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We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters 
(SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the 
fixed negative charge Qf  at the SF. This structure comprises distinct regions of high conductance (conduction bands) 
M0, M1, M2 separated by regions of almost zero-conductance (stop-bands). Two of these conduction bands, M1 and 
M2, are related to the saturated calcium occupancies of P=1 and P=2, respectively and demonstrate self-sustained 
conductivity. Despite the model’s limitations, its M1 and M2 bands show high calcium selectivity and prominent 
anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels. The non-selective 
band M0 can be identified with a non-selective cation channel, or with OmpF porin. 

1 Introduction 
Voltage-gated calcium ion channels play an important role in stimulating muscle contraction, in 

neurotransmitter secretion, gene regulation and transmission of action potentials, based on their high 
selectivity for divalent calcium ions Ca2+ over monovalent sodium ions Na+. They exhibit the anomalous 
mole fraction effect (AMFE), an effective blockade of Na+ permeation by small concentrations of Ca2+, 
combined with measurable Ca2+ currents in the pA range [1]. 

The selectivity of calcium channels is defined by a narrow selectivity filter (SF) with a strong binding 
site formed by negatively-charged protein residues [1, 2].  Wild-type calcium channels and their mutants 
differ in the composition, structure (locus) and net fixed charge Qf of these protein residues at the SF. The 
most-studied L-type calcium channel possesses an EEEE locus with an estimated Qf=3-4e [2, 3], where 
e=-1.6x10-19C is the electronic charge. The ligand-gated Ryanodine receptor (RyR) calcium channel has a 
DDDD locus with a larger Qf≈4.5e [4]. The L-type and RyR channels exhibit different threshold 
concentrations for blockage of Na+ current by Ca2+ ions: [Ca]50≈1μM and [Ca]50≈1mM respectively [4].    

Sodium channels have structures very similar to calcium channels, but with different SF loci (and 
therefore different Qf), and different lengths and radii [5-7]. The eukaryotic sodium channel has a DEKA 
locus with Qf ≈1e [5, 7]. In the recently studied bacterial Navab channel, the four Glutamate side chains 
form a 6.5x6.5Å scaffold with an orifice of 4.6x4.6Å defined by van der Waals surfaces [6, 8].  

Mutant studies show that Qf is crucial in determining the Ca vs Na selectivity of calcium channels. 
Usually, mutations that influence Qf also destroy the channel’s selectivity and hence physiological 
functionality [9]. However, an appropriate point mutation of the DEKA sodium channel (Qf ≈1e) converts 
it into a calcium-selective channel with a DEEA locus and Qf ≈4e [10]. The essentially nonselective 
bacterial OmpF porin (Qf ≈1e) can be also turned into a Ca-selective channel by introduction of two 
additional glutamates in the constriction zone. The resultant mutant contains a DEEE-locus (Qf ≈4e) and 
exhibits an Na current with a strongly increased sensitivity to 1mM Ca [11].  

Dynamic Monte-Carlo simulations of the flexible volume exclusion model of calcium and sodium 
channels  [3, 12] show that the charge density at the SF is the first-order determinant of selectivity [3]; 
and the Na+ to Ca2+ occupancy ratio decreases monotonically as Qf  increases from 1e (DEKA locus) to 4e 
(DEEE locus), while the pore becomes more and more Ca2+ selective [5].  
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Self-consistent Brownian dynamics (BD) simulations [2] of conductance and selectivity, based on a 
purely electrostatic model of the L-type channel with a rigid binding site, revealed a narrow peak in Ca2+ 
conductance near Qf =3.2e. [2, 13] 

Although mutant studies [9-11] and simulations [2, 3, 5] have demonstrated very clearly the dominant 
influence of Qf  on the selectivity of the calcium channel, it has remained unclear why particular values of 
Qf should be optimal for selectivity or how many such values may exist.  

