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Nonautonomous oscillatory systems with stable amplitudes and time-varying frequencies have often

been treated as stochastic, inappropriately. We therefore formulate them as a new class and discuss how

they generate complex behavior. We show how to extract the underlying dynamics, and we demonstrate

that it is simple and deterministic, thus paving the way for a diversity of new systems to be recognized as

deterministic. They include complex and nonautonomous oscillatory systems in nature, both individually

and in ensembles and networks.
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Dynamical systems are generally seen as being either
deterministic or stochastic. The advent of dynamical chaos
several decades ago attracted much attention and illus-
trated that even complex dynamics can be deterministic.
Dynamical systems can also be classified as autonomous
(self-contained) or nonautonomous (subject to external
influences). In reality, nonautonomous systems are the
commoner, but they are far harder to treat. Until now
they were mostly treated as stochastic or, alternatively,
attempts were made to reformulate them as autonomous.
Neither approach captures the characteristic properties of
these systems.

In this Letter we propose a new class of nonautonomous
systems and name them chronotaxic to characterize oscil-
latory systems with time-varying, but stable, amplitudes
and frequencies. Nonautonomous oscillatory systems
appear in various fields of research including neuroscience
[1,2], cardiovascular dynamics [3], climate [4,5] and evo-
lutionary science [6], as well as in complex systems and
networks [7–9]. Although we are witnessing a rapid
development of the theory of nonautonomous [10,11] and
random dynamical systems [12,13], nonautonomous oscil-
latory systems with stable but time-varying characteristic
frequencies have to date not been addressed. When treated
in an inverse approach such systems are usually considered
as stochastic. In an attempt to cope with the problem,
several methods for the inverse approach were introduced,
including wavelet-based decomposition [14], bispectral
analysis [15], harmonic detection [16] and phase coher-
ence [17], and Bayesian-based inference [18] methods.

Consequently, time-dependent dynamics have been
detected in different systems such as the cardiovascular
system [3], mitochondrial oscillations [19], the brain
[20,21], and surface state electrons on liquid helium [22].
Common to all these systems is that they are oscillatory,
have stable amplitudes, and frequencies that are resistant to
external perturbations. The variety of systems with these
characteristics suggests that their dynamics are generated
from a universal basis. To date, the description of stable
oscillatory dynamics has been based on the model of

autonomous self-sustained limit cycle oscillators [23].
While this model provides stable amplitude dynamics,
frequencies of oscillations within this model can be easily
changed even by weakest external perturbations.
The new class of nonautonomous oscillatory dynamical

systems that we now propose account for such dynamics.
The novelty of these systems is that not only are the
amplitude dynamics stable but also the frequencies of the
oscillations are time dependent and stable—i.e., their time-
dependent values cannot be easily altered by external
perturbations. Their characteristics and ability to generate
complex dynamics are demonstrated using a theoretical
example and a recording from a biological system (the
human heart). We also show how the properties of these
systems allow the deterministic dynamics to be extracted.
The new class of systems is a subclass of nonautono-

mous systems whose definition is provided by a skew-
product flow [10,24,25] generated by unidirectionally
coupled differential equations (also known as a master-
slave configuration [7], or as drive and response
systems [26])

_p ¼ fðpÞ; _x ¼ gðx;pÞ; (1)

where p 2 Rn, x 2 Rm. The nonautonomous system x can
be considered as driven by the system p in the sense that
_x ¼ gðx;pðtÞÞ for any given solution pðtÞ. Assuming pðtÞ
is known, the solutions for x, xðt; t0;x0Þ, depend on the
actual time t 2 R, the initial time t0 2 R, and the initial
point x0 2 Rm.
Now consider a system x from (1) with oscillatory and

