
Experiences of Using a Hybrid Cloud to
Construct an Environmental Virtual Observatory

Yehia Elkhatib Gordon S. Blair
School of Computing & Communications

Lancaster University, LA1 4YD, United Kingdom
{y.elkhatib | g.blair}@lancaster.ac.uk

Bholanathsingh Surajbali
CAS Software AG

CAS-Weg 1-5, Karlsruhe, Germany
b.surajbali@cas.de

Abstract
Environmental science is often fragmented: data is collected using
mismatched formats and conventions, and models are misaligned
and run in isolation. Cloud computing offers a lot of potential in
the way of resolving such issues by supporting data from differ-
ent sources and at various scales, by facilitating the integration of
models to create more sophisticated software services, and by pro-
viding a sustainable source of suitable computational and storage
resources. In this paper, we highlight some of our experiences in
building the Environmental Virtual Observatory pilot (EVOp), a
tailored cloud-based infrastructure and associated web-based tools
designed to enable users from different backgrounds to access data
concerning different environmental issues. We review our architec-
ture design, the current deployment and prototypes. We also reflect
on lessons learned. We believe that such experiences are of benefit
to other scientific communities looking to assemble virtual obser-
vatories or similar virtual research environments.

Categories and Subject Descriptors C.2.4 [Cloud computing];
D.2.11 [Service-oriented architecture (SOA)]; D.2.13 [Reusable
Software]; J.2 [Physical Sciences and Engineering]: Earth and
atmospheric sciences

General Terms Design, Management, Reliability

Keywords cloud computing, cyberinfrastructure, hybrid infras-
tructure, virtual observatory, virtual research environment, environ-
mental science, open science, e-science, science gateway

1. Introduction
Environmental science is studied by different communities in the
academic, governmental and commerical sectors for different pur-
poses. Each community forms its own data management conven-
tions, such as decisions about spatial and temporal resolution, stor-
age format, dataset description, method of access, etc. Many of
these communities work in isolation, hence it is not unexpected
that their conventions vary significantly from each other. Such mis-
alignment is a major hindrance to data discovery and use, compli-
cating any sort of collaboration between different communities on
a common environmental topic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CloudDP ’13, April 14, 2013, Prague, Czech Republic.
Copyright c© 2013 ACM 978-1-4503-2075-7. . . $15.00

One way to transcend such gaps is to introduce a shared space
to facilitate collaboration. We define such space as a virtual ob-
servatory, where different stakeholders would be able to view and
add environmental resources such as observation datasets, analysis
results, annotation and analysis processes, and visualisation tools.
For such a virtual observatory to be realised, an infrastructure is
needed to support data from different sources and at various scales,
to integrate processes in order to create more sophisticated and col-
laborative software services, and to provide a sustainable source of
adequate computational and storage resources.

Cloud computing offers great potential for such capacities.
Cloud resources are easy to forge and steer to better serve the
needs of an application. Such flexibility presents capabilities to
integrate varied resources (i.e. processes and data) used by differ-
ent communities. It also helps transcend traditional software stacks,
circumventing a lot of the development restrictions and deployment
difficulties imposed by previous distributed systems.

The Environmental Virtual Observatory pilot (EVOp) project
[7] is funded by the UK Natural Environment Research Council
to support the assembly of advanced cloud-based services that can
benefit a number of communities with different interests in pressing
environmental issues. For the pilot phase (2011-2012), the project
focused on water related environmental disciplines including hy-
drology, land cover management, and diffuse pollution.

EVOp is designed for use without any programming prerequi-
sites by both domain specialists and non-specialists. For environ-
mental scientists, it allows them to worry less about some of the
repetitive non-scientific tasks that they have to do as part of their
work. For policy makers, EVOp serves as a decision support sys-
tem: it provides open access to explore current data and tools to
investigate the effect of new policies. For members of local commu-
nities, EVOp enables them to explore the impact of different prac-
tices relating to farming, water management, etc. For the general
public, EVOp supports raising general awareness of environmental
issues, encouraging a wider discussion about impact in addition to
individual and collective contribution.

