
Annals of Operations Research manuscript No.
(will be inserted by the editor)

Resource Capacity Allocation to Stochastic Dynamic
Competitors: Knapsack Problem for Perishable Items and
Index-Knapsack Heuristic

Peter Jacko

Received: September 16, 2011 / Revised: February 27, 2012 / Revised: December 18, 2012 / Ac-
cepted: date

Abstract In this paper we propose an approach for solving problems of optimal
resource capacity allocation to a collection of stochastic dynamic competitors. In
particular, we introduce the knapsack problem for perishable items, which concerns
the optimal dynamic allocation of a limited knapsack to a collection of perishable or
non-perishable items. We formulate the problem in the framework of Markov deci-
sion processes, we relax and decompose it, and we design a novel index-knapsack
heuristic which generalizes the index rule and it is optimal in some specific in-
stances. Such a heuristic bridges the gap between static/deterministic optimiza-
tion and dynamic/stochastic optimization by stressing the connection between the
classic knapsack problem and dynamic resource allocation. The performance of the
proposed heuristic is evaluated in a systematic computational study, showing an
exceptional near-optimality and a significant superiority over the index rule and
over the benchmark earlier-deadline-first policy. Finally we extend our results to
several related revenue management problems.
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1 Introduction

The knapsack problem (Dantzig, 1957) is the fundamental and well-studied opera-
tions research model providing insights into the solution of more complex discrete
resource capacity allocation problems. Recently, there has been a surge in the need
of addressing resource capacity allocation problems in stochastic and dynamic en-
vironment in different fields. Remarkable examples include

– workforce management (allocation of number of employees to teams, e.g., for
surgeries, machine repairs, client-based consultancy) (Glazebrook et al, 2005)

– dynamic allocation of the number of or the power used in transmission chan-
nels/frequences in wireless network base stations to competing users (Gesbert
et al, 2007; Jacko, 2011b)

– resource allocation for multi-queue systems with a shared server pool (Yang
et al, 2011; Dance and Gaivoronski, 2012; Glazebrook et al, 2011)

– dynamic allocation of a money budget to research and development projects
(Loch and Kavadias, 2002; Qu and Gittins, 2011)

– dynamic allocation of machines to production of seasonal goods (Caro and Gal-
lien, 2007)

– scheduling of (i.e., allocation of processing time to) stochastic simulations of
design alternatives (Chick and Gans, 2009)

– service partitioning (allocation of the number of virtual machines) in data cen-
ters to competing processing requests (Speitkamp and Bichler, 2010; Anselmi
and Verloop, 2011)

– shelf-space allocation in supermarkets (this paper).

In all of these problems, the inherent combinatorial considerations are further
escalated due to the additional trade-off between exploration and exploitation. More-
over, obtaining an optimal solution to stochastic dynamic problems is often in-
tractable due to the curse of dimensionality. This paper proposes a mathematical ap-
proach to a particular resource capacity allocation problem, where several stochas-
tically and dynamically evolving competitors demand part of the capacity. A prag-
matic aim is to design a well-grounded close-to-optimal dynamic solution that is
generalizable to other similar or more complex problems, and that is optimal in
some specific instances of the problem. This is in a direct opposition to proposing
ad-hoc solutions for a given problem in hand, to deriving an optimal static solution,
to obtaining dynamic solutions by approximate techniques (e.g., solving optimally a
problem with truncated/reduced state space or time horizon, employing approx-
imate dynamic programming, stochastic programming, simulation, etc.), or to ob-
taining dynamic solutions by numerical approaches (e.g., metaheuristics) without
performance guarantees.

For the sake of concreteness, the model of this paper is presented in the set-
ting motivated by optimal allocation of promotion space in a supermarket, where
the manager has a possibility to select a number of products in order to maximize
the expected revenue. We focus on perishable products with individual deadlines
(non-perishable products are considered as a limiting case), therefore we refer to
it as the knapsack problem for perishable items (KPPI). Perishability is a common phe-
nomenon also in other fields, for instance due to contracts involving a Quality-of-
Service clause.
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A Markov decision process (MDP) model of the problem is formulated in Sec-
tion 2. This is a constrained MDP with special structure, which belongs to the family
of weakly-coupled MDPs (Meuleau et al, 1998). In Section 3 we discuss the relation-
ship of KPPI with the knapsack problem and with the multi-armed restless bandit
problem, which will be insightful for identifying the computational complexity and
for indicating a natural direction to approach the problem. In Section 4 we present a
relaxation and decomposition of the problem into single-item subproblems. While
the Lagrangian approach is well-known and applied often in similar problems, we
take a step further, in order to develop a solution based on so-called index values.
Section 5 is dedicated to the study of indexability and derivation of closed-form in-
dex values for the single-item subproblem. The index-knapsack heuristic is devel-
oped in Section 6, where we identify cases in which it recovers optimal solutions,
and discuss the intuition behind it. Performance of the index-knapsack heuristic
is then studied in computational experiments presented in Section 7, showing an
excellent nearly-optimal behavior and further outperforming conventional solu-
tions. Application of our results to several revenue management problems, includ-
ing variants of the dynamic product assortment problem, dynamic product pricing
problem, and a loyalty card problem, is presented in Appendix A.

2 Knapsack Problem for Perishable Items

In KPPI, we assume that demand can be increased by dynamically allocating prod-
ucts to a limited promotion space, where they are more likely to attract customers.
An example of the practical interest of such a tool is provided by the cooperation of
Capgemini, Intel, Cisco, and Microsoft on a decision support system called Extended
Retail Solutions which includes Dynamic Promotion Management as one of three
key solution areas (cf. Capgemini et al, 2005). In their setting, the limited promotion
space is given by the space and time available on the customer’s loyalty card, which
is used to inform and influence the particular customer by personalized messages.
More conventional examples of such a promotion space include shelves close to the
cash register, end-aisle displays, promotion kiosks, or a depot used for selling via
the Internet.

A perishable item is a product unit with an associated lifetime ending at a deadline.
At the deadline (e.g., the “best before” date) the product can no longer be sold, and
only a salvage value is received. If an item is sold before the deadline, it yields a
revenue (profit margin). The probability of selling depends only on whether the item
is being promoted or not. The concern of KPPI is to dynamically select a subset of
items to be included in a promotion space (knapsack), in order to maximize the
expected total discounted sum of revenues and salvage values.

We formulate the model in discrete time as a Markov decision process. We as-
sume that the decisions are made in some regular time moments (say, twice a day),
and the problem parameters are adjusted to such time periods. Consider the time
slotted into time epochs s ∈ S := {0, 1, 2, . . . } at which decisions can be made. Time
epoch s corresponds to the beginning of time period s. Revenues are discounted
over time with factor 0 ≤ β ≤ 1.

In general, the KPPI defines a stochastic and dynamic variant of the knapsack
problem with multiple units of items. As time evolves, items get sold accordingly to
a stochastic demand or they perish deterministically at their deadlines. For trans-
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parency, we assume in this paper that the demand is time-homogeneous (see El-
maghraby and Keskinocak (2003) for a justification of such an assumption) and we
consider a single unit of each product. This assumption is, nevertheless, not crucial
for our derivation of the solution.

