Structural characterization and physical properties of P2O5–CaO–Na2O–TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies

Kiani, Azadeh and Hanna, John V. and King, Scott P. and Rees, Gregory J. and Smith, Mark E. and Roohpour, Nima and Salih, Vehid and Knowles, Jonathan C. (2012) Structural characterization and physical properties of P2O5–CaO–Na2O–TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies. Acta Biomaterialia, 8 (1). pp. 333-340. ISSN 1878-7568

Full text not available from this repository.

Abstract

Phosphate-based glasses have been investigated for tissue engineering applications. This study details the properties and structural characterization of titanium ultra-phosphate glasses in the 55(P2O5)–30(CaO)–(25 − x)(Na2O)–x(TiO2) (0 ⩽ x ⩽ 5) system, which have been prepared via melt-quenching techniques. Structural characterization was achieved by a combination of X-ray diffraction (XRD), and solid-state nuclear magnetic resonance, Raman and Fourier transform infrared spectroscopies. Physical properties were also investigated using density, degradation and ion release studies; additionally, differential thermal analysis was used for thermal analysis of these glasses. The results show that with the addition of TiO2 the density and glass transition temperature increased whereas the degradation and ion release properties are decreased. From XRD data, TiP2O7 and CaP2O6 were detected in 3 and 5 mol.% TiO2-containing glasses. Magic angle spinning nuclear magnetic resonance results confirmed that as TiO2 is incorporated into the glass; the amount of Q3 increases as the amount of Q2 consequently decreases, indicating increasing polymerization of the phosphate network. Spectroscopy results also showed that the local structure of glasses changes with increasing TiO2 content. As TiO2 is incorporated into the glass, the phosphate connectivity increases, indicating that the addition of TiO2 content correlates unequivocally with an increase in glass stability.

Item Type:
Journal Article
Journal or Publication Title:
Acta Biomaterialia
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2204
Subjects:
?? phosphate glass31p nmrdegradationion releasephosphate speciesbiomedical engineeringbiochemistrybiomaterialsmolecular biologybiotechnology ??
Departments:
ID Code:
65015
Deposited By:
Deposited On:
06 Jun 2013 10:18
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 14:00