This paper offers some experiences in building the EVOp in-
frastructure, and in migrating data and tools to the cloud. We be-
lieve that the architectural principles, migration processes, and op-
erational measures of EVOp are shared with other scientific com-
munities looking to assemble similar cloud-based virtual research
environments. Hence, many of our learned lessons and faced diffi-
culties would be of benefit to a much wider audience.

The rest of the paper is structured as follows. Section 2 in-
troduces the design of the EVOp infrastructure, then Section 3
presents its current deployment. Section 4 reflects on the main dif-
ficulties faced and lessons learned. Section 5 discusses future steps
of EVOp, while Section 6 highlights some related work. Finally,
Section 7 offers concluding remarks.

2. Architecture
2.1 Design Concepts
The design of the EVOp infrastructure adopts the principles of
cloud computing and associated technologies to deliver a system of
low operational costs at the infrastructure level and high flexibility
at the application level. The main concepts behind the design of the
EVOp infrastructure are now discussed.

2.1.1 Everything as a Service (XaaS)
All system resources (such as datasets and analysis processes) are
accessible via web service interfaces. This hides from the users
details of where resources are held and how they are managed.
Such abstraction translates to a better user experience as compli-
cated issues are offloaded allowing the users to focus on solving
domain-specific problems. XaaS also means that models and sim-
ulations could process datasets without necessarily giving them
away, avoiding some of the thorny issues of data ownership. At
the hardware level, XaaS abstracts away the complexities of distri-
bution, reliability and availability.

2.1.2 RESTful Web Services
In addition to the previous point, all web services interfaces are
of a uniform view, designed according to the Representational
State Transfer (REST) architectural principles [11]. In contrast to
SOAP or big web services, the REST architectural style is resource-
oriented rather than transaction-oriented. Hence, RESTful web ser-
vices remain completely stateless with all data required to transition
between different states being included in the service request.

2.1.3 Virtualization
Virtualization brings dynamic provisioning of bespoke environ-
ments where everything from the hardware, platform, libraries, etc.
can be customised to suit the exact needs of an application. Such
flexibility is of great value as it enables scientists to move their
computations to the cloud with very few restrictions.

2.1.4 Federated Cloud
We use a hybrid infrastructure comprised of both private and public
cloud resources in order to rise above the shortcomings of one
solution and to control upfront and running expenditures. In an
effort to promote portability and to avoid being tied in to one
provider, we decided to use the cross-cloud library jclouds [5].

2.1.5 2-Tier not 3-Tier
The three-tier design model is a widely adopted one for obvious
reasons: it provides separation of concerns between the levels of
data management, processing or business logic, and presentation.
Tiers could be implemented, managed, and scaled independently
which is an important consideration for the deployment of large
scale systems. The trade-off is the need for measures to avoid
performance bottlenecks between levels (e.g. caching) [16] and
to maintain consistency across each level. In a sense, functional
decomposition introduced by the three-tiered architecture alleviates
some software development complexities but replaces them with
operations and system maintenance difficulties.

For the purposes of EVOp, we identified that the majority of
processes need access only to historical data that is read a lot but
rarely written (once initially and then appended to every once in
a while). Such data does not need to be made available through
a shared system. Instead, it could easily be provided to running
cloud instances as ephemeral disk storage. This allows instances
to have all required data at a predictable performance level that is
independent of the overall system demand for that data. Therefore,
we decide to couple data and modelling logic where possible.

2.2 Design
The EVOp portal contains a mixture of data sources that a user can
explore. These include live data (such as live river level, temper-
ature, etc.), historical data (e.g. rainfall) and others (e.g. webcam
images). Some are managed by the EVOp team while other infor-
mation resources are mashups of external data sources.

Beside providing various information surrounding certain en-
vironmental topics, the portal gives users the capability to exe-
cute computations on demand in the cloud. This is done using the
datasets and models made available through EVOp. Figure 1 de-
picts the EVOp infrastructure and how user interaction is dealt with
to enable such transparent computations.