Consider a retailer that has I perishable items to sell, labeled by i ∈ I.1 Suppose
that the promotion space (knapsack) is available with capacity of W ≥ 1 physical
space units. We assume that this promotion space is fully regenerative, i.e., its full
capacity is repetitively available at every time epoch. The capacity not used at a
given epoch is lost, i.e., the promotion space is nonmarketable.

2.1 MDP Model of Perishable Item

In this subsection we focus on a single item and formalize it within the MDP frame-
work.

Item i can only be sold during its lifetime, which consists of time periods 0, 1, . . . , Ti−
1, where 1 ≤ Ti ≤ ∞ is the item’s deadline. The item is on sale until the end of pe-
riod Ti− 1, when it is removed as perished and cannot be sold anymore. If the item
is sold, it yields a revenue (profit margin) Ri > 0 at that period. Otherwise, a sal-
vage value is obtained in period Ti, whose expected value is denoted by αiRi for
some (possibly negative) coefficient αi ≤ 1.

The retailer can change the probability that item i is sold during a period, from
1 − qi to 1 − pi (with 0 < pi, qi ≤ 1), by placing it in a promotion space (knapsack).
Formally,

pi := P{the item i when promoted is not sold in a period},
qi := P{the item i when not promoted is not sold in a period}.

We assume that such Bernoulli demand processes are independent across items.
The difference qi − pi will be called promotion power, as it captures the increase in
the probability of being sold caused by promoting. Item i occupies Wi ≤ W units,
and for non-triviality we assume that

P
iWi > W .

To formulate the perishable item as an MDP, we define its elements as the tuple`
Xi, (W a

i )a∈A , (R
a
i )a∈A , (P

a
i )a∈A

´
,

where

– The state space is Xi := Ti ∪ {0}, where state t ∈ Ti := {1, 2, . . . , Ti} means
that there are t remaining periods to the deadline and the item has not been sold , while
state 0 is an absorbing state representing a perished and/or sold item;

– The action space for states in Ti is A := {0, 1}: we can either promote (action 1)
or not promote (action 0) during the current period; state 0 is uncontrollable: only
not promoting is available;

1 We adopt the following notational conventions to ease the reading: every set is typeset in calli-
graphic font (e.g., T , I), the corresponding uppercase character denotes the number of its elements
(T, I), and the corresponding lowercase character is used for an element (t, i). Vectors (y, z) as well
as matrices (P ) are in boldface.
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– The expected one-period space occupation (or work)W a
i,t in state t under action

a is as follows. For any state t ∈ Ti,

W 1
i,t := Wi, W 0

i,t := 0, W 0
i,0 := 0;

– The expected one-period revenue Rai,t in state t under action a is as follows. For
any state t ∈ Ti \ {1},

R1
i,t := Ri(1− pi), R1

i,1 := Ri(1− pi) + βαiRipi,

R0
i,t := Ri(1− qi), R0

i,1 := Ri(1− qi) + βαiRiqi, R0
i,0 := 0;

– The one-period transition probability matrix P 1|Ti

i under promoting is2

P
1|Ti

i =

0BBBBBBBB@

0 1 · · · Ti − 1 Ti

0 1 0 0 0 0

1 1 0 0 0 0

2 1− pi pi 0 0 0

...
... 0

. . . 0 0

Ti 1− pi 0 0 pi 0

1CCCCCCCCA
,

where P 1|Ti

i,t,s is the probability of moving from state t ∈ Xi to state s ∈ Xi in
one period if the item i is promoted at all states in Ti. The one-period transition
probability matrix P 1|∅

i under not promoting is obtained analogously.

The dynamics of item i is thus captured by the state process Xi(·) and the action
process ai(·), which correspond to state Xi(s) ∈ Xi and action ai(s) ∈ A, respec-
tively, at all time epochs s ∈ S, with the initial state Xi(0) = Ti. Clearly, the state
Xi(s) at time epoch s is either Xi(s) = Ti − s (i.e., the number of remaining peri-
ods to the deadline) if s < Ti and the item has not yet been sold, or Xi(s) = 0 if
either the item is perished (s ≥ Ti) or it has been sold. As a result of deciding action
ai(s) in state Xi(s) at time epoch s, item i consumes the allocated capacity, earns
the reward, and evolves its state for the time epoch s+ 1.

2.2 MDP Model of Empty Space

It will be advantageous to consider that the knapsack can always be completely
filled with available items. Notice that an empty physical space unit can be seen as
an item which is already perished, but always available for promotion. We model it
as an MDP with a single state 0 and with static revenue 0. That is, an empty space
unit i is defined by Xi := {0},W a

i,0 := a,Rai,0 := 0, pai,0,0 := 1 for all a ∈ A.

2 Note that including the row “0” (referring to the uncontrollable state) in the transition prob-
ability matrices has no implications as long as the transition probabilities are equal under both
actions.
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2.3 KPPI Formulation

We next formulate the KPPI. Without loss of generality, let us assume that apart
from the perishable items there are at least W items that correspond to the empty
space units, so that the capacity can always be fully filled.

Let ΠX,a be the space of randomized and non-anticipative policies depending
on the joint state-process X(·) := (Xi(·))i∈I and deciding the joint action-process
a(·) := (ai(·))i∈I , i.e., ΠX,a is the joint policy space. Let Eπ0 denote the expectation
over the state process X(·) and over the action process a(·), conditioned on the
initial joint stateX(0) = T := (Ti)i∈I and on policy π ∈ ΠX,a.

For any discount factor β, the KPPI problem is to find a joint policy π maxi-
mizing the β-discounted aggregate revenue starting from the initial time epoch 0
subject to the family of sample path knapsack capacity allocation constraints, i.e.,

max
π∈ΠX,a

Eπ0

"X
i∈I

X
s∈S

βsR
ai(s)
i,Xi(s)

#
subject to

X
i∈I

W
ai(s)
i,Xi(s)

= W at each time period s ∈ S (KPPI)

3 Special Cases

Note that one could equivalently formulate KPPI using dynamic programming.
However, (as we can observe in the experimental study in Section 7) the numeri-
cal computation of such equations quickly becomes intractable due to the curse of
dimensionality. Moreover, the Bellman equation requires the solution of a knapsack
subproblem for each possible combination of available items.

In fact, problem (KPPI) (with general one-period work, revenue and transi-
tion probability matrix) covers two well-studied problems as special cases: the NP-
complete knapsack problem and the PSPACE-hard (even non-stochastic) multi-armed
restless bandit problem (Papadimitriou and Tsitsiklis, 1999). So, we have the follow-
ing theorem.

Theorem 1 Problem (KPPI) (with general one-period work, revenue and transition prob-
ability matrix) is PSPACE-hard for β > 0 and NP-complete for β = 0.