Multi-ion knock-on conductivity is assumed to be one of the main mechanisms of permeation and 
selectivity in the case of the potassium channel [14-17]; a similar mechanism could resolve the paradox of 
high selectivity and high conductance in the calcium ion channel [18, 19]. Its selectivity and conductivity 
are connected with strong ion-ion repulsion and multi-ion occupancy of the SF [2, 12, 19]. The 
discreteness of the ionic occupancy also plays a significant role in conduction and is expected to manifest 
as discrete multi-ion steps/bands in the dependences of occupancy and conductance on concentration, 
time and other parameters [20-22]. These steps/bands are related to the barrier-less knock-on conduction 
mechanism that has been suggested as being the underlying mechanism responsible for the conductivity 
and selectivity of ion channels [17]. Simplified (“toy”) electrostatic models of an ion channel, describing 
it as a water-filled charged protein hub in the cell membrane, were found to reproduce significant features 
related to the conductivity and, in particular, to the valence selectivity between ions of different charge 
[13, 22-25].  

In this article, we show that the Ca2+ conduction and Ca2+/Na+ valence selectivity of a simple calcium 
channel model forms a regular structure of conduction/selectivity bands (regions) as a function of Qf,  
separated by non-conduction bands, related to saturated, barrier-less, conductivity with different numbers 
of Ca2+ ions involved in the conduction. The conductance peak obtained in [2] is one part of this structure. 
We infer that all calcium-selective channels (both wild-type and mutants) should correspond to one of 
these bands. 

2 Methods 
2.1 A simple model of the calcium channel 

We use a simple, self-consistent, purely electrostatic model of a calcium ion channel to study the 
effects of surface charge Qf on its conduction and selectivity. This model represents the channel’s 
selectivity filter (SF) as a negatively-charged, axisymmetrical, water-filled protein hub in the cell 
membrane (Figure 1) similar to that used in earlier work [2, 3, 26]. We model the SF only following [3, 
26]: we omit the charged vestibule modelled in [2] because the ion-ion and ion-fixed-charge interactions 
inside the SF are the main determinants of selectivity [2, 3]. The negatively-charged protein residues are 
modeled as a single, thin, uniformly-charged, centrally-placed, rigid ring around the SF. Located inside 
the wall, the ring brings a net negative charge Qf  of 0- 6.5e. The extracellular (left) and intracellular 
(right) baths are filled with ionic sodium-only, calcium-only, or mixed sodium-calcium aqueous solutions. 
In what follows we assume an asymmetrical ionic concentration: CL>0, CR=0.  
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The minimum possible radius R of the SF of an L-type calcium channel has been determined as being 
R=2.8Å. We use the value of R=3.0Å. We choose the length L=16Å for the main simulations as being 
close to the value used in [3]. Moving sodium and calcium ions are described as charged particles of 
radius Ri≈1Å (matching both ions), with diffusion coefficients of DNa=1.17x10-9 m2/s and DCa=0.79 x 10-9 
m2/s, respectively. The domain length is Ld=100Å, the domain radius is Lr=100Å, and the grid size is 
h=0.5Å. A voltage V=0-75mV was applied between the left and right domain boundaries.       

2.2 Self-consistent electrostatics of the ion channel 

The electrostatic field was derived by numerical solution of Poisson’s equation: 

        -∇(ε∇u)= ∑ ezini
ε0

                                                                                                                    (1)   