EVOp Portal

Private Cloud

Public Cloud
Load

Balancer

Resource
Broker

Infrastructure
Manager

Policy Makers, Local
Communities, General Public

Data Providers, Modellers,
Domain Specialists

Active
Sessions

Model
Library

Workbench
Repository

jclouds Compute

RESTful service calls

ssh

jclouds BlobStore

Interaction Types

Housekeeping

HTML5 WebSockets

Figure 1. The EVOp Infrastructure

The Model Library is populated by partner domain special-
ists (e.g. hydrologists, biogeochemists, etc.) in liaison with data
providers. The process starts with offline calibration and testing of
a model against a certain dataset (e.g. TOPMODEL on the rainfall
data of the Eden catchment in the north west of England). The out-
come of this process is a virtual machine image optimized to run
a fine tuned set of models (exposed as RESTful web services) and
equipped with all related data. This streamlined execution bundle
is then stored in the Model Library to be instantiated upon demand.
If required, an image could be updated to include more historical
data or to adjust the implementation of a model in some way.

Once a user navigates to one of the modelling pages within the
EVOp portal, a connection is created with the Resource Broker
(RB) module of the Infrastructure Manager. RB responds with
an address of a cloud instance that is suitable for the type of
computation required, along with some session information. Using
HTML5 WebSockets for this connection facilitates asynchronous
duplex communication without the need for polling or streaming.
This reduces network overhead and browser memory usage, and
enables RB to manipulate the user session more efficiently. For
instance, this is used to update the set of active sessions in order
to balance load by sensing when user sessions end. It also allows
RB to push any session update to the user browser, such as in the
case of migrating the user to a new cloud instance.

The Load Balancer (LB) monitors the health status of running
instances with two objectives: minimize costs and maintain in-
stance responsiveness. To minimize cost, user requests are served
by default using private cloud instances. Upon saturation of private
cloud resources, public cloud instances are used. Reverse migration
is undertaken upon detecting underuse of the private cloud. For the
latter objective, instance statistics are observed, namely CPU uti-
lization, disk reads and writes, and network usage. Degradation in
these metrics, such as sustained high CPU utilization or zero out-
bound network usage whilst receiving inbound traffic, triggers LB

into starting a new instance and redirecting users that were being
served by the old instance to the new one. LB also monitors the
state of active user sessions and redistributes users on running cloud
instances accordingly. RB is used to push updated session informa-
tion in order to redirect user calls.

The Infrastructure Manager in itself, comprising of the RB and
LB modules, is stateless and executed as a cloud instance off a
virtual machine image for easy recovery in case of failure. The
Active Sessions cache is independent and persistent.

3. Development & Deployment
3.1 Hardware Resources
The infrastructure is deployed as a hybrid consisting of both private
resources, managed by Eucalyptus Community Cloud (ECC), and
public resources, provided by Amazon Web Services (AWS). ECC
provides an open source alternative to the AWS products EC2
(utility computing) and S3 (storage service). This makes it possible,
at least in theory, to use the same virtual machine images to start
instances in either cloud.

3.2 Portal Interface
Portal users, including scientists, are not expected to be IT experts
and hence would rather not tussle with compatibility issues, secu-
rity restrictions, etc. Therefore, we developed an intuitive user in-
terface that is tested with stakeholders to ensure a low entry barrier
for all targeted user groups.

The use of more than one visualization tool, including graphs
and maps, is essential. This is due to the nature of the data, as in
the case of rainfall which is a geospatially distributed time series. It
also helps in bringing out relationships or patterns within the data,
such as correlation between rainfall and runoff levels.

3.3 Development Cycle
Requirement collection for the EVOp portal was not a trivial task.
This is due to the novelty of the application and the need to cre-
ate highly customized web tools. Furthermore, the EVOp team
included researchers from different backgrounds (environmental,
computer and social science). Frequent meetings were required to
discern any changes that need to be done at an early phase.