Nevertheless, formulation (KPPI) allows the relaxation and decomposition of
the problem into tractable parametric subproblems, as seen in Section 4. We will
next discuss the two special cases in more detail.

3.1 Knapsack Problem

Under the myopic criterion (β = 0), the KPPI reduces to a variant of the knapsack
problem. In this case, the dynamics can be ignored and one only needs to determine
the most valuable knapsack capacity allocation to a collection of competing items
with knapsack capacity demands and rewards given depending on whether items
are in the knapsack or not.
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One could solve at every time epoch s the knapsack problem for β = 0, giving
rise to the following myopic knapsack rule. In order to fill in the knapsack myopically
optimally at time epoch s, we perform the following steps:

(i) Define I(s) as the set of all unsold and unperished items (i.e., those that are not
in state 0);

(ii) Compute knapsack problem values of including the item in the knapsack for
each item i ∈ I(s)

v
myopic
i := R1

i,Ti−s −R
0
i,Ti−s = Ri(qi − pi); (1)

(iii) Solve the following 0-1 knapsack problem

max
z

X
i∈I(s)

ziv
myopic
i

subject to
X
i∈I(s)

ziWi ≤W (KPmyopic)

zi ∈ {0, 1} for all i ∈ I(s)

where z = (zi : i ∈ I(s)) is the vector of binary decision variables denoting
whether each item i is selected for the promotion knapsack or not;

(iv) Select for the knapsack the items with zi = 1.

The knapsack problem is NP-complete to solve optimally, but it is interesting to
note that a simple greedy rule was proposed by Dantzig (1957): Allocate the capacity
to the items with the highest value/demand ratios. In the particular case when these
competing items have equal capacity demands, the Dantzig (1957)’s greedy rule is
optimal and reduces to allocating the capacity to the items with highest values.

Nevertheless, the above myopic knapsack rule could be proposed as an approxi-
mate solution to the β-discounted problem since there exist extremely efficient exact
algorithms for the knapsack problem (see Pisinger, 2005).

3.2 Multi-armed Restless Bandit Problem

Efficient exact algorithms are, however, not available for the multi-armed restless ban-
dit problem except for instances with significantly reduced dynamics. The reason is
the curse of dimensionality of dynamic programming. Before discussing the proposed
solutions, let us first define the problem. Suppose that all the capacity demands are
of one unit, i.e., Wi = 1 for all i ∈ I. In this case, the knapsack constraint is signifi-
cantly simpler and the set of policies may have one less dimension by omitting the
dependence on values of Wi.

The state-of-the-art solutions proposed in the literature are the so-called index
rules. These are greedy rules with dynamic nature, prescribing the following: Allo-
cate the capacity to the competitors with the highest index values. Index values are as-
signed to all the states of a competitor by the index function, which is furthermore
independent of the others competitors. Thus, index rules aim at decreasing the di-
mensionality of the problem by computing the index values for each competitor in
isolation. The reader has probably realized that these index values play an analo-
gous role as the Dantzig (1957)’s value/demand ratios. We will elaborate more on
this issue in Section 6.
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Gittins and Jones (1974) proved that if, in addition, the capacity W = 1 and the
competitors remain frozen if not allocated (i.e., P 1|∅ is the identity matrix), then
there is an index rule which is optimal. This problem is called the multi-armed bandit
problem (non-restless) for being the generalization of the problem of optimal control
of a one-armed bandit (slot) machine. The index which achieves such an optimality
is now known as the Gittins index, and optimality also holds if (symmetric) com-
petitors are allowed to appear randomly over time (Whittle, 1981). There is a huge
amount of literature on this problem and computation of the Gittins index, see, e.g.,
Varaiya et al (1985); Katehakis and Veinott (1987); Katehakis and Derman (1987);
Niño-Mora (2007a).

The restless variant of the problem (where restless refers to the possibility that
competitors change their state even when not being allocated resource capacity) is
significantly more complicated. Still, Whittle (1988) proposed to obtain an index
rule after a Lagrangian relaxation and decomposition of the problem, taking as the
index value of a state the value of the Lagrangian multiplier at which the optimal
action in this state changes. We will call this policy the Whittle index rule. Although
such a policy may not exist (so-called indexability is required), in case W = 1 there
are instances in which the Whittle index rule is optimal (Jacko, 2011a). In general
(and if exists), it only obeys a form of asymptotic optimality under the time-average
criterion (Weber and Weiss, 1990), and is usually reported a close-to-optimal mean
performance under the discounted criterion (Niño-Mora, 2007b).

To conclude this section, note that the Whittle index rule could be proposed
as a solution to the β-discounted problem by properly adapting the Whittle index
computation to non-unitary and non-uniform capacity demands, like in Niño-Mora
(2002). Similarly, Glazebrook and Minty (2009) generalized the notion of Gittins in-
dex to general resource requirements for generalW , losing, however, the optimality
properties of the resulting index rule.

4 Relaxations and Decomposition

Whittle (1988) proposed what has become known as the Whittle relaxation: replace
the infinite set of sample-path capacity constraints by a single constraint requiring
to consume the capacity only in expectation. In the following we focus on the total
discounted criterion (β < 1), but the undiscounted case (β = 1) can be treated in an
analogous way after reformulating it under the time-average criterion. The Whittle
relaxation of (KPPI) is the following:

max
π∈ΠX,a

Eπ0

"X
i∈I

X
s∈S

βsR
ai(s)
i,Xi(s)

#

subject to Eπ0

"X
i∈I

X
s∈S

βsW
ai(s)
i,Xi(s)

#
=

W

1− β , (WR)

where we have employed the total discounted criterion on both sides of the capac-
ity constraint. Consideration of the space utilization in expectation reflected in the
Whittle relaxation is sufficient for the KPPI to be solved efficiently. Its solution is,
however, not feasible for the original problem (KPPI), because it may imply uti-
lization of more or less than the knapsack capacity in some periods. The optimal
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solution to (WR) is a dynamic policy for adaptively time-varying knapsack capac-
ity; in the original problem (KPPI) a dynamic policy for fixed-capacity knapsack is
sought.

The Whittle relaxation (WR) can be approached by traditional Lagrangian meth-
ods. Let ν be a Lagrangian multiplier for the constraint, then we can dualize the
constraint, obtaining thus the following Lagrangian relaxation

max
π∈ΠX,a

Eπ0

"X
i∈I

X
s∈S

βsR
ai(s)
i,Xi(s)

#
− ν

 
Eπ0

"X
i∈I

X
s∈S

βsW
ai(s)
i,Xi(s)

#
− W

1− β

!

which can be rewritten as

max
π∈ΠX,a

X
i∈I

 
Eπ0

"X
s∈S

βsR
ai(s)
i,Xi(s)

#
− ν Eπ0

"X
s∈S

βsW
ai(s)
i,Xi(s)

#!
+ ν

W

1− β (LRν )

Parameter ν can be interpreted as the competitive market cost per unit of the
promotion space. Then, there is an optimal market cost ν∗ which balances expected
supply (selling free space) and expected demand (buying necessary space). If this
price is known, then (LRν

∗
) solves (WR). In any case, the optimal solution to the

Whittle relaxation or to Lagrangian relaxations (for any value of ν) yields a tractable
bound for the original problem (KPPI).