stable dynamics. First, in terms of amplitude of oscillations
it means that the amplitude does not depend on initial
conditions and resists external perturbations. In the phase
space it means that all points converge to a closed isolated
trajectory �0, similarly to autonomous systems where �0 is
called a limit cycle [23]. However in autonomous systems
�0 has a peculiar property in that the frequency of the
stable oscillations can be easily changed. This is because
the position of a system on a limit cycle, described by a
phase, is neither stable nor unstable—it is neutral.
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In contrast to autonomous systems, we introduce non-
autonomous oscillatory systems x whose frequency of
oscillations resists external perturbations but can simulta-
neously vary in time. The position of such systems on �0 is
attracted to a time-dependent point xAðtÞ. Therefore, the
distinguishing feature of the nonautonomous system x is a
unique steady state xAðtÞ. It moves along the limit cycle
ðxAðtÞ 2 �0Þ with a certain angular velocity which deter-
mines the frequency of the oscillations. The time-dependent
value of such frequency is determined by the system (1) and
cannot be easily changed by influences on dynamics of x
from processes external to (1). The steady state xAðtÞ sat-
isfies the condition of invariance,

x ðt; t0;xAðt0ÞÞ ¼ xAðtÞ: (2)

Also, xAðtÞ attracts trajectories at actual time t,

lim
t0!�1jxðt; t0;x0Þ � xAðtÞj ¼ 0: (3)

Because of conditions (2) and (3) the point xAðtÞ can be
recognized as a pullback attractor [10,27].

Taking into account that oscillatory systems with stable
amplitude dynamics and stable time-dependent frequen-
cies play an important role in various branches of science
[3,19,20,22], we propose considering the nonautonomous
systems x as a new class. These systems are defined by
Eq. (1), by an attracting cycle �0 and a time-dependent
steady state xAðtÞ 2 �0. We name these systems chrono-
taxic (chronos—time, taxis—order) to emphasize their
defining property, which is the ability to withstand pertur-
bations to their time-varying parameters (frequencies). The
motion of the point attractor xAðtÞ along �0 features as a
special kind of limit cycle for nonautonomous systems—a
chronotaxic limit cycle.

Properties of chronotaxic systems.—(i) Chronotaxic
systems are dissipative dynamical systems representing

open thermodynamical systems with an internal source of
energy. Chronotaxic systems can sustain a stable oscilla-
tion amplitude against external perturbations. (ii) In
contrast to autonomous limit-cycle oscillators, both the
time-dependent phase and frequency of oscillations in
chronotaxic systems are stable and can resist external
perturbations.
Theoretical example and the inverse problem

approach.—Consider the following 2D chronotaxic
system whose limit cycle �0 is a circle with the radius r0
and whose phase and amplitude dynamics are sepa-
rable. The system is described by a vector x ¼
ðrx cosð�xÞ; rx sinð�xÞÞ. The amplitude dynamics is
described by

_r x ¼ "rrxðr0 � rxÞ; (4)

where "r is a constant. The phase dynamics is described by
the equation for the phase �x 2 R,

_� x ¼ "!0ðtÞ sinð�x � �pðtÞÞþ �ðtÞ: (5)

The coupling function "!0ðtÞ sinð�x � �pðtÞÞ explicitly

depends on time, while the parameter " is constant and
�ðtÞ represents external perturbation. The contribution
from the p system (1) is represented by the phase �pðtÞ,
with dynamics given by _�p ¼ !0ðtÞ, where

!0ðtÞ ¼ 0:3�

�
1� cosð!1tÞ

3
þ cosð!2tÞ

3

�
; (6)

with !1 ¼ 0:0275� rad s�1, !2 ¼ 0:01325� rad s�1.
The evolution of (4) and (5) with �ðtÞ ¼ 0 and "r ¼ 1 is

shown in Fig. 1(a). In such a case for j"j > 1 and!0ðtÞ> 0
all trajectories approach the pullback point attractor xAðtÞ

FIG. 1 (color online). (a) Time evolution of chronotaxic system (4) and (5) in the plane with polar coordinates (�x, rx) using " <�1
and !0ðtÞ> 0. Four phase portraits separated by 2.5 s time intervals are shown. The time-dependent point attractor or steady state
ð�A

xðtÞ; r0Þ (large black disk in red circle) moves along a limit cycle (black circle). Trajectories (orange) from different initial
conditions (white dots) approach the point attractor and then move together with it. This occurs because �x is coupled to a moving
point ð�pðtÞ; r0Þ (small black disk) which results from a nonautonomous contribution. The coupling determines instantaneous

velocities (gray arrows) of the system and the angular distance �pðtÞ � �A
xðtÞ ¼ arcsinð1=j"jÞ. (b) The position (phase) �x of the