Therefore, the EVOp development process heavily depended on
incremental development and frequent verification. We used the
agile-based behavior-driven development methodology (see Figure
2). Storyboards, i.e. a stepped illustration of a fully defined user
scenario, are outlined by partner domain specialists (referred to
as the storyboard owners). Core requirements are drawn from the
storyboards. Prototypes are developed based on these requirements,
and are iteratively improved and built upon following processes
of verification (within the development team, and the storyboard
owners) and validation (the wider project consortium, and finally
the stakeholders).

3.4 Prototypes
We have thus far worked on developing custom visualization tools
for two storyboards.

3.4.1 Flooding (at a local scale)
We simulate hydrological interactions to determine where saturated
land-surface areas develop, which roughly translates to flood risk
areas. Model parameter values (resembling catchment characteris-
tics) could be specified either explicitly by value, or indirectly us-
ing one of several predefined land use scenarios. Figure 3 shows a
screenshot from the working prototype for this storyboard.

Storyboards

Development

Verification

Internal
Feedback

Stakeholder
Testing

Deployment

Figure 2. Behaviour-Driven Development Cycle

Figure 3. Local Flooding Prototype

3.4.2 Diffuse Pollution (at a national level)
We investigate the diffuse of agricultural pollution through study-
ing the flux of Nitrogen and Phosphorus nutrients from land (at
various scales of drainage and reporting units) to rivers and coastal
regions. This is particularly useful to explore the impact of exist-
ing policy instruments or risk from future environmental changes
on the levels of Nitrogen and Phosphorus flux. Figure 4 presents
a screenshot from the working prototype for the diffuse pollution
storyboard.

4. Reflections
This section reflects on our experiences while implementing and
deploying the EVOp infrastructure. It reviews the lessons learned
and difficulties faced, both technical and otherwise.

4.1 Lessons Learned
The following are some of the lessons learned, ordered first accord-
ing to the corresponding design decision.

Figure 4. National Diffuse Pollution Prototype

4.1.1 Everything as a Service
The transparency that comes with XaaS offers a great deal. For soft
assets, it offers versatile resource management, allowing EVOp to
support data assets of different origins: in situ gauging stations,
warehoused data stores, and external sources. It also promotes a
mashup culture where resources can be shared and reused. We
plan to exploit this by facilitating users to connect components
(such as models) that were previously living in isolation in order to
create more advanced modelling capabilities, as will be discussed
in Section 5.

For tangible resources, XaaS essentially is Infrastructure as a
Service (IaaS) where hardware resources could be arranged as
and when required. This provisioning of hardware resources as
a utility offers elasticity, whereby the infrastructure is allowed to
scale to meet user demand and maintain an acceptable quality of
service. Consider for instance uncertainty analysis where a model
is repeatedly executed using ranges of values for input parameters
in order to compensate for any sources of error in how well the data
represents the real variables, e.g. topographical representation of
a river catchment. This requires substantially more computational
resources than a single execution. By providing such resources on
demand, IaaS presents such a great advantage when compared to
both grid and cluster computing where usage quotas are a common
hidnrance for resource-intensive computations.

4.1.2 RESTful Web Services
SOAP web services require high communication and operation
overheads. Graceful service degradation and service migration are
complicated due to the need to maintain service state. Performance
and scalability also stand to suffer for the same reason.

Adopting RESTful services draws a clear line between the client
and the server (i.e. the machine hosting a web service to process
a request) which has a huge knock on effect on the scalability
and manageability of the infrastructure. As application state is not
maintained by the server, there is much less load on it. The client,
however, can invoke the server as much as required to change the

state throughout the steps of a scientific experiment, the different
runs of a simulation, etc. Moreover, this greatly simplifies com-
plicated infrastructure management tasks such as load balancing
and failure recovery. In order to optimize performance, end user
requests are routed to any available hosted service regardless of
current state or previous interactions. Similarly, failed virtual ma-
chines are easily replaced by others on another rack, data center, or
even cloud provider. Hence, migration does not require advance re-
source reservation, shared block devices, or any similar techniques.