4.1 Decomposition

We now set out to decompose the optimization problem (LRν ) as it is standard for
Lagrangian relaxations, considering ν as a parameter. Notice that any joint policy
π ∈ ΠX,a defines a set of single-item policies eπi for all i ∈ I, where eπi is a ran-
domized and non-anticipative policy depending on the joint state-processX(·) and
deciding the item-i action-process ai(·). We will write eπi ∈ ΠX,ai

. We will therefore
study the item-i subproblem starting from time epoch 0,

maxeπi∈ΠX,ai

Eeπi
0

"X
s∈S

βs
“
R
ai(s)
i,Xi(s)

− νW ai(s)
i,Xi(s)

”#
. (2)

of maximizing the expected total discounted net revenue over policies eπi. The optimal
policy thus optimally resolves the trade-off between the expected total discounted
revenues (with salvage values) and the expected total discounted promotion cost.

4.2 Indexability and Index Values

Now we examine the economics of promoting the perishable item. Under so-called
indexability of the parameterized problem (2), one may identify its optimal control
in terms of index values. The index captures the marginal rate of promotion and
defines an index policy, which furnishes an optimal control of a perishable item
by indicating when it is worth promoting. Indexability is defined as follows (this
definition was introduced in Jacko (2010), and covers strictly more problems than
the definitions introduced in Whittle (1988) and Niño-Mora (2001, 2002)).
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Definition 1 (Indexability) We say that the ν-parameterized perishable item i is
indexable, if there exist unique values −∞ ≤ ν∗i,t ≤ ∞ for all t ∈ Ti such that the
following holds for every state t ∈ Ti:

(i) if ν∗i,t ≥ ν, then it is optimal to promote perishable item in state t, and
(ii) if ν∗i,t ≤ ν, then it is optimal not to promote perishable item in state t.

The function t 7→ ν∗i,t is called the index, and ν∗i,t’s are called the index values.

It is interesting to note that if all the perishable items are indexable, then (LRν )
is optimally solved by promoting at every time period all the items with current
index values larger (or equal) to ν. In the next section we propose to employ the
index values in order to define a solution to the original problem (KPPI).

5 Optimal Dynamic Promotion of Perishable Item

In this section we focus on the question of indexability of perishable items. This
would not be necessary, since indexability can be tested and index values can be
computed numerically (Niño-Mora, 2007b). Nevertheless, in this section we prove
indexability analytically under a mild condition and derive index values in a closed
form. The analysis further gives additional structural results on optimal dynamic
promotion.

The aim of this section is to identify an optimal solution to the problem of pro-
motion of a single perishable item when one must pay for promotion. We interpret
ν as a promotion cost which must be paid for each space unit occupied in every pe-
riod in which the item is promoted. The optimal policy thus resolves the trade-off
between the expected total discounted revenues (with salvage values) and the ex-
pected total discounted promotion cost.

Since we are now considering item i in isolation, in the following we drop the
item’s subscript i. We will impose a consistency requirement on promotion power,
which rules out uninteresting items that should never be promoted. Indeed, the
optimal action in all the states for an item with promotion power q − p ≤ 0 is
not promoting (as long as ν ≥ 0). We will therefore use the assumption that the
promotion power be positive. Moreover, we will need the expected salvage value
to be slightly restricted in order to achieve certain monotonicity property of the
optimal policy.

Assumption 1 It holds that

(i) [Positive Promotion Power] q − p > 0, and
(ii) [Restricted Expected Salvage Value] (1− q)− α(1− βq) ≥ 0.

Note that under β = 1, the restricted expected salvage value reduces to α ≤ 1.
On the other hand, for β < 1 the expected salvage value must be bounded away
from 1. In any case, however, α ≤ 0 is valid.

5.1 Indexability and Index Values

Regarding the problems with finite horizon, results with index policies appear very
sporadically, because of the complexity of the model, and therefore other methods
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(such as dynamic programming) are often used, see, e.g., Burnetas and Katehakis
(1998, 2003). Even then, the problem is usually computationally intractable. Never-
theless, there is a tractable instance, the so-called deteriorating case, first presented
for an infinite-horizon bandit problem by Gittins (1979), which was also success-
fully applied in a problem with finite-horizon objective (Manor and Kress, 1997).
In that setting, the bandits were, however, not restless. This was the case also for
the index policies for the finite-horizon multi-armed bandit problem: Niño-Mora
(2005) showed that finite-horizon bandits are indexable and provided a tractable
algorithm.

We show in the main result of this section, Theorem 2, that indexability holds
and index values can be obtained in closed form. Note that this problem could also
be approached by standard dynamic programming techniques in order to prove
structural properties; they are, however, not useful for obtaining index values.

Theorem 2 (Indexability and Time Monotonicity) Under Assumption 1, the param-
eterized perishable item is indexable, and the index value for its state t ∈ T is

ν∗t =
R

W


[(1− p)− α(1− βp)]− [(1− q)− α(1− βq)] (1− βp)

(1− βq) + (βq − βp)(βp)t−1

ff
. (3)

Moreover, the index of an item is nondecreasing as t diminishes (i.e., as the deadline ap-
proaches).

The proof of Theorem 2 is presented in Appendix C, after a more detailed de-
scription of the work-revenue analysis in Appendix B. Next we list the most ap-
pealing properties of the index values (with the proof in Appendix D).

Proposition 1 Under Assumption 1, for any state t ∈ T ,

(i) the index value is nonnegative and proportional to R/W ;
(ii) an item with lower probability of being sold when not promoted ((1 − q)’s), ceteris

paribus, has higher index value.

The index resolves the trade-off between immediate and postponed promotion.
Time monotonicity is a crucial property of the index, saying that the necessity of
promotion increases as the deadline approaches. Based on this result, we can look
for an optimal promotion starting time τ∗,

τ∗ := max{τ ∈ T : ν∗t > ν for all t ∈ T such that t ≤ τ}. (4)

In other words, if τ∗ is finite, then τ∗ is the threshold time period, from which the
index value is larger than the promotion cost ν, i.e. from which it is optimal to start
to promote the item. If τ∗ is not finite, i.e., the index value of state 1, ν∗1 , is lower
than or equal to ν, then it is never optimal to promote the item. This intuition is
formalized in the following proposition.

Proposition 2 Under Assumption 1, the optimal promotion starting time τ∗ is finite if
and only if

R

W

(1− βα)

ν
(q − p) > 1.

Further,
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(i) if τ∗ is finite, then promoting is optimal in all time periods from τ∗ to 1 and not pro-
moting is optimal in the remaining time periods;

(ii) if τ∗ is not finite, then not promoting is optimal in all time periods.

The above result assures that promotion is to be done in a natural way: the item
is selected for promotion only once and remains promoted as long as it remains
unsold and not perished.

We further give the index values obtained in a straightforward manner from the
discounted index (3) for the most important limit regimes.