chronotaxic system on the limit cycle when unperturbed (straight gray line) and perturbed (noisy black line). (c) A moving point
attractor does not exist on a limit cycle, the perturbed phase strongly deviates from the unperturbed phase.
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[large black disk in red circle in Fig. 1(a)] which satisfies
conditions (2) and (3). Its polar coordinates ð�A

xðtÞ; r0Þ can
be found analytically: �A

xðtÞ ¼ �pðtÞ � arcsinð1=j"jÞ þ
0:5�ð1þ signð"ÞÞþ 2�k, where k is an arbitrary integer
number. In the rotating reference frame where ð�pðtÞ; r0Þ
and ð�A

xðtÞ; r0Þ are stationary all trajectories of the system
(4) and (5) approach the steady state ð�A

xðtÞ; r0Þ. Now
consider the function �ðtÞ as white Gaussian noise
(h�ðtÞi ¼ 0, h�ðtÞ�ðt0Þi ¼ �2�ðt� t0Þ). The moving point
attractor provides stability in the phase�xðtÞ. Perturbations
by external additive noise �ðtÞ therefore do not cause �xðtÞ
to drift from the attractor, as shown in Fig. 1(b). However,
when the moving point attractor is absent, j"j< 1, the
phase �x strongly deviates from the unperturbed phase,
Fig. 1(c).

Assuming that the amplitude of oscillations is more
resistant against external perturbations than the frequency
of oscillations ("r � j"j), and consequently assuming
deviations of the system x from a limit cycle are negligible
("r � �) we focus only on phase dynamics. Considering
the system (5) we analyze its time series and present results
in Fig. 2(a) using " ¼ 1:1 and� ¼ 0:075. Results obtained
by the Fourier transform and time-delay embedding
[28–30] are shown in Figs. 2(b) and 2(c), respectively.
However, these methods are unable to trace time-
dependent behavior and therefore do not identify stable
oscillatory dynamics. A reconstruction of dynamics using
a time-delay embedding results in time-dependent compo-
nents being considered as extra dimensions of an autono-
mous system [31]. Therefore, the embedded trajectories
gradually fill low-dimensional phase space and the

attractor is not reconstructed. However, when only a small
part of the trajectories are considered, a time-dependent
cycle emerges from the system without noise ð�ðtÞ ¼ 0Þ,
Fig. 2(d), reflecting oscillations with time-dependent fre-
quencies on the cycle �0.
Different modes of the dynamics analyzed using the

wavelet transform are shown in Figs. 2(e)–2(g). The unper-
turbed dynamics of the system (5) are shown in Fig. 2(e).
The line in the wavelet transform corresponds to the fre-
quency !0ðtÞ, Eq. (6). The dynamics can become complex
and stochastic when the system is strongly perturbed,
Fig. 2(f), resulting in a large amount of phase slips, which
means that the difference j�x � �A

x j increases by a mul-
tiple of 2�. The number of phase slips decreases when the
strength of the coupling function increases, as illustrated in
Fig. 2(g). Nevertheless, the dynamics may look totally
stochastic and it can be difficult to extract the underlying
deterministic dynamics of the system. In chronotaxic sys-
tems, however, it is possible to extract the unperturbed
dynamics determined by motion of the point attractor.
Such dynamics correspond to a dominant, time-varying
oscillatory component in the wavelet transform, as can be
seen in Fig. 2(g). This extraction and separation of these
dynamics results in a reduction in the complexity of chro-
notaxic systems.
Chronotaxic systems are expected to have various types