 
Figure 1. Computational domain for a simple model of the calcium ion channel. Its selectivity filter is treated as an 
axis-symmetrical water-filled cylindrical hole of radius R=3Å and length L=12-16Å through the protein hub in the 

cellular membrane. There is a centrally-placed, uniformly-charged, rigid ring of negative charge Qf=0-6.5e. The left-
hand bath, modeling the extracellular space, contains non-zero concentrations of Ca2+ or Na+ ions. These are injected 

at the Smoluchowski diffusion rate at radius Ra (dashed hemispheres), we take Ra=R here. The domain length is 
LD=100Å, the domain radius is RD=100Å, the grid size is h=0.5Å, and a potential difference of 0-75mV is applied 

between the left and right domain boundaries. 
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where ε0 is the dielectric permittivity of vacuum, ε is the dielectric permittivity of the medium (water or 
protein), 𝑢 is the electric potential, 𝑒 is the elementary charge, 𝑧𝑖 is the charge number, and 𝑛𝑖 is the 
number density of ions.  
Self-consistent electrostatic potentials and forces are calculated numerically with respect to the ion-ion 
interaction, channel geometry  (Figure 1), self-potential  barrier of the dielectric boundary force [23], 
value of Qf and value of applied potential V at each simulation step. We used a finite volume Poisson 
solver specially designed for use within the ion channel geometry where there are severe jumps in 
dielectric permittivity. The linearity of Poisson’s equation together with the superposition principle allow 
us to use pre-calculated lookup tables for the field components, thereby dramatically decreasing the 
computation time of BD simulation steps  [27].  

Our reduced model of the SF takes both water and protein to be homogenous continua with dielectric 
constants εw=80 and εp=2, respectively, together with a primitive model of ion hydration (the validity of 
this latter approximation is discussed below). The self-consistent electrostatics of a narrow, water-filled, 
channel in the protein wall differs significantly from bulk electrostatics, even when the dielectric constant 
of the water inside the channel is taken to be the same as in the bulk [28]. The huge gradient  between 
εw=80 and εp=2 results in the quasi-1D axial behaviour of the electrostatic field, and hence in single-file 
movement of positive ions inside the channel [25]. This effect can be interpreted as electrostatic 
amplification of the electric field inside the channel [25, 29]. The electrostatics of the ion channel also 
prohibits the entrance of any negatively charged ions due to combined influences of the dielectric 
boundary force and the interaction with the fixed charge [23]. Consequently, we use a 1D dynamic model 
to simulate the axial, single-file, movement of cations (only) inside the SF and in its close vicinity.    

This generic model of the ion channel can be used to describe the SF of both calcium and sodium 
channel depending of selected values of R, L and Qf  [3, 5]. A similar model of the Gramicidin A channel 
is described in [30, 31]. 

2.3 Brownian dynamics simulations 

The BD simulations are based on numerical solution of the 1D over-damped Langevin equation: 

)(2' tDDux x ξ+−=                                                                                                             (2) 

where x stands for the ion’s position, D is its diffusion coefficient, u is the self-consistent potential in 
kBT/e units, and ξ(t) is normalized white noise. Numerical solution of (2) has been implemented with the 
Euler forward scheme.  

We use an ion injection scheme that allows us to avoid heavy-duty simulation of ionic movements in 
the bulk liquid. Ions are injected randomly into the vicinity of the left channel entrance at an arrival rate 
that simulates the diffusive ionic flux from the undisturbed bulk. The model includes a hemisphere of 
radius Ra at each entrance representing the boundary between the channel vicinity and the baths (we take 
Ra=R here). The arrival rate 𝑗𝑎𝑟𝑟 is connected to the bulk concentration C through the Smoluchowski 
diffusion rate: 𝑗𝑎𝑟𝑟 = 2𝜋𝐷𝑅𝑎𝐶  [32]. 

The motion of each injected ion is simulated in accordance with (2) until it reaches a domain boundary, 
where it is assumed to be absorbed.  Simulations continue until the chosen simulation time has been 
reached. The ionic current J is calculated as averaged difference between the numbers of similar ions 
passing the central cross-section of the SF per second in the forward and reverse direction [17]. 

A number of quantities is measured during the simulations, including the sodium JNa and calcium JCa 
ion currents, the partial ionic occupancy profiles Px(x) along x for different concentrations, and the partial 
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PNa and PCa occupancies, in each case as functions of the respective concentrations of calcium [Ca] or 
sodium [Na]. 