Proposition 3

(i) [Undiscounted Index] Under positive promotion power assumption, in the case β = 1,
the index value for state t ∈ T is

ν∗t =
R

W
(1− α)(1− p)

»
1− (1− q)

(1− q) + (q − p)pt−1

–
.

(ii) [Myopic Index] Under positive promotion power assumption, in the case β = 0, the
index value for state t ∈ T is

ν∗t =
R

W
(q − p).

(iii) [Index for Nonperishable Item] Under positive promotion power assumption, the index
value for a nonperishable item is

ν∗∞ =
R

W

(1− β)(q − p)
1− βq .

(iv) Under positive promotion power assumption, the index value for a perishable item with
zero revenue (profit margin) and with expected salvage value −c < 0 is

ν∗t =
c

W
(1− βp)

»
1− (1− βq)

(1− βq) + (βq − βp)(βp)t−1

–
.

6 Index-Knapsack Heuristic

If all the perishable items are indexable, we define a novel solution to (KPPI), which
we call the index-knapsack (IK) heuristic. In order to fill in the knapsack at time epoch
s, IK prescribes to perform the following steps:

(i) Define I(s) as the set of all unsold and unperished items (i.e., those that are not
in state 0);

(ii) Compute index value ν∗i,Ti−s for each item i ∈ I(s);
(iii) Compute knapsack problem values for each item i ∈ I(s)

vi := Wiν
∗
i,Ti−s; (5)
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(iv) Solve the following 0-1 knapsack problem

max
z

X
i∈I(s)

zivi

subject to
X
i∈I(s)

ziWi ≤W (KP)

zi ∈ {0, 1} for all i ∈ I(s)

where z = (zi : i ∈ I(s)) is the vector of binary decision variables denoting
whether each item i is selected for the promotion knapsack or not;

(v) Select for the knapsack the items with zi = 1.

There are strong arguments for proposing this heuristic. Note that it closely re-
sembles the myopic knapsack rule, with a difference only in steps (ii) and (iii). Re-
call that the index value is the value of the Lagrangian multiplier interpreted as
the promotion cost per unit of capacity. Thus, the index value measures a (shadow)
price per unit of demanded capacity for promoting the item. The knapsack problem
value, however, must measure the price for promoting the item itself, therefore we
propose as a proxy to multiply the index value by the item’s volume.

The index value can thus be seen again as the Dantzig (1957)’s value/demand
ratio. Notice that the Dantzig (1957)’s greedy rule used for solving the knapsack
problem in (iv) of the index-knapsack heuristic reduces the index-knapsack heuris-
tic to the Whittle index rule. It is well known that the Dantzig (1957)’s greedy rule
yields an optimal solution to the knapsack problem if all the capacity demands
are uniform; however, in the general case it is suboptimal. Our experimental study
presented in Section 7 suggests that index rule analogously reveals an inferior per-
formance with respect to the proposed index-knapsack heuristic.

The experimental study further reveals a nearly-optimal performance of the
index-knapsack heuristic. Interestingly, the index-knapsack heuristic recovers op-
timal policies in some well-studied cases.

Theorem 3 (Optimality of Index-Knapsack Heuristic) If β = 0 or if Ti = 1 for all
i ∈ I, then the index-knapsack heuristic is optimal. If 0 < β ≤ 1 and Wi = 1 for all
items i, then the index-knapsack heuristic is optimal in all the problem instances in which
the Gittins index rule or the Whittle index rule is optimal.

Proof In the case β = 0, implementation of the myopic index values in the index-
knapsack heuristic leads to recovering the myopic knapsack rule, which is optimal
in this case. Similarly if all the deadlines Ti = 1, with a slightly different index
values.

In the case 0 < β ≤ 1 and Wi = 1 for all items i, the optimal solution to (KP)
is given by taking W items with highest value vi = νi, which is essentially the
Gittins/Whittle index rule. ut

7 Experimental Study

In this section we present results of systematic computational experiments, in which
we evaluate the performance of the index-knapsack (IK) heuristic and the index
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rule (IR). We further compare their performance to the Earlier-Deadline-First policy,
a naı̈ve benchmark policy.

Earlier-Deadline-First (EDF) heuristic: In order to fill in the knapsack at time epoch
s, define I(s) as the set of all unsold and unperished items (i.e., those that are not in
state 0) and select items in a greedy manner until none of the remaining items fits
after sorting the items so that product i1 is preferred to product i2, if:

(i) Ti1 < Ti2 ,
(ii) Ti1 = Ti2 and Ri1(1− αi1) > Ri1(1− αi1),

(iii) Ti1 = Ti2 and Ri1(1− αi1) = Ri1(1− αi1) and Wi1 < Wi2 .

The following is the worst-case (i.e., revenue minimizing) solution of the knap-
sack subproblem whenever all the reward coefficients are nonnegative, which is
valid according to Proposition 1(i).

Revenue Minimizing (MIN) solution: Leave the knapsack empty at every time
epoch s.

For each fixed pair (I, T ), denoting the number of products and the problem
time horizon, respectively, such that I ∈ {2, 3, 4, . . . , 8} and T ∈ {2, 4, 6, . . . , 20},
we have randomly generated 104 instances. Thus, we have tested 70 scenarios. We
set αi = 0.5 for each product i and we assure that T1 := T . We assume Poisson
arrivals of customers for each item i, denoting by λ0

i and λ1
i the mean arrival rate for

a non-promoted and for a promoted item, respectively. We restrict these values to
2/3 < λai Ti ≤ 2 for both a ∈ {0, 1}, which assures that each item has a non-extreme
probability of being sold before the deadline, since λai Ti is the expected number of
customer arrivals during the product’s lifetime. Of course, the probabilities of not
selling item i are qi := exp{−λ0

i } and pi := exp{−λ1
i }, and we assure that qi > pi.

Thus, we generate the following uniformly distributed parameters:

Wi ∈ [10, 50]; Ri ∈ [10, 50]; Ti ∈ [2, T ]; λ0
i , λ

1
i ∈

„
2

3Ti
,

2

Ti

–
.

Finally, a uniformly distributed knapsack volume is generated:W ∈ [max{Wi}, 30%·P
iWi).

We focus on the discount factor β = 1, as this is the case most likely to be imple-
mented in practice. Moreover, our experiments (not reported here) suggest that this
is also the hardest case, since the performance of IK and IR heuristics improves as
the discount factor diminishes and the IK heuristic approaches optimality as β → 0.

7.1 Performance Evaluation Measures

We obtain the maximizing policy solving the KPPI optimally by backwards recur-
sion, which also yields the optimal objective value DMAX. The objective values of
the other policies are also obtained by backwards recursion, employing the respec-
tive policy at each step, denoted Dπ for a policy π. We next introduce performance
evaluation measures we use to report the experimental results.