Consequently, we find the RESTful approach to architect web
services very suitable for different types of scientific applications,
especially embarrassingly parallel ones such as Monte Carlo simu-
lations, parameter sweeps, uncertainty analysis, etc. where there is
no need to share state between transactions.

4.1.3 Virtualization
Using platform as a service (PaaS) is suitable for applications with
fairly consistent execution requirements. However, building custom
virtual machines starting from the IaaS level maximizes flexibility,
putting very little limitations on the application and removing many
of the barriers around development. This engenders an inclusive at-
titude where scientists with different ways of working within and
outside a single discipline can build services using whatever mix
of platform and software (data management, processing, statistical,
messaging, etc.) they are comfortable with. For example, one scien-
tist might choose a stack comprising of R, Python and PostgreSQL
which allows him to run geospatial indexing, while his colleague
might prefer to use Hadoop over a NoSQL dataset to parametrically
analyze the uncertainty intervals in her experiment. In any case, all
they need to provide from an EVOp point of view is a RESTful ser-
vice that can be invoked through the portal. To draw a comparison,
scientists using the grid for their computations are tied in to too
many specifications: hardware architecture, runtime environment,
scheduling interface, and supported application interface. As such,
only certain types of jobs can be submitted and precompiling is an
unavoidable chore to ensure compatibility.

4.1.4 Federated Cloud
Using jclouds to provide interoperability across different cloud
APIs has cost us slightly more development time. It, however,
has been a worthwhile investment. Implementing our infrastructure
manager using jclouds saved us from reimplementing large chunks
of code when changing the IaaS solution as described below.

Although ECC provides an open source solution that mimics
AWS’s core services, it requires substantially more operational
overhead than we could afford. First, moving a virtual machine im-
age between ECC and AWS is not as easy as one would expect
as it needs a lot of preparation before it could be converted and
imported. Second, ECC versions 1.6+ suffer from recurring stabil-
ity issues due to Java memory leaks and other bugs (e.g. server
certificate verification failure in versions 2.0+). Unfortunately, the
ECC community support was weak, at least when we faced such
issues (mid 2011 - early 2012). Indeed, Eucalyptus Systems re-
cently recognized this and moved the community support forum to
a new platform called Engage. However, there still remains a huge
number of open threads with unresolved issues and unanswered
queries, significantly more than what is usually encountered with
open source communities.

For these reasons, we decided to switch our private cloud infras-
tructure manager to OpenStack, also AWS-compatible. OpenStack
is still far from being a mature solution and its documentation is
rather patchy, but it has a vibrant growing community that provides
ample support.

Using a cross-cloud API such as jclouds is also useful when the
infrastructure utilization model needs to be adjusted. For example,

changing the routing mechanism from ‘all computations on private
cloud till saturation’ to something more selective such as ‘stream-
lined models to AWS and experimental ones to the private cloud’.
Another obvious reason that became clearer through EVOp work
is that it is necessary to have a federated open approach as it is
impossible to commit the national and international environmental
science community to any one provider.

4.1.5 2-Tier not 3-Tier
The 2-tier architecture we use for running models has several ad-
vantages: less latency between tiers, no performance bottlenecks
caused by competition for shared data resources, and less data in-
consistency concerns. However, this can only be applied to applica-
tions where the data requirements are of small chunks. If the data to
be processed becomes too big or does not conform to ‘write rarely,
read frequently’, then the logic and data tiers have to be divided.

4.1.6 Agile Participatory Development
Defining storyboards and implementing them during relatively
short agile development cycles has proven very successful. Pro-
totypes are developed and are iteratively improved following pro-
cesses of verification (within the development team) and validation
(with the storyboard owners, the wider consortium, and finally the
stakeholders). Such approach is participatory at all stages which
made us “fail early, and fail often” meaning that changes in plan
were frequent, but were low-cost due to the prompt identification of
issues with the portal. It also lead to early and frequent engagement
with the end users, providing useful feedback and resulting in a set
of tools that are relevant and useful to the end users.

