial position coordinates

are chosen to be equal to: x0 = 700 [m], y0 = 650 [m]. The

observer is static, located at the origin of the (x; y) plane. In

the case of elliptical extension, the object semi-axis lengths

are a = 40 [m], b = 24 [m], ℘ = 0.6 for the results, shown in

the next figures. Experiments with different ellipse parameters

and varying mean number of measurement sources are also

fulfilled. In the circular extension, the object radius takes its

values in the set r ∈ {20, 30, 40, 50} [m].
The sensor parameters are similar to that of [6], [25]: the sam-

pling interval is Ts = 1 [s], the measurement error standard

deviations along range and azimuth are respectively 2 [m] and

1.0 [deg]. The initial estimate of the target state is a Gaussian

perturbation about the truth with zero mean and covariance

matrix P x
0 = diag{302m2, 1.52m2/s2, 302m2, 1.52m2/s2}

for kinematic state and P θ
0 = diag{5.02m2, 0.3} for the

extent. The standard deviation of the acceleration noise η is

540 560 580 600 620 640 660 680 700
550

600

650

700
clutter measurements

measurement sources

target measurements

true ellipse

estimated ellipse

Fig. 2. Single run: true and estimated target position and shape at
k = 10, λT = 5, (ρfa = 1.0e − 03). The validation gate is shown
by a blue ellipse

σẍ = σẍ = 1.4 [m/s2]. The mean number of measurement

sources is selected as λT = 5. Clutter measurements are

created uniformly in an elliptical validation region, centered

at the predicted object position and oriented according to the

predicted heading. The validation gate, true and estimated

elliptical shapes and two types of measurements - from target

and clutter are given in Fig.2. The major and minor semi-

axis of the validation gate are 1.5a and 3b, respectively. The

larger minor semi-axis accounts for comparable large azimuth

sensor errors. The mean number of clutter measurements per

frame is λC = ρfaV , where V is the volume of the validation

gate. The clutter density ρfa takes values among the set

ρfa ∈ {0.5e−03; 1.0e−03; 2.0e−03; 2.5e−03}. The number

of particles is N = 2000.

Results with ellipsoidal object extension. The average major

semi-axis estimate and its true value are presented in Fig. 3.

The filter easily and accurately estimates the major semi-axis

for clutter density up to ρfa = 2.0e − 03. For higher clutter

intensity (ρfa = 2.5e − 03 ) the bias in estimating the axis

length increases as it can be seen from Fig. 3, and 8% of

the realisations lead to filter divergence. The aspect ratio and

major semi-axis RMSEs are shown in Fig. 4 and Fig. 5. The

maximum major semi-axis RMSEs are in the order of 2.0 [m].
The accuracy of the kinematic state estimates depends on

the position of the object with respect to the sensor and

clutter density. Position RMSEs for the selected set of clutter

densities are shown in Fig. 6. Within the explored area of

±800 [m] around the sensor and selected ρfa, the maximum

values of position and speed RMSEs are not greater than

30 [m] and 3.0 [m/s], respectively. RMSEs increase with

the increase of clutter density. Higher levels of the clutter

(ρfa ≥ 3.0e−03) lead to larger position errors and respectively

to filter degeneracy.

The results with circular object extension are given in Figs. 7,

8 and 9. The set of radii r ∈ {20, 30, 40, 50}[m] corresponds

to different densities of measurement sources: ρT ∈ {4.0e−
03, 1.8e−03, 0.1e−03, 6.4e−04}. It is natural to expect that
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the filter performance could be better for a larger number of

target measurements. The radius RMSEs are shown in Fig. 7

for r ∈ {20, 30, 40} and clutter density ρfa = 1.0e − 03.

The radius of 50 m leads to filter divergence in more than

50% of Monte Carlo realisations. Speed and position RMSEs,

presented in Figs. 8 and 9 show that acceptable results could

be obtained with the combination of mean number of target

measurement λT = 5 and clutter density ρfa = 1.0e − 03.

Decreasing the mean number of target measurements leads to
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a loss of tracks.
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B. Maneuvering target

In the maneuvering target scenario, the object is moving

with a constant speed of 10 [m/s] and implements three

consecutive CT maneuvers with normal accelerations

an = −2, 2 and −1 [m/s2]. This set of normal accelerations

corresponds to angular rates of ω = ±0.2 [s−1] and
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ω = −0.1 [s−1]. (±ω corresponds to left and right turn,

respectively). The simulated (actual) and estimated trajectories

of the target in a single run are shown in Fig. 10. Initial
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Fig. 10. Single run. True and estimated trajectory, ρfa = 0.5e− 03

and transition mode probabilities of the underlying Markov

chain are as follows: P0(1) = 0.6, P0(2) = P0(3) = 0.2;

p11 = 0.7, p12 = 0.15, p13 = 0.15; p21 = p31 =
0.15, p22 = p33 = 0.8, p23 = p32 = 0.05. The true major

and minor semi-axes of the ellipse are selected as a = 40 and

b = 24 [m], respectively. The average aspect ratio estimate

for two different clutter densities (ρfa = 0.5e − 03 and

1.0e− 03) is presented in Fig. 11.

The position and speed RMSE, shown in Figs. 12 and 13 are

calculated by removing the realisations with loss of tracks. The

maximum RMS errors of the major semiaxis are not greater

than 2 [m]. The obtained percentage of lost tracks is presented

in Table 2. The acceptable tracking results are achieved for

clutter densities up to ρfa = 0.5e − 03. The percentage of

the realisations with filter divergence rapidly grew for larger

clutter levels.
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Table 2. Percentage of Lost Tracks

λT = 5
ρfa = 0.5e− 03 ρfa = 1.0e− 03 ρfa = 1.5e− 03

4.0 16.0 50.0

The average computational time for one iteration of

the filter with 2000 particles is approximately 0.39[s]
(ρfa = 1.0e− 03) using a 4.7 GHz Intel CORE’I7 processor



and with MATLAB implementation. The CPF execution time

is comparable with that of the conventional PF.

An important advantage of the CP filter is that an analytical

form of the output state and parameter densities can be ob-

tained, together with their point estimates. The filter disadvan-

tage is related with the choice of the design parameters. The

selection of the bandwidth is of primary importance in the CPF

implementation. For the case of two dimensional measurement

vector we implemented a MATLAB procedure, published in

the literature. If the dimension of the measurement vector

increases, the bandwidth selection could be a more serious

problem.

VI. CONCLUSIONS

A convolution particle filter framework for tracking ex-

tended objects with elliptical shape is proposed in this paper.

The physical extension is modeled by a symmetric positive

definite non-random matrix, which defines an elliptical ob-

ject shape. The object size parameters and its volume are

estimated on-line, simultaneously with target dynamics. The

filter performance is validated over the Poisson model of the

measurements, originating from the target and clutter. The

measurement sources and clutter are uniformly distributed over

the whole object surface.

Simulation examples with a set of different clutter densities

illustrate the filter performance. The tracking algorithm pro-

vides a good estimation accuracy for clutter intensities up to

ρfa = 2.5e−03 and ρfa = 0.5e−03 for nonmaneuvering and

maneuvering targets, respectively. The higher clutter densities

lead to increased estimation errors and filter divergence.

The current work is focused on estimating also the clutter

parameters and other approaches such as box particle

filtering. The important practical case of measurement

sources, uniformly located over the arc is also considered.
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