The relative suboptimality gap of policy π, often used in the literature, is defined
as

rsg(π) :=
DMAX −Dπ

DMAX . (6)
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As long as DMAX > 0 and Dπ ≥ 0, we have 0 ≤ rsg(π) ≤ 1, where rsg(π) = 0 is
obtained by the maximizing policy. However, rsg(π) = 1 is not necessarily achieved
by any policy in a particular problem instance. Furthermore, if αi ≤ 0 for some
of the items, then we may have DMAX ≤ 0 and therefore may also be rsg(π) < 0.
Thus, this measure may overestimate the quality of π by reporting small or negative
values even for the worst policies.

This motivates us to introduce a new measure: the adjusted relative suboptimality
gap of policy π, defined as

arsg(π) =
DMAX −Dπ

DMAX −DMIN . (7)

With this measure we always (as long as DMAX 6= DMIN) have 0 ≤ arsg(π) ≤ 1, and
both limiting values are achieved by admissible policies.

We further introduce a measure to be used to compare the mean performance
of a policy π with respect to IK heuristic, as follows:

ratio(π) =
mean(rsg(π))

mean(rsg(IK))
. (8)

This ratio captures the extent to which the mean absolute gap (i.e., the revenue loss)
created by IK heuristic may be expected to be magnified if policy π is implemented
instead. Thus, we have ratio(π) > 1 if and only if policy π is on average worse than
IK heuristic. An analogous ratio is used with the arsg measure.

7.2 Experimental Results

For every figure described below, subfigures (a) and (b) are projections of a 3D im-
age. We prefer to exhibit these projections instead of corresponding 3D figures to
provide a better visibility of the effects of varying a single parameter. In particular,
in subfigure (a) we plot curves for several values of problem horizon T in order to
observe the effect of an increase in the number of products I , while in subfigure (b)
we plot curves for several values of number of products I in order to observe the
effect of an increase in the problem horizon T . Note that each curve in subfigure
(a) corresponds to one of the points on the horizonal axis of subfigure (b), and vice
versa.

Figure 1 exhibits the projections of the mean rsg(IK) as function of the number
of products I and the time horizon T . The figure shows an excellent mean perfor-
mance of IK heuristic well below 0.01%, and further suggests that such a perfor-
mance can be expected even for higher values of I and T . These strong results are
further confirmed in Figure 4 considering the arsg measure, being in all cases below
0.14%.

The ratio of the benchmark EDF heuristic is presented in Figure 2 and Figure 5.
The benchmark policy’s mean gap is in all cases more than 50-times larger than that
of IK heuristic, and the ratio grows with the number of items I . This ratio reveals
that the mean performance of EDF heuristic is of the order of 0.5% in terms of rsg,
which may look interesting, but it is of the order of 10% in terms of arsg, which
makes EDF considerably weak.
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(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 1 Mean relative suboptimality gap of IK heuristic.

(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 2 Ratio of mean relative suboptimality gaps of EDF over IK heuristic.

(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 3 Ratio of mean relative suboptimality gaps of IR over IK heuristic.

Further, in Figure 3 and Figure 6 we evaluate IR heuristic, whose mean perfor-
mance is in all cases more than 10-times worse than that of IK heuristic, though
improving with higher I once this passes the value 4. Therefore, the mean perfor-
mance of IR heuristic is of the order of 0.1% in terms of rsg, and of the order of 1%
in terms of arsg, which are still very good values of suboptimality.

Finally, we remark that the worst-case performance (out of 104 instances) achieved
by the maximum rsg (arsg) values of IK heuristic are relatively small, ranging be-
tween 0.3% and 15% (4% and 14%) in the 70 scenarios considered. The maximum
rsg (arsg) values of IR heuristic range between 1% and 8% (22% and 72%), and those



Resource Capacity Allocation to Stochastic Dynamic Competitors 17

(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 4 Mean adjusted relative suboptimality gap of IK heuristic.

(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 5 Ratio of mean adjusted relative suboptimality gaps of EDF over IK heuristic.

(a) curves for values T = 2, 4, 6, . . . , 20 (b) curves for values I = 2, 3, . . . , 8

Fig. 6 Ratio of mean adjusted relative suboptimality gaps of IR over IK heuristic.

of EDF heuristic range between 3% and 8% (51% and 100%). That is, their worst-
case performance is good in absolute terms, but is especially bad in the problems
where promotion has small effect on the total revenue (i.e., when MAX performs
close to MIN).

8 Conclusion

We have developed a dynamic and stochastic model for dynamic promotion of per-
ishable items and proposed a tractable index-knapsack heuristic that has a natural
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economic interpretation and suggests itself to be easily implementable in practice.
These advantages come at the cost of possible suboptimality of such a dynamic so-
lution, which was, however, shown to be negligible and significantly smaller than
the revenue losses from implementing a naı̈ve marketing solution of giving priority
to items with earlier deadlines. Moreover, being the considered problem an exten-
sion of the notoriously difficult (PSPACE-hard) restless bandit problem, the nearly-
optimal performance of IK heuristic is an excellent result. The model is extensible
to a variety of ad-hoc requirements that managers or certain circumstances may
impose.

We believe that we have developed a non-trivial extension of the multi-armed
bandit problem with a novel (and perhaps surprising) solution. In our model, there
are four additional complications: the bandits are restless, because the items can get
sold regardless of being in the knapsack or not, the time horizon is finite due to per-
ishability, and we are to select more than one item for the knapsack, which is allowed
to be filled partially, due to the heterogeneity of the items’ capacity requirements.

Application of our results to several revenue management problems is pre-
sented in Appendix A. An important challenge is to obtain index values for an
extension of KPPI taking into account price and demand changes over time, inven-
tories of products, new stock arrivals, and cross-dependent demands. The analysis
of such more general problems, however, may require the notion of indexability to
be generalized in order to tackle them, especially when more than two actions are
allowed for each product.

Nevertheless, this paper offers a comprehensive and generalizable modeling
framework together with the nearly-optimal index-knapsack heuristic that may be
relevant in applications outside the revenue management area. The items consid-
ered in resource capacity allocation problems in stochastic and dynamic environ-
ment are often perishable, either naturally or due to contract restrictions such as the
Quality-of-Service clause. In addition, our results cover also nonperishable items,
which can be included in the portfolio together with the perishable ones. An inter-
esting extension of the model would be to consider random item lifetimes.

Providing provable bounds or establishing asymptotic optimality of the pro-
posed index-knapsack heuristic remains an important open problem.
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A Related Revenue Management Problems

In this section we show in a number of related revenue management problems that the KPPI frame-
work and the results of this paper are of non-trivially wider applicability.

A.1 Optimal Policy to Dynamic Promotion Problem with Adaptive Knapsack

Consider a retailer for which it is feasible to adjust the promotion space (knapsack) dynamically,
e.g. by reserving a necessary number of promotion shelves (or by hiring a necessary number of
employees), where given price ν must be paid for each reserved space unit (or for each hired em-
ployee). In other words, we assume existence of a space market, where it is permitted to “buy”
from other periods some amount of space if necessary or to “sell” to other periods some amount
of space if it is not used. Suppose the retailer has allocated a money budget for such a purpose,
whose present value is fW . We assume that such a present value was calculated using a discount
factor β arising in the perfectly competitive market (i.e., money can be borrowed or lent for the same
inter-period interest rate equal (1− β)/β).