4.2 Difficulties
Adopting the RESTful style for web services was not without dif-
ficulties. Some scientific communities, such as the geospatial anal-
ysis community, specify their domain standards using WS-* SOAP
services. This meant that in a couple of instances we had to divert
from domain standards in order to preserve a RESTful architecture.
Service syntax was preserved when veering away from domain
standards. Currently, there are discussions in some circles about
amending standards to accommodate RESTful style services, e.g.
the Open Geospatial Consortium’s Web Processing Service (WPS)
2.0 Standards Working Group [6].

Furthermore, RESTful service interfaces are by definition sim-
ple and uniform across resources. This helps in bringing the afore-
mentioned benefits. However, this also means that any resource-
specific actions and associated semantics are lost from the inter-
face to be specified in the service call payload. Thus, the RESTful
style does not support inherent self-describing service semantics
as SOAP does. Semantic annotations are essential for discovery of
and interaction with other web services offering datasets or models.
We experimented with several tools of extracting annotations from
model or dataset, and used WSDL 2.0 [9] to annotate our services.

We also faced some non-technical difficulties. Of the involved
parties, end users are of the first to recognize the potential advan-
tages of moving scientific data and services to the cloud. Previ-
ously, a scientist typically needed to have the data on her computer,
a step of often underestimated difficulty. She then has to find or
develop a model, and proceed to calibrate and run it. The model
results are examined with a possibility of repeating most of this cy-
cle over and over again. Therefore, such users immediately identify
the ease of use, universal access, and abundance of resources that
comes with a cloud infrastructure.

However, other stakeholders have different perceptions. For in-
stance, some data producers are apprehensive about providing their
data assets through what they perceive as new, untested means.
This is a tough problem and can only be resolved, if at all, by ed-

ucating data owners about cloud computing. This would provide
some assurance about the flow of data through the infrastructure
and explain that public cloud providers, the target of most secu-
rity apprehensions, have whole expert teams working on security
to honor their SLAs. Success stories, such as EVOp and Eduserv (a
non-profit organization that provides technology solutions, includ-
ing IaaS provisions, to the education, health and public sectors [3]),
could also help alter attitudes.

Other non-technical difficulties include payment systems and
organizational politics. [17] highlights some of these.

5. Future Work
We are active in pursuing additional data sources, both historical
and real time, and accordingly develop suitable curation processes
and visualization tools. We are also planning to expand the spec-
trum of tools offered by EVOp by supporting more domain special-
ists to popoulate the Model Library with more images. More im-
portantly, we are looking to increase the room for customization by
supporting workflow execution. So far, we have been building web
based prototypes based on very specific use cases outlined by story-
boards. A workflow is a conglomerate scientific process composed
of a directed acyclic graph of basic execution units (e.g. executa-
bles, scripts, web services, etc.). Workflows allow ‘advanced’ users
(i.e. domain specialists from the scientific or govermental commu-
nities) to create complex experiments that can be easily tweaked
and replayed. This offers reproducibility and traceability. If de-
scribed in a standard way, a workflow can be shared and reused
by others in order to build upon it, reproduce results, or compare
techniques. Indeed, sharing workflows has proven to be quite use-
ful in other fields of science such as bioinformatics. Observing es-
tablished work in this area, such as Taverna [18], will allow us to
leverage associated platforms, such as myExperiment [12], to dis-
seminate workflows and create collaborative communities.

To this end, we are working on providing workflow composi-
tion through a web browser using the lightweight graphical user
interface presented in [1]. We have also added to the Model Li-
brary a generic virtual machine image with a workflow execution
manager. For such web service orchestration, constituent web ser-
vices need to uphold behavioral contracts othrwise interacting with
different loosely-coupled services would incur a high level of un-
certainty. The two important contracts that concern us here relate to
formalizing interactions and supporting monitoring (either polling,
push-based, or both). Graceful service degradation is, however, not
important at the atomic constituent RESTful service level as sub-
stitution and relocation is simple enough and sufficient. Nonethe-
less, assurance of graceful degradation is needed if orchestration
includes external services not directly controlled by EVOp.