The BD simulations of ion current J and occupancy P were performed separately for CaCl2 and NaCl 
solutions, and also for a mixed-salt configuration, with concentrations [Na]=30mM and 20μM ≤ [Ca] ≤ 
80mM. The value of Qf was varied  within the range 0-6.5e in order to cover the known variants of 
sodium and calcium channels [5]. 

2.4 Model validity and limitations 

The validity of continuum electrostatics and Langevin dynamics for a narrow water-filled pore is, of 
course, a highly significant question in relation to simplified models of the kind discussed [33-35]. The 
effective screening inside the long, narrow, selectivity filter could be very different than that assumed for 
εw = 80 and the whole notion of a dielectric constant inside a cylinder with R=3.0 Å with L=16 Å could 
become ill-defined [34].   

The validity of both the electrostatics and the dynamics depends on the degree of dehydration of the ion 
inside the channel, so it can be defined roughly by the relationship between the channel radius R and the 
radius of the ion’s first hydration shell Rh [28]. Continuum electrostatics and dynamics generally fail 
when Rh >R, but still can be applied for Rh ≈ R provided that one uses effective values of εw and the 
diffusion coefficients DNa, DCa that are all dependent on R [28]. We estimate Rh≈3.5Å for Na+ and Ca2+ 
ions so the calcium channel with R≈ 3 Å [1] does provide some room for Na+ and Ca2+ ions  to carry 
water molecules. Both ions are still partially hydrated, therefore, and the continuum approximation with 
effective values can be used inside the SF. It is shown in [28] that the effective εw saturates to its bulk 
value εw=80 for R≈3.5 Å (roughly corresponding to Rh) and is still close to it (εw≈70) for R=3Å. This 
allows us to use bulk value for εw. The effective values of the ionic diffusion coefficients also decreased 
significantly with decreasing R in comparison with their bulk values, and are estimated as D~0.25Dbulk for 
R=3Å [34].   

In this research we therefore use the bulk values of εw and D as their effective values throughout the 
whole computational domain, including the SF, a choice that avoids the use of additional fitting 
parameters. This reduced model obviously represents a considerable simplification of the actual 
electrostatics and dynamics of moving ions and water molecules in single-file within the narrow SF [34, 
36]. Nonetheless, its applicability is supported by its reproduction of the experimentally observed AMFE 
kinetics for the calcium channel (see below, Figures 4 and 5). 

We have performed a parametric study of the stability and variability of the simulation results to 
changes of the effective model parameters: the length L and radius R of the SF, the length H of the 
charged ring, and the applied voltage V (see Appendix). We show that the simulation results are relatively 
insensitive to changes in the model parameters and that the main result – the distinct conductivity and 
selectivity bands – exists within a range of parameter values. This stability implicitly confirms that 
reported phenomena arise from the basic electrostatics of real ion channels rather than as computational 
artifacts of our model related to some particular values of parameters.  

We note that the recent determination of the crystal structure of the sodium NavAb channel [6] 
provides for well-hydrated motion of ions and has a rather asymmetric mode of coordination by four 
residues [8]. Although this structure refers to a bacterial channel, and not a DEKA-motif channel, it may 
nonetheless be relevant to the Na- and Ca-selective sites in the channels under consideration. If this turns 
out to be the case, the model presented here, which assumes a symmetrical arrangement of fixed charges 
and ions inside the channel, can with advantage be modified accordingly.  
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3 Results and Discussion 
3.1 Conduction and selectivity bands of the calcium channel 

Figure 2 (a) and (b) demonstrate our main result - the appearance of regular structure in the Ca2+ ion 
current J as a function of Qf, and [Ca], comprising areas of high conductance (conduction bands) M0, 
M1, M2 separated by almost zero-conductance stop-bands. The peak separation  ΔQ≈2e corresponds 
roughly to the charge on one Ca2+ ion. Band M1 coincides with the J peak from [2] which was obtained 
for a negative charge of 1.3x10-19 C/ glutamate residue giving a total charge of   
Qf= 4x1.3x10-19C=~3.2e  (the authors of [2] used 4 residues to model the EEEE locus of an L-
type calcium channel). 