Notice that this problem is in fact formulated by (LRν ). Indeed, the term νW/(1− β) in (LRν )
can be understood as the present value of a regular money budget (νW per period) allocated for
the knapsack space expected to be spent over an infinite horizon. That is, we only need to setfW = νW/(1 − β). Due to the mutual independence of the products’ demand, the single-item
optimal policies from Section 5 can be coupled together and we obtain an optimal policy to this
multi-product problem.

Proposition 4 Under Assumption 1 satisfied by each product, an optimal policy to the dynamic promotion
problem with adaptive knapsack is to buy in every period the promotion space units necessary for promoting
all the products whose current index value is greater than ν.

A.2 Dynamic Product Assortment Problem

Consider the dynamic product assortment problem, in which a retailer wants to choose a collection
of products to be displayed for purchase out of all the products available in the retailers’ ware-
house. The framework of this paper covers a simple variant of the product assortment problem, in
which there is a single unit of each product available from producers. Notice that now the knapsack
capacity is given by the total selling space available in the store, and the possible actions for each
product is whether to include it in the assortment (action a = 1) or not (a = 0). Of course, the
products not included in the assortment cannot be sold, i.e., qi := 1 for all products i.

Expression (2) then clearly applies to this problem, and moreover, it simplifies interestingly in
the undiscounted case.

Proposition 5 In the dynamic product assortment problem the index value for state t ∈ Ti is

(i) if β < 1, p < 1, and αi ≤ 0, then

ν∗i,t =
Ri

Wi

»
1−

αiβ(1− βpi)(βpi)t−1

(1− β) + β(1− pi)(βpi)t−1

–
(1− pi),

(ii) if β = 1, p < 1, and αi ≤ 1, then

ν∗i,t =
Ri

Wi
(1− αi)(1− pi).

Recall that only products included in the assortment can be sold, and this happens with prob-
ability 1 − pi in every period. Interpreting this probability as a service rate µi := 1 − pi, the
undiscounted index value reduces to cµ, well-known in queueing theory (see, e.g., Smith, 1956;
Buyukkoc et al, 1985), where the cost ci := Ri(1 − αi)/Wi is the revenue loss per unit of space
occupied if item is not sold during its lifetime. We emphasize that such an index is constant over
time, i.e., it does not depend on the product lifetime.
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The cµ-rule prescribes that products should be ordered (highest first) accordingly to the prod-
uct of their profitability c and per-period attractiveness µ, and included in the assortment following
such an ordering. The experimental results from the previous section suggest that IK heuristic may
further give an improved solution than the straightforward cµ-index ordering in the case that space
requirements Wi are not equal across all the products.

A.3 Dynamic Product Pricing Problem

Consider a single product and suppose that we are given an additional parameter called discount
(price markdown) Di ≥ 0, so that the revenue (profit margin) is Ri −Di instead of Ri if item i is
promoted. Thus, 1 − qi can be interpreted as the probability of selling the item priced at Ri, and
1− pi can be interpreted as the probability of selling the item priced at Ri −Di. Let a real-valuedeνi be the per-period cost of maintaining (or informing about) the price markdown of this product;
thus eνi = 0 may be reasonable in many practical cases. We are then addressing a simple variant of
the classic dynamic product pricing problem.

In particular, in the dynamic product pricing problem we have the following expected one-
period revenues for t ∈ Ti \ {1}:eR1

i,t := (Ri −Di)(1− pi), eR1
i,1 := (Ri −Di)(1− pi) + βαiRipi,

R0
i,t := Ri(1− qi), R0

i,1 := Ri(1− qi) + βαiRiqi, R0
i,0 := 0

Denote by eDi := Di(1−pi). In order to recover the expected one-period revenues under action
1 from the KPPI framework of Section 2, we must define the expected one-period revenue for all

t ∈ Ti asR1
i,t := eR1

i,t+
eDi. Let us further define the promotion cost ν :=

“eνi + eDi” /Wi. Then, the

expected one-period net revenue under action 1 isR1
i,t−νW 1

i,t = eR1
i,t+

eDi−“eνi + eDi” = eR1
i,t−eνi

as desired in the dynamic product pricing model. Then by the definition of indexability we have
the following result.

Proposition 6 Suppose that the problem defined above satisfies Assumption 1 and let ν∗i,t be the index
values given by Theorem 2. Then in the dynamic product pricing problem the following holds for state t ∈ Ti:
(i) if ν∗i,tWi − eDi ≥ eνi, then it is optimal to offer the item with price markdown in state t, and

(ii) if ν∗i,tWi − eDi ≤ eνi, then it is optimal to offer the item without price markdown in state t.

A.4 Loyalty Card Problem

Consider now the multi-product problem like the one addressed in Capgemini et al (cf. 2005), in
which retailer can use customer’s loyalty card to inform and influence her by personalized mes-
sages, say at the moment of arrival to the store. Suppose that the retailer wants to offer the customer
a number of products with personalized price markdowns so that the total offered markdown in
not larger than a budget D associated with the customer (such a budget could be a function of the
customer’s historical expenditures, collected “points”, or any other relevant measure). Of course,
now the probabilities pi and qi must be the probabilities of buying product i by the customer in
hand (say, estimated using the customer’s historical purchasing decisions).

Suppose that every product satisfies Assumption 1. Using the results of the previous subsec-
tion, suppose that eνi = 0 and define the knapsack-problem rewards evi := ν∗i,tWi − eDi. Then,
analogously to the arguments given in Section 6, we propose to use the solution to the following
0-1 knapsack subproblem in step (iv) of the IK heuristic for the loyalty card problem:

max
z

X
i∈I

zievi
subject to

X
i∈I

ziDi ≤ D

zi ∈ {0, 1} for all i ∈ I

where z = (zi : i ∈ I) is the vector of binary decision variables denoting whether each item i is
offered with price markdown or not.
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B Preliminaries of Work-Revenue Analysis

In order to prove Theorem 2, we describe the key points from the restless bandit framework in
more detail. For a survey on this methodology we refer to Niño-Mora (2007b). We can restrict
our attention to stationary deterministic policies, since it is well-known from the MDP theory that
there exists an optimal policy which is stationary, deterministic, and independent of the initial state.
Notice that any set S ⊆ T can represent a stationary policy, by employing action 1 in all the states
belonging to S and employing action 0 in all the states belonging to T \S. We will call such a policy
an S-active policy, and S an active set.

Let S ⊆ T be an active set. We can reformulate (1) as

RSt − νWSt := ESt

"
t−1X
s=0

βsP
s|S
t,t−sR

IS(t−s)
t−s

#
− ν ESt

"
t−1X
s=0

βsP
s|S
t,t−sW

IS(t−s)
t−s

#
, (9)

where P j−i|Si,j is the probability of moving from state i ∈ X to state j ∈ X in exactly j − i pe-

riods under policy S and IS(s) is the indicator function IS(s) =

(
1, if s ∈ S,
0, if s /∈ S.