of behavior because phase and amplitude dynamics may
not be separable. The attraction to �0 may not necessarily
be stronger than the attraction to xA along �0. In the
general case chronotaxic systems can have time-dependent
amplitude dynamics, such that the point attractor moves
along the time-dependent attracting circle �0ðtÞ.
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FIG. 2 (color online). Different domains of analysis of a signal xðtÞ ¼ cosð�xðtÞÞ from system (5). Change in frequency, _�xðtÞ, and
phase slips as seen in (a) the time domain, (b) Fourier power spectrum and (c) phase space obtained by time-delay embedding [28,29]
for " ¼ 1:1. (d) The embedding of the signal from the unperturbed ð�ðtÞ ¼ 0Þ system (5) with � ¼ 1:9 s, which corresponds to the first
minimum of the mutual information [30]. Two small parts of the embedded trajectory during time intervals ðt; tþ 2�=!0ðtÞÞ reveal a
time-dependent cycle. (e) Wavelet transform of the signal from the unperturbed system (5) with " � 1. (f) When a point attractor does
not exist (" ¼ 0:9) continuous phase slips occur for the perturbed system. (g) Phase slips also occur for the perturbed system at the
bifurcation point (" ¼ 1) but the attractor exists and can be reconstructed. When " increases in time, phase slips become less frequent
and almost disappear around t ¼ 1400 s where "ðtÞ ¼ 1þ 5!�1

0 ðtÞ exp½�ðt� 1400Þ2=5000�.
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Human heart as a chronotaxic system.—We now illus-
trate that the human heart can be considered as a chrono-
taxic system. We conducted an experiment on a healthy
young subject where respiration was paced with the fre-
quency !0ðtÞ, Eq. (6), as seen in Fig. 3(a). The respiration
was measured using a stretch-sensitive belt around the
chest and an electrocardiogram was recorded simulta-
neously. The instantaneous heart rate, also known as heart
rate variability (HRV), was calculated from intervals
between R peaks in the electrocardiogram. Linear interpo-
lation was applied to give a constant sampling frequency of
10 Hz. Results of analysis of HRV in different domains are
shown in Figs. 3(b)–3(d). The wavelet transform of the
detrended HRV, Fig. 3(b), reveals how the heart rate fol-
lows the frequency of respiration. The trend is defined
using a 25 s moving average and subtracted to remove
the influence of fluctuations on longer time scales. The
dominant line in Fig. 3(b) is discontinuous, with
features similar to the phase slips seen in the theoretical
example presented above, Fig. 2(g). However, in the phase
space of the time-delay embedded detrended HRV signal
[Fig. 3(c)], the dynamics appear entirely random and sto-
chastic, reflecting the long-standing perception of heart
dynamics.

We now search for signatures of chronotaxicity, i.e., a
time-dependent point attractor moving on a limit cycle. We
assume the randomness seen in phase space results from
the amplitude dynamics hiding the limit cycle. This possi-
bility is supported by the fact that we see one dominant but
discontinuous line in the wavelet transform, Fig. 3(b).
Comparing with the theoretical example, Fig. 2(g), we
conclude that these discontinuities are due to phase slips
which signify a presence of a point attractor. Therefore, in
order to obtain the dynamics of the point attractor we
extract the phase of the dominant component of HRV and

embed it as shown in Fig. 3(d). It is clear that dynamics in
the embedding space are governed by a time-dependent
cycle [32], similarly to what we observed earlier in
Fig. 2(d). These findings illustrate that the heart can be
regarded as a chronotaxic system. Furthermore, this clearly
shows the benefits of describing a system as chronotaxic;
namely, the complexity of its dynamics is reduced when
the deterministic part is extracted from other contributions.
Summary and conclusions.—We have introduced a new

class of nonautonomous oscillatory systems and named
them chronotaxic to encompass their defining property—
the ability to sustain stability in the amplitude and time-
dependent frequencies of oscillations under continuous
perturbation. This ability is generated by a time-dependent
point attractor or steady state which moves along the
attracting cycle in phase space. We formulated properties
of chronotaxic systems and illustrated them using a theo-
retical example. We also showed that chronotaxicity could
be identified in a physiological system. Chronotaxic sys-
tems have many potential applications especially in mod-
eling of complex systems, networks, and ensembles of
oscillators when not all parts of the dynamics are directly
observed. They are essential for effective modeling of
living systems because they have inherently stable but
time-varying characteristic frequencies. In addition, chro-
notaxic systems provide a new mechanism of obtaining
complex dynamics from stable deterministic dynamics.
While the dynamics under external perturbation may
look stochastic, we have demonstrated that the underlying
deterministic motion of the point attractor can be extracted.
The work is therefore changing the perception of what is
seen as the deterministic universe. Hence, we expect many
chronotaxic systems to be discovered in nature, leading to
various applications and an improved understanding of
their dynamical behavior.
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