Beyond the lifetime of the pilot phase of the project, we are
looking to expand beyond water related science into other areas
such as soil science and biodiversity.

6. Related Work
Scientific research has been aided by cyberinfrastructures for quite
some time. Different distributed paradigms, such as HPC and grid
computing, have been used over the years to build such infras-
tructures. Currently, there are a growing number of efforts to en-
able scientific research using cloud infrastructuress. These range
from generic research support web tools to domain-specific vir-
tual research environments. Examples of the former include test-
ing IaaS solutions (e.g. EmuLab [4]), statistical analysis platforms
(e.g. Biocep-R [8] and CloudNumbers [2]), and social networks
(e.g. Mendeley and Academia.edu).

Efforts for designing domain-driven solutions include the fol-
lowing two architectural proposals. [20] presents a use case of sim-

ilar architectural elements and hybrid infrastructure deployment,
but does not use RESTful services. [19] defines a generic high-level
framework for assembling virtual research environments.

Domain-driven solutions are used for data discovery, data nor-
malisation, and workflow execution. In the domain of environmen-
tal and geosciences, the NSF-funded Consortium of Universities
for the Advancement of Hydrologic Science (CUAHSI) developed
several tools to enable access to water-related research and data.
Their Hydrologic Information System (HIS) provides unified ac-
cess to data, tools and models relating to hydrological research.
The HIS index can be accessed by water-related federated search
engines and dataset repositories such as NWIS [13] and STORET
[21]. Additionally, the Community Hydrologic Modeling Platform
(CHyMP) [10] allows the development, support and sharing of
models to serve the hydrologic community using pre-existing mod-
elling technologies such CSDMS and NASA LIS.

Other efforts include the Penn State Integrated Hydrologic
Model (PIHM) [15] which presented a prototype of orchestrating
terrestrial watershed models in order to predict water distribution.
PIHM is envisioned to move to a cloud infrastructure in the very
near future. More recently, EarthCube [14] has emrged as a collab-
orative effort to create a cloud-based virtual research environment
to share data and knowledge about geosciences. In the commer-
cial sector, ESRI is offering a number of cloud-based geospatial
services, such as ArcGIS Online and AWS-ready ArcGIS Server.

7. Conclusion
In this paper we presented EVOp, a cloud-based virtual observa-
tory for environmental science. EVOp provides web access to data
and tools that help different stakeholders in engaging with pressing
environmental issues. The underlying infrastructure is a tailored hy-
brid cloud consisting of owned and leased hardware resources. The
essence of the EVOp architecture is to focus on assets rather than
on transactions. From this stems the importance of representing all
resources through a uniform interface.

We presented the lessons learned through our experience. We
learned that representing all resources as a service enables easy
management and provides opportunities for integration, encourag-
ing a mashup culture. We also learned that adopting the RESTful
architectural style reduces management overheads. RESTful ser-
vices are stateless which makes them easy to create and recreate
(for fault mitigation). Lack of state also makes them easy to oper-
ate and scale. However, they do not offer much in terms of self-
description through their interface. We also experimented with fed-
erated clouds, which offers more options in terms of management
and cost control, and prevents vendor lock in. Finally, we faced
some non-technical difficulties, such as perceptions of trust and se-
curity surrounding cloud computing in some communities (espe-
cially concerning data licensing and IPR). We put forward some
measures that could be taken to alleviate such concerns.

Cloud computing offers a lot of potential for science by enabling
virtual research environments such as EVOp. A cloud infrastructure
offers the flexibility to integrate and support varied resources, and
a low entry barrier when compared to previous distributed systems.
We therefore expect to see a growth in the number of efforts similar
to EVOp in the near future. We hope that the experiences presented
in this paper would be useful to such efforts.