So, RSt is the

expected total discounted revenue under policy S if starting from state t, and we will write it in a more
convenient way as

RSt = ESt

"
tX

s=1

βt−sP
t−s|S
t,s R

IS(s)
s

#
. (10)

Similarly, WSt is the expected total discounted promotion work under policy S if starting from state
t, and we will write it in a more convenient way as

WSt = ESt

"
tX

s=1

βt−sP
t−s|S
t,s W

IS(s)
s

#
. (11)

Let, further, 〈a,S〉 be the policy which takes action a ∈ A in the current time period and adopts
an S-active policy thereafter. For any state t ∈ T and an S-active policy, the (t,S)-marginal revenue
is defined as

rSt := R〈1,S〉t − R〈0,S〉t , (12)

and the (t,S)-marginal promotion work as

wSt := W〈1,S〉t −W〈0,S〉t . (13)

These marginal revenue and marginal promotion work capture the change in the expected total
discounted revenue and promotion work, respectively, which results from being active instead of
passive in the first time period and following the S-active policy afterwards. Finally, if wSt 6= 0, we
define the (t,S)-marginal promotion rate as

νSt :=
rSt
wSt

. (14)

Let us consider a family of nested sets F := {S0,S1, . . . ,ST }, where Sk := {1, 2, . . . , k}. We
will use the following theorem to establish indexability and obtain the index values.

Theorem 4 (Niño-Mora (2002)) If problem (1) satisfies the following two conditions (so-called PCL(F )-
indexability):

(i) the marginal promotion work wSt > 0 for all t ∈ T and for all S ∈ F , and
(ii) the marginal promotion rate νSt−1

t is nonincreasing in t ∈ T ,

then the problem is indexable, family F contains an optimal active set for any value of parameter ν, and the
index values are ν∗t := ν

St−1
t for all t ∈ T .
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C Proof of Theorem 2

The ultimate goal of the proof is to apply Theorem 4 and derive a closed-form expression for the
index given in Theorem 2. Plugging (10) and (11) into (12) and (13), respectively, we obtain two
expressions that will be used in the following analysis:

rSt =
`
R1
t −R0

t

´
− (βq − βp)

t−1X
s=1

βt−s−1P
t−s−1|S
t−1,s R

IS(s)
s , (15)

wSt =
`
W 1
t −W 0

t

´
− (βq − βp)

t−1X
s=1

βt−s−1P
t−s−1|S
t−1,s W

IS(s)
s . (16)

It is well known in the MDP theory that the transition probability matrix for multiple periods is
obtained by multiplication of transition probability matrices for subperiods. Hence, given an active
set S ⊆ T , we have

P t−s|S =
“
P 1|S

”t−s
, (17)

where the matrix P 1|S is an (T + 1)× (T + 1)-matrix constructed so that its row x ∈ X is the row
x of the matrix P 1|T if x ∈ S, and is the row x of the matrix P 1|∅ otherwise. For definiteness, we
remark that P 0|S is an identity matrix.

We will use the following characterization of the marginal measures.

Lemma 1 Let t ∈ T and consider any integer 0 ≤ k ≤ T . Then,

r
Sk
t =

8>>>>>>>>>>>><>>>>>>>>>>>>:

R(q − p)
»
(1− β)

1− (βp)t−1

1− βp
+(1− βα) (βp)t−1

i
, if k ≥ t− 1 ≥ 0,

R(q − p)
»
(1− β)

1− (βq)t−k−1

1− βq

+(1− β) (βq)t−k−1 1− (βp)k

1− βp
+(1− βα) (βq)t−k−1 (βp)k

i
, if T − 1 ≥ t− 1 ≥ k.

(18)

w
Sk
t =

8>><>>:
W

»
1− (βq − βp)

1− (βp)t−1

1− βp

–
, if k ≥ t− 1 ≥ 0,

W

»
1− (βq − βp) (βq)t−k−1 1− (βp)k

1− βp

–
, if T − 1 ≥ t− 1 ≥ k.

(19)

Proof Under an active set Sk , from (17) we get for T ≥ t− 1 ≥ s ≥ 1,

P
t−s−1|Sk
t−1,s =

8><>:
pt−s−1, if k ≥ t− 1 ≥ s ≥ 0,

qt−s−1, if T ≥ t− 1 ≥ s ≥ k,
qt−k−1pk−s, if T ≥ t− 1 ≥ k ≥ s ≥ 0,

These expressions together with the definitions of Rat and Wa
t plugged into (15)–(16) after simpli-

fication conclude the proof. ut

The following lemma establishes condition (i) of PCL(F )-indexability.

Lemma 2 For any integer k ≥ 0 we have

(i) w
Sk
k > 0;

(ii) w
Sk
t > 0 for all t ∈ T .

Proof Denote by

h(k) := (βq − βp)
1− (βp)k

1− βp
, (20)

so that, using (19), wSk
k = W [1− h(k)].
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(i) For k = 0, we have h(0) = 0 by definition. For k ≥ 1, h(k) = (1− (βp)k)βq−βp
1−βp < 1. ut

(ii) Implied by (i) and (19). ut

Next we establish condition (ii) of PCL(F )-indexability.

Lemma 3 We have

ν
St−1
t =

R

W


[(1− p)− α(1− βp)]−

[(1− q)− α(1− βq)] (1− βp)
(1− βq) + (βq − βp)(βp)t−1

ff
.

Moreover, under Assumption 1, νSt−1
t is nonincreasing in t ∈ T .

Proof Consider St−1 for t ∈ T . By Lemma 1 we have

r
St−1
t = R(q − p)

»
(1− β)

1− (βp)t−1

1− βp
+ (1− βα) (βp)t−1

–
,

w
St−1
t = W

»
1− (βq − βp)

1− (βp)t−1

1− βp

–
,

therefore

ν
St−1
t =

R

W

(q − p)
»
(1− β)

1− (βp)t

1− βp
+ (1− βα) (βp)t

–
1− (βq − βp)

1− (βp)t

1− βp

. (21)

After multiplying both the numerator and the denominator by 1− βp, and rearranging the terms,
we obtain

ν
St−1
t =

R

W


[(1− p)− α(1− βp)]−

[(1− q)− α(1− βq)] (1− βp)
(1− βq) + (βq − βp)(βp)t−1

ff
.

By Assumption 1, (1− q)− α(1− βq) ≥ 0 and q − p > 0, therefore νSt−1
t is nonincreasing in

t. ut

Finally, we can apply Theorem 4 to conclude that under Assumption 1, the problem is index-
able and the index values are given by νSt−1

t in Lemma 3, which also establishes the time mono-
tonicity. ut

D Proof of Proposition 1

(i) Immediate from (21). ut
(ii) Formally, we are to prove the following statement: If the probability q is replaced by q′ ≤ q,

then ν∗′t ≤ ν∗t for any t ∈ T . It is straightforward to see that (21) is nondecreasing in q. ut
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