 

The Ca2+ occupancy P exhibits step-wise growth with increasing Qf  (Figure 2 (c)). The flat steps 
correspond to non-conducting saturated states with P=0, 1, 2… where the potential well at the binding 
site is too deep to allow escape of a Ca2+ ion, and too shallow to allow the next Ca2+ ion to enter the SF 
and push the bound ion(s) out. The conduction bands M0, M1 and M2 correspond to transitions in P: 

 
 

Figure 2. Multi-ion conduction bands of the calcium channel model. (a) A 3D plot of the calcium current J vs fixed 
charge Qf and concentration [Ca] exhibits regular band structure. (b) A plot of J as a function of Qf and [Ca] shows 
the M0, M1, and M2 bands: plots 1,2,3 are J and P for [Ca]=20mM, 40mM and 80mM, respectively; and 4 is the J 

peak from [2], corresponding to M1. (c) The occupancy P shows stepwise growth as Qf increases. The flat steps 
correspond to the saturated occupancy values P=1, 2, 3, .. 
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0→1, 1→2, and 2→3, respectively. This picture corresponds to the “knock-on” mechanism of Ca2+ 
conductance and selectivity [1, 2]. It has an obvious analogue in semiconductor physics, where 
conduction also occurs in partially filled bands [37]. 

The appearance of the distinct conduction bands is caused by the discreteness of the multi-ion 
occupancy P. Their existence just for Ca2+ in the calcium channel relates to the high Qf and double-
valence of Ca2+, enhancing the electrostatic effects of valence selectivity [13]. 

The effective parameter values in our model (R, L) can be varied within restricted ranges to fit 
experimental data for real channels [2, 3]. Our parametric study (see Appendix) shows that the simulated 
bands are only weakly sensitive to variations of R and L in the ranges: R=2.5-3.5Å, L=12-20 Å. Further 
decrease of L, or increase of R, leads to a weakening of the bands and to their eventual disappearance (at 
L=8Å for R=3Å).  Their disappearance for shorter SFs may be related to the existence of a minimum L 
needed to hold two Ca2+ ions in the SF against their mutual Coulomb repulsion. 

Mixed salt simulations (Figure 3 (a)) show that the M1 and M2 JCa peaks are decreased and shifted to 
the beginning of the transition regions in P, as compared to the corresponding peaks for a pure Ca2+ bath, 
due to attenuation by Na+ ions [2]. Figure 3 (b) shows that the selectivity ratio Rs=(JCa/JNa) peaks at M1 
and M2,  with Rs≈130 for the M1 conduction band, and that there is no selectivity outside these bands. 
The J vs P plots (Figure 3 (c)) are each drawn as a J vs [Ca] simulation at constant Qf. They show that, at 

 
 

Figure 3. Conduction and selectivity bands for a [Na]=30mM, [Ca]=40mM mixed salt bath. (a) Currents J vs fixed 
charge Qf. Curves: 1 - Ca, 2 - Na, 3 – Ca for a pure bath (reference curve from Figure 1). (b) The selectivity ratio 
RS=JCa/JNa exhibits sharp peaks for the M1 and M2 bands. (c) JCa vs Ca2+ occupancy P. The selectivity peaks  M1, 

M2 show saturated conductance at nearly constant P. 
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P=1 for the M1 mode, and P=2 for M2, P remains almost constant (saturated) while J increases very 
rapidly. The saturated conductance appears only for distinct values of Qf  where the output barrier for the 
bound Ca2+ ion falls close to zero due to Coulomb repulsion between the Ca2+ ions, leading to barrier-less 
conduction [17, 22]. The arriving ion instantly pushes out and replaces the bound ion, so that P remains 
constant [17]. The saturated conductance provides the highly selective self-sustained Ca2+ flux in a mixed 
salt bath with a permanently Ca2+-occupied channel that is blocked for Na+ ions [2].  