Acknowledgements
This work was supported by the Natural Environment Research
Council pilot Environmental Virtual Observatory project (NE/I002200/1).

References
[1] The KISS workflow designer. http://dev.mygrid.org.uk/wiki/

display/tav/KISS.
[2] cloudnumbers.com - High Performance Computing (HPC) in the

Cloud. http://cloudnumbers.com/.
[3] Eduserv - Public Sector IT Specialist. http://www.eduserv.org.

uk/cloud.
[4] Emulab - Network Emulation Testbed Home. http://emulab.net/.
[5] jclouds - multi-cloud library. http://code.google.com/p/

jclouds/.
[6] Web Processing Service 2.0 SWG. http://www.opengeospatial.

org/projects/groups/wps2.0swg.
[7] G. S. Blair and Y. El-khatib. A Cloud-based Virtual Observatory

for Environmental Science. OpenWater Symposium, page 102, April
2011.

[8] K. Chine. Scientific Computing Environments in the Age of Virtual-
ization Toward a Universal Platform for the Cloud. In IEEE Interna-
tional Workshop on Open-source Software for Scientific Computation
(OSSC), pages 44–48, September 2009.

[9] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) version 2.0 part 1: Core Lan-
guage. W3C Recommendation, 20070626 edition, June 2007.

[10] J. S. Famiglietti, L. Murdoch, V. Lakshmi, J. Arrigo, and R. Hooper.
Establishing a Framework for Community Modeling in Hydrologic
Science. http://www.cuahsi.org/chymp.html, March 2011.

[11] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine,
2000.

[12] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. Michaelides, D. Newman, M. Borkum, S. Bechhofer, M. Roos,
P. Li, and D. De Roure. myExperiment: A Repository and Social
Network for the Sharing of Bioinformatics Workflows. Nucleic Acids
Research, 38(suppl 2):W677–W682, July 2010.

[13] J. L. Goodall, J. S. Horsburgh, T. L. Whiteaker, D. R. Maidment, and
I. Zaslavsky. A First Approach to Web Services for the National Water
Information System. Environmental Modelling & Software, 23(4):
404–411, 2008.

[14] C. Jacobs. A Vision for, and Progress Towards EarthCube. In Eu-
ropean Geosciences Union General Assembly Conference Abstracts,
volume 14, page 1227, April 2012.

[15] L. N. Leonard, C. Duffy, and G. Bhatt. Data-intensive Hydrologic
Modeling: A Cloud strategy for integrating PIHM, GIS, and Web-
Services. In American Geophysical Union Fall Meeting Abstracts,
volume 1, page 8, December 2010.

[16] S. Malkowski, M. Hedwig, and C. Pu. Experimental Evaluation of N-
tier Systems: Observation and analysis of multi-bottlenecks. In IEEE
International Symposium on Workload Characterization (IISWC),
pages 118–127, October 2009.

[17] S. McGough, V. Glenis, C. Kilsby, V. Kutija, and S. Wodman. Experi-
ences in running High Throughput Computing on the Cloud. In OGF
Workshop on Science Applications and Infrastructure in Clouds and
Grids, March 2012.

[18] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Tav-
erna: Lessons in creating a workflow environment for the life sciences.
Concurrency and Computation: Practice & Experience, 18(10):1067–
1100, August 2006. ISSN 1532-0626.

[19] B. Roth, R. Hecht, B. Volz, and S. Jablonski. Towards a Generic
Cloud-Based Virtual Research Environment. In IEEE 35th Annual
Computer Software and Applications Conference Workshops (COMP-
SACW), pages 267–272, July 2011.

[20] B. Schäffer, B. Baranski, and T. Foerster. Towards Spatial Data
Infrastructures in the Clouds. Geospatial Thinking, pages 399–418,
2010.

[21] US Environmental Protection Agency, Office of Water. STOrage and
RETrieval: The US EPA Water Quality Database. http://www.epa.
gov/storet/.