3.2 AMFE kinetics and identification of conduction bands 

Because the ion channels in living cells are designed to conduct particular ions selectively with high 
rates, we expect wild-type channels to correspond to one of the highly conductive or highly selective 
bands: M0 (non-selective), M1 or M2 (calcium selective). We try to identify these bands with known 
wild-types channels by comparing their simulated and measured conductivity and selectivity properties 
(see Table). 

The conductivity band M0 at Qf ≈1e provides non-selective conductance for both Ca2+  and Na+  ions 
and does not exhibit mutual blockade in AMFE simulations. Such properties could correspond to a non-
selective cation channel [38] or the OmpF channel with Qf ≈1e [11]. 

The highly calcium selective bands M1 and M2 correspond to different modifications of the calcium 
channel. We now argue that, based on their Qf values and AMFE properties, the M1 and M2 bands 
correspond respectively to the L-type and RyR calcium channels.   

    

 
Figure 4. AMFE in a mixed salt bath for the M1 channel. (a),(b) Sodium (blue, point-down, triangles) and calcium 

(red, point-up, triangles) currents  J and occupancies P vs Ca2+ concentration [Ca] in the highly-selective M1 
channel for [Na]=30mM.  The lines are guides to the eye. M1  shows strong blockade and AMFE at PCa=1 with a 
threshold of [Ca]50≈ 30μM. (c) Mutual occupancy profiles for Na (left, blue, curve) and Ca (right, red, curve) ions 

show blockade of Na ions by the  first Ca ion. 
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     Figure 4 presents the dependences of J and P on [Ca] for the M1 band in a mixed salt configuration. 
As shown in (a), (b), the M1 band with Qf=3e shows a strong blockade of the current JNa of Na+ ions with 
a blockade onset at [Ca]50≈ 30μM.  The blockade occurs after the first Ca2+ ion has occupied the SF 
(Figure 4 (c)): PCa→1. The strong blockade with relatively low onset agrees qualitatively with the 
observed properties of the L-type channel [1]. The value of Qf, and the conduction mechanism for M1 also 
correspond to the model [2] of the L-type channel (EEEE locus).  

 

 

Figure 5 presents AMFE kinetics for the M2 band with Qf=5e. Blockade onset occurs at [Ca]50 ≈ 
0.2mM, corresponding to double-occupancy of the SF. Figure 5 (c) shows that the Na+ ion is blocked by 
two Ca2+ ions bound to the SF and separated by ion-ion repulsion. The M2 channel also shows a larger 
calcium current than M1. The high blockade offset and high calcium current, together with the higher 
value of Qf , can be matched to the RyR channel (DDDD locus) [4]. 

The identification results are collected in Table 1. 

 

 

 

 

 
Figure 5. AMFE for a mixed salt bath for M2 channel. (a),(b)  Sodium (blue, point-down, triangles) and calcium 
(red, point-up, triangles) currents J and occupancies P vs Ca2+ concentration [Ca] in-selective M2 channels for 
[Na]=30mM. The lines are guides to the eye. M2 shows strong blockade and AMFE at PCa=2 with threshold 
[Ca]50≈ 200μM. (c) Mutual occupancy profiles for Na (left, blue, curve) and Ca (right, red, curve) ions show 

blockade of Na ions by two Ca ions. 
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Conduction 
band 

Fixed 
protein 
charge  

Na 
conductivity 

Ca 
conductivity 

Blockade 
of Na 
current by 
Ca ions 

AMFE Channel(s) Residues 
locus 

M0 ≈ 1e High High No 
blockade 

No AMFE Non-
selective 
cation 
channel 
[38], OmpF 
channel [11] 

 

M1 ≈ 3e High High Yes, 
sodium ion 
is blocked 
by one 
calcium 
ion, low 
blockade 
offset 
(30μM) 

Yes, 
blockade 
is 
followed 
by 
moderate 
calcium 
current 

L-type 
Calcium 
channel [1] 

EEEE 

M2 ≈ 5e High High Yes, 
sodium ion 
is blocked 
by two 
calcium 
ions, higher 
blockade 
offset 
(200μM) 

Yes, 
blockade 
is 
followed 
by strong 
calcium 
current 

RyR 
Channel [4] 

DDDD 

4 Conclusions 
In conclusion, our self-consistent BD simulations in a reduced model of a calcium channel SF have 

revealed distinct conduction bands M0, M1 and M2 as a function of the fixed charge Qf related 
respectively to integer values 0,1,2 of the occupancy P. The M0 band appears at Qf=1e with P=1; the M1 
band appears at Qf=3e with P=1; and the M2 band appears at Qf=5e with P=2. The M0 band exhibits non-
selective conductivity for both calcium and sodium ions, and can be identified with OmpF channel. The 
M1 and M2 bands show saturated self-sustained conductivity with high calcium selectivity 
(Rs=JCa/JNa≈130 for the M1 band) and prominent AMFE, and can be identified with the L-type (EEEE 
locus) and RyR (DDDD locus) calcium channels, respectively. The existence of the bands also provides a 
possible explanation for the results of mutation studies [9-11] in which a change in the fixed charge was 
found to destroy functionality or alter the type of selectivity. 

Finally, we speculate that gating, and drug-induced blockade, may correspond to switching between a 
conduction band and a stop-band [20]. 

 

 
Table 1. Identification of conduction and selectivity bands 
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6 Appendix: Parametric study 
We have performed a parametric study of the stability and variability of the simulated band structure 

(see above) in the face of changes in the effective model parameters: the length L and radius R of the SF, 
the length H of the charged ring, and the applied voltage V (see Figure A1 -Figure A4 below). In fact, the 
characteristic structure exists within a range of parameter values, as we now describe in more detail. 

 

The value of length L for the SF of calcium channels is usually estimated and modelled as being in the 
range L=5-15Å [2, 3] but the effective length could also depend on the geometry of the SF vestibules. We 
have performed BD simulations with L varying from 8-20 Å to investigate the parametric dependence of 
the conductance bands on L, as shown in Figure A1. An increase in L leads to a sharpening of the band 
structure and to decreasing conductance. A decrease in L leads to the flattening and eventual 
disappearance of the band structure (at L<=10Å for R=3Å) combined with an increase in conductance. 

The effect of varying R, shown in Figure A2 reveals a significant decrease of selectivity with increasing 
R, and vice-versa. The band structure eventually disappears at R=4.5Å. 

Figure A3 shows the result of varying the length H of the charged ring within the range 0-8Å.  It is 
evident that the band structure is relatively insensitive to H. This finding agrees with the results of 

  
Figure A1. Calcium current J vs fixed charge Qf, showing 

how the band structure changes as the length of the SF varies 
in the range L=8-20 Å. Increase of L leads to an increase of 

the contrast between conduction/non-conduction bands, 
combined with a decrease of J, and vice versa. 

Figure A2. Calcium current J vs fixed charge Qf 
showing how the band structure changes with the 

radius of the SF in the range R=2.5-4.5Å. An increase 
of R to 3-4Å leads to a decrease in the bands’ contrast, 
but the general pattern of the bands is still visible. A 

further increase of R  to 4.5Å destroys the band 
structure. 
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dynamic Monte-Carlo simulations [3, 5] for a flexible SF model, which showed that the selectivity is 
defined by the net charge rather than by the axial distribution of fixed charges. 

The results in Figure A4 show that the band structure is relatively insensitive to variations in the 
applied voltage V within the range 0-75mV